Network Traffic Analysis for Threats Detection in
the Internet of Things

Mohammad Hammoudeh, Senior Member, IEEE, John Pimlott, Sana Belguith, Member, IEEE Gregory
Epiphaniou, Member, IEEE Thar Baker Member, IEEE A.S.M. Kayes, Member, IEEE Bamidele Adebisi, Senior
Member, IEEE, Ahcéne Bounceur Member, IEEE

Abstract—As the prevalence of the Internet of Things (IoT)
continues to increase, cyber criminals are quick to exploit the
security gaps that many devices are inherently designed with.
Whilst users can not be expected to tackle this threat alone, many
current solutions available for network monitoring are simply not
accessible or can be difficult to implement for the average user
and is a gap that needs to be addressed. This paper presents an
effective signature-based solution to monitor, analyse and detect
potentially malicious traffic for IoT ecosystems in the typical
home network environment by utilising passive network sniffing
techniques and a cloud-application to monitor anomalous activity.
The proposed solution focuses on two attack and propagation
vectors leveraged by the infamous Mirai botnet, namely DNS
and Telnet. Experimental evaluation demonstrates the proposed
solution can detect 98.35% of malicious DNS traffic and 99.33%
of Telnet traffic respectively; for an overall detection accuracy
of 98.84%.

Index Terms—Internet of Things, Network Traffic Analysis,
Mirai Botnet, DNS Attacks, IoT Security.

I. INTRODUCTION

APID developments in all areas encompassing the com-
R puting industry have been the dominant factor in phe-
nomenal changes within the information systems landscape
for home and enterprise environments alike. Within the last
few decades, advancements in manufacturing, networking and
distribution technologies have continuously challenged the
position of what might be construed as the ‘typical’ computer.
Devices are far more powerful and are often far more compact
than their equivalents from even just a decade ago. With the
clear benefits this combination of convenience and power can
bring, small form factor systems have quickly become the
preferred choice of system for many. The rise in use and
development of compact interconnected devices has rapidly
led way to the insurgence of the Internet of Things (IoT) [1].

The mass adoption of IoT technology has caught the at-
tention of malicious entities hoping to benefit from exploiting
a number of widespread security and access control issues

M. Hammoudeh J. Pimlott and B. Adebisi are with the Faculty of Science
and Engineering, Manchester Metropolitan University, Manchester, United
Kingdom, M1 5GD e-mail: m.hammoudeh@mmu.ac.uk).

S. Belguith is with the School of Science, Engineering & Environment,
University of Salford, UK.

G. Epiphaniou is with the Warwick Manufacturing Group, University of
Warwick, UK.

A. Kayes is with the Departement of Computer Science and Information
technology, La Trobe University, Australia.

T. Baker is with the School of Computer Science, Liverpool John Moores
University, UK.

A. Bounceur is with the Lab-STICC, University of Brest, France.

inherent in many devices [2]. The nature of IoT devices results
in maintaining a low level of user interaction and awareness in
the state of the device itself. This, in conjunction with sparse
updates from manufacturers results in prime targets for an
attacker, commonly remaining unpatched and vulnerable for
extended periods of time [3].

Often IoT focused malware exploit simple vulnerabilities
that are rife within smart devices; a prime example being the
Mirai botnet that surfaced in 2016. Mirai leveraged the Telnet
protocol to infect and propagate by exploiting poor security
controls in IoT devices that used the Busybox software suite.
Once a device is infected, the botnet can then be controlled
via a series of command and control servers (C2) that com-
municate through Domain Name System (DNS), a common
method employed by many malware. However, botnets such as
Mirai have built upon early iterations of similar malware like
Bashlite to employ DNS [4] either as a direct attack vector to
increase traffic, or to communicate with the owners’ of the C2
with a directive to add ‘threat mobility’ effectively defeating
many security monitoring systems that do not directly filter
and analyse DNS queries.

Many Mirai derivatives such as Sora, Saikin and Akiru
have surfaced since the original botnet began late in 2016;
and many still employ the original attack, communication
and propagation methods that made Mirai such a successful
and devastating malware campaign. The OWASP IoT project
maintain a list of prevalent security issues present in IoT
devices'. Many of the main issues that allowed Mirai and
other malwares to exploit IoT devices are covered by the
latest iteration of the report, of which some of the top entries
i.e. “Weak, Guessable, or Hardcoded Passwords’ and ‘Insecure
Network Services’ would include services such as the Telnet
protocol used by Mirai.

An effective DNS monitoring system in conjunction with
or as part of an Intrusion Detection System (IDS) could
assist in detecting malicious traffic to, or originating from
the various domains associated with typical botnet C2. It is
well understood that event logging and notification systems
are an essential technical aspect within any modern effective
information security management system [5]. IDS primarily
focuses on analysis of generated logs created as a natural
product of computer use, i.e., network logs generated through
web requests and responses, and system logs generated by
the operating system [6]. The challenge faced by classical

Uhttps://www.owasp.org/index. php/OWASP_Internet_of _Things_Project



IDS systems within a smart environment is that a large
majority of smart devices will not be able to effectively
support host or client-side network-based IDS. The use of
proprietary operating systems and specific embedded hardware
architectures would potentially result in compatibility issues.
In addition, the devices may be unable to provide the resources
needed to effectively perform the monitoring functions [7].
Instead, the intensive processing and computing tasks of IDS
systems should be off-loaded to other devices with appropriate
resources, such as external servers, or gateway/proxy devices
on the network. Traditional IDS systems are also not practical
to setup by consumers who do not have advanced technical
knowledge. Moreover, these IDS systems may be unable to
detect IoT threats without significant customisation and fine-
tuning of the underlying detection rules.

McDermott et al. [8] demonstrate that users are aware of
the challenges related to the security and privacy of devices
within their home network, but the majority simply lack
the skills, technology and knowledge necessary to identify
potential vulnerabilities. This gap between user awareness and
technical ability is an issue that should be addressed to provide
the average consumer with the means to accurately monitor
their own devices for security issues.

This research presents an accessible cloud-based approach
that can be used to monitor the security status of smart device
networks in real-time, regardless of the user’s technical knowl-
edge and experience. The presented solution, called IoTMon,
focuses on detecting attacks from the infamous Mirai botnet
and its many derivatives which have been responsible for some
of the largest Distributed Denial of Service (DDoS) attacks
in recent history. The implementation of a network sniffing
client to feed network traffic data to a cloud application
is demonstrated and presented to provide a robust security
monitoring solution.

The rest of the paper is organised as follow. Section II
presents related work on threat detection approaches. The
technical specifications of the proposed IoTMon platform
are presented in Section III. Section IV describes IoTMon
experimental evaluation setup and results. Section V concludes
the paper and presents future work directions.

II. RELATED WORK

There are a multitude of ways effective monitoring can
be carried out using network traffic analysis. From elaborate
honeypot systems to more traditional deep packet inspection
and analysis on a web proxy or central node, a combination
thereof could potentially result in a powerful, hybrid style
IDS with potential to detect various sources of incoming
and outbound malicious traffic. This section reviews some of
common IDS systems and techniques.

Since the insurgence of IoT in recent years, various efforts
have been made in developing bespoke network monitor-
ing solutions aimed within the market, in addition to new
research encompassing methods that can be employed to
detect malicious behaviour by monitoring network traffic of
IoT devices [9]. Multiple open-source tools, such as Snort,
empower the user to install an effective IDS, however they

often require significant technical expertise and knowledge to
implement effectively and securely.

The majority of the open-source tools are packaged with
a web interface or are enabled with remote administration
capability upon direct install which requires further technical
configuration. Most users would be hesitant to endeavour
in attempting to configure or actualise their own detection
system due to the absence of specialised skills or technical
proficiency in implementing a traditional IDS solution. Even
in commercial solutions such as BinaryEdge? and Shodan?,
there are also little to no user configurable options, and no
ability to whitelist or blacklist specific network addresses. This
makes the user solely reliant on the vendor to maintain and
update their signature database. It is also plausible that an
intermediary device controlling traffic allocation in place of a
router could cause significant network configuration issues in
some cases; as in the case of Fingbox4 where DHCP allocation
responsibilities are handed to the device. A critical concern is
that routing all traffic through one intermediary device creates
a single point of failure; if the monitoring device fails, likewise
all devices connected through the node will fail.

Fingbox approaches IoT security monitoring with an alter-
native technique, rather than inspecting packets on the network
for malicious traffic, this device monitors activity on the data-
link layer for unrecognised devices attempting to connect to
the network. Whilst this approach may be effective in detecting
and preventing physical intrusion, the effectiveness of such a
device may come into question if an already ‘trusted’ device
is compromised.

Other commercial solutions similar to Fingbox are available
such as Bitdefender’s ‘BOX’>, which utilises Deep Packet
Inspection (DPI) coupled with anomaly detection to identify
threats. However, still most of these solutions require the user
to route all traffic through the device, or the ones that do
not, require the user to instead use their device in place of
their own wireless access point, which has the potential to not
perform as sufficiently. These platforms are only designed to
function with the provided hardware devices, and most also
do not allow the user to configure their own detection rules.

Pot2DPI [10] proposes to employ a honeypot solution in
efforts to detect malicious traffic, by in a sense ‘baiting’
malicious traffic to a purposefully exposed endpoint. The
honeypot approach is unique in a sense that the methodology
can produce different results than traditional signature and
anomaly-based detection by utilising poor security as an
asset. Pot2DPI could potentially provide a framework for IDS
whereby rules are created based on the traffic aimed at and
originating from the honeypot, it can be assumed that traffic
with unusual patterns taking place on the honeypot device
is considered either malicious / nuisance traffic, and new
signatures can be generated ‘on the fly’ in a reactive fashion.
This solution could potentially provide a solid basis for a
reactive Intrusion Prevention System (IPS); however, success
of signature detection could be dependent on how the honeypot

Zhttps://www.binaryedge.io
3https://www.shodan.io
4https://www.fing.com/products/fingbox
Shttps://www.bitdefender.co.uk/box/



User

A i
|
| : <<yuses>>
HTTP Response | | HTTP GET
! I
Web Application I \
: \Vi
<<artifact>> O -> <<artifact>> |
Template engine Endpoint
A !
: e E e =
1
l V
<<artifact>> [ha} <<artifact>> [} -> <<artifact>> |
Analysis Engine T2 DB VO Encode
7N : N i JSON Encoded
! <<yse>> | 1 n
: . 1 : SRR : Data Object
0 \V ! \|/ <<yse>> '
: <<artifact>> | <<artifact>> Of-1- _HTTP POST (Device Data) _ _ _ __ _ > Network Sniffer
! DB API L R e
: T <<yse>>
| : HTTP POST (Packet Data Requests)
: | Request
{ I
U
<<atifac> [ v
Process to Data < <<artifact>> O < - <<artifact>> O
e =77 Decode Authenticate

Fig. 1. An overview of IoTMon.

device is configured, and may also produce false positives
without a fine tuned setup.

There are a multitude of ways effective monitoring can
be carried out using network traffic analysis, from elaborate
honeypot systems to more traditional deep packet inspection
and analysis on a web proxy or central node, a combination
thereof could potentially result in a powerful, hybrid style
IDS with potential to detect various sources of incoming and
outbound malicious traffic. However, signature-based detection
is still a powerful tool, and could be more effective when
such an emphasis is placed on user friendliness. With heuristic
and anomaly-based detection the probability of identifying
false positives increases. A high number of false positives
could confuse the user, whereas a signature-based detection
mechanism with a reliable signature dataset could produce
more reliable results, and therefore the user can make a
decision based on a higher degree of certainty.

Most of the established solutions do not cater specifically
to an IoT network environment, and the recent products
that do may still require the user to alter their network
environment, potentially causing unexpected network issues.
The commercial solutions available also do not provide a
method of integrating other network traffic detection and
packet inspection devices into the core analysis platform, and
most do not allow the user to configure their own detection
signatures and rules. The solution proposed in this paper aims
to solve these challenges by creating a new cloud-based traffic
monitoring platform, that abstracts the technical knowledge
required to setup and maintain such a system away from the

average user. A user friendly and effective traffic analysis
platform could potentially assist to alleviate the growing risk
in security within the IoT environment [11]. This platform
will focus on detecting threats specific to a number of IoT
devices, and implements an open API that will allow network
level packet inspection devices to feed the service with data
for analysis, regardless of manufacturer.

III. IOTMON PLATFORM DETAILS

In this section, the details of a new cloud-based IoT network
traffic Monitoring, IToTMon for short, platform are presented.
Figure 1 depicts IoTMon design, components, their interac-
tions and communication protocols.

IoTMon abstracts the technical knowledge required to setup
and maintain a network traffic analysis system away from
the average user. It aims to provide a user-friendly platform
to identify attacks on IoT devices that utilise the DNS and
Telnet protocols, from initial infection and propagation using
Telnet; to communication and obfuscation with botnet C2
servers using DNS. The solution consists of a cloud-based
monitoring and analysis engine, in conjunction with a proof
of concept network sniffer client to feed the cloud application
with network data. The platform will focus on detecting threats
specific to a number of IoT devices, and implements an open
API that will allow network level packet inspection devices
to feed the cloud-service with data for analysis, regardless of
manufacturer. The following two subsections give the details
of the cloud service, the network sniffer client and the designed
open APIL



I Monitored

I Not monitored

ToT node PC

O @W— = —— &
Web server API
PC Passive network snifler

i+

IoT nodes

Fig. 2. AWPA-2 Protected WLAN and sniffer setup.

A. The Cloud-based Service Specifications

IoTMon packages all aspects of an analysis platform into
a cloud-based service, which can be fed by any device via
a special API. The developed service handles data analysis,
processing and presentation stages entirely on the cloud. This
includes the number of requests that have been sent to specific
devices, and count summary of any malicious traffic that has
been detected under on of the following categories ‘Info’,
‘Warn’ and ‘Severe’. The three categories will correspond with
incoming requests that are categorised into a ‘risk group’ via
the back-end logic of the API when requests are sent to the
service. The user is able to clearly identify any malicious traf-
fic, along with key information that could assist in identifying
malicious traffic and IoT device breaches. The protocol type
for example, along with the payload, device and the timestamp
at which the incident occurred.

The cloud service stores a database of signatures that can
identify malicious network traffic; DNS records that point to
known malicious domains for example, or Telnet passwords
that are used to brute force access to accounts. The user is
provided with a simple to use method of customising signature
detection rule sets from within the web application. Alongside
each signature will be an allocated ‘risk rating’ that designates
which category the request would be placed into. Incoming
requests will be analysed by the signature detection algorithm
and if an incoming request matches with a signature, the
database stores the request and updates the entry with its
designated risk rating. The application will then pull these
categorised requests, whichever is applicable, whenever the
user accesses any of the category pages.

B. Passive Network Sniffing Client

A proof of concept network sniffing client to be paired with
the web service is developed to demonstrate the viability of
the JToTMon platform. The client allows the detection and data
extraction from packets for the specific protocols focused on in
this study, namely, DNS and Telnet. With this functionality the
client will provide real-time network monitoring that works in
collaboration with the web application by collecting network
traffic from a IoT network, extracting all necessary information

from the packets, and finally sending the data to the web
service API for analysis.

Installing this sniffing client on each device to monitor
the network traffic is feasible, however this would potentially
require access to device firmware and configuration for each
device being monitored. This approach would consume es-
sential system resources and might also affect the originally
intended operation of the device; this method would also fall
outside most user’s technical knowledge scope. However, an
alternative approach could be to set up a passive wireless node
that can capture all IoT device traffic. This approach differs
from implementations discussed in Section II, as no traffic
will actually be statically routed through the device. Instead,
the sniffer can collect wireless traffic ‘on the air’ by utilising
passive wireless packet sniffing techniques. Using a wireless
network card in monitor mode, the device could be configured
to perform the filtering, logging and collation of network data
for analysis, passively collecting the required IoT wireless
network traffic and sending this data to the web service for
real-time analysis.

The client effectively runs a looping function that is trig-
gered each time a packet on the network is detected, to reduce
the number of packets being analysed and thus improving
efficiency, a mac address filter has been implemented which
is controlled via the cloud application. Each time the client
starts up the client sends a request to the cloud application
to pull a list of devices from the account. The client uses
the MAC addresses to filter packets in the network; allowing
an environment such as the one shown in Figure 2 whereby
packets that are not addressed to or from defined devices will
be ignored by the sniffer. This approach provides the user
with the flexibility to dictate which devices to monitor on the
network.

The processing algorithm is triggered by the incoming re-
quest API call and stores the result into the database, negating
the need for multiple rounds of analysis. The initialisation
routine is summarised in Algorithm 1.

Algorithm 1: Sniffer client initialisation sequence.

Begin:
tet API key & network interface from arguments;
retrieve user devices from web API;
add devices to list;
if no devices in list then
| begin recording all traffic;
else
apply traffic filter;
begin recording filtered traffic;
end

The algorithm used by the client for the payload extraction
is detailed in Algorithm 2. The code runs in a loop to build
the sequence of characters that eventually create the password
string.



HTTP Request & API Key

If valid:

Client

/_\>
1\—’/

HTTP Response

Fig. 3. An illustration of the API authentication cycle.

Algorithm 2: Sniffer client initialisation sequence.

Begin:
if packet is DNS: then
extract query;
extract request object & encode as JSON;
send request containing query to API;
else
if packet is TCP & source || destination port
== 23: then
extract payload;
if payload is enter or submit;
stop recording password;
else if payload is login;
stop recording password;
join list of characters & send data to API;
if recording password;
if TCP sequence # # previous packet;
append payload character to list;
else;
ignore packet;
if payload is the password prompt;
begin recording payload to build
character list

else
| ignore packet
end

end

C. Connectivity API

The connectivity API embedded into the web application
covers two primary functions:

1) Allow sources to upload/feed data to the service to be
analysed and subsequently presented to the user.

2) Allow sources to retrieve device data, i.e., device hard-
ware MAC addresses and names, for filtering network
traffic capture.

Both API endpoints are protected via a randomly generated
API key that is created on account registration. The user can
access the API key via a cloud dashboard and uses this to
connect external devices/services to the application; each API
key is unique to a single user account, allowing the incoming

process
request
Validate
API Key l
Else:
return
invalid

and outgoing data to be associated to a specific user.

API requests are validated by checking the provided API
key in each POST request against an existing user account.
All API routes expect a key to be provided as part of the
HTTP request header. An invalid or null key in the header
will result in an invalid response from the web server and that
request will not be processed by the application. API requests
are validated by checking the provided API key in each POST
request against an existing user account. All API routes expect
a key to be provided as part of the HTTP request header.
An invalid or null key in the header will result in an invalid
response from the web server and that request will not be
processed by the application. The API authentication cycle is
depicted in Figure 3

Utilising the standard JSON data format, the API can
be accessed and interacted with by any compatible devices
contingent that both the correct format, and valid API keys are
provided. The API uses the parameters in Table I as arguments
to pass and exchange the incoming data to be analysed by the
processing routines.

I1V. EVALUATION

This sections aims to assess the real-world effectiveness
of IoTMon’s detection mechanisms by utilising the network-
sniffing client as a testing device to monitor and inspect
network traffic, sending packets to the cloud API to be
analysed in real-time. A basic attack scenario is emulated,
followed by a thorough round of testing for both the Telnet
and DNS protocols separately.

Inspiration from the Model, View, Controller (MVC) design
pattern is utilised to ensure the application itself and the
development process will remain modular. The Jinja2 tem-
plate framework primarily controls the ‘View’ portion of the
application. The template language is a powerful tool that
converges the presentation layer with inherited python code,
however efforts are made to keep any large data processing
within the main python codebase, rather than embedded in the
HTML files to separate the logic of the backend and frontend
code bases. The ‘Model’ portion is primarily controlled via a
series of dedicated SQL queries and calls in the application;
similarly, the ‘Controller’ section will consist of back-end
server code and algorithms to process the data returned by



TABLE I

JSON PARAMETERS OF REQUEST OBJECTS.
Parameter Description Example
protocol Request protocol type | protocol:Telnet
alertType Query or action type alertType: TelnetLogin-Success
timeOfRequest | Request time timeOfRequest: 2019-01-25 17:08:35
payload Request data payload | payload: administrator
deviceAddress | Device MAC address | deviceAddress: 5¢:96:8f:90:2c:fd

the ‘Model’ code. Using the MVC pattern creates an abstract
layer between functions in the application that improves exten-
sibility of the program which will aid the development process
when the codebase becomes sizeable.

The first test simply comprises of a login to the telnet service
on a host machine, followed by sending a small number of
DNS requests to known malicious domains from the compro-
mised host. The test aims to evaluate whether both the sniffer
and web application can operate in tandem to effectively detect
the compromised telnet login and malicious DNS requests.
After this has been validated, to further test the robustness of
the platform, both Telnet and DNS will be rigorously assessed
separately. DNS detection rates will be tested by generating a
large batch of DNS requests to known malicious domains that
have been stored in the cloud application signature database.
The malicious domains have been sourced from the AlienVault
open threat exchange, which have been identified as Indicators
of Compromise (IoC) of Mirai and derivative malwares [12].
The telnet login detection was also be rigorously tested, by
using the well-established offensive security tool, ‘Ncrack’
in an attempt to brute-force the telnet account password
with a small password list multiple times in succession. All
passwords being used will be credentials sourced from the
studies of Elzen and Heugten [13] whom obtained the list of
passwords used in the Mirai attacks by reverse engineering
the Mirai source code. The sniffing node is setup in monitor
mode where no special traffic conditions are imposed. Finally,
the sniffer node is placed nearby to the wireless access point.

All of the above testing was carried out using a live hosted
version of the cloud application on AWS infrastructure, thus
providing a realistic insight into the performance metrics of
the application. Ultimately, the testing has been specifically
designed to allow realistic evaluation of the product in a typical
home network environment.

The obtained results demonstrate that the system can detect
malicious DNS traffic and Telnet login attempts with success,
with a combined detection accuracy of 98.84%. The solution
successfully captured the initial test attack scenario, showing
one successful telnet login, accompanied by the small batch
of DNS requests sent from the compromised host.

Testing the DNS and Telnet detection capabilities in depth
revealed promising results. First, a batch of 790 DNS requests
in total were executed on the ‘compromised’ system, at the
end of the session the results within the web application
showed a total of 803 detected malicious requests, showing a
small discrepancy between the expected number, i.e., ground
truth, and the actual result. A total of 13 false positive results
were detected, resulting in an error percentage of 1.65%, or
alternatively a measurement of 98.35% detection accuracy.

Detection number comparison

Bl Expected number

800 { Detected number

750 A

700 A

650

600 -

550 A

Login Attempts / DNS Requests

500 +

450 A

Telnet DNS

Protocol

Fig. 4. Comparison of detected requests vs expected number per protocol.

Testing of the Telnet detection functionality was carried out
by using the ‘Ncrack’ login attack tool in single thread
mode. Ncrack was launched against the local telnet server
using a 10-entry password list of which one entry was the
correct password; a similar method as utilised in the Mirai
malware [14], however the same account and thus password
was used in this scenario. In this session a total of 400 login
attempts were made by Ncrack; with 40 successful logins.
The obtained results showed a total of 39 detected successful
logins out of 40; however, the precision of the incorrect
login detection rate could not be accurately measured; due
to intermittently sending duplicate requests to the cloud API
when an incorrect login was detected; after fixing this issue,
the Telnet detection was tested once again demonstrating better
results.

In the second round of testing, a total of 600 login attempts
were made by Ncrack, making 60 successful logins; and 540
unsuccessful login attempts. The statistics demonstrate promis-
ing results, presenting a total of 60 successful login attempts



1.8 % A
1.6 % A u
1.4 % A
s
2 1.2%
L 2
3 1.0 %
0.8 %
0.6 % ®
Tel}let DI:JS Comt;ined
Fig. 5. Comparison of percent error rates.
TABLE II
THE PERFORMANCE OF JIOTMON AGAINST VARIOUS MACHINE LEARNING
TECHNIQUES.
Technique Accuracy
CART 80.3%
Multi-layer perception | 87.41%
Naive Bayes 87.56%
KNN 88.4%
SVM 89.52%
C4.5 92%
Random Forest 92.67%
ToTMon 98.84%
HIDS 99.97%

identified, with 536 identified unsuccessful login attempts.
Culminating in a total true positive count of 596 and false
negative count of 4; resulting in a 0.66% error percentage rate,
or alternatively to be measured as 99.33% detection accuracy,
see Figure 4.

Combining the percent error rates of the telnet and DNS
testing results in a combined error rate of 1.16% or detection
accuracy of 98.84% (see Figure 5; demonstrating that the plat-
form can reliably detect malicious traffic from both protocols
with a high degree of precision.

We compare IoTMon’s performance against seven comple-
mentary baseline methods. Namely, we use the publicly avail-
able evaluation results in [15] for Classification And Regres-
sion Tree (CART), multi-layer perception, Naive Bayes, K-
Nearest Neighbour (KNN), Support Vector Machine (SVM),
C4.5 and Random Forest on the Bot-IoT dataset. We also
compare against HIDS which combines the advantages of
signature- and anomaly-based intrusion detection systems [15].
Table IV summarises the performance evaluation results in
terms of attack detection accuracy of the above listed machine
learning techniques, HIDS and IoTMon. The results show that
IoTMon provides comparable results to HIDS without the
complexity and overhead associated with machine learning.

V. CONCLUSION AND FUTURE WORK

IoTMon provides a flexible, open platform alternative for
IoT device security monitoring. Technical proficiency is not
a strict limiting factor for the consumer and could lead way
to a safer environment empowering the average user with the
means to take appropriate action in protecting their network.

Experimental evaluation results demonstrate that IoTMon
could be a viable solution for effective intrusion detection for
IoT devices with reliable detection accuracy.

Whilst the evaluation has provided great insight into areas
where IoTMon has succeeded; there is potential room for
improvement in the future. Creating a fully mobile responsive
dashboard would be a valuable addition to the works con-
ducted thus far, as it would provision users with the ability
to monitor their networks remotely, away from a traditional
computer system. The use in mobile devices continues to
rise, as such supporting this platform would be a valuable
and justified addition to the product, whilst remaining in
touch within the context of IoT. additionally, incorporating
alternative detection methodologies such as heuristic, anomaly
and honeypot-based detection could also be explored to work
in conjunction with the signature-based technology utilised
within this work; with the potential to further enhance the
attack detection capabilities.

REFERENCES

[1] R. Ande, B. Adebisi, M. Hammoudeh, and J. Saleem, “Internet
of things: Evolution and technologies from a security perspective,”
Sustainable Cities and Society, p. 101728, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2210670719303725

S. Belguith, N. Kaaniche, M. Hammoudeh, and T. Dargahi, “Proud:

Verifiable privacy-preserving outsourced attribute based signcryption

supporting access policy update for cloud assisted iot applications,”

Future Generation Computer Systems, 2019. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X1930130X

[3] I. Yaqoob, E. Ahmed, M. H. ur Rehman, A. I. A. Ahmed, M. A.
Al-garadi, M. Imran, and M. Guizani, “The rise of ransomware and
emerging security challenges in the internet of things,” Computer
Networks, vol. 129, pp. 444 — 458, 2017, special Issue on 5G
Wireless Networks for IoT and Body Sensors. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128617303468

[4] A. Marzano, D. Alexander, O. Fonseca, E. Fazzion, C. Hoepers,
K. Steding-Jessen, M. H. P. C. Chaves, I. Cunha, D. Guedes, and
W. Meira, “The evolution of bashlite and mirai iot botnets,” in 2018
IEEE Symposium on Computers and Communications (ISCC), June
2018, pp. 00813-00818.

[5] J. Chaudhry, A.-S. K. Pathan, M. H. Rehmani, and A. K. Bashir, “Threats
to critical infrastructure from ai and human intelligence,” The Journal
of Supercomputing, vol. 74, no. 10, pp. 4865-4866, 2018.

[6] M. Shakil, A. Fuad Yousif Mohammed, R. Arul, A. K. Bashir, and
J. K. Choi, “A novel dynamic framework to detect ddos in sdn using
metaheuristic clustering,” Transactions on Emerging Telecommunica-
tions Technologies, 2019.

[7]1 C. Iwendi, P. K. R. Maddikunta, T. R. Gadekallu, K. Lakshmanna,
A. K. Bashir, and M. J. Piran, “A metaheuristic optimization approach
for energy efficiency in the iot networks,” Software: Practice and
Experience, vol. n/a, no. n/a, 2020.

[8] C. McDermott, J. Isaacs, and A. Petrovski, “Evaluating awareness
and perception of botnet activity within consumer internet-of-things
(iot) networks,” Informatics, vol. 6, no. 1, p. 8, Feb 2019. [Online].
Available: http://dx.doi.org/10.3390/informatics6010008

[9] 1. Ghafir, V. Prenosil, J. Svoboda, and M. Hammoudeh, “A survey on

network security monitoring systems,” in 2016 IEEE 4th International

Conference on Future Internet of Things and Cloud Workshops (Fi-

CloudW), Aug 2016, pp. 77-82.

V. Martin, Q. Cao, and T. Benson, “Fending off iot-hunting attacks

at home networks,” in Proceedings of the 2nd Workshop on Cloud-

Assisted Networking, ser. CAN *17. New York, NY, USA: Association

for Computing Machinery, 2017, p. 67-72. [Online]. Available:

https://doi.org/10.1145/3155921.3160640

S. Walker-Roberts, M. Hammoudeh, O. Aldabbas, M. Aydin, and

A. Dehghantanha, “Threats on the horizon: understanding security

threats in the era of cyber-physical systems,” The Journal of

Supercomputing, Oct 2019. [Online]. Available: https://doi.org/10.1007/

s11227-019-03028-9

[2

[10]

(11]



[12]

[13]

[14]

[15]

AlienVault, Mirai is Attacking Again, 2020 (accessed January
26, 2020). [Online]. Available: https://otx.alienvault.com/pulse/
5a787f34a0cfdc7fb5945d8b

I. van der Elzen and J. van Heugten, “Techniques for detecting com-
promised IoT devices,” Master’s thesis, University of Amsterdam, the
Netherlands, 2017.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
and et al., “Understanding the mirai botnet,” in Proceedings of the
26th USENIX Conference on Security Symposium, ser. SEC’17. USA:
USENIX Association, 2017, p. 1093-1110.

A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab,
“A novel ensemble of hybrid intrusion detection system for detecting
internet of things attacks,” Electronics, vol. 8, no. 11, 2019.



