
1

A Service-Oriented Approach for Sensing in the
Internet of Things: Intelligent Transportation

Systems and Privacy Use Cases
Mohammad Hammoudeh, Gregory Epiphaniou, Sana Belguith, Devrim Unal, Bamidele Adebisi, Thar Baker,

A.S.M. Kayes and Paul Watters,

Abstract—This paper presents a Sensing-as-a-Service run-time
Service Oriented Architecture (SOA), called 3SOA, for the devel-
opment of Internet of Things (IoT) applications. 3SOA aims to
allow interoperability among various IoT platforms and support
service-oriented modelling at high levels of abstraction where
fundamental SOA theories and techniques are fully integrated
into a practical software engineering approach. 3SOA abstracts
the dependencies of the middleware programming model from
the application logic. This abstraction allows the development
efforts to focus on writing the application logic independently
from hardware platforms, middleware, and languages in which
applications are programmed. To achieve this result, IoT objects
are treated as independent entities that may interact with each
other using a well-defined message exchange sequence. Each
object is defined by the services it provides and the coordination
protocol it supports. Objects are then able to coordinate their
resources to address the global objectives of the system. To
practically validate our proposals, we demonstrate an intelligent
transportation system and data privacy functional prototypes
as proof of concepts. The use cases show that 3SOA and
the presented abstraction language allow the amalgamation of
macroprogramming and node-centric programming to develop
real-time and efficient applications over IoT.

Index Terms—Sensing as a Service, Internet of Things, Interop-
erability, Middleware, Coordination, Intelligent Transportation
Systems, IoT Security and Privacy.

I. INTRODUCTION

THE Internet of Things (IoT) is one of today’s major
digital disruptions. It expands to include our vehicles and

homes, as well as newly developed wearable and implanted
sensors, which bring fundamental transformations to many
aspects of daily life [1], [2]. This technological innovation
promises to optimise manufacturing processes to improve
quality, functionality, and drive revenue growth. For instance,
a recent study revealed that car manufacturers estimate the
cost of production downtime ranges between £13,000 per

M. Hammoudeh and B. Adebisi are with the Faculty of Science and Engi-
neering, Manchester Metropolitan University, Manchester, United Kingdom,
M1 5GD e-mail: m.hammoudeh@mmu.ac.uk).

G. Epiphaniou is with the Warwick Manufacturing Group, University of
Warwick, UK.

S. Belguith is with the School of Science, Engineering & Environment,
University of Salford, UK.

D. Unal is with the KINDI Center for Computing Research, Qatar Univer-
sity, Qatar.

T. Baker is with the School of Computer Science, Liverpool John Moores
University, UK.

A. Kayes and P. Watters are with the School of Engineering and Mathe-
matical Sciences, La Trobe University, Australia.

minute to a high of £30,000 per minute [3]. One major car
manufacturer lowered its factory outage time by 15% by
combining multiple data sources to identify factors that led
to robotic failures. Such automated systems can also reduce
the need for human oversight to improve the productivity
of the factory workers, who are still part of the workflow
process. Typical IoT objects can operate in a proactive mode
by instigating collaborative tasks and dynamically interacting
with each other to accomplish both local and global goals,
down from the hardware control layer up to the upper layers
of the business process management software [4], [5], [6].

The authors of this paper advocate that service-oriented
programming models may aid in integrating IoT in smart
automation environments; through supporting interoperability
and information exchange between heterogeneous devices. In
the Service-Oriented Architecture (SOA), systems are com-
posed by organising distributed capabilities into services. A
service is a self-contained logical representation of a re-
peatable application activity that has a specific result, e.g.,
provide temperature data. Services expose their capabilities
through standard service interfaces. In SOA, service interface
definitions are obtainable from a service registry. SOA offers
uniform means to discover, interact with, and use capabilities
of distributed objects that may be under different ownership
domains.

In resource-limited large-scale environments, such as IoT,
services do not follow the classical service invocation ap-
proach of standard SOA. Hence, it is essential to return to
the fundamental principles of SOA to investigate how to
achieve platform and programming language independence,
location transparency, dynamic deployment, and scalability in
infrastructure-less networks. To meet IoT resource constraints
and application requirements, we propose 3SOA. 3SOA im-
plements a service-oriented approach at all levels of the IoT
protocol stack to allow rapid development and management
of composite applications. 3SOA introduces a service-oriented
and a semantics’ layer to the existing network stack. An IoT
object is modeled at different levels of abstraction. At each
level, a set of services with known attributes and functions
are defined. Functions, e.g., multi-modal entity monitoring, are
abstracted as lightweight services. A lightweight service has a
small memory footprint or has minimalist syntax and features.
To allow collaboration between various services running on
distributed objects, 3SOA utilises “coordination” models [7].
Coordination models are used to support a separation between

2

computation and collaboration between distributed services by
the externalisation of interactions among them. Coordination
offers runtime supports to changes in the application domain,
which may occur at different levels.

To illustrate the application of coordination-enabled 3SOA,
we present two use cases, Intelligent Transportation Sys-
tems (ITS) and data privacy. The demand for IoT in ITS
is growing steadily [8], [9]. Additionally, a coordination-
enabled 3SOA use case represents a meaningful and measur-
able objective of interaction between an actor and the system,
such as a vehicle monitoring system to illustrate application
composition and its implementation in 3SOA. Furthermore,
the data-privacy use case captures one of the most critical
non-function requirements of an IoT system [10], [11], [12],
[6]. We use these use cases to test and validate the scalability
and composability aspects of 3SOA.

The rest of the paper is organised as follows: Section II sur-
veys recent IoT service-oriented middleware in the literature.
Section II discusses related works emphasising their draw-
backs. In Section III we give what in our view are the foremost
challenges of the IoT that can be addressed using service-
oriented software development approach. Section IV presents
the blueprint of 3SOA. Section V-A gives the details of the
abstract programming language that can be used to support the
3SOA. It also considers a scenario where coordination rules
are used to compose a hybrid ITS IoT service. Section VII
concludes the paper and highlights future research avenues.

II. SOA FOR IOT IN THE LITERATURE

SOAs have received the most significant attention in the IoT
literature as grounds for providing interoperability, manage-
ment of big data, security, application development, scalability,
amongst others. In this section, we offer a brief discussion
from the literature of the theoretical underpinnings of this
study. For a more comprehensive literature survey on SOA
middleware for IoT and WSN, we refer readers to [13], [14].

Most IoT service-oriented middleware solutions in the
literature are designed to provision dynamic and unknown
network topology [15]. In this area of research, one stream
of work focuses on abstracting IoT objects and turning them
into services of the network (e.g., [16]), other researchers
focus on information/data abstractions and their integration
with services (e.g., [17]). However, a prevalent theme in the
literature is addressing the challenge of the unknown topology
via the use of service discovery techniques, commonly based
on the classical service/resource approach of the Internet,
pervasive environments and WSN, e.g., WS-discovery for Web
Service or a RESTful discovery for RESTful services [18].
Other solutions propose their service description languages,
where service functions and keywords are labeled with an
informal (such as simple English) description [19].

Another common thread in the literature is the use of meta-
data and semantics to address device heterogeneity challenges,
e.g., [20]. The use of ontologies to abstract objects, their
domains, data repositories, context information and even ser-
vice descriptions, is a widespread practice. Some researchers,
e.g., [21], went as far as proposing virtual machine middleware

for service composition to support the notion of virtual/seman-
tic sensors. This model allows to abstract numerous aggregated
physical devices in one service. In some research, e.g., [16],
virtual sensors may represent transformations applied to a
set of sensor streams to create an additional semantically
meaningful stream. However, service composition of virtual
sensors is not entirely dynamic, because the services are
initially specified at design time and dynamically mapped
onto the network only at runtime. Yet, the use of small
predefined composition building blocks can support a flexible
type of composition at the runtime. For instance, Badawy et
al. [22] attempt to maximise the composite service quality at
the IoT application layer by balancing service reliability and
acceptable cost of computation time. This effort is limited to
particular use cases and does not consider other IoT critical
features such as power consumption.

Concerning scalability, most IoT SOA middleware research
handles this requirement by adjusting the underlying network
topology, e.g., [23]. This can be achieved via a fully de-
centralized [24] or a peer-to-peer infrastructure [25]. These
approaches work well for the standard Internet, where there is
a relatively small amount of service interactions, but they are
not suitable for the sophisticated large number of interactions
that will be routine in IoT ecosystems such as smart cities. Ex-
ecuting even a basic service discovery or composition in such
environments may go beyond acceptable memory, processing
and time constraints. Therefore, the scalability challenge must
be addressed by modification of the discovery and composition
techniques, rather than aiming at the design of optimal network
topologies.

It is evident in the literature that additional research is
essential to provide comprehensive SOA solutions meeting
service and network providers’ requirements. For instance,
there is need for more work to handle conflict resolution,
inaccurate metadata and data-point availability. To address
some of these issues, 3SOA depends on the structured nature
of physical information. 3SOA supports semantic and estima-
tion models that implement these tasks transparently from the
application. The process we envisage should be achieved in a
fully automated mode.

III. SOA OPTIMISATION FOR IOT
The service composition model to support complex service

composition in IoT ecosystems is different from the one that
is used in Web SOA. For instance, Quality of Service (QoS)
constraints, such as real-time monitoring, restrict a full-fledged
SOA approach. To meet such constraints and other require-
ments, 3SOA implements a service-oriented paradigm at all
levels of the IoT protocol stack to allow rapid development
and management of composite applications that dynamically
discover and use distributed services in a peer-to-peer model.
Focus is placed on the design of IoT services coordination
to facilitate programming language independent asynchronous
communication in stream-based, large-scale, infrastructure-
less and loosely coupled IoT applications.

One of the main design factors of 3SOA is to deal with
the huge volume of data generated by IoT. The heterogene-
ity of IoT operating platforms, programming models and

3

Service

Virtualisation

Intelligent

Devices

Flow Meter

M7 Tracking

Chip

Ambient

Light Sensor

Gyroscope

Medical Sensors Fire Alarm

Occupancy

Sensor

Microphone

Ultrasonic

Sensor

Geomagnetic

Sensor

Gesture

Hall Sensor

Barometer

NetworkGateway

Wireless communication protocols

Data aggregation

Local processing

Data filtering

Information extraction algorithms

Network

Access

Semantic

Service Orchestration

Mediation Event Manager Authorisation Coordination

Service Access

Platform

Abstraction
Messaging Discovery Device Service Proxy Platform Plugins

Service Management

Fig. 1. Proposed 3SOA IoT-SOA integration framework.

data retrieval and processing renders information extraction
a challenging task. Information extraction is defined as ”the
process of retrieving, filtering and processing unstructured data
from IoT objects to discover or identify a specific state or
condition”. This task is not just a network self-configuration
problem, but the key challenge here is the heterogeneity of the
data retrieval and processing protocols. From the viewpoint of
an integrated-system behaviour, information extraction tasks
require considerable programming effort, particularly when
considering constraints on the objects and network resources.
To address this issue, 3SOA adds a service-oriented and
semantics layer to the existing network stack.

In 3SOA, an object is modeled at different levels of
abstraction. At each level, a set of services with measur-
able preconditions and expectations are defined. Functions
such as the information extraction methods are abstracted as
lightweight services to suit an object resource constraints.
3SOA uses coordination models [7] to allow peer-to-peer
collaboration between different services running on distributed
objects. Coordination languages are used to define the detailed
logic structure for the processes of the service workflow.
They support SOA to enable seamless runtime integration of
heterogeneous information services in a distributed manner
through semantic modeling primitives for coordinating such
interactions, including support for location-aware computing.
3SOA extends the standard IoT reference architecture to
enable semantics-based management of the complete service
life cycle. In the following section, we introduce the 3SOA
middleware.

IV. 3SOA BLUEPRINTS

3SOA, as depicted in Figure 1, consists of multiple layers
that host various components. A description of these layers,
and their constituent components, is below.

1) Service Virtualisation Layer (SVL): SVL presents the
functional capabilities of the underlying IoT cloud as ser-
vices. The network acts as a provider of remotely accessed
services, abstracting each available object as an independent
web service(s). SVL allows applications to interact with and

utilise data from a variety of networked objects using standard
interfaces. A service interface defines the services offered by
an object, consults the registry, checks and registers events
and other maintenance tasks. Moreover, a service knowledge
base is built on the network gateway to enable service users to
determine how many services are available and how to access
them. To achieve this aim, the SVL layer performs many
tasks, including probing the knowledge base for available
services and transforming them into a semantic enhanced
service description. Then, it creates lightweight formats of
available service descriptions for publishing them on external
servers to increase their visibility.

The service access function initialises servers and the com-
munication function at the lower layer to enable sending
commands directly to the network without passing through a
task management registry. The service orchestration function
allows users to compose complex services using the descrip-
tions of the published service. This will enable objects to
directly participate in business processes without demanding a
process modeller or a process execution engine to learn about
the details of the underlying hardware platform.

2) Semantic Layer (SL): The SL core objective is to
provide the semantic model of the underlying IoT cloud by
maintaining the structure and interactions of available services
using Module Interconnection Languages (MIL) or another
form of ontology, e.g., [20]. MIL is a powerful way to express
and handle information transfer between heterogeneous mod-
ules, distributed network communication protocols, dynamic
queries and updates by users and dynamically changing the
specifications of interfaces. The MIL semantic is used to spec-
ify the basic structure of a system, in terms of its components.
This specification includes the relationships and interactions
among the components as well as the principles controlling
the design and evolution of those components. It addresses
the task of integrating independently-developed subsystems by
providing rule-based semantic authorisations. This layer allows
importing any IoT subsystem in MIL and translates it to Web
Ontology Language (OWL) description.

A local repository maintains all available or connected
service instances. A messaging system allows applications to
accept any events or notifications and interact with objects,
which are intermittently connected. This messaging system
offers a runtime environment for the execution of composite
services. It provisions business process composition through
an execution service for under-specified Business Process
Execution Language (BPEL) processes. The messaging system
is an essential feature as the services offered at the object level
are dynamic, e.g., they connect and disconnect.

The service management function supports configuration
and control of service components (service management),
offers external communication for application service compo-
nents (data management), manages the networking stack (net-
work management) and provides ways for controlling and
configuring applications (application management). A key
element of the management function is the business and
process rule engines. IoT combines interaction and connection
among objects and systems producing results as events or
contextual data. Many events need filtering or forwarding to

4

post-processing systems, e.g., periodic data collection, whereas
others require an immediate response, e.g., fire alarm. The
rule engine provision the construction of decision logics and
activate interactive and autonomous processes to support a
more responsive IoT system.

3) Network Access Layer (NAL): NAL hosts a set of
access and communication common facilities. These facil-
ities include management services for data handling, data
processing through filtering and aggregation techniques, time
synchronisation, localisation, etc. Since all applications use
these facilities, NAL is provided at the middleware layer of
IoT objects.

It is possible to have multiple networks in the same IoT
cloud, where each network has its own gateway. The com-
munication component allows applications to directly send
requests to the network, without passing across the task
management registry. The control component is responsible
for initializing the cloud-based SOA server and handles the
interaction with internal services offered by the objects. The
message processor deals with service registration with the
registry component located at the upper layers, which allows
quicker response to urgent requests.

4) Platform Abstraction Layer (PAL): Ideally, objects of-
fer discoverable web services on IP networks. Such objects
provide an interface to access services they offer, check the
registry, and register events. Since services are discovered and
executed across various development and operating platforms,
PAL can leverage legacy components of a different platform
that uses various technologies. The key challenge becomes
how to compose heterogeneous objects into a larger applica-
tion.

Where objects do not support SOA, e.g., they use data-
centric or message-based communication protocols, service
encapsulation becomes a complex task. Besides enabling the
execution of services on objects, this layer also provides a
unified view on remotely injecting or updating the software
modules running on objects. It also allows homogeneous
objects to communicate with each other and with the back-
end devices using their native protocols.

PAL enables an adapter-oriented approach to tackle the wide
range of communication protocols and sensor types offered by
various objects. The main objective of this layer is to measure
the physical properties of the environment and convert it into
a form that can be carried to the upper layers for further
processing. It receives and delivers sensor events to an event
handler through a callback message routine, where messages
are sent asynchronously to the destination for processing. This
layer also receives request messages from upper layers, which
then chooses a suitable adapter to forward each request to its
intended cloud-connected object.

5) Intelligent Devices Layer (IDL): IDL hosts all the smart
objects that will connect to the IoT cloud. Smart objects are
equipped with sensors that allow active interaction between
the environment and the digital world. Many types of sensors
and actuators exist to achieve various objectives. This layer
resides in all objects and offers interfaces to the fundamental
hardware components. It includes all the functionality of a
smart object.

Objects offer several internal services and have many sub-
components, such as the Operating System (OS), acquiring
sensor data, controlling actuators, etc. The OS component is
made up of the networking stack, the scheduler and various
sensor and hardware drivers. The embedded OS is a vital
sub-component, which abstracts low-level details, including
communication with the hardware platform, topology control,
etc.

All objects are autonomously discovered, monitored and
their status is presented to enterprise servers through local
gateways. The dynamic discovery process allows the deploy-
ment of a generic software object, that by an autonomous
hardware recognition, can identify what sensing functions the
physical object can offer and what kind of actuators it can
control. Moreover, it is feasible to implement new services
during run-time to meet application requirements remotely. If
autonomous recognition is not possible, the component can
only offer pre-known hardware capabilities.

Most objects require connectivity to a data aggregator or
gateway. Some objects that do not need connectivity to data
aggregators, instead, their connectivity to backend application-
s/servers is provided over a Wide Area Network technology,
such as 4G or LTE.

V. COORDINATION SUPPORT FOR 3SOA
In Section IV, a service-oriented middleware for the deploy-

ment of lightweight services in IoT has been presented. In this
section, we present the high-level coordination abstractions
used at the SVL and PAL to support application developers in
implementation tasks, such as communication, group forma-
tion, etc. Coordination is the process of composing programs
by binding together separate activities into an ensemble. In
3SOA, programmers expand two parts of the middleware to
develop a new application:

1) A high-level abstract part to integrate a set of poten-
tially heterogeneous software/hardware objects through
interfacing with each object such that the collective set
forms an application that runs on and takes advantage of
a distributed system. In the field of software engineering
massively parallel and distributed systems, coordination
languages has proven to be an effective tool to enhance
modularity, reuse of existing components, interoper-
ability and portability. In 3SOA, platform-independent
abstractions are used to declare the core elements of
the system, specifically, nodes (including sensors and
actuators), clusters or groups, communication and ser-
vices. These different granularity units can be used to
design and implement complex and large-scale appli-
cations. Through ports or channels, services can be
composed to build complex applications. Services use
ports to send out to their environment control messages
or events to notify collaborating entities of their state
or state changes. Often, high-level abstract coordination
languages come with a translator, which takes the declar-
ative part as input and produces the skeleton of the IoT
application.

2) A platform-dependent part in which the programmers
add the task implementation code to the skeleton to

5

implement the services specified in the declarative part.
The application programmer uses the platform-specific
facilities to provide the hardware, e.g., NesC for MicaZ
motes and MicroPython for Pycom devices.

The resulting code, i.e., the skeleton and the task code,
forms the 3SOA-based IoT application that will interact with
lower middleware layers through APIs. In the next subsection,
we describe the languages forming the family of coordination
formalisms, which can be used in the declarative part of the
middleware. Subsections V-B and V-C, give two use cases
to demonstrate the expressiveness of the coordination models
and their application in the development of service-oriented
IoT applications.

A. 3SOA Abstract Coordination Languages

Based on the concept of coordination, many models and
formalisms evolved for describing distributed and concurrent
systems, e.g. [26], [19]. 3SOA does not impose any formalism
or language, but it works best with “control-driven” coordina-
tion models [27]. In control-driven, or otherwise known as
“task-oriented” coordination models, the state of coordination
is defined in terms of the coordinated activities involved by
the actors, i.e., the computational part of the system is viewed
as black boxes with clearly defined input/output interfaces.

Processes in 3SOA interact with their environment through
clearly defined interfaces, i.e., input/output ports. Consumer-
producer relationships are established by setting up channel
connections between input ports of producers and output ports
of consumers. Moreover, processes can send events or control
messages to their environment to notify interested processes
with their state.

The 3SOA works with any coordination language or model
that is CSP- or Occam-like formalism, e.g., [26]. The flexible
design of 3SOA allows events to be represented as parametric
with types and data values or as simple units representing state
changes. Events can be advertised by broadcast mechanisms
different to channel connections.

B. Intelligent Transportation Systems Use Case

This subsection describes how the primitives of a coor-
dination language, namely USEME [28], is used to support
effective collaboration between IoT objects to achieve com-
mon application goal. Also, it presents an ITS application
scenario to illustrate how different IoT application services
can be coordinated.

USEME is an intuitive and expressive high-level abstract
language for service definition and composition and real-time
support [28]. It meets all of the conditions defined in Sub-
section V-A. It has many desirable features, such as allowing
programmers to define QoS constraints in the communication
between services. In USEME, the use of ports and services
to coordinate distributed application functions is based on a
proactive system. A USEME system actively seeks to influence
its environment, rather than just react to external stimuli.
This property preserves the autonomy of each participant IoT
object.

In Listings 1 to 3, we give the coordination abstractions in
USEME to integrate two vehicle monitoring services into a
single application that runs over a distributed IoT infrastruc-
ture. Listing 1 defines two ports templates. The LidarPort de-
fines three operations. The asynchronous command GetLidar
is used by the vehicle monitoring service to obtain the Lidar
reading. A lidar (light detection and ranging) identifies lane
markings and the edges of the roads. The event DangerLidar
will inform the driver actor when a dangerous roadside object
is detected. Another event, the Lidar event, is used to to
send lidar readings to the vehicle control system periodically.
The UltrasonicPort defines the GetRUltrasonic, which is used
by the vehicle monitoring service to measure the position of
objects close to the vehicle, e.g. curbs when parking. These
ports are either provided or required by the three defined
services. The LidarService and the UltrasonicService provide
the LidarPort and UltrasonicPort, respectively, i.e., these
services are information sources. The VehicleMonitorService,
Listing 2 requires the ports provided by the LidarService and
the UltrasonicService and provides the DriverAlarmPort.

Listing 1. Ports and services definitions.
Port L i d a r P o r t
{

CommandSync G e t L i d a r (out i n t v a l u e) ;
Event Dange rL ida r (out i n t v a l u e) ;
Event L i d a r (out i n t v a l u e) ;

}

Port U l t r a s o n i c P o r t
{

CommandSync G e t R e s p i r a t i o n (out i n t v a l u e) ;
}

S e r v i c e L i d a r S e r v i c e
{

D e s c r i p t i o n = ‘ ‘ L i d a r s e r v i c e ’ ’ ;
Prov ides L i d a r P o r t w i th c o n s t r a i n t s {

on L i d a r P e r i o d 600 ,
P r i o r i t y 2 ;

on Dange rL ida r D e a d l i n e 5 ,
P r i o r i t y 1 ,
R e l i a b l e ;

}
}

S e r v i c e U l t r a s o n i c S e r v i c e
{

D e s c r i p t i o n = ‘ ‘ U l t r a s o n i c s e r v i c e ’ ’ ;
Prov ides U l t r a s o n i c P o r t w i th c o n s t r a i n t s {

on G e t U l t r a s o n i c R e l i a b l e ;
}

}

Listing 2. Vehicle monitor service definition.
S e r v i c e V e h i c l e M o n i t o r S e r v i c e
{

D e s c r i p t i o n = ‘ ‘ V e h i c l e M o n i t o r Serv ice ’ ’ ;
Requires L i d a r P o r t w i th c o n s t r a i n t s {

on Dange rL ida r R e l i a b l e ;
}
Requires U l t r a s o n i c P o r t w i th c o n s t r a i n t s {

on G e t U l t r a s o n i c D e a d l i n e 1000 ,
P r i o r i t y 2 ,
R e l i a b l e ;

}
Prov ides D r i v e r A l a r m P o r t w i th c o n s t r a i n t s {
on Emergency D e a d l i n e 1000 ,

P r i o r i t y 2 ,

6

R e l i a b l e ;
on A c t i v a t e A l a r m R e l i a b l e ;

}
}

After defining the provided and required ports in every
service, the programmer can specify constraints in the service
template, which must be satisfied by the service operation.
In the UltrasonicService, the only constraint on the Ultra-
sonicPort is to be run reliably. The Lidar function is set
with a period of 10 milliseconds; hence, objects that publish
this service in a group will inform other group members of
the Lidar reading every 10 milliseconds. The DangerLidar
is specified as a reliable operation with level 1 priority,
highest priority, and a deadline of 5 milliseconds. If the object
sending the notification does not receive an acknowledgment
within 5 milliseconds, the event will be re-transmitted. In the
VehicleMonitorService, Listing 2, both the LidarPort and the
DangerLidarPort are required. The DriverAlarmPort port is
used to notify the driver that an emergency has been detected
and to activate an alarm to alert nearby drivers or emergency
services.

Listing 3. Object and group definitions.
Sensor t e m p l a t e L i d a r S e n s o r (l o c)
{

Type = ‘ ‘ Survey ing ’ ’ ;
Publ i sh L i d a r S e r v i c e

in g r ou ps V e h i c l e t M o n i t o r G r o u p (l o c) ;
}

Sensor t e m p l a t e U l t r a s o n i c S e n s o r (l o c) ;
{

Type = ‘ ‘ D e t e c t i o n ’ ’ ;
Publ i sh U l t r a s o n i c S e r v i c e

in g r ou ps Veh ic l eMon i to rGroup (l o c) ;
}

Actor t e m p l a t e D r i v e r A c t o r (l o c) ;
{

Publ i sh D r i v e r M o n i t o r S e r v i c e
in g r ou ps Dr ive rMon i to rGroup (l o c) ;

}

Group t e m p l a t e Dr ive rMon i to rGroup (l o c) ;
{

DeviceType = Both
SensorType = ‘ ‘ Survey ing ’ ’ o r ‘ ‘ D e t e c t i o n ’ ’
C a r d i n a l i t y = (Actor , 1)

(‘ ‘ Survey ing ’ ’ , 3)
(‘ ‘ D e t e c t i o n ’ ’ , 3) ;

}

In Listing 3, we define two node templates, the LidarSensor
and the UltrasonicSensor. Both templates accept loc, which
describes where the node will be placed, e.g., front, back,
left or right. The attribute Type defines the sensing modalities
available for each node template. Both node types publish their
services in the group DriverMonitorServiceGroup. The Driver-
Actor is the actuator that implements the vehicle monitoring
activity. DriverMonitorServiceGroup group template takes a
parameter to specify where the group will be located. The
DeviceType indicates that both sensors and actors can join the
group. The SensorType attribute specifies the type of sensors
that can join the group. The Cardinality attribute indicates that
the group must have a maximum of one actor and three nodes
for the two defined sensor types.

Tor
Relay
Node

Tor
Relay
Node

Tor
Relay
Node

Tor
Relay
Node

Tor
Relay
Node

Tor Client
Without

Auth
Cookie

Tor Client
With Auth

Cookie

Raspberry Pi: MQTTESP8266: MQTT

Fig. 2. The blueprint of the implemented IoT network.

C. Device Anonymity Use Case

We present a second use case to extend the open-source
IoT platform Home Assistant to provide IoT objects as hidden
services on the Tor anonymous network. A privacy service was
selected to show the feasibility and applicability of the 3SOA
in an under-investigated area of SOA. Moreover, security is
an ever-increasing concern for IoT users which has not kept
in pace with the growing challenges of cyber attacks.

Establishing a security model that uses the Tor network
to house the IoT network would eliminate most security
concerns that arise when implementing an IoT application.
For instance, using Tor’s end-to-end encryption will remediate
security attacks such as Side-Channel Attacks, cryptanalysis
attacks, and network attacks (e.g., Denial of Service). Also,
keeping anonymity by using relay nodes to mask the object’s
IP address preserves the privacy of the system owner. Remote
connections are also secured by encryption, and relay nodes
mask the incoming IP and what the user is trying to access.

The solution proposed in this scenario is to use the Tor
network to host a versatile web server that IoT developers
can attach their API to. Figure 2 depicts two ESP8266
device equipped with vibration sensors are connected to a
Raspberry Pi through a wireless router. The information from
the ESP8266 device will be sent using the Message Queue
Telemetry Transport (MQTT) protocol. The open source
Mosquitto MQTT broker is used to handle MQTT tickets over
the local IoT network. The broker is triggered every time there
is an event to send. The information from the two ESP8266
devices is then aggregated so the Home Assist API can use
it to display information to the user. After the information is
sent to the API, the server advertises this information to the
hidden service over the Tor network. The hidden service is
then protected by encrypting all packets with RSA 1024-bit
encryption. In Figure 2, the two clients are connecting to the
hidden service. Both clients know the destination address of
the hidden service, but only one had an authentication cookie
for the service. The client without the authentication cookie
will be re-directed to an unroutable address and the authentic
client is routed through the service using Tor encryption.

Listing 4 shows the abstract definitions entered to the Home
Assist extension to integrate the two ESP8266 devices into a
composite service.

Listing 4. ESP8266 devices and service definitions.
Port SoundPor t

7

Fig. 3. Experimental setup of the 3SOA prototype.

{
CommandSync GetSound (out i n t v a l u e) ;
CommandAsync S e t T h r e s h o l d (in i n t v a l u e) ;
Event HighSound (out i n t v a l u e) ;
Event Sound (out i n t v a l u e) ;

}

S e r v i c e S o u n d S e r v i c e
{

D e s c r i p t i o n = ‘ ‘ Sound Serv ice ’ ’ ;
Prov ides SoundPor t ;

}

Sensor t e m p l a t e ESPSensor (id , l o c)
{

ID = i d e n t ;
L o c a t i o n = l o c ;
SensorType = ‘ ‘ Sound ’ ’ ;
Publ i sh S o u n d S e r v i c e in g r ou ps SmartHome (l o c) ;

}

Create Sensor ESPSensor (1 , ‘ ‘ k i t c h e n ’ ’) ;

VI. EVALUATION

We have implemented a 3SOA prototype and tested it based
on the two use cases described in Subsections V-B and V-C.
The purpose of the prototype is to provide a testbed to evaluate
3SOA scalability and composability. For this objective, the
main technology selection consideration was to use an easily
programmable hardware platform without requiring the use of
low level languages. The devices must also be inexpensive, to
allow large networks to be built. ESP8266 meets all the criteria
mentioned above. It combines a 32-bit RISC processor, 32 KiB
instruction and 80 KiB user data memory, an IEEE802-11a/b/n
protocol engine, and a Wi-Fi PHY onto a single chip. ESP8266
is available ready-packaged on a module, with serial interfaces
to connect a variety of sensors. The setup used in this prototype
is shown in Figure 3. The use of ESP8266 has some obvious

Fig. 4. The average end-to-end delay with a single sensor device. Vertical
bar signifies the SVL/PAL and the event manager in 3SOA and EDSOA
respectively.

Fig. 5. SVL/PAL and the event manager overhead at different node density.

limitations, particularly high power consumption and network
security vulnerabilities. While these are significant for an
operational network, for a prototype, they are of less concern.
For prototyping, the use of the IP stack and the IEEE802
wireless protocols make a great deal of the system software
and infrastructure easily accessible.

We implemented 3SOA on 30 ESP8266 devices and one
Raspberry Pi gateway to demonstrate its feasibility to be de-
ployed in real-world settings. In the patient monitoring service
we use simulated lidar and ultrasonic sensors, i.e., devices send
dummy payload, due to lack of access to such resources. Most
of the service-oriented middleware or frameworks for IoT in
the literature, e.g., [29], provide only the implementation of
the presented case studies. There are a small number of works
that give insights on the scalability and composability of the
proposed work. One specific approach that is similar to 3SOA
is the Event-Driven SOA (EDSOA) [30]. Both approaches tar-
get infrastructure-less networks to deliver real-time distributed
service composition. We compare the performance of 3SOA
against that of EDSOA. This comparison is fair as the two

8

works are similar in spirit but different in approach.
We consider both qualitative and quantitative sides for the

evaluation of 3SOA. Concerning the qualitative side of 3SOA,
we add to advancing the IoT services through 3SOA’s SVL/-
PAL, towards the standard web services discovery protocols.
We utilized MQTT for connectivity between IoT devices
and enterprise applications. Furthermore, coordination lan-
guages were used as programming abstractions for application
developers to quickly compose IoT applications with least
knowledge of underlying binding technologies. As for the
quantitative evaluation, we investigate end-to-end delay caused
by SVL/PAL and the memory overhead.

The objective of measuring the latency introduced by
3SoA’s SVL/PAL is to assess the feasibility of the publish-
subscribe mechanism for resource-constrained IoT environ-
ments. In this context, resource-constrained referrers to IoT
device hardware limitations in terms of communication range
and bandwidth, memory, processing and power supply as
well as to limited network infrastructure such as servers or
gateways.

We run an experiment for both studied use cases. For
comparison, we use both MQTT and HTTP (baseline) pro-
tocols. In the first experimental run, we consider that only
one device has subscribed for the publication to the 3SOA
with only one business process subscriber. Figure 4 shows the
average latency over 10 readings. The HTTP incurs higher
overhead due to increased payload size. On the other hand,
the overhead caused by 3SOA’s SVL/PAL is 8ms, which is
insignificant (< 10%) compared to the total latency.

In the second experimental run, each device publishes the
lidar and ultrasonic data that has been subscribed by 10
different business processes. We ran the experiment until
each device generates 300 messages. The latency results are
shown in Figure 5. We calculate the average latency for each
device over 100 readings where the average delay by 3SOA
is only 87ms in which the average latency caused by the
SVL/PAL is 13ms, which is only 4ms increase from the first
experimental run.

Compared to EDSOA, 3SOA reduces the end-to-end delay
before a service is composed of, up to 43ms. The reduction is
primarily due to the pre-defining composition rules in 3SOA.
Although such rules are static, their execution is dynamic.
In 3SOA, coordination rules can be executed in parallel on
multiple devices. Devices that are in the same coordination
state will be ready to communicate with other devices with
no delays.

VII. CONCLUSION

To address the challenges facing programmers developing
IoT applications, we adopt a service-oriented approach that
relies heavily on semantics to describe devices, their data, and
their physical attributes. This paper advocates 3SOA, a run-
time approach, for the development of applications for service-
oriented IoT. We demonstrated coordination abstractions as a
practical method to alleviate the problems related to the devel-
opment of complex, highly decentralised and parallel systems.
IoT objects are abstracted and turned into autonomous services

that interact with each other using well-defined interfaces.
Each object is defined by the services it provides and the
coordination protocol it supports. Objects are then able to
coordinate their resources to address the global structure of
the system.

After presenting 3SOA and associated object interaction and
coordination, two uses cases were described to demonstrate
the scalability and composability of the proposed work. These
use cases show 3SOS’s ability to coordinate the operation
of heterogeneous objects and the composition of a complex
application. Finally, a functional prototype was presented and
evaluated to assess the feasibility and performance of the
proposed 3SOA. 3SOA was found to outperform its best rivals
in the literature in terms of end-to-end delay and service
management overhead.

There are many future avenues to be followed, such as the
development of graphic support to assist application develop-
ers to construct IoT applications in an interactive visual man-
ner. Additionally, more investigation is needed on the group
abstraction level as a critical entity for service composition
and achieving interoperability. Such compositions must be
thoroughly evaluated by joining nodes with various mission
restrictions.

REFERENCES

[1] R. Ande, B. Adebisi, M. Hammoudeh, and J. Saleem, “Internet of things:
Evolution and technologies from a security perspective,” Sustainable
Cities and Society, p. 101728, 2019.

[2] H. Liao, Z. Zhou, X. Zhao, L. Zhang, S. Mumtaz, A. Jolfaei, S. H.
Ahmed, and A. K. Bashir, “Learning-based context-aware resource
allocation for edge computing-empowered industrial iot,” IEEE Internet
of Things Journal, pp. 1–1, 2019.

[3] S. Groschupf, “The Year of Big Sensor Data,” http://sandhill.com/
article/2014-the-year-of-big-sensor-data/, 2013, [Online; accessed 8-
June-2018].

[4] D. Zhang, Y. Liu, L. Dai, A. K. Bashir, A. Nallanathan, and B. Shim,
“Performance analysis of fd-noma-based decentralized v2x systems,”
IEEE Transactions on Communications, vol. 67, no. 7, pp. 5024–5036,
July 2019.

[5] M. Walshe, G. Epiphaniou, H. Al-Khateeb, M. Hammoudeh, V. Katos,
and A. Dehghantanha, “Non-interactive zero knowledge proofs for the
authentication of iot devices in reduced connectivity environments,” Ad
Hoc Networks, vol. 95, p. 101988, 2019.

[6] S. Belguith, N. Kaaniche, M. Hammoudeh, and T. Dargahi, “Proud:
Verifiable privacy-preserving outsourced attribute based signcryption
supporting access policy update for cloud assisted iot applications,”
Future Generation Computer Systems, 2019.

[7] P. Sethi and S. R. Sarangi, “Internet of things: Architectures, protocols,
and applications,” Journal of Electrical and Computer Engineering, vol.
2017, 2017.

[8] A. Muthanna, R. Shamilova, A. A. Ateya, A. Paramonov, and M. Ham-
moudeh, “A mobile edge computing/software-defined networking-
enabled architecture for vehicular networks,” Internet Technology Let-
ters, vol. n/a, no. n/a, p. e109, 2019.

[9] S. Walker-Roberts, M. Hammoudeh, O. Aldabbas, M. Aydin, and A. De-
hghantanha, “Threats on the horizon: Understanding security threats in
the era of cyber-physical systems,” Journal of Supercomputing, 2020.

[10] M. Chowdhury, A. Kayes, P. Watters, P. Scolyer-Gray, and A. Ng,
“Patient controlled, privacy preserving iot healthcare data sharing frame-
work,” in Proceedings of the 53rd Hawaii International Conference on
System Sciences, 2020.

[11] Z. Zheng, T. Wang, J. Wen, S. Mumtaz, A. K. Bashir, and S. H.
Chauhdary, “Differentially private high-dimensional data publication in
internet of things,” IEEE Internet of Things Journal, pp. 1–1, 2019.

[12] M. Shafiq, X. Yu, A. K. Bashir, H. N. Chaudhry, and D. Wang, “A
machine learning approach for feature selection traffic classification
using security analysis,” The Journal of Supercomputing, vol. 74, no. 10,
pp. 4867–4892, 2018.

9

[13] R. Alshinina and K. Elleithy, “Performance and challenges of service-
oriented architecture for wireless sensor networks,” Sensors, vol. 17,
no. 3, 2017.

[14] A. N. Lam and Ã. Haugen, “Applying semantics into service-oriented iot
framework,” in 2019 IEEE 17th International Conference on Industrial
Informatics (INDIN), vol. 1, July 2019, pp. 206–213.

[15] R. K. Behera, K. H. K. Reddy, and D. Sinha Roy, “Modeling and
assessing reliability of service-oriented internet of things,” International
Journal of Computers and Applications, vol. 41, no. 3, pp. 195–206,
2019.

[16] C. Martín, M. Díaz, and B. Rubio, “Run-time deployment and manage-
ment of coap resources for the internet of things,” International Journal
of Distributed Sensor Networks, vol. 13, no. 3, p. 1550147717698969,
2017.

[17] T. Fronimos, M. Koutsoubelias, S. Lalis, and T. Bartzanas, A Service-
Based Approach for the Uniform Access of Wireless Sensor Networks
and Custom Application Tasks Running on Sensor Nodes. Cham:
Springer International Publishing, 2018, pp. 77–101.

[18] M. Hamzei and N. Jafari Navimipour, “Toward efficient service com-
position techniques in the internet of things,” IEEE Internet of Things
Journal, vol. 5, no. 5, pp. 3774–3787, Oct 2018.

[19] B. Cheng, D. Zhu, S. Zhao, and J. Chen, “Situation-aware iot service
coordination using the event-driven soa paradigm,” IEEE Transactions
on Network and Service Management, vol. 13, no. 2, pp. 349–361, 2016.

[20] M. Boulakbech, N. Messai, Y. Sam, T. devogele, and M. Hammoudeh,
“Iot mashups: From iot big data to iot big service,” in Proceedings of the
International Conference on Future Networks and Distributed Systems,
ser. ICFNDS ’17. New York, NY, USA: ACM, 2017.

[21] C.-L. Fok, G.-C. Roman, and C. Lu, “Servilla: a flexible service
provisioning middleware for heterogeneous sensor networks,” Science
of Computer Programming, vol. 77, no. 6, pp. 663–684, 2012.

[22] M. M. Badawy, Z. H. Ali, and H. A. Ali, “Qos provisioning framework
for service-oriented internet of things (iot),” Cluster Computing, pp. 1–
17, 2019.

[23] J. Abdelaziz, M. Adda, and H. Mcheick, “An architectural model for
fog computing,” Journal of Ubiquitous Systems and Pervasive Networks,
vol. 10, no. 1, pp. 21–25, 2018.

[24] C. Cambra, S. Sendra, J. Lloret, and L. Garcia, “An iot service-
oriented system for agriculture monitoring,” in 2017 IEEE International
Conference on Communications (ICC), May 2017, pp. 1–6.

[25] I. Chen, J. Guo, and F. Bao, “Trust management for soa-based iot and
its application to service composition,” IEEE Transactions on Services
Computing, vol. 9, no. 3, pp. 482–495, May 2016.

[26] S. Mount, M. Hammoudeh, S. Wilson, and R. M. Newman, “Csp as a
domain-specific language embedded in python and jython.” in CPA, ser.
Concurrent Systems Engineering Series, P. H. Welch, H. W. Roebbers,
J. F. Broenink, F. R. M. Barnes, C. G. Ritson, A. T. Sampson, G. S.
Stiles, and B. Vinter, Eds., vol. 67. IOS Press, 2009, pp. 293–309.

[27] G. Ciatto, S. Mariani, M. Louvel, A. Omicini, and F. Zambonelli,
“Twenty years of coordination technologies: State-of-the-art and per-
spectives,” in International Conference on Coordination Languages and
Models. Springer, 2018, pp. 51–80.

[28] E. Cañete, J. Chen, M. Díaz, L. Llopis, and B. Rubio, “A service-oriented
approach to facilitate wsan application development,” Ad Hoc Networks,
vol. 9, no. 3, pp. 430 – 452, 2011.

[29] M. R. B. A. Rahim, N. Fisal, R. A. Rashid, and Z. Khalid, “A service
oriented middleware for smart home and ambient assisted living,” in
2015 1st International Conference on Telematics and Future Generation
Networks (TAFGEN), May 2015, pp. 49–53.

[30] L. Lan, F. Li, B. Wang, L. Zhang, and R. Shi, “An event-driven service-
oriented architecture for the internet of things,” in 2014 Asia-Pacific
Services Computing Conference, Dec 2014, pp. 68–73.

