
Mechanical Systems and Signal Processing 145 (2020) 106850
Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier .com/locate /ymssp
On the completeness of interface descriptions and the
consistency of blocked forces obtained in situ
https://doi.org/10.1016/j.ymssp.2020.106850
0888-3270/� 2020 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
J.W.R. Meggitt ⇑, A.T. Moorhouse
Acoustics Research Centre, University of Salford, Greater Manchester M5 4WT, United Kingdom

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 August 2019
Received in revised form 24 March 2020
Accepted 25 March 2020

Keywords:
Blocked forces
Completeness
Consistency
Source characterisation
Excitation
Digital twins
Blocked forces can be used to describe, independently, the operational characteristics of a
vibratory source. Their use within a computational model avoids the need to represent
explicitly the complex mechanisms that lead to vibratory excitation. To obtain and apply
an experimental blocked force with confidence it is important that likely sources of error
are known, and measures of their severity are available. In this paper we introduce the
notions of completeness and consistency, and detail their role in the introduction of sys-
tematic errors in a blocked force characterisation. Their mathematical origins are described
and criteria to quantify their severity are proposed; the Interface Completeness Criterion
(ICC), and the Measurement Consistency Criterion (MCC). These are illustrated through
numerical and experimental examples. Completeness is related to the interface description
adopted in a source characterisation (i.e. the number of degrees of freedom used). The ICC
represents the quality of an interface description and can be quantified from in situ mea-
surements, i.e without having to remove the source from its assembly. Consistency is
related to the underlying dynamics shared by active and passive quantities (whether mea-
sured or modelled). The issue of consistency is more general, completeness being a special
case, and so a single criterion is hard to formulate. When an inconsistency arises between
the blocked force of a vibration source and its corresponding free interface frequency
response function matrix, the MCC provides a quantitative indication of its severity.
Importantly, many of the concepts discussed apply equally in the context of experimental
dynamic sub-structuring.
� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

This paper is concerned with the excitation of structural dynamic and vibro-acoustic models using experimentally deter-
mined blocked forces. In particular we investigate the conditions under which a reliable prediction may be obtained when
using the blocked force as an equivalent excitation. In doing so we will introduce the notions of completeness and consis-
tency, and discuss their role in the introduction systematic errors.

The present work is motivated by a general move towards virtual prototyping methodologies and the growing popularity
of so-called ‘Digital Twins’ [1]. In the Digital Twin (DT) paradigm, a physical system (or ‘Physical Twin’) is accompanied by a
digital counterpart, designed to exhibit phenomena observed in the Physical Twin (PT). The design and implementation of a
DT is context dependent and will vary from one application to another. A notable example (and of principal interest here) is
the predictive methodology component-based Transfer Path Analysis (TPA).
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Transfer Path Analysis is a general term used to describe a series of diagnostic and predictive methods applied in many
industries to analyse the propagation of noise and vibration in complex built-up structures. Variants include classical- [2],
in situ- [3], advanced- [4] and operational- [5], among others [6]. In a component-based TPA an assembly is sub-divided into
a series of active and passive components, the dynamic properties of which are determined separately from one another.
These are then combined as part of a computation model (or ‘DT’), with the aim of predicting the assembled structure’s oper-
ational response (this merger has previously been known as Virtual Acoustic Prototyping [7,8]). The resulting model may be
complex, with multiple sub-components, each utilising disparate numerical, statistical or experimental descriptions [9]. Irre-
spective of its complexity, the model must provide an accurate estimate of the assembly’s operational response if it is to be
used as a predictive tool.

To achieve an accurate response prediction the assembled model must 1) correctly describe the assembly’s passive prop-
erties (i.e. its response to a unit excitation) and 2) correctly model the excitation induced by its active components. Whilst
numerical models are able to predict the passive properties of complex structures with reasonable accuracy, the mechanisms
that lead to vibratory excitation often lay outside their capabilities. In a component-based TPA this issue is resolved by using
an equivalent blocked force excitation, characterised experimentally, as an alternative to modelling the internal mechanisms
of an active component.

Defined as the force required to constrain an active component’s interface such that its velocity (also displacement and
acceleration) is zero, the blocked force independently characterises the activity of a vibratory source [10]. Its independence
allows for structural modifications to be made to an assembly without changing the source’s operational characteristics, i.e
blocked forces are invariant to changes made in the receiver structure. In contrast, contact forces (as used in classical TPA)
depend on the dynamics of the receiver structure and therefore cannot be used in the presence of a structural modification.
Characterisation of the blocked force has been simplified in recent years by the development of an in situ procedure [11],
which avoids the need for an infinitely rigid test bench. Posed as an inverse problem, the in situ blocked force approach
[11] can be sensitive to numerical instabilities resulting from ill-conditioning, and the uncertainty arising from the experi-
mental test procedure [12]. Beyond these issues, there exist two important notions that must be acknowledged if blocked
forces are to be obtained and applied with confidence. These are; the completeness of the source-receiver interface descrip-
tion, and the consistency between the active (operational) and passive test phases. It is the aim of this paper to introduce
these notions and highlight their importance in the characterisation and application of blocked forces.

Although we will consider completeness and consistency primarily from a blocked force perspective, it is important to
note that many of the issues raised apply equally in the context of sub-structure coupling and decoupling. As an example,
to successfully couple (or decouple) two sub-structures their separating interface must be characterised appropriately. This
is clearly an interface completeness problem.

The remainder of this paper will be organised as follows. Section 2 will begin by reintroducing the blocked force and its
in situ measurement procedure. In Section 3 the problem statement will be outlined and the notions of completeness and
consistency described. Following this, Sections 4 and 5 will illustrate their mathematical origin, whilst providing criteria
for their assessment and numerical examples of their application. Section 6 will go on to consider an experimental study,
highlighting the aforementioned developments. Finally, Section 7 will draw some concluding remarks.

2. Blocked force as an independent source characterisation

The independent characterisation of vibratory sources (e.g. pumps, motors, etc.) has been of interest to those within the
field of structural dynamics for many years [13]. Of the available quantities, there exist two fundamental (independent)
descriptors of structural source activity. These are the blocked force and the free velocity [10]. The direct measurement of
these quantities are, however, fraught with experimental difficulties and, until recently, neither had been considered a viable
option for vibratory characterisation.1

The blocked force is defined as the force required to restrain the coupling interface of a vibratory source such that its
velocity (also displacement and acceleration) is zero,
1 In t
�fSc ¼ fCcjvCc¼0 ð1Þ

where: lower-case subscript c represents the coupling interface degrees of freedom (DoFs) that separate source and receiver
sub-structures (see Fig. 1); upper-case subscripts C and S represent the coupled assembly and the source sub-structure,
respectively; and the over-bar accent is used to denote a blocked force, as opposed to a contact force. Noting the above,
fCc may be read as the contact force present at the coupling interface of the coupled assembly, and �fSc as the blocked force
of the source sub-structure at the coupling interface. By blocking the interface DoFs c the dynamics of the receiver structure
are unable to influence the blocked force. As such, it provides an independent description of structural source activity.

Note that blocked forces are typically defined at the separating interface between source and receiver sub-structures, i.e.
remote from any internal vibration generating mechanisms. However, this interface is somewhat arbitrary, and chosen
mostly for convenience. The blocked force may just as well be defined internally to the source sub-structure, perhaps over
an enveloping surface that encloses the internal generating mechanisms [14].
his work we will consider the blocked force only. An account of the free velocity approach may be found in [1]?



Fig. 1. Diagrammatic representation of source-receiver (SR) assembly and blocked force.
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Assuming linearity and time invariance, the blocked force, defined at the interface DoFs c, can be related to the internal
generating forces fSo acting at DoFs o by,
�fSc ¼ Y�1
SccYScofSo: ð2Þ
Classically, direct measurement of the blocked force required the source in question to be mounted to a rigid test bench, so as
to achieve the necessary constraints. In practice this condition can only be approximated over a limited frequency range.
Alternatively, the blocked force can be inferred from the free source velocity through the inverse relation,
�fSc ¼ Y�1
SccvSc ð3Þ
where; YScc is the free interface mobility matrix of the source, and vSc is its operational free velocity, itself related to the
internal generating forces by vSc ¼ YScofSo. However, this approach, requires the source to be operated under a freely sus-
pended condition, which is often impractical, if not impossible.

2.1. In situ Characterisation

In work by Moorhouse et al. [11] it was shown that the blocked force may be acquired through an inverse procedure using
measurements performed with the source installed on an arbitrary receiver structure. It has since been acknowledged that
this phenomenon is a special case of a general theorem on the representation of fields of forced vibration in composite elastic
systems [15]. In the context of structural source characterisation, the relation of note is given by [11],
vCb ¼ YCbc
�fSc ð4Þ
where; YCbc 2 CM�N is the measured transfer mobility matrix of a coupled assembly, vCb 2 CM is a measured operational
velocity vector (note that accelerance and acceleration may be used in place of mobility and velocity), and �fSc 2 CN is the
vector of unknown blocked forces. Here, lower-case subscripts b and c represent remote receiver and coupling interface
DoFs, respectively (see Fig. 1). Note that the DoF set b may include the interface DoFs c as a subset and that variables are
represented in the frequency domain, with the frequency variable omitted for clarity. For N ¼ M, providing that the mea-
sured mobility matrix is of full rank, a unique solution is found through the inverse mobility matrix Y�1

Cbc ¼ ZCcb, where
ZCcb 2 CN�N is an assembly impedance matrix. For N > M, the pseudo-inverse may be used in place of the standard matrix
inverse to obtain Yþ

Cbc ¼ ZCcb 2 CM�N , leading to a least squares solution of the problem.
Noting that both YCbc and vCb are properties of the coupled assembly, Eq. (4) facilitates an in situ determination of the

blocked force, i.e. the source need not be installed on a rigid test bench and may be characterised under ‘installed’ conditions.
The experimental implementation of Eq. (4) follows a two part measurement procedure. In part 1, the source is turned off

and the mobility matrix YCbc measured. In part 2, the source is operated and the operation velocity vCb measured at the cho-
sen DoFs. The mobility YCbc relates the remote DoFs at which the velocity is measured to the coupling interface DoFs where
the blocked force is defined. Particular care must be taken during the measurement of YCbc as it must be inverted numerically
so as to acquire the blocked force. It is known that poor experimental data is likely to increase the chance of unacceptable
errors. Although there exist numerical techniques to minimize this effect (e.g. regularisation), it is recommended that effort
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be spent acquiring the best experimental data possible, as opposed to relying on such techniques. Nevertheless, even the
most carefully executed experiments will be subject to some degree of uncertainty. The issue of experimental uncertainty
and its propagation in a blocked force characterisation is addressed in [12].

The in situ blocked force approach, as represented by Eq. (4), has become the most promising approach towards the inde-
pendent characterisation of vibratory sources. Its adoption within industry, and role in the formulation of the diagnostic pro-
cedures in situ [3] and component-based TPA [6], have led to numerous applications within the automotive [3,16,17],
aerospace [18], domestic product [19,20] and building acoustics [21,22] sectors. Whilst most applications so far have
involved purely experimental systems, the potentially more promising use of blocked forces is to excite numerical models
directly. In either case, an awareness of the underlying assumptions and likely sources of uncertainty and error is necessary.
In particular, it is the notions of completeness and consistency that are of interest here. A more detailed description of these
requirements will be presented in the following section.
3. Problem statement

It has been shown that the blocked force of an active sub-structure is related to the operational response of an assembled
structure through the passive dynamics of the coupled assembly (see Eq. (4)) [11,15]. The in situ blocked force approach
treats this relation as an inverse problem, characterising the blocked force using a set of measured operational responses.
Clearly, one can also consider the forward problem, i.e. predicting the operational response due to an applied blocked force,
pCb ¼ HCbc
�fSc ð5Þ
where pCb is a response vector at the reference DoFs b, corresponding appropriately to the units of the vibro-acoustic FRF
matrix HCbc (pCb may include both structural and acoustic responses). Note that the reference DoFs b differ from those used
to characterise the blocked force in Eq. (4). Using Eq. (5) the operational response of an assembled structure can be predicted
so long as a) its coupled FRF matrix HCbc is known (this may, in principle, be modelled numerically, determined experimen-
tally, or predicted using dynamic sub-structuring procedures), and b) the blocked force �fSc has been characterised appropri-
ately (either in situ or on a test bench).

Together, Eqs. (4) and (5) form the basis of both in situ and component-based TPA. In an in situ TPA the forward FRF
matrix HCbc is measured directly on the same assembly that the blocked force �fSc is characterised (e.g. a vehicle). Eq. (5)
is then used as a diagnostic tool to determine the dominant contributions to an operational response. In a component-
based TPA the forward FRF matrix HCbc describes some new assembly (that might not exist physically), and is predicted
using, for example, dynamic sub-structuring (i.e. based on the measurement of each individual sub-structure that makes
up the assembly). Eq. (5) is then used as a predictive tool, providing a response prediction in a ‘virtual’ assembly. We are
interested generally in the conditions under which Eq. (5) provides a reliable prediction of the operational response pCb.

It has been noticed in previous works [23,24] that large artefacts are observed over narrow frequency ranges in opera-
tional response predictions when transferring blocked forces from one assembly to another. We are interested in identifying
the underlying cause of such artefacts, and providing appropriate measures of their severity. It will be shown through the
present paper that such artefacts are related to the notions of completeness and consistency, summary descriptions of which
are given below:

- Completeness describes the degree to which the coupling interface separating source and receiver has been correctly rep-
resented, for example whether enough DoFs have been included (i.e. rotations/in-plane). The completeness of an interface
description is essential if a blocked force is to be characterised correctly and applied with confidence. The completeness of
an interface description is also an essential requirement in the coupling and decoupling of sub-structures.

- Consistency relates to the underlying dynamics shared by the active and passive properties of an assembly or component
(for example, the blocked force and free mobility of a vibration source). Consistency is a more general notion, with com-
pleteness being a special case. It arises principally when active and passive quantities are obtained from separate exper-
iments (or potentially from experiment and numerical modelling).

The notions of completeness and consistency will be further developed through Sections 4 and 5, respectively, where appro-
priate measures of their severity will be introduced and numerical examples presented.
4. Completeness of an interface description

Interface completeness is a general issue encountered whenever characterisations are performed at the interface of one or
more sub-structures [25]. This includes not only the characterisation of blocked forces, but also the coupling and decoupling
of sub-structures. Although we will consider completeness from the perspective of a blocked force characterisation, many of
the results presented may be interpreted more generally.

Conceptually, completeness can be described in simple terms with reference to Fig. 2: if all the interface DoFs (ci and cj)
between source (S) and receiver (R) are blocked then an applied force at a will not generate a response at b; on the other



Fig. 2. Constrained and unconstrained assemblies corresponding to Eqs. (11) and (12) respectively.
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hand, a finite response will be obtained if any interface DoFs (say cj) are left unblocked. In what follows we use this fact to
quantify the extent to which an interface description is complete.

We begin by considering the in situ blocked force relation Eq. (4) in the form,
2 The
definiti
vCb ¼ YCbci
�fSci þ YCbcj

�fScj ð6Þ

where the velocity contributions from known and unknown DoFs have been partitioned (see Fig. 2a). Here, ci represents the
set of coupling interface DoFs that are known and considered measurable, whilst cj represents the set of interface DoFs that
are physically present but have been omitted from the experimental representation of the interface, either because they are
unknown or because they are known but cannot be measured.

In the in situ experimental determination of the blocked force one pre-multiplies the operational velocity vector by an
inverse mobility matrix pertaining to the known DoFs, YCbci . Pre-multiplication of Eq. (6) by Y�1

Cbci
thus yields,
Y�1
Cbci

vCb ¼ ~�fCci ¼ �fSci þ Y�1
Cbci

YCbcj
�fScj : ð7Þ
The acquired blocked force, ~�fCci , although correct in its own respect2, is not the true blocked force at the DoFs ci;�fSci . The

neglect of the unknown DoFs cj has resulted in the additional term, Y�1
Cbci

YCbcj
�fScj . This term is a property of the coupled assembly

and thus the acquired blocked force is no longer an independent property of the source. This loss of independence may have
severe implications when the acquired blocked force is transferred to a secondary assembly and used to predict an operational
response (as in Eq. (5)). This is demonstrated below.

Suppose we are interested in predicting the remote receiver velocity, vXb, on a secondary assembly (denoted by the sub-
script, X). The true velocity (that we are aiming to predict) may be expressed in terms of the true blocked force as,
vXb ¼ YXbci
�fSci þ YXbcj

�fScj : ð8Þ
To predict the remote velocity the acquired blocked force, ~�fCci , is pre-multiplied by the coupled transfer mobility of the sec-
ondary assembly that corresponds to the known and measurable DoFs, YXbci .
~vXb ¼ YXbci
~�fCci ¼ YXbci

�fSci þ Y�1
Cbci

YCbcj
�fScj

� �
ð9Þ
Expanding the above we arrive at,
~vXb ¼ YXbci
�fSci þ YXbciY

�1
Cbci

YCbcj
�fScj : ð10Þ
blocked force ~�fCci represents the reaction forces due to a source that is blocked in the ci DoFs but unrestrained in the remaining cj DoFs. It is therefore by
on a blocked force, albeit not the true blocked force.
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From the above it is clear that the true velocity, vXb, and the predicted velocity, ~vXb, are not equal. Hence the blocked force is
no longer transferable. Here, the unknown blocked force, �fScj , contributes to the predicted velocity response through the

propagating transfer function, YXbciY
�1
Cbci

YCbcj . So, whilst the response prediction still accounts for the unknown blocked force,
its contribution to the response of a secondary assembly is incorrect. This discrepancy is a consequence of an incomplete
interface description. Had all coupling DoFs been accounted for, the true blocked force would have been acquired, and sub-
sequently transferred to the secondary assembly with no issues.

The notion of incompleteness may be interpreted as a form of model uncertainty [12], in the sense that the model we use
to describe the problem (Eq. (4)) is incorrect (i.e. it neglects some unknown DoFs) and thus introduces an uncertainty. This
uncertainty is distinct from the random uncertainty that arises due to experimental testing, instead manifesting as a system-
atic error. We are interested in minimising the influence of this error by quantifying whether enough DoFs have been
included in an interface description. To this end, an Interface Completeness Criterion (ICC) is proposed in the following
section.

4.1. Interface Completeness Criterion

In this section we will derive a criterion that quantifies the degree of completeness that an interface description pos-
sesses. The so-called Interface Completeness Criterion (ICC) is based on the notion of mathematically blocking the set of known
DoFs at the source-receiver interface, and observing the resultant response on the receiver. Its derivation, first presented in
[25], is provided below for ‘completeness’.

Consider the assembly depicted in Fig. 2a, where a source (S) and receiver (R) sub-structure are coupled via two sets of
interface DoFs. Denoted ci and cj, these DoFs form subsets of the complete coupling interface c, such that ci # cf g and
cj # cjcj:# ci
� �

. Also included are two sets of remote DoFs on the source and receiver. These are referred to as a and b,
respectively.

The equations of motion that govern the behaviour of the coupled source-receiver assembly (as depicted in Fig. 2a) are
given generally by,
vCa

vCci

vCcj

vCb

0
BBB@

1
CCCA ¼

YCaa YCaci YCacj YCab

YCcia YCcici YCcicj YCcib

YCcja YCcjci YCcjcj YCcjb

YCba YCbci YCbcj YCbb

2
6664

3
7775

fCa
fCci
fCcj
fCb

0
BBB@

1
CCCA: ð11Þ
We begin by considering the case where only two external forces are applied, i.e. fCcj ¼ fCb ¼ 0. The first is an arbitrary force

at the remote source DoFs a; fCa. The second is a constraint force at the known coupling interface DoFs ci;�fCci . This second
force is the blocking force required to constrain the velocity vCci to 0. The constrained assembly may then be represented
by the following set of equations,
vCa

0
vCcj

vCb

0
BBB@

1
CCCA ¼

YCaa YCaci YCacj YCab

YCcia YCcici YCcicj YCcib

YCcja YCcjci YCcjcj YCcjb

YCba YCbci YCbcj YCbb

2
6664

3
7775

fCa
�fCci
0
0

0
BBB@

1
CCCA: ð12Þ
The above describes an assembly that is excited by an arbitrary force at a, whilst the coupling interface, c, is partially con-
strained at the known DoFs. This constrained assembly is shown diagrammatically in Fig. 2b.

The second line of Eq. (12),
0 ¼ YCciafCa þ YCcici
�fCci ð13Þ
can be rearranged for the blocking force,
�fCci ¼ �Y�1
Ccici

YCciafCa: ð14Þ
The above relation describes a force transmissibility that relates the externally applied force at a to the resultant blocking
force at ci.

The 4th line of Eq. (12), introducing the notation v
cjð Þ

Cb to describe the velocity of the constrained assembly (i.e. the con-
tribution through the unknown DoFs cj only), gives,
v
cjð Þ

Cb ¼ YCbafCa þ YCbci
�fCci : ð15Þ
The first RHS term describes the velocity at b due an applied force at a on the unconstrained assembly, i.e. v cð Þ
Cb ¼ YCbafCa. The

second RHS term describes an added contribution to this velocity due to the blocking force required to constrain the interface
ci. Substituting Eq. (14) into (15) yields,
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v
cjð Þ

Cb ¼ YCbafCa � YCbciY
�1
Ccici

YCciafCa ð16Þ

or equivalently,
v
cjð Þ

Cb ¼ YCba � YCbciY
�1
Ccici

YCcia

h i
fa: ð17Þ
Eq. (17) relates an externally applied force at a to the resultant velocity at b on the constrained assembly depicted in Fig. 2b.
The bracketed mobility term therefore represents the transfer mobility through the constrained assembly. Let us then define,
Y
cjð Þ

Cba , YCba � YCbciY
�1
Ccici

YCcia

h i
ð18Þ
as the transfer mobility from a to b, through the DoFs cj, whilst the DoFs ci are blocked. Noting that the left hand term in the
bracket of Eq. (17) is the transfer mobility of the unconstrained assembly, let us also define,
Y cð Þ
Cba , YCba ð19Þ
that is, the transfer mobility from a to b through all coupling DoFs (ci and cj). Finally, the right hand term in the bracket of Eq.
(17) can be seen to form a round trip identity [26] for a mobility similar to YCba. It is interesting to note that for the case
whereby only a single set of coupling DoFs exist, i.e. jcjj ¼ 0, this round trip identity is exactly equal to the unconstrained

mobility, YCba [26]. For the constrained interface considered, however, the mobility product YCbciY
�1
Ccici

YCcia corresponds to
a transfer mobility between a and b whilst neglecting the unknown DoFs cj. As such, let us define,
Y cið Þ
Cba , YCbciY

�1
Ccici

YCcia: ð20Þ

Using the above definitions Eq. (18) may be rewritten as,
Y
cjð Þ

Cba ¼ Y cð Þ
Cba � Y cið Þ

Cba ð21Þ

or alternatively,
Y cð Þ
Cba ¼ Y cið Þ

Cba þ Y
cjð Þ

Cba : ð22Þ
We note here that if the DoF subset ci contains all DoFs, ci ¼ c, then jcjj ¼ 0 and Y cð Þ
Cba ¼ Y cið Þ

Cba. Experimentally this would mean
that all of the interface DoFs have been included and the interface description is complete. We are therefore interested in the

degree to which the equality Y cð Þ
Cba ¼ Y cið Þ

Cba is met.
A suitable criterion can be formulated by introducing the Cauchy–Schwarz inequality, which states that for all vectors x

and y of an inner product space it is true that,
j x; yh ij2 6 x;xh i y; yh i ð23Þ

where �; �h i is the inner product.3 Dividing both sides by x; xh i y; yh i leads to the well known inequality,
j x; yh ij2
x;xh i y; yh i 6 1: ð24Þ
We consider first the case where only a single receiver side DoF b is present. Substituting x for Y cð Þ
ba and y for Y cið Þ

ba , whilst not-
ing that the inner product in a complex space is obtained using the conjugate transpose H, the Interface Completeness Criterion
(ICC) is defined as,
ICCba ¼
Y cð Þ

Cba Y cið Þ
Cba

� �H����
����
2

Y cð Þ
Cba Y cð Þ

Cba

� �H
Y cið Þ

Cba Y cið Þ
Cba

� �H ð25Þ
where: Y cð Þ
Cba represents the directly measured transfer mobility between the source side DoFs a and the (single) receiver side

DoF b, and Y cið Þ
Cba ¼ YCbciY

�1
Ccici

YCcia describes the same mobility but reconstructed through the known interface DoFs.
Note that YCbci ;YCcici and YCcia are all measurable and, provided that the source is reasonably accessible so that excitations

can be applied at a and ci, require little additional effort over and above what would be required as part of a standard blocked
force characterisation. If access is restricted, and only remote measurements are available, an alternative approach may be
required.

Although the source side DoFs (a) are unlikely to coincide with the true excitation DoFs of the source (o) this is not an
issue, so long as the chosen set of DoFs are able to excite all interface modes. To achieve this it is recommended that multiple
s is the same inequality from which the Modal Assurance Criterion (MAC) is formulated.
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excitations be applied in different directions. The specific number of excitations required will likely vary from case to case,
and is subject to further investigation.

The ICC as defined in Eq. (25) considers only a single receiver side DoF b [25]. In the case that multiple DoFs are of interest,
the vectorised mobilities,
Y cð Þ
Cba ¼ Y cð Þ

Cb1a
;Y cð Þ

Cb2a
; � � � ;Y cð Þ

Cbna

h i
ð26Þ
and
Y cið Þ
Cba ¼ Y cið Þ

Cb1a
;Y cið Þ

Cb2a
; � � � ;Y cið Þ

Cbna

h i
ð27Þ
may be used in place of Y cð Þ
Cba and Y cið Þ

Cba, respectively. This combined ICC accounts for all receiver side DoFs.
If all coupling DoFs are accounted for, that is, ci ¼ c, the ICC is equal to one. Similarly, if jcij < jcj then the ICC is less than 1.

If none of the coupling DoFs are accounted for, that is, jcij ¼ 0, the ICC is undefined, since Y cið Þ
Cba can not be calculated. In prac-

tice, it is important to note that the mobilities used as part of Eq. (25) are obtained from measurement. As such, they are
subject to some degree of uncertainty and, even in the case of a complete interface description, an ICC equal to 1 is unlikely
to be achieved.

As a final remark, it should be noted that the ICC may also be applied in the case of sub-structure decoupling to assess the
completeness of the interface description used.
4.2. Numerical example – Discretisation of a continuous interface

In this numerical example the Interface Completeness Criterion (ICC) is used to assess the completeness of a discrete
approximation to a continuous interface. The interface considered is an arbitrary line that separates two sides of a simply
supported rectangular plate, as illustrated in Fig. 3. Interfaces of this type are often encountered in practical scenarios, for
example when vibratory sources are welded to their receiver structure, and are typically represented by a series of discrete
point-like DoFs. It is the aim of this study to investigate the degree to which this approximation accounts for the continuous
nature of the interface. This will be done by computing the ICC for increasing levels of its discretisation.

The left hand side of the interface is considered a source sub-structure, and the right hand side the receiver sub-structure.
The coupled plate assembly is modelled analytically using a truncated modal summation. Note that only the translational z
and rotational a and b DoFs (i.e. those around the x and y axis) are accounted for. The geometric and material properties of
the model are given in Table 1.

The continuous interface that separates the source and receiver is described by an increasing number of points, as illus-
trated in Fig. 4. Here, each point-like DoF, unless otherwise specified, includes three coordinate-DoFs: z;a and b. As shown in
Fig. 3, a further five points were chosen on the source side (a) along with a single point on the receiver side (b).

The ICC between the 15 source side DoFs and each of the 3 receiver side DoFs (denoted, ICCza, ICCaa and ICCba) are calcu-
lated as per Eq. (25). Also calculated is the combined ICC, obtained by vectorising the appropriate mobilities, as discussed in
Section 4.1. Six interface descriptions are considered here, corresponding to 2, 3, 4, 5, 10 and 20 points, evenly spread across
the breadth of the plate, as illustrated through Figs. 4a–f, respectively. The corresponding ICCs are shown in Fig. 5, where
those pertaining to the translational and rotational (a and b) receiver DoFs are shown in grey and indicated by triangular,
circular and square markers, respectively. Shown in black are the combined ICCs, i.e. those determined by vectorising the
mobilities as per Eqs. (26) and (27).

Fig. 5 clearly illustrates that an increase in the number of DoFs used to describe the continuous interface leads to a con-
vergence of the ICC to 1. Whilst this convergence is observed for each coordinate-DoF, it can be seen that their respective
ICCs tend to differ from one another. This supports the use of a combined ICC, which provides a more general overall trend
between the three receiver side DoFs.

Shown in Fig. 6 are two combined ICCs corresponding to an interface description made up of 20 points with and without
rotational DoFs. In Fig. 6a the coupling interface description includes both translational and rotational coordinate-DoFs (as in
Fig. 4f). In Fig. 6b the coupling interface description includes only translational coordinate-DoFs, i.e. the rotational DoFs were
neglected. As one might expect, the neglect of rotational coupling has resulted in a worsening of the ICC. Whilst this is an
intuitively obvious result, it highlights the importance of rotational DoFs in the description of a continuous interface and,
furthermore, the ability of the ICC to quantify it.

Although only a simple numerical study, the above demonstrates the application of the ICC to quantify the completeness
of an interface description and illustrates some example results for a continuous interface. An experimental application of
the ICC will be presented later in Section 6 as part of an experimental study. Further experimental applications of the ICC
can be found in [17,25,27].



Fig. 3. Diagrammatic representation of the continuous interface numerical study. Two plates are coupled via a continuous interface (dashed red line) in the
translational z and x=y rotational DoFs, a and b. Green crosses correspond to positions that require excitations to be applied, and blue circles to those that
require responses to be measured. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

Table 1
Geometry of the coupled plate assembly, plate 1 and plate 2. The material properties of the three plates are; Young’s modulus E ¼ 200� 109 [N/m2], density
q ¼ 9000 [kg/m3], Poisson’s ratio l ¼ 0:3, and loss factor g ¼ 0:1.

Plate Dimensions (x� y� z) [m]

Coupled 1� 0:8� 0:005
Source 0:35� 0:8� 0:005
Receiver 0:65� 0:8� 0:005
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5. Consistency between active and passive properties

In Section 4 it was shown that the neglect of interface DoFs when characterising the blocked force, referred to here as
incompleteness, can lead to systematic errors in the predicted response of an assembly. In this section it will be shown that
further errors arise when the acquired blocked force is inconsistent with the passive properties of the assembly.

The issue of inconsistency can be illustrated diagrammatically using Fig. 7. Suppose the blocked force of a vibration source
is obtained from an assembly C (Fig. 7a). Whilst the source is attached and/or operational its dynamic properties are altered,
for example a stiffening may occur due to an operational load. This altered source is denoted S0 with the corresponding
blocked force �fS0c. The vibration source is then detached and its free mobility YScc is measured (or perhaps modelled numer-
ically). In this free state the source dynamics are no longer influenced by coupling, nor its operational state. The free source
mobility is then used to predict the coupled mobility of a new assembly X (Fig. 7b). Although valid in their own right, the
passive source properties of this assembly are inconsistent with those of the blocked force, S– S0. When the blocked force
is used to predict the operational response of assembly X, the inconsistency S – S0 can lead to artefacts in the response
prediction.

Clearly the issue of inconsistency is a very general one, the above demonstrating just one example, with many others pos-
sible. To investigate the underlying cause of inconsistency we will begin by considering a simplified mass-spring model
before presenting a more general treatment for arbitrary structures.
5.1. Simplified example

To clearly understand the nature of inconsistency we will first consider a simplified system composed of a mass-spring
element (source) coupled to an arbitrary structure (receiver) represented by the dynamic stiffness D, as illustrated in Fig. 8. It
will be shown that when a coupled FRF and blocked force are combined, there is a cancellation of terms between the two. If
the coupled FRF and blocked force are obtained from separate tests it is likely that these cancelling terms will not be identical
(they will be inconsistent), and an artefact will remain.

Assuming harmonic excitation with time dependence eixt , the equations of motion for the mass-spring system are given
by,



Fig. 4. Diagrammatic representation of the continuous interface numerical study. Two plates are coupled via a continuous interface which is approximated
through varying degrees of discretisation. Green crosses correspond to positions that require excitations to be applied, and blue circles to those that require
responses to be measured. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
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M€x1 þ C _x1 � _x2ð Þ þ K x1 � x2ð Þ ¼ F1 ð28Þ
Dx2 þ C _x2 � _x1ð Þ þ K x2 � x1ð Þ ¼ 0: ð29Þ
The response displacements due to the applied load F1 can be obtained by inverting Eqs. 28–29,
x1
x2

� �
¼ 1

det½ �
Dþ ixC þ K ixC þ K

ixC þ K �x2M þ ixC þ K

	 

F1

0

� �
ð30Þ
where, det½ � ¼ D�x2M
� �

ixC þ Kð Þ � ixC þ Kð Þ2. Consequently the response x2 due to the applied load F1 is given by,



Fig. 5. Interface Completeness Criteria (ICC) for a continuous interface approximated using six different levels of discretisation (see Fig. 4). From (a) to (f),
the interface is represented by 2, 3, 4, 5, 10 and 20 points, each of which includes translational z and rotational a and b DoFs (i.e. those around the x and y
axis). The combined ICC (in black) is calculated using 15 source side DoFs (including z;a and b at each) and three receiver side DoFs (including z;a and b).
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x2 ¼ ixC þ K
det½ � F1: ð31Þ
By setting x2 ¼ 0 in Eq. (30) and rearranging the bottom row the blocked force of the mass-spring element is found as,
F2 ¼ � ixC þ Kð Þ
�x2M þ ixC þ K

F1: ð32Þ
In an experimental setting this blocked force would be obtained using the in situ characterisation procedure.
According to the blocked force theory outlined above, the response obtained (downstream of the interface) when the neg-

ative blocked force is applied to the interface, in absence of the original load F1, is identical to that of the original loading.
Substitution of Eq. (32) into Eq. (30) (setting F1 ¼ 0) yields,
x1
x2

� �
¼ 1

det½ �
Dþ ixC þ K ixC þ K

ixC þ K �x2M þ ixC þ K

	 
 0
ixCþK

�x2MþixCþK F1

 !
ð33Þ
from which,



Fig. 6. Interface Completeness Criteria (ICC) for a continuous interface approximated using 20 points, both with (a) and without (b) rotational coupling. The
ICC is calculated using 15 source side DoFs (including z;a and b at each) and three receiver side DoFs (including z;a and b). Only the combined ICC is shown
for clarity.

Fig. 7. Illustrative example of inconsistency.

Fig. 8. Illustration of the mass-spring system used in simplified example of inconsistency.
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x2 ¼ �x2M þ ixC þ K
det½ �

ixC þ K
�x2M þ ixC þ K

F1

� �
: ð34Þ
The first term on the right hand side is the coupled receptance of the mass-spring system. In an experimental setting this
would be measured (or modelled) as part of some secondary FRF test, separate to the blocked force characterisation.

It is clear from the above that a cancellation occurs between the denominator of the blocked force and the numerator of
the coupled receptance. The roots of the denominator describe the blocked modes of the source sub-structure. The above can
therefore be interpreted as a cancellation of blocked modes. An inconsistency between the two, due to them being obtained
from separate tests for example, will lead to an imperfect cancellation and artefacts in the response x2.

5.2. General formulation

We will now consider inconsistency more generally for arbitrary source and receiver structures. Suppose the blocked

force ~�fSc is acquired from some assembly C (assuming, for now, a complete interface description),
~�fSc ¼ Y�1
CccvCc; ð35Þ
where ~ is used to denote an in situ measured blocked force. The measured velocity vCc can be substituted for the product of
the true blocked force and the coupled mobility as so,
~�fSc ¼ Y�1
Ccc YCcc

�fSc
� �

: ð36Þ

Similarly, the true blocked force can be substituted for the internal generating force fSo,
~�fSc ¼ Y�1
Ccc YCccY

�1
SccYScofSo

� �
: ð37Þ
Using the measured blocked force ~�fSc we can predict the operational response in a new assembly X as per Eq. 5,
pXb ¼ HXbc
~�fSc: ð38Þ
The assembled structure’s FRF HXbc can be expressed in terms of the uncoupled source and receiver FRFs (assumed to be
measured separately),
HXbc ¼ HRbc YScc þ YRccð Þ�1YScc: ð39Þ

Now substituting Eqs. (37) and (39) into (38), whilst denoting those quantities that are measured directly with the super-
script m, we obtain an expression for the operational response at b in the assembly X, in terms of the internal excitation
at o,
pXb ¼ Hm
Rbc Ym

Scc þ Ym
Rcc

� ��1Ym
Scc

h i
Ym

Ccc

� ��1 YCccY
�1
SccYScofSo

� �m
: ð40Þ
The notion of consistency is introduced by simply acknowledging the cancellation of YCcc and YScc, which leads to,
pXb ¼ HRbc YScc þ YRccð Þ�1YScofSo: ð41Þ

Eq. (41) represents the true response at b given the initial excitation fSo. It is clear from the above that the necessary can-
cellations will only occur if the mobility matrices Ym

Scc and Ym
Ccc are in exact agreement with those contained within the oper-

ational velocity, vCc ¼ YCccY
�1
SccYScofSo

� �m
.

The initial cancellation of Ym
Ccc can be interpreted as removing the effect of the assembly in which the blocked force was

characterised. As illustrated in Section 4, this requires a complete interface description. Any incompleteness in the charac-
terisation of the blocked force will lead to an improper cancellation of Ym

Ccc and the introduction of an inconsistency. Note
that any change in the passive properties of assembly C between the active (whilst measuring vCc) and passive (whilst mea-
suring YCcc) test phases, e.g. due to an applied torque or stiffening effect when under operation, will also introduce an incon-
sistency, even in the presence of a complete interface description.

The cancellation of the free source mobility Ym
Scc can be interpreted, as in Section 5.1, as a cancellation of blocked interface

modes. Additional inconsistencies may arise here if the free mobility is not representative of the source, for example if a ‘free’
boundary condition is not achieved during its measurement or if the source’s passive properties change when operational.

Whilst the mobility Ym
Ccc is measured as part of the blocked force characterisation, in a component-based TPA the source

mobility Ym
Scc may be measured or modelled. In the context of a Digital Twin, a modelled source mobility may prove more

advantageous, in which case there is even greater potential for an inconsistency between modelled and measured properties.
Note that one can envisage other causes of inconsistency besides those discussed above. For example, due to a change in

the excitation mechanism between coupled and uncoupled states, experimental error in the measurement of FRFs (of both
measurement and operator origins [28]), non-linearity in the passive properties of the source, or a change in environmental
conditions (e.g. temperature/humidity), to name but a few.
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Like incompleteness, inconsistency may be interpreted as a form of model uncertainty [12], manifesting as a systematic
error. We are interested in quantifying the effect of inconsistency so as to indicate the reliability of an operational response
prediction. To this end, a Measurement Consistency Criterion (MCC) is proposed in the following section.
5.3. Measurement Consistency Criterion

In this section we will derive a criterion that quantifies the consistency between the blocked force and free mobility of a
vibration source. The consistency between other active/passive quantities, such as the coupled mobility and operational
velocity (as used in a blocked force characterisation), is subject to further investigation.

The Measurement Consistency Criterion (MCC) is formulated by first establishing an equality that is met only when con-
sistency is achieved. From Eq. (40) an appropriate equality is given by,4
4 Pre
through
equality

5 Not
under o
Ym
Scc Ym

Ccc

� ��1 YCccY
�1
SccYScofSo

� �m
¼? YScofSoð Þm: ð42Þ
Note that the RHS of Eq. (42) is the directly measured free velocity, vm
Sc, and that the LHS is a predicted free velocity using the

inversely determined blocked force (see Eq. (3)), vp
Sc. This equality can then be rewritten as,
vp
Sc ¼? vm

Sc: ð43Þ
Eq. (43) states that the blocked force and free mobility are consistent only if they are able to correctly predict the true free
velocity of the source. A measure of consistency can thus be obtained by comparing the ‘similarity’ of these two free velocity
vectors.

Using the Cauchy–Schwarz inequality, the Measurement Consistency Criterion (MCC) is defined as,
MCCc ¼
j vp

Sc

� �Hvm
Scj2

vp
Sc

� �Hvp
Sc vm

Sc

� �Hvm
Sc

ð44Þ
where vm
Sc is the directly measured free velocity, and vp

Sc ¼ YScc
~�fSc is the free velocity predicted using the acquired blocked

force.
Note that Eq. (44) requires a direct measurement of the free velocity. This is often not possible, for example if the source

has to be loaded in some way to operate. In this case an alternative MCC can be defined using artificial excitations in place of
an operational activity.

To formulate a passiveMCC, i.e. using artificial excitations, we note that the free velocity due to an artificial unit excitation
is simply the transfer mobility from the (single) excitation position a to the interface DoFs c;vSc ! YSca. A passive MCC can
therefore be formulated in terms of mobilities alone.

As with the ICC, these artificial excitations should be representative of the source’s operational state, that is, they should
excite the same interface modes. This may be achieved by applying multiple excitations to the source in different directions.5

By doing so the vectorised mobility Ym
Sca ¼ YT

Sca1
;YT

Sca2
; � � � ;YT

Scan

h iT
may be formed. These excitations are repeated whilst the

source is installed and used to determine a (normalised) blocked force (this is done by replacing the operational velocity vCc

with the mobility YCca in the blocked force calculation). Using the normalised blocked force we are able to predict a set of (nor-

malised) free velocities. These correspond to the mobilities Yp
Sca ¼ YpT

Sca1
;YpT

Sca2
; � � � ;YpT

Scan

h iT
, where YP

Scai
¼ YSccY

�1
CccYCcai . For an arti-

ficial excitation, the passive MCC is then given by,
MCCca ¼
Yp

Sca

� �HYm
Sca

��� ���2
Yp

Sca

� �HYp
Sca Ym

Sca

� �HYm
Sca

: ð45Þ
Like the ICC, the MCC is a scalar value bound between 0 and 1. Consistency is indicated by an MCC of 1. A value less than one
indicates some form of inconsistency. It is important to note that the MCC, although able to indicate the presence of an
inconsistency, is unable to indicate its precise origin (e.g. whether it’s due to a change in the passive properties whilst under
operation or simply an experimental error). If, however, an ICC is available from the blocked force characterisation, this may
be used to indicate whether or not the inconsistency is due to an incompleteness.
-multiplying both sides of Eq. (42) by Ym
Scc would yield an alternative equality. In this case, the left-hand side would represent the blocked force acquired

the in situ procedure, and the right-hand side the blocked force determined using the free source mobility and the free velocity. As in Eq. (40), an
between the two would indicate a consistency between the blocked force and free source mobility.

e that by using artificial excitations it is not possible to identify inconsistencies that arise due to a change in the passive properties of the source whilst
peration.
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5.4. Numerical example – Coupled plate model

In this numerical example the Measurement Consistency Criterion (MCC) is used to assess the consistency between the
blocked force and free mobility of a source sub-structure. Shown in Fig. 9 is an illustration of the model considered. Two FE
plates (modelled using HTK thick plate elements [29]) are rigidly coupled (in z;a and b coordinate-DoFs) at 4 points (c). An
additional remote DoF is included on both source (a) and receiver (b) sub-structures. Plate geometry and material properties
are given in Table 2.

With the aim of identifying inconsistencies between the blocked force and free mobility, two cases will be considered
here. In the first, an inconsistency is introduced through the blocked force, which is determined using an incomplete inter-
face description. This sort of inconsistency would be encountered in practice if, for example, some important DoFs were not
included in the interface description. In the second, an inconsistency is introduced through the free source mobility by per-
turbing the 1st, 2nd and 4th natural frequencies of the uncoupled source plate. This sort of inconsistency would be encoun-
tered in practice if, for example, the passive properties of the source changed when installed, or if the source mobility were
modelled numerically and differed from its true value.
5.4.1. Case1 – Blocked force inconsistency
Often in an experimental setting it is not possible to measure the rotational (or in-plane) DoFs necessary for a complete

interface description. This incompleteness introduces an inconsistency between the blocked force and the free source mobil-
ity. In this first example the rotational b DoF at a single coupling interface has been neglected when determining the blocked
force. Shown in Fig. 10a are the translational z blocked forces at an interface point for the complete (true) and incomplete
(predicted) interface descriptions. It is clear that the neglect of a rotational b DoF introduces an error in the blocked force, as
discussed in Section 4, the severity of which appears to increase with frequency.

The incomplete blocked force is subsequently used to predict the free source velocity in the retained DoFs, an example of
which is shown in Fig. 10b. The effect of the incomplete interface description is evident here, particularly in the region of
600–1000 Hz, where large deviations are observed against the true free velocity.

Having predicted the free velocity using the incomplete blocked force and the (true) free source mobility, the MCC can be
calculated and used to indicate regions of inconsistency. Shown in Fig. 10c are the MCCs calculated for each excitation DoF,
z;a and b, denoted by triangular, circular and rectangular markers, respectively. Also shown is the combined MCC, obtained
by vectorising the free velocities due to each excitation. The MCC clearly indicates large regions of inconsistency, particularly
above 600 Hz. This is in agreement with the discrepancies observed when the incomplete blocked force is used to predict a
remote response in the receiver (at DoF b), as illustrated in Fig. 10d. The results presented in Fig. 10 suggest that the MCC is
capable of identifying the frequency range over which unreliable predictions are likely to be obtained. In practice, this may
allow for artefacts to be identified and distinguished from physical features in a response prediction, or to indicate over
which frequency range a response prediction should be considered with care.
5.4.2. Case2 - Free mobility inconsistency
In this second example we introduce an inconsistency through the free source mobility by perturbing the natural fre-

quency and damping of the uncoupled source’s 1st, 2nd and 4th bending modes. This sort of discrepancy may occur if,
for example, the passive properties of the source changed when installed, or if the source mobility were modelled
numerically.

Shown in Fig. 11a are the point mobilities at an interface DoF for the true and perturbed source.6 Using the perturbed
source mobility and the true blocked force, a free velocity prediction is obtained, an example of which is shown in Fig. 11b. Also
shown in Fig. 11b are the true and perturbed free velocities obtained directly. Using the predicted and peturbed free source
velocity we can calculate the MCC for each excitation DoF; z;a and b, the results of which are shown in Fig. 11c. Also shown
is the combined MCC, obtained by vectorising the free velocities due to each excitation. The perturbed free velocity is used
to calculate the MCC as in practice the free velocity would be obtained from the same experiment as the free mobility, and
therefore subject to the same inconsistency

Note that the MCC does not indicate any inconsistency in the region 200–300 Hz and 600 Hz, where the perturbations are
greatest. This is expected as the perturbed source is used to obtain both the direct and predicted free velocity (its prediction
involves the free mobility, which is perturbed by the same amount as the free velocity). The effect of the perturbation effec-
tively cancels (the perturbed and predicted free velocities in Fig. 11b are in good agreement about the resonance). With ref-
erence to Eq. 42,
6 Not
Ym
Scc Ym

Dcc

� ��1 YDccY
�1
SccYScofSo

� �m
¼ YScofSoð Þm ð46Þ
Ym
Scc and vSc ¼ YScofSoð Þm are both affected by the same perturbation, and therefore consistent with one another. The source

mobilities within the coupled velocity term vCc ¼ YDccY
�1
SccYScofSo

� �m
however, are not. This is the inconsistency indicated by
e that a third bending mode occurs at approx. 575 Hz, but does not contribute to the displayed FRF, and is therefore not visible.



Table 2
Geometry of the FE source and receiver plates. The material properties of each plate are; Young’s modulus E ¼ 200� 109 [N/m2], density q ¼ 8000 [kg/m3],
Poisson’s ratio l ¼ 0:3, with loss factors gS ¼ 0:005 and gR ¼ 0:1.

Plate Dimensions (x� y� z) [m]

Source 0:3� 0:6� 0:015
Receiver 1:3� 1:6� 0:01

Fig. 9. Diagrammatic representation of the Finite Element (FE) numerical study. Two plates are coupled at 4 points (magenta stars) in the translational z
and x=y rotational DoFs, a and b. Remote source (red cross) and receiver (blue cross) DoFs are also included. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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the MCC in Fig. 11c. From the assembly response prediction in Fig. 11d it is clear that MCC correctly identifies the artefacts
arising due to inconsistencies between the blocked force and free mobility.

Comparing Figs. 10a and 11d it is further observed that the artefacts introduced in the operational response prediction, as
indicated by the MCC, coincide with the blocked modes of the source sub-structure, i.e. the resonances in Fig. 10a. This is in
agreement with the analytical example of inconsistency presented in Section 5.1.

As a final note regarding the numerical study presented above, the two inconsistencies can be seen to yield artefacts of a
very different nature. The neglect of rotational DoFs, as in Section 5.4.1, leads to an erroneous prediction over a wide fre-
quency range, whilst the inconsistency due to a perturbed natural frequency, as in Section 5.4.2, leads to localised artefacts.
This appears to be in agreement with experimental observations [9].
6. Experimental case study

In this section the notion of completeness and consistency, as introduced above, along with their respective criteria, will
be demonstrated as part of an experimental case study. The case study will be composed of two parts. In part 1 we will con-
sider the characterisation of a blocked force and the completeness of the interface description used. In part 2 we will consider
the consistency between the acquired blocked force and an experimentally obtained free source mobility.

The test structure is shown in Fig. 12; both rigid and resiliently coupled assemblies are considered. The source was a 3
footed aluminium plate with a servo-motor bolted to its centre (see Fig. 12d). The receiver structure was a steel beam frame-
work. All resilient elements are considered part of the receiver. The source feet (i.e. the source-receiver interface) have been
designed to facilitate characterisation in all 6 DoFs (see Fig. 12c). Each source foot was instrumented with 7 uni-axial



Fig. 10. Numerical results of the coupled FE plate model based on inconsistent blocked forces due to an incomplete interface description.

Fig. 11. Numerical results of the coupled FE plate model based on an inconsistent free source mobility.
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Fig. 12. Diagrammatic representations of experimental case study.
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accelerometers as illustrated in Fig. 12c. Rotational DoFs were accounted for implicitly using an equivalent multi-point con-
nection (EMPC) [30]. This approach was chosen over an explicit calculation of rotational components, for example using a
finite difference approximation [31] or the virtual point transformation [32], due to its straight forward implementation
and routine employment in practice.

Note that in what follows accelerance FRFs (A) and accelerations (a) have been used in place of mobility FRFs (Y) and
velocities (v); all subscripts retain their previous meanings.
6.1. Completeness

In this section we will characterise the blocked force of the vibration source whilst under an operational condition (run-
ning at a constant 5000 rpm). This blocked force will then be used to predict the operational response at some remote recei-
ver DoF (much like a standard in situ TPA procedure). This process will be repeated for 3 different interface descriptions.

To compute the ICC the following FRF matrices are measured, ACcc;ACbc;ACca and ACba. Of these, only the interface FRF
matrix ACcc is required by a standard blocked force characterisation. The remaining transfer FRFs constitute the additional
measurements required to compute the ICC. The FRF ACbc can be measured simultaneously to ACcc with minimal effort other
than including additional response sensors at some remote receiver DoFs b. The FRFs ACca and ACba require excitations to be
made at some source side DoFs a, whilst simultaneously measuring the response at the interface and remote receiver DoFs,
respectively. Note that these excitations need not coincide with any internal source DoFs, and can be chosen for convenience
(so long as they sufficiently excite the interface modes). Provided the source is reasonably accessible, this would normally be
practical and requires little additional effort. The ICC is then calculated as per Eq. (25).

In practice it is recommended that a) the ICC be computed prior to any operational measurements in case a more com-
plete interface description is required, and b) that the source side excitations be applied in multiple directions to ensure that
all interface modes are sufficiently excited. In this case study the (combined) ICC is computed for both rigid and resiliently
coupled source-receiver assemblies (see Fig. 12). In each case 8 source side excitations (a, 4 in z, 2 in x and 2 in y) and 5
remote receiver DoFs (b, all in z) were considered. The measured FRFs were of the following dimensions:
ACcc 2 C21�21;ACbc 2 C5�21;ACca 2 C21�8 and ACba 2 C5�8.

Shown in Fig. 13 are the translational x; y and z point FRFs at each foot of the source for both rigid (left) and resiliently
(right) coupled assemblies. The highly resonant nature of the assembly considered clearly presents a more challenging
experimental task than one that is well damped. For this reason the study considered may be deemed representative of
the more challenging scenarios encountered in practice.



Fig. 13. Point accelerance of the rigid (left) and resiliently (right) coupled source at each foot (top to bottom) in the translational z; x and y DoFs.
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6.1.1. Rigid coupling
We will consider first the rigidly coupled assembly (see Fig. 12a). Note that hereafter only the combined ICCs will be pre-

sented, and that all results will be presented on a log y-scale for clarity. Shown in Fig. 14a in black is the ICC obtained when
all interface DoFs (of which there were 21) are included. Assuming each foot behaves as a rigid contact (i.e. is described by 6
DoFs, 3 translational and 3 rotational), the interface description has redundancy; 21 interface DoFs have been included (7 per
foot), yet only 18 are physically present. As such, it is proposed that the 3 smallest singular values may be discarded from the
interface FRF matrix ACcc when its inversion is performed. This regularisation is applied to both the ICC calculation and any
related blocked force predictions. The regularised ICC is shown in Fig. 14a in blue. A clear improvement is obtained over the
un-regularised ICC. A similar result was observed when inspecting the corresponding blocked forces directly. This result
demonstrates that the ICC is able to indicate an incompleteness not only due to physically absent DoFs, but an apparent
incompleteness due to numerical and/or experimental error.

Shown in Fig. 14b and c are comparisons of the regularised ICC (including all DoFs) against the ICCs obtained using: trans-
lational z DoFs with x=y rotations (in orange) and translational z DoFs only (in purple). To obtain the z only DoFs the 4 trans-
lational z DoFs at each foot were averaged to obtain a pure vertical translation (ACcc 2 C3�3). The rotational x=y DoFs were
implicitly included by retaining all 4 translational z DoFs at each foot (ACcc 2 C12�12), whilst discarding 3 singular values
to remove redundancy. The ICC results of Fig. 14c indicate that the neglect of any DoFs worsens the interface description.
For the rigidly coupled source considered here it appears that the rotational x=y DoFs are essential, and that the in-plane
and rotational z (i.e. rotation around the z axis) DoFs can provide a noticeable improvement, particularly at high frequencies.

It is interesting to note that even when all DoFs are considered, there exists a notable incompleteness at approx. 300 Hz.
Looking forward to Fig. 19a, it can be seen that this coincides with an artefact in the blocked force. Artefacts of this nature are
common when dealing with highly resonant structures, such as the rigid assembly considered here, and can occur due to
slight inconsistencies between measured FRFs [33].

Based on the three interface descriptions whose ICCs are shown in Fig. 14, an operational response prediction is made
using the acquired blocked force. Each prediction is compared against a directly measured response in Fig. 15. The left hand
plots in Fig. 15 are shown in narrow band. The right hand plots are presented in 3rd octave bands for clarity. From top to
bottom, each plot correspond to a prediction made with; all DoFs, z translations with x=y rotations, and z translations only.
These results clearly mirror those of Fig. 14. The best response prediction is obtained when using all DoFs (i.e. a complete
interface). A reasonable prediction is obtained when the contributions of in-plane and rotational z DoFs are neglected, par-
ticularly below approx 800 Hz. The prediction obtained when using only the translational z DoFs is poor, repeatedly over and
under estimating the measured response, by over 5 dB in some regions. These results suggest that the ICC may be interpreted
as a measure of quality in a blocked force characterisation, and used to indicate regions over which a poor prediction may be
expected.



Fig. 14. ICC results obtained from the rigidly coupled assembly.
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Note that for all predictions an over estimation is made at low frequencies below approx. 80 Hz. This is likely due to the
poor coherence obtained, as a result of background noise, in some of the cross-FRF measurements. This effect is also seen in
the ICC results of Fig. 14.
6.1.2. Resilient coupling
Based on the same interface descriptions as used above, we will now consider the resiliently coupled assembly. Shown in

Fig. 16a is a comparison of the ICCs obtained for each of these interface descriptions. Fig. 16b compares the ICCs obtained
from the rigid (blue) and resilient (orange) assemblies for the ‘complete’ interface description (i.e. all DoFs, with regularisa-
tion). Similarly, Fig. 16c compares the rigid (blue) and resilient (purple) ICCs obtained using the translational z DoFs only.

From Fig. 16a it that appears that at low frequencies, at least below 1 kHz, a reasonable interface description is obtained
(indicated by an ICC � 1) using only the translational z DoFs. This is in stark contrast to the rigidly coupled case, as illustrated
in Fig. 16c, where rotational DoFs were found to be essential. This result supports the argument that at low frequencies rota-
tional DoFs can often be neglected for resiliently coupled structures. This is, however, not a general result, and there will
undoubtedly exist resilient scenarios where rotational DoFs are essential. The role of rotational DoFs is more evident at high
frequencies where, as shown in Fig. 16a, their inclusion noticeably improves the interface description (indicated by the ICC
tending towards 1). It is interesting to note that by including the in-plane and rotational z DoFs little difference is made to
the interface completeness.



Fig. 15. Operational response prediction in the rigidly coupled assembly based on different interface descriptions. Black - directly measured response, blue
– prediction using all DoFs, orange – prediction using vertical translations z and x=y rotations, purple – prediction using only vertical translations z. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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As in the rigid case we observe the effect of measurement noise at low frequencies as causing an apparent incomplete-
ness. For the resilient case a similar issue also arises at high frequencies, where signal attenuation through the resilient ele-
ments introduces noise, and therefore an apparent incompleteness.

Shown in Fig. 17 are the operational response predictions made on the resiliently coupled assembly for the 3 interface
descriptions considered above. Again, results are shown in narrow band (on the left) and 3rd octaves (on the right). From
top to bottom, each plot corresponds to a prediction made with; all DoFs, z translations with x=y rotations, and z translations
only. As expected, the accuracy of the predicted responses follow the trend of the ICCs presented in Fig. 16a. For the z only
DoFs the response prediction is in good agreement up to approx. 1 kHz, beyond which we tend to under predict the mea-
sured response. This result is foreshadowed by the translational z only ICC in Fig. 16a. As indicated by the ICC, including
the rotational x=y DoFs greatly improves the predicted response at high frequencies. Note that by further including the
in-plane and rotational z DoFs worse agreement is obtained at high frequencies. This is likely because they do not contribute
to the measured response, and so their inclusion introduces only noise and further experimental error. This is in contrast to
the rigid case (see Fig. 15), where in-plane and rotational z DoFs were necessary to improve agreement at high frequencies.
As in the rigid case we observe an over prediction at low frequencies. Again, this is likely due to noise encountered during the
measurement of the FRFs.

The results presented through Figs. 14–17 demonstrate an application of the ICC when obtaining the blocked force for use
in an operational response prediction on the same assembly (i.e. an in situ TPA application). The ICC may similarly be used
when transferring the blocked force from one assembly (e.g. a test bench) to another (e.g. a Digital Twin), indicating regions
where poor accuracy may be expected. An experimental example of this application, however, is considered beyond the
scope of the present paper.
6.2. Consistency

In this section we will illustrate the notion of inconsistency using the experimental case study described above. In Sec-
tion 5.3 a Measurement Consistency Criterion (MCC) was proposed to indicate at which frequencies inconsistencies were
present. The MCC is a measure of similarity between a directly measured free velocity (due to a set of artificial excitations)
and the free velocity calculated indirectly using an in situ blocked force (due to the same artificial excitation) and the free
source mobility.

The issue of incompleteness is well defined, its cause being the neglect of interface DoFs. Inconsistency, however, can
arise for a multitude of reasons (including incompleteness), many of which are difficult to replicate in a controlled manner
on a simple laboratory structure. In what follows we will use the MCC to assess the consistency between the free source
mobility and each blocked force obtained in Section 6.1 (i.e. for different levels of completeness).



Fig. 16. ICC results obtained from the resiliently coupled assembly.
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Shown in Fig. 18 are the translational z point FRFs at each foot of the free source (remaining DoFs are omitted for clarity).
Shown in Fig. 19a are the blocked forces obtained from the rigidly coupled assembly at one foot in the translational z direc-
tion, calculated using: all DoFs, translational z DoFs with x=y rotations, and translational z DoFs only. Shown in Fig. 19b are
the equivalent set of blocked forces obtained from the resiliently coupled assembly. From Fig. 19a and b it is clear that the
blocked forcesobtained when using only the translational z DoFs are corrupted by artefacts. These artefacts are remnants of
the coupled assembly that, due to the incomplete interface description, were not sufficiently ‘removed’ when characterising
the blocked force. The blocked forces obtained when using all DoFs, and the translational z DoFs with x=y rotations, appear in
good agreement with one another across the two assemblies. This demonstrates the independent nature of the blocked force,
when obtained using a sufficiently complete interface description.

Shown in Fig. 20a and b are the free response predictions (due to an artificial excitation), at one foot of the source in the
translational z DoF, based on the blocked forces shown in Fig. 19a and b, respectively. Also shown, in black, is the directly
measured free response. According to Section 5, the discrepancies observed between directly measured and predicted free
responses are due to inconsistencies between the free accelerance and the acquired blocked force.

In the rigid case we obtain a reasonable free response prediction when all DoFs are included. When only the translational
z DoFs are considered, a poor prediction is obtained with numerous artefacts present. These artefacts can be seen to coincide
with many of those in the corresponding blocked force (i.e. the purple plot in Fig. 19a). This result may be interpreted as so.
The blocked force acquired when using an incomplete interface description will be the true blocked force plus a contribution
from the unknown DoFs,



Fig. 17. Operational response prediction in the resiliently coupled assembly based on different interface descriptions. Black – directly measured response,
blue – prediction using all DoFs, orange – prediction using vertical translations z and x=y rotations, purple – prediction using only vertical translations z. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Free source accelerance at each foot in the translational z DoF.
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~�fCci ¼ �fSci þ A�1
Ccici

ACcicj
�fScj ð47Þ
where Eq. (7) has been rewritten in terms of accelerance. To predict the free source response we use the free source accel-
erance as so,
aSci ¼ AScici
~�fCci : ð48Þ
Substituting the acquired blocked force leads to,
~aSci ¼ AScici
�fSci þ ASciciA

�1
Ccici

ACcicj
�fScj : ð49Þ
For the true free response to be obtained, the blocked force �fScj must contribute through the FRF AScicj . This would require

ASciciA
�1
Ccici

ACcicj ¼
? AScicj . Clearly, for the rigidly coupled source this is not the case, and so the neglected blocked force �fScj man-

ifest itself as an artefact in the free response. By including the rotational x=y DoFs, the effective contribution of �fScj is reduced,
and so a more accurate free response prediction is obtained, as in Fig. 20a.

For the resilient case a reasonable free response prediction is obtained irrespective of the interface description. This result
may be interpreted as so. The free and resiliently coupled source accelerances are approximately equal to one another in the



Fig. 19. Translational z blocked force obtained from rigid (top) and resiliently (bottom) coupled assemblies using: all DoFs (blue), translational z with x=y
rotations (orange), and translational z DoFs only (purple). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 20. Translational z free acceleration prediction based on the blocked forces obtained from rigid (a) and resilient (b) assemblies using: all DoFs (blue),
translational zwith x=y rotations (orange), and translational z DoFs only (purple). The directly measured free response is shown in black. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 21. MCC results obtained from the rigid and resiliently coupled assembly.
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mid to high frequency range. As such, we have that ASciciA
�1
Ccici

� I, and that ACcicj � AScicj . Consequently, even though the

unknown DoFs were neglected in the blocked force characterisation, their contribution �fScj is propagated correctly onto
the free response prediction. This is due to the dynamic similarity of the characterisation assembly (resilient) and prediction
assembly (free).

The results of Fig. 20 are somewhat intuitive. They demonstrate that it is easier to predict the free response of a source
when using a blocked force obtained from a resilient assembly. On a rigid assembly the source is physically constrained in all
DoFs, and so to ‘remove’ the effect of these constraints all DoFs must be included in its characterisation. On a resilient assem-
bly the source is far less constrained and so fewer DoFs are required to predict an accurate free response.

Like the free response prediction considered above, to successfully predict the operational response in an assembled struc-
ture we require a cancellation of the same FRF terms between the blocked force and the coupled assembly FRF (see Eq. (41)).
As such, we might expect artefacts similar to those observed in Fig. 20a to appear in an operational response prediction.
Whilst Fig. 20 illustrates the issue of inconsistency, it does so using a single interface DoF. The MCC provides a measure
of consistency across the entire set of interface DoFs. Shown in Fig. 21 are the MCCs corresponding to each of the free
response predictions shown in Fig. 20.

The MCCs clearly mirror the conclusions made above. For the rigidly coupled case, poor consistency is obtained unless all
DoFs are included. That is to say, to predict the free response from a rigidly coupled blocked force, all DoFs must be
accounted for. This poor consistency indicates a more likely presence of artefacts in a response prediction. For the resilient
case, we see again that a good level of consistency is achieved irrespective of how many DoFs are included.

7. Conclusion

The primary aim of this paper has been to introduce the notions of completeness and consistency with regards to the
characterisation and application of an in situ blocked force. It is noted, however, that these concepts apply more generally
to both sub-structure coupling and de-coupling also.

The in situ blocked force method has become the most promising approach for the independent characterisation of vibra-
tory sources, yet few works have considered the potential sources of systematic errors. In the present paper we have iden-
tified the notions of completeness and consistency as two likely sources.

Completeness is related to the interface description adopted when characterising the blocked force (i.e the number/ori-
entation of DoFs at the interface). It has been shown both numerically and experimentally that an incomplete interface
description can lead to the introduction of systematic errors in a blocked force characterisation. To this end, an Interface
Completeness Criterion (ICC) has been proposed to quantify the degree of completeness that an interface possesses. The
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ICC is calculated using coupled assembly FRFs and is therefore available from in situ measurements. It may be interpreted as
a level of confidence in the acquired blocked force, and could thus serve as an appropriate measure of model uncertainty
when blocked forces are transferred between OEMs and manufactures. The ICC may find further use in the assessment of
interface descriptions for sub-structure decoupling procedures.

The notion of consistency relates to the underlying dynamics shared by active and passive quantities in an operational
assembly. Sources of inconsistency are less well defined, and can arise for a multitude of reasons, such as: incompleteness,
a change in the passive properties of a vibration source during the active and passive phases of a blocked force characteri-
sation, a change in the source properties between installed and free states, errors when modelling numerically the passive
properties of a source, among others. It has been shown that inconsistencies between the blocked force and an assembly’s
FRF matrix can introduce artefacts in a response prediction. A criterion has been proposed to identify inconsistencies
between an acquired blocked force and the free FRF marrix of a vibration source. The Measurement Consistency Criterion
(MCC) has been demonstrated using numerical and experimental examples and shown to correctly indicate the frequencies
over which inconsistencies are present. The issue of consistency is of particular relevance if, for example, an experimental
blocked force is to be combined with a numerical source model. In this case consistency is unlikely to be achieved without
some additional modelling effort.

The general application of in situ blocked forces as a means of modelling the complex mechanisms that lead to vibratory
excitation has broad applications across a variety of industries. Nevertheless, an understanding of the uncertainties involved
is essential, and worthy of future research effort.
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