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The rapid increase in the number of malicious programs has made malware forensics a daunting task and caused users system
to become on danger. Timely identification of malware characteristics including its origin and the malware sample family
would significantly limit the potential damage of the malware. This is a more profound risk in Cyber-Physical Systems (CPS)
where a malware attack may cause significant physical damage to the infrastructure. Due to limited on-device available
memory and processing power in CPS devices, most of the efforts for protecting CPS networks are focused on the edge layer,
where the majority of security mechanisms are deployed.

Since the majority of advanced and sophisticated malware programs are combining features from different families, these
malicious programs are not similar enough to any existing malware family and easily evade binary classifiers detection.
Therefore, in this paper, we propose a novel multi-label fuzzy clustering system for malware attack attribution. Our system
is deployed on the edge layer to provide an insight into applicable malware threats to the CPS network. We leverage static
analysis by utilizing Opcode frequencies as the feature space to classify malware families.

We observed that a multi-label classifier does not classify a part of samples. We named this problem as instance coverage
problem. To overcome this problem, we developed an ensemble-based multi-label fuzzy classification method to suggest the
relevance of a malware instance to the stricken families. This classifier identified samples of VirusShare, RansomwareTracker,
and BIG2015 with an accuracy of, 94.66%, 94.26%, and 97.56%, respectively.
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1 INTRODUCTION
Malware is becoming a serious threat to our smart critical infrastructure and Cyber-Physical Systems (CPS) [23].
In 2017, the number of new malware increased by 22.9% over 2016 to 8,400,058 samples [8]. Also, the number of
new malware files, processed by Kaspersky lab, increased 11.5% over 2016 to 360,000 samples [15]. This denotes
that the number of malicious files is increasing. This especially is a problem in the Internet of Things (IoT) and
CPS networks where a compromise could actually endanger the safety of system user‚s. Due to limited processing
power and memory of CPS devices, most cyber defense and security mechanisms should be implemented in the
edge layer of these networks. [30]. Therefore, edge layer devices like Content Delivery Network (CDN) routers
or servers will use multi-label classification to detect and prevent the malicious programs from being spirited.
The majority of malicious programs are sharing a significant amount of codes and offer similar functional-

ities [10, 12]. These shared codes and services are key to the investigation of malware and attack attribution
activities [5]. Early identification of a malware family, could save a lot of time and resources in malware analy-
sis [22]. Many reverse engineers are using binary classifiers to identify if a malware belongs to a family [21]. They
apply static or dynamic analysis to extract features which depict the characteristics of a family of malware. For
instance, Opcode sequences [6, 9, 11, 14, 37] are among the most popular features for malware analysis. However,
a binary classifier only determines the family of malware. In contrast, multi-label classifiers help us to understand
the differences between various malware families. Multi-label classifiers attempt to categorize a sample into
families in which the samples are similar.
A. Shalaginov et al. [27] proposed a deep Neuro-Fuzzy multi-label classifier which leveraged a variety of

static and dynamic features to categorize malicious programs. They collected a list of malware labeled based
on Virustotal [33] to evaluate their proposed deep Neuro-Fuzzy (NF) multi-label classifier which categorized
samples with an accuracy of 69.44% with simple NF [28] and deep neural network classifiers classified these
samples with an accuracy of 20.105% and 62.093%, respectively. In their work, however, C4.5 binary classifier
identified samples with an accuracy of 82.85%. From their results, one can see the low performance of multi-label
classifiers compared to the performance of binary classifiers.
While the accuracy of multi-label fuzzy classification techniques is not high, they are best suited to detect

the level of similarities between different malware opcodes. Therefore, we will use multi-label fuzzy relevance
clustering techniques to identify similarities between a given sample and existing families of malicious programs.
We leveraged the Opcode frequency of malicious families as a feature set for our Multi-label Fuzzy Relevance
Classification technique [17] (MFRC).

To measure the probability of categorizing a sample by a multi-label classifier, we present a new measurement
called instance coverage. Instance coverage is P(z) = q/n, where q is the number of samples which are not
classified by the multi-label classifier as the member of any family and n is the total number of samples.
We proposed a new relevance fuzzy multi-label classification algorithm called Multi-label Fuzzy Selective

Relevance classifier (MFSRC) which also addresses the instance coverage problem in multi-label classification.
As part of our evaluation process, the classification performances of both algorithms, MFRC and MFSRC, were
evaluated by accuracy, precision, recall , F1, breakeven point (BEP ) [26], hamming loss (Hloss) [29] and MCC
metrics which are calculated as shown in Table 1. In Table 1, true positive, TPi , is the number of samples of ci
family that they are correctly classified as a member of ci family. False positive, FPi , is the number of samples of
the ci family that they are incorrectly classified as a member of other families. The false negative, FNi , is the
number of samples of non-ci families which are incorrectly classified as a member of the ci family. Also, true
negative (TNi ) is the number of samples of non-ci families that they are correctly classified as a member of the
non-ci family.
To overcome the instance coverage problem, we built a fuzzy multi-label classifier. For evaluating our work

we created several malware datasets from VirusShare [32], RansomwareTracker [1] and utilized BIG2015 [20]
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Table 1. Performance metrics

Metric Formula
Accuracy T P+T N

T P+F P+T N+FN

Precision
∑c
i=1 T Pi∑c

i=1(T Pi+F Pi )

Recall
∑c
i=1 T Pi∑c

i=1(T Pi+FNi )

F1 2×Precision×Recall
Precision+Recall

Hloss
∑c
i=1(F Pi+FNi )

c×n
BEP Precision+Recall

2
P(z) q/n
MCC T P×T N−F P×FN√

(T P+F P )(T P+FN )(T N+F P )(T N+FN )

samples. Our proposed system is best suited for deployment on the edge layer of CPS networks. Our results on
BIG2015 indicate an accuracy of 97.56%, precision of 90.68%, and f-measure of 89.21%. Also, our results on with
dataset created from RansomwareTracker reveal an accuracy of 94.26%, a precision of 87.21%, and f-measure
of 83.52%. Moreover, our results with the dataset created by VirusShare demonstrate an accuracy of 94.66%, a
precision of 86.46%, and f-measure of 84.37%.
Contributions. The main contributions of this paper are as follows:
• We leverage a relevance fuzzy multi-label classification algorithm to predict similarities between a given
sample and known families of malicious programs. We use single labeled datasets and classify them using
multi-label and binary classifiers. We utilize Opcode frequency as a feature set to segregate malware
families.

• Existing multi-label fuzzy classifiers suffer from the instance coverage problemwhich leads to many samples
being not classified in any family. To remedy this instance coverage problem, we propose a new multi-class
fuzzy relevance classification algorithm in Section 3 and provide ensembles based on two relevance fuzzy
multi-label classification algorithm.

Organization. The rest of this paper is organized as follows. Malware feature extraction and data preparation
are presented in Section 2. Our proposed fuzzy clustering is presented in Section 3. The performance of the
proposed method is presented in Section 4. Section 5 explains the comparison of our method with related works.
Further, the conclusion is presented in Section 6.

2 DATA PREPARATION AND EXPERIMENT SETUP
Our multi-classifier identifier model has two engines, identifier, and analyzer. The identifier engine runs in an
edge layer device and analyzer engine is executed within a centralized server. While a new malicious program is
detected as any analyzed malicious family, the edge layer device blocks its network traffics and sends the program
to the analyzer engine for future learning tasks. Thus, the analyzer engine provides updates on the identifier
engine by analyzing collected datasets. The identifier engines on the edge layer are updated on a specific interval
or upon detection of a major attack.
We used three datasets in this research. Our datasets include malware samples which have targeted IoT and

CPS networks in the past. The samples which are not packed and are able to be disassembled is selected to
be analyzed. The first dataset includes 555 Ransomware samples collected from RansomwareTracker [1] and
categorized into 6 families as shown in Table 4. The second dataset contains 9601 disassembled malware samples
categorized into 9 families as part of the Microsoft Malware Classification Challenge (BIG2015) [20]. The third

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:4 • M.H. Alaeiyan et al.

dataset includes 5449 malware samples of six APT families shown in Table 2 collected from VirusShare [32]. For
the sake of brevity, we named these datasets as RT, BIG2015 and VS, respectively. RansomwareTracker categorized
Ransomware based on the similarity of malicious network communication. It listed the MD5 of malware instances.
We collected MD5 of all malware samples until 31-1-2018 and used the MD5s to collect malicious executable
files from Virustotal [33] website. We have also leveraged ExeInfo PE [2] to determine whether a malicious
program is packed or not. Additionally, we utilized IDA pro [7] version 6.5 to extract applications Opcodes. We
also developed an auxiliary tool to extract the frequency of Opcodes from the disassembled programs.

Table 2. VisusShare (VS) dataset family [33].

# Family name Count
1. APT1_293 271
2. Citadel-Zeus_PE-Arc_20130113-20130712 661
3. CryptoRansom_201607153 1640
4. InstallCore_000 1700
5. Locker_20150505 137
6. Mediyes_000 1040

Table 3. Microsoft Malware Classification Challenge (BIG2015) dataset family [20].

# Family name Count
1. Ramnit 1367
2. Lollipop 2182
3. Kelihos_ver3 2628
4. Vundo 387
5. Simda 37
6. Tracur 662
7. Kelihos_ver1 347
8. Gatak.ACY 1076
9. Obfuscator.ACY 915

Table 4. RansomwareTracker (RT) dataset family [1].

# Family name Count
1. Cerber 54
2. CryptoWall 107
3. CTB-Locker 46
4. Locky 140
5. Sage 33
6. TeslaCrypt 175

To resemble processing power that is commonly available on the edge layer, we run all our experiments on
a PC with Intel Core i7-CPU @ 3.3 GHz and 8GB of physical memory running Windows 10 version 1803 (OS
build 17134.165). We used Weka 3.8’s [35] implementation of Random Forest, J48 and Naive Bayes for testing.
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Moreover, we implemented our proposed multi-label fuzzy relevance classifier and the proposed fuzzy relevance
classifier based on the algorithm suggested by [17], in Matlab [19] version R2016(9.1.0.441655).

3 PROPOSED FUZZY CLUSTERING SYSTEM
A task which groups similar objects into one set (cluster) is called clustering. Multi-label fuzzy clustering is a
form of clustering in which each object may belong to more than one cluster. In this study, executable files are
considered as objects. A triplet (E,T ,C) is an input parameter, where

E = {(e(1), y(1)), (e(2), y(2)), . . . , (e(n), y(n))}, (1)

is a set of n training patterns, T = {t1, t2, . . . , tm} is a set of m features, and C = {c1, c2, . . . , cp } is a set of p
families. A training pattern e(i), where 1 ≤ i ≤ n, contains class label y(i) = {y1,y2, . . . ,yp }. yk , where 1 ≤ k ≤ p,
is equal to 1 if the executable files belongs to a given family ck , otherwise it is equal to 0. In a binary classification,
only one component of y(i) is equal to 1. In a multi-label classification, however, several component of y(i) may
set to 1.
Symbols, which are used in this paper, are listed in Table 5.

Table 5. Symbols which are used in this paper.

Symbol Discription
n The number of samples.
p The number of categories.
C A set of categories, C = {c1, c2, . . . , cp }.
m The number of features.
T A set of features, T = {t1, t2, . . . , tm}.
ω(j)
i The ith attribute value of jth sample.

tj jth attribute, tj = ⟨ω(j)
1 ,ω

(j)
2 , · · · ,ω

(j)
m ⟩.

e(i) The ith sample.
y(i)k Membership value of the kth category of the ith sample, y(i)k ∈ {0, 1}.
y(i) A set of category labels of the ith sample, y(i) = {y(i)1 ,y

(i)
2 , . . . ,y

(i)
p }.

E A set of samples and labels, E = {(e(1), y(1)), (e(2), y(2)), . . . , (e(n), y(n))}.
x Fuzzy relevance vector, x = {x1, x2, . . . , xp }.
d The number of similar labeled groups or the number of families.

χ
A set of similar label fuzzy relevance vectors,
χ = {(X (1), y(1)), (X (2), y(2)), . . . , (X (n), y(q))} where q is |χ |.

θ A centroid vector, θ = ⟨x1, x2, . . . , xp⟩.
ζ A set of centroid vectors, ζ = {θ (1), θ (2), . . . , θ (d )}.
A A n × d cluster similarity matrix.
τj Threshold of jth category.
oj Output of jth category.
λ A set of candidate threshold vectors.
Ok , j A vector of output value computed by kth candidate threshold vector.
Yj A set of all actual jth category membership value of n samples.

Our proposed Multi-label Fuzzy Selective Relevance Clustering (MFSRC) system categorizes multi-labeled data
in two phases, training, and testing. Training phase contains four steps, fuzzy transformation, generating centroid
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(a) Block diagram of the training phase.

(b) Block diagram of the testing phase.

Fig. 1. Block diagram of the training and testing phases of our method.

vectors, fuzzy clustering and finding thresholds which are shown in Figure 1a, and testing phase contains three
steps, fuzzy transformation, calculating cluster memberships, and applying thresholds as shown in Figure 1b.
Fuzzy transformation step transforms a high-dimensional fuzzy training data to a low-dimensional fuzzy

relevance vector. Generating centroid vectors step selects one fuzzy relevance vector in each family by looking
for fuzzy relevance vectors which have the minimum Euclidean distance from the median fuzzy relevance vectors.
Next, in the fuzzy clustering, we leverage Cosine similarities between selected vectors and fuzzy relevance vectors
to determine membership of a sample to a fuzzy cluster. Finally, in finding thresholds step, a set of thresholds are
obtained to be used in the testing phase.
In the testing phase, the fuzzy transformation step transforms a high-dimensional fuzzy testing data to a

low-dimensional fuzzy relevance vector. Next, in calculating cluster membership step cosine similarities between
centroid vectors and fuzzy relevance vector is calculated to identify cluster membership vector. Finally, in applying
the thresholds step, assigned families are determined by comparing cluster membership vector with the threshold
vector.

Fuzzy transformation, finding thresholds and applying thresholds steps are similar to the fuzzy relevance
clustering method for multi-label text classification [17]. Thus, generating centroid vectors, fuzzy clustering, and
cluster memberships steps are our contributions to this research.

3.1 Fuzzy Transformation
During fuzzy transformation step we reduced the number of features,m, in T , to p features and transfer feature
space to a fuzzy relevance vector. p is the number of families inC which usually is smaller thanm. We utilized the
fuzzy transformation approach suggested by S. Lee et al. [17] for feature reduction. Three fuzzy transformations
µR1 , µR2 , and µS provide fuzzy relevance vectors of samples.
R1 : T × C → [0, 1] is the first fuzzy relation which reveals the relevance of features to families. µR1 (ti , c j ),

shown in Equation 2, specifies the degree of relevance of features ti ∈ T to category c j ∈ C .

µR1 (ti , c j ) =

∑n
v=1ω

(v)
i y(v)j∑n

v=1ω
(v)
i

∑n
v=1 h0(ω

(ν )
i )y(v)j∑n

v=1 y
(v)
j

, (2)

where 1 ≤ i ≤ m, 1 ≤ j ≤ p and h0(x) is shown in Equation 3.

h0(x) =

{
1, if x > 0
0, if x = 0. (3)
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R2 : T × E → [0, 1] is the second fuzzy relation with notation µR2 (ti , e). It specifies the degree of relevance of
feature ti to file e = ⟨ω1,ω2, . . .ωv ⟩ and is defined in Equation 4 for 1 ≤ i ≤ m.

µR2 (ti , e) =
ωi

max1≤v≤mωv
. (4)

Finally, S : D ×C → [0, 1] is the third fuzzy relation with notation µs (e, c j ). It specifies the degree of relevance
of feature between file e to category c j and is defined in Equation 5 for 1 ≤ j ≤ p.

µS (e, c j ) =

∑m
i=1 ⊤(µR1 (ti , c j ), µR2 (ti , e))∑m
i=1 ⊥(µR1 (ti , c j ), µR2 (ti , e))

. (5)

where ⊤ and ⊥ are shown in Equation 6 and Equation 7, respectively.

⊤(x,y) = x × y. (6)

⊥(x,y) = x + y − x × y. (7)

In conclusion, a fuzzy relevance vector, which is the reduced feature space of a file e , is defined by

x = ⟨µS (e, c1), µS (e, c2), . . . , µS (e, cp )⟩. (8)

3.2 Generating Centroid Vectors
Centroid vectors are obtained to determine the difference between the samples. To obtain the centroid vectors,
suppose d is the number of similar labelled groups that the member of groups are fuzzy relevance vectors with
similar labels (i.e., d is the number of families). In this step, we compute d vectors to be used in fuzzy clustering
step. d vectors are the average attribute of the families. Suppose χl = {(x (1), y(1)), (x (2), y(2)), . . . , (x (q), y(q))},
where 1 ≤ l ≤ d and q is |χl |, is a group of fuzzy relevance vectors with similar labels, y(i) where 1 ≤ i ≤ n.
Equation 9 calculates the l th centroid vector, θ (l ) = ⟨x (l )1 , x

(l )
2 , . . . , x

(l )
p ⟩ to collect a set of centroid vectors ζ =

{θ (1), θ (2), . . . , θ (d )}.

x (l )j =

∑n
i=0 x

(i)
j

q
, (9)

where 1 ≤ j ≤ p and x (i)j is the jth fuzzy relevance value of ith which is member of χl .

3.3 Fuzzy Clustering
We cluster the fuzzy relevance vectors by comparing them with ζ . As shown in Equation 10, we use Cosine
similarity and invert cosine to compare fuzzy relevance vectors with centroid vectors. We use invert cosine to
scale the output of Cosine similarity and increase the accuracy of clustering. We keep the similarity results into a
matrix,A.A is a n×d matrix where each row shows the similarity of a fuzzy relevance vector and centroid vectors.
Then, rows show fuzzy relevance vectors and columns show centroid vectors. Finally, those fuzzy relevance
vectors which have equal row can be categorized in the same cluster. However, we just need A to find suitable
thresholds for the classification.

Ai j = ArcCosine(CosineSimilarity(X (i), θ (j))). (10)

where 1 ≤ i ≤ d and 1 ≤ j ≤ d . Also Equation 11 shows the CosineSimilarity function and Equation 12 shows
the invert cosine function, ArcCosine .

CosineSimilarity(X , θ ) =
X .θ

∥X ∥∥θ ∥
. (11)
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ArcCosine(b) =
π

2
−

∞∑
l=0

( 12 )l−1

(l − 1)!(2l − 1)
b2l−1. (12)

3.4 Finding Thresholds
To determine the family of a sample, an output vector, ⟨o1,o2, . . . ,op⟩, is provided by applying threshold on A.
The values of output vector are member of {0, 1} and they determine whether a sample is belong to a family or
not. As shown in Equation 13, a vector of threshold, ⟨τ1, τ2, . . . , τp⟩, maps A to the oj where 1 ≤ j ≤ p. In this
equation, τj is the threshold of c j where 1 ≤ j ≤ p.

oj =

{
1, if aj > τj
0, otherwise. (13)

The threshold vector, ⟨τ1, τ2, . . . , τp⟩, is calculated by usingA and y as follow. Letψ (1)
j ,ψ

(2)
j , . . . ,ψ

(n)
j be similarity

of all samples with centroid vector which is member of c j . It means,ψ (1)
j ,ψ

(2)
j , . . . ,ψ

(n)
j are jth column of A. Next,

they are sorted in ascending order to provide candidate threshold vectors. These candidate threshold vectors are
computed by Equation 14. Then, Hamming loss [25] determines the performance of each candidate threshold
vectors.

λk , j =


−P, if k = 0
ψ (k )
j +ψ

(k+1)
j

2 , if 0 < k < n
P, if k = n.

(14)

By applying candidate threshold vectors onA,Ok , j is calculated such that o(i)k , j ∈ 0, 1where 1 ≤ i ≤ n, 1 ≤ j ≤ p

and 1 ≤ k ≤ n + 1.

Ok , j = {o(1)k , j ,o
(2)
k , j , . . . ,o

(n)
k , j }. (15)

Finally, τj = λb , j where 1 ≤ j ≤ p. Equation 16 computes b.

b = arg min
k=0∼n

hloss(Ok , j , yj ). (16)

Let S = {s1, s2, . . . , sq} and T = {t1, t2, . . . , tq}. The hloss(S,T ) is defined in Equation 17 that ⊕ is XOR boolean
logic operator.

hloss(S,T ) =
1
q

q∑
i=1

si ⊕ ti . (17)

3.5 Training and Testing Phases
As shown in Figure 1, there are training and testing phases to predict a new instance. Four steps which are shown
in Figure 1a are performed in the training phase. Suppose there is a set of samples that features of all samples are
extracted, then:
(1) Fuzzy transformation. Equation 2 calculates µR1 (ti , c j ) where 1 ≤ i ≤ m and 1 ≤ j ≤ p. Also, Equation 4

computes µR2 (ti , e
(j)) where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, fuzzy relevance vectors x (1), x (2), . . . , x (n) are

provided by Equation 5 and Equation 8.
(2) Generating centroid vectors. The similar label fuzzy relevance vectors are grouped and their centroid

vectors, ζ = {θ (1), θ (2), . . . , θ (d )}, are computed by Equation 9.
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(3) Fuzzy clustering. Cluster similarity vectors are computed by Equation 10. Those similar cluster similarity
vectors are member of same clusters.

(4) Finding thresholds. The threshold vector, ⟨τ1, τ2, . . . , τp⟩, is obtained by selecting optimal thresholds for
each category c j where 1 ≤ j ≤ p.

The testing phrase of an unseen sample et is provided by applying steps of Figure 1b. Three steps, fuzzy
transformation, cluster memberships, and applying threshold, are described here:

(1) Fuzzy transformation. µR1 was obtained in training phase. Also, Equation 4 computes µR2 (ti , e
(t )) where

1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, fuzzy relevance vectors x (t ) are provided by Equation 5 and Equation 8.
(2) Cluster memberships. Cluster similarity vector of x (t ) are computed by Equation 10.
(3) Applying thresholds. The output vector ⟨o1,o2, . . . ,op⟩ is provided by applying thresholds ⟨τ1, τ2, . . . , τp⟩

on Cluster similarity vector of x (t ) according to the Equation 13.

Therefore, oj , where 1 ≤ j ≤ p, determines whether et is member of c j or not. If oj = 1 then et is member of c j .
In contrast, if oj = 0 then et is not member of c j .
The computational cost of this method depends on the steps that should be taken in the method. Fuzzy

transformation cost is O(nmp), cost of generating centroid vectors is O(n) because it needs to group similar
labeled fuzzy relevance vectors. In addition, cost of finding thresholds step is O(np). Therefore, the total cost is
O(nmp + n + np) while the total cost of MFRC [17] isO(nmp + nJp + nJ 2p + np). Also, the cost of testing phase is
O(mp + p).

3.6 Example
In the following example, we show how our method works. Let T = {t1, t2, t3, t4, t5, }, C = {c1, c2} and

E :



(e(1) = ⟨5, 37, 19, 5, 44⟩, y(1) = ⟨1, 0⟩)
(e(2) = ⟨13, 21, 28, 11, 50⟩, y(2) = ⟨1, 0⟩)
(e(3) = ⟨1, 45, 38, 19, 44⟩, y(3) = ⟨1, 0⟩)
(e(4) = ⟨36, 21, 45, 27, 19⟩, y(4) = ⟨0, 1⟩)
(e(5) = ⟨22, 34, 32, 11, 46⟩, y(5) = ⟨0, 1⟩)
(e(6) = ⟨44, 39, 25, 38, 25⟩, y(6) = ⟨0, 1⟩)


with n = 6,m = 5, and p = 2. We want to classify et1 = ⟨3, 15, 12, 3, 19⟩, y(t1) = ⟨1, 0⟩ and et2 = ⟨31, 1, 84, 61, 59⟩,
y(t2) = ⟨0, 1⟩

According to the Equation 2, we calculate µR1 (ti , c j ) where 1 ≤ i ≤ 5 and 1 ≤ j ≤ 2. The results of µR1 (ti , c j ) are
shown in Equation 18. Therefore, µR1 (1, 1) = 0.1570, µR1 (1, 2) = 0.8429, µR1 (2, 1) = 0.5228, · · · , µR1 (5, 2) = 0.3947.
Also, we calculate µR2 (ti , ek ) according to Equation 4, where 1 ≤ i ≤ 5 and 1 ≤ k ≤ 6. The results of µR2 (ti , ek )
are shown in Equation 19. Therefore, µR2 (1, 1) = 0.1136, · · · , µR2 (5, 5) = 1, µR2 (5, 6) = 0.5681.

µR1 (ti , c j ) =


0.1570 0.8429
0.5228 0.4771
0.4545 0.5454
0.3153 0.6846
0.6052 0.3947


(18)
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Fig. 2. Distribution of fuzzy relevance vectors and centroid vectors.

µR2 (ti , ek ) =


0.1136 0.26 0.0222 0.8 0.4782 1
0.8409 0.42 1 0.4666 0.7391 0.8863
0.4318 0.56 0.8444 1 0.6956 0.5681
0.1136 0.22 0.4222 0.6000 0.2391 0.8636

1 1 0.9777 0.4222 1 0.5681


(19)

Thus, we calculate µS (ek , c j ) according to Equation 5, where 1 ≤ k ≤ 6 and 1 ≤ j ≤ 2. The results of µS (ek , c j )
are shown in Equation 20. Then, µS (1, 1) = 0.3971, · · · , µS (6, 1) = 0.2726, µS (6, 2) = 0.529. Consequently, fuzzy
relevance vectors, x (k ) where 1 ≤ k ≤ 6, of the training files are computed. For example, x (3) = ⟨0.4435, 0.3562⟩
and x (5) = ⟨0.389, 0.3846⟩. They are plotted in Figure 2. These fuzzy relevance vectors are reduce dimension of
features. In this example, a five dimension feature space is reduced to a two dimension feature space.

µS (ek , c j ) =



0.3971 0.2842
0.3577 0.3072
0.4435 0.3562
0.3113 0.4793
0.389 0.3846
0.2726 0.529


(20)

Referring to the example, χ1 and χ2 are two groupswhich their labels are equal where χ1 = {(x (1), y(1)), (x (2), y(2)), (x (3), y(3))}
and χ2 = {(x (4), y(4)), (x (5), y(5)), (x (6), y(6))}. Thus, ζ = {θ (1), θ (2)} where θ (1) = ⟨0.3994, 0.3159⟩ and θ (2) =
⟨0.3455, 0.4675⟩. θ (1) and θ (2) are two centroid vectors and are shown in Figure 2.
Afterwards, we computed A by Equation 10. The computed A contains A(1, 1) = 2.7483, · · · , A(6, 1) = 19.6908,

A(6, 2) = 4.4942.
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A =



2.7483 17.9449
2.3234 12.8731
0.4332 14.7633
18.6563 3.4597
6.3381 8.8584
19.6908 4.4942


(21)

To follow the example, we computed thresholds which are T = {3.6458, 9.8621}. We will use T to classify
instances, e(t1) and e(t2).
To continue the example, we applied fuzzy transformation on e(t1) and e(t2). Then, xe (t2) = ⟨0.4043, 0.3138⟩

and xe (t1) = ⟨0.3176, 0.3974⟩. The cluster memberships of e(t2) and e(t2) are ⟨0.5214, 15.718⟩ and ⟨13.0285, 2.168⟩,
respectively. By applying threshold vector, T , on cluster memberships of e(t1) and e(t2), y(t1) = ⟨1, 0⟩ and y(t2) =
⟨0, 1⟩ are achieved.

4 RESULTS AND DISCUSSION

4.1 Experiment I: Binary Classification
Contrary to the multi-label classification which classifies a sample into a set of categories, binary classification
categorizes samples into one category only. To evaluate the performance of binary classification, we used machine
learning classifiers [16] to classify samples of the three datasets, VS, BIG2015 and RT.
Cross-validation [16] is used to estimate the quality of a binary classification model. We employed k − f old

cross-validation where samples are randomly divided into k subsets. Training is ascertained with k − 1 instances
and prediction is conducted on the last subset. The process is repeated k times and the average evaluation metrics
is reported as the outcome of the entire process. Therefore, the entire subset of data appears in both the training
and testing phases. Ideally the use of cross-validation assists in determining if a classification model is generalized
and it is not over-fitted. In this experiment, we employed 10 − f old cross-validation, which is widely used in
different application domains.

Results of four classifiers, RandomForest, NaiveBayes, SVM, and J45 are shown in Table 6. RandomForest is an
ensemble of binary tree classifier and it achieved the highest accuracy; 88.46% for RT and 98.85% for BIG2015 and
96.7% for VS. However, NaiveBayes could classify VS, RT, and BIG2015 with an accuracy of 48.15%, 62.34%, and
63.51%, respectively. ROC curve of datasets are shown in Figure 3. RandomForest has better performance than
NaiveBayes and J45. Also, NaiveBayes has the worst classification results.

4.2 Experiment II: Multi-label Classification
In this section, we evaluate the proposed fuzzy clustering system with multi-label classification techniques. There
is a list of abstract names mentioned in Table 7. Table 8 shows the performance of both our proposed method
(MFSRC) and multi-label Fuzzy Relevance Clustering (MFRC) [17] on VS, RT, and BIG2015. Similar to the first
experiment, we have established 10 − f old cross-validation on VS, BIG2015 and RT which their identification
performances are presented in Table 9.
ρ and ϵ are two input parameters of multi-label fuzzy relevance clustering [17]. ρ ∈ [0, 1] is a predefined

threshold which the smaller the ρ, the larger the number of clusters. Also, ϵ ∈ [0, 1] is a predefined threshold to
limit the maximum label similarity of clusters. In our experiments, ρ = 0.95 and ϵ = 0.0001.
As shown in Table 8 and Table 9, the accuracy of MFRC is higher than MFSRC in all datasets, but MFRC has

lower precision. In fuzzy classification, a sample could be classified correctly, incorrectly, or misclassified. If a
sample is correctly classified as a member of a category, it is classified correctly. If a sample is incorrectly classified
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Table 6. The performances of three datasets of VS, BIG2015 and RT based on four binary classifiers, RandomForest, NaiveBayes,
SVM, and J48.

Dataset Classifier Name Accur.% Preci.% Recall% F1% MCC% BEP% Hloss%
RT RandomForest 88.46 88.5 88.5 88.5 85.4 88.5 1.92
RT J48 78.37 78.4 78.4 78.3 72.3 78.4 3.6
RT SVM 74.41 74.6 74.4 74.1 67 74.5 2.83
RT NaiveBayes 62.34 69.5 62.3 63.7 56.3 65.9 6.27

BIG2015 RandomForest 98.85 98.9 98.9 98.9 98.7 98.9 0.12
BIG2015 J48 97.41 97.4 97.4 97.4 97.1 97.4 0.28
BIG2015 SVM 80.31 83.4 80.3 78.4 76 81.85 2.08
BIG2015 NaiveBayes 63.51 72.8 63.5 65 62.2 68.15 4.05

VS RandomForest 96.7 96.7 96.7 96.6 95.8 96.7 0.54
VS J48 94.34 94.2 94.3 94.3 92.8 94.25 0.94
VS SVM 83.89 86.9 83.9 81.2 79.4 85.4 2.53
VS NaiveBayes 48.15 73.6 48.2 48.1 46.2 60.9 8.64

Table 7. Symbols for abstraction

Symbols Information
MFRC Fuzzy classification based on relevance fuzzy clustering [17]
MFSRC Our proposed fuzzy method.
MFRC-MFRC MFRC classifies samples which are not classified by MFRC.
MFRC-MFSRC MFSRC classifies samples which are not classified by MFRC.

MFRC, MFRC-MFSRC
Map the results of MFRC and MFRC-MFSRC. Classification
result of samples, which are not classified by MFRC, are replace
by the classification result of MFRC-MFSRC.

MFRC-MFRC-MFSRC MFSRC classifies samples, which are not classified by
(MFRC, MFRC-MFRC)

Table 8. The performances of MFSRC and MFRC on VS, BIG2015, and RT.

Dataset Method Accur .% Prec .% Recall% F1% BEP% Hloss% P(z)
RT MFSRC 64.8 83.78 30.06 44.24 56.92 35.2 0.082
RT MFRC 91.71 56.40 90.20 69.4 73.3 8.29 0.374

BIG2015 MFSRC 42.88 92.31 15.42 26.42 53.86 57.12 0.030
BIG2015 MFRC 96.9 86.24 85.9 86.07 86.07 3.1 0.377

VS MFSRC 33.95 98.72 19.99 33.25 59.36 66.05 0.001
VS MFRC 93.57 77.24 82.99 80.01 80.11 6.43 0.099

as a member of another category, it is classified incorrectly. Also, if a sample is not classified as a member of any
category, it is misclassified. According to P(z), MFRC misclassifies 37.4% and 37.7% of RT and BIG2015 samples,
respectively. In contrast, P(z) of MFSRC for RT and BIG2015 datasets are 8.2% and 3%, respectively. Therefore,
MFSRC can classify more samples than MFRC. Both techniques have disadvantages as well, MFRC has lower
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(a) ROC of binary classifiers on BIG2015. (b) ROC of binary classifiers on RT.

(c) ROC of binary classifiers on VS.

Fig. 3. RandomForest, J48 and NaiveBayes ROCs of VS, BIG2015, and RT datasets.

precision and MFSRC has lower recall (see Table 9 and Figure 4). To overcome this problem, the ensembles of
these two techniques are evaluated in Table 12, Table 14, and Table 16.
Confusion matrices of MFRC and MFSRC classification results for the databases of VS, RT and BIG2015 are

shown in Figure 4. Since samples can be members of each of the families, the confusion matrix is not diagonal. As
shown in Figure 4a, Figure 4c and Figure 4e, MFSRC confusion matrices are less diagonal and strive to increase
the precision values. In contrast, confusion matrices of MFRC are shown in Figure 4b, Figure 4d and Figure 4f are
diagonal and strive to increase the recall values.
Figure 4a disputes the confusion matrix resulted by MFSRC on RT. 40 of 54 Cerber samples are detected

correctly. Also, 45, 42, 40, 2, 17 of these samples are categorized into CryptoWall, CTB-Locker, Locky, Sage,
and TeslaCrypt, respectively. In contrast, 3, 17, 22, 5 samples of CryptoWall, CTB-Locker, Locky, and Sage, are
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(a) Confusion matrices of MFSRC on RT. (b) Confusion matrices of MFRC on RT.

(c) Confusion matrices of MFSRC on VS. (d) Confusion matrices of MFRC on VS.

(e) Confusion matrices of MFSRC on BIG2015. (f) Confusion matrices of MFRC on BIG2015.

Fig. 4. Confusion matrices of MFSRC and MFRC on VS, RT and BIG2015 datasets.
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Table 9. The performances of 10 − f old classification of Deep neural Network (DNN), MFSRC and MFRC on VS, BIG2015,
and RT.

Dataset Method Accur .% Prec .% Recall% F1% BEP% Hloss% P(z)
RT MFSRC 69.81 83.02 33.88 48.03 58.45 30.19 0.052
RT MFRC 91.04 57.74 83.67 68.02 70.70 8.96 0.32
RT DNN 62.34 69.5 62.3 63.7 65.9 10.2 0.06

BIG2015 MFSRC 40.37 93.78 15.02 25.9 54.40 59.63 0.025
BIG2015 MFRC 97.04 87.28 86.27 86.77 86.78 2.96 0.4
BIG2015 DNN 63.51 72.8 63.5 86.77 68.15 9.43 0.061

VS MFSRC 38.2 98.69 21.1 34.76 59.89 61.8 0.001
VS MFRC 94.06 77.89 85.22 81.39 81.55 5.94 0.111
VS DNN 48.15 73.6 48.2 48.1 60.9 49.34 0.521

categorized as Cerber. From Table 10, we see that MFSRC wrongly categorizes RT samples as three families
CryptoWall, Locky, and TeslaCrypt. In addition, 9, 7, 19, 8, and 2 of Cerber, CryptoWall, CTB-Locker, Locker, and
TeslaCrypt samples did not categorize as any category.

Table 10. Incorrectly classified samples by MFSRC on RT. Here, malware families in the first column exhibit similarity with
one or more families in the second column. The families in the second column are arranged in descending order of the
similarity.

Name Incorrectly classified as
Cerber CryptoWall, CTB-Locker, Locky, TeslaCrypt, Sage.
CryptoWall TeslaCrypt, Locky, CTB-Locker, Sage, Cerber.
CTB-Locker CryptoWall, Locky, TeslaCrypt, Cerber, Sage.
Locky TeslaCrypt, CryptoWall, CTB-Locker, Sage, Cerber.
Sage Locky, CryptoWall, CTB-Locker, TeslaCrypt, Cerber.
TeslaCrypt Locky, CryptoWall, CTB-Locker, Sage.

Figure 4f disputes the confusion matrix resulted by MFRC on RT. 132 of 175 TeslaCrypt samples are detected
correctly. Also, 2, 1, and 1 of these samples are categorized into CryptoWall, CBT-Locker, and Sage, respectively. In
contrast, 16 of Locky samples are categorized as TeslaCrypt. From Table 11 we see that MFRC wrongly categorizes
RT samples as three families Locky, CryptoWall, and TeslaCrypt. In addition, respectively, 7, 50, 12, 104, 17 and
39 of Cerber, CryptoWall, CBT-Locker, Locker, Sage, and TeslaCrypt samples did not categorize as any category.
The intersection of mis-classifications of both algorithms, MFSRC and MFRC, on RT is 4 samples which are

members of CryptoWall. This particular outcome has led us to ensemble the classifiers.
Table 12 shows three ensembles (MFRC, MFRC-MFSRC), (MFRC, MFRC-MFRC), and (MFRC, MFRC-MFRC-

MFSRC). As shown in Table 8, MFRC classified RTwith an accuracy of 91.71% but 37.4% of samples are misclassified
and again they are classified by MFSRC with an accuracy of 64% and P(z) = 0.048. Therefore, the total accuracy
and mis-classification probability of (MFRC, MFRC-MFSRC) are 84.65% and 0.018, respectively. Also, another
ensemble, (MFRC, MFRC-MFRC), classified RT samples with an accuracy of 95.08% and P(z) = 0.05 which are
the results of mapping MFRC and (MFRC-MFRC). Since the value of P(z) of (MFRC, MFRC-MFSRC) is less than
the value of P(z) of (MFRC, MFRC-MFRC), the ensemble of (MFRC, MFRC-MFRC-MFSRC) is provided with
P(z) = 0.0036. Also, Table 13 shows the result of 10 − f old and three aforementioned ensembles on RT, which
shows that (MFRC, MFRC-MFRC-MFSRC) with P(z) = 0 has the best performance.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:16 • M.H. Alaeiyan et al.

Table 11. Incorrectly classified samples by MFRC on RT. Here, malware families in the first column exhibit similarity with one
or more families in the second column. The families in the second column are arranged in descending order of the similarity.

Name Incorrectly classified as
Cerber -
CryptoWall Locky, CTB-Locker.
CTB-Locker Locky.
Locky TeslaCrypt, CTB-Locker.
Sage Locky.
TeslaCrypt CryptoWall, CTB-Locker, Sage.

Table 12. Ensemble performances of RT dataset.

# Method Accur .% Prec .% Recall% F1% BEP% Hloss% P(z)
1 MFRC-MFSRC 64.5 82.69 29.71 43.71 56.2 35.5 0.048
2 MFRC, MFRC-MFSRC 84.65 87.39 52.38 65.5 69.88 15.35 0.0180
3 MFRC-MFRC 92.31 75.96 77.45 76.7 76.71 7.69 0.1346
4 MFRC, MFRC-MFRC 95.08 84.86 85.48 85.17 85.17 4.92 0.0504
5 MFRC-MFRC-MFSRC 67.26 46.43 24.53 32.1 35.48 32.74 0.714
6 MFRC, MFRC-MFRC-MFSRC 94.26 87.21 80.13 83.52 83.67 5.74 0.0036

Table 13. Ensemble performances of 10 − f old classification of RT dataset.

# Method Accur .% Prec .% Recall% F1% BEP% Hloss% P(z)
1 MFRC, MFRC-MFSRC 89.81 74.69 69.32 71.49 72.01 10.19 0.065
2 MFRC, MFRC-MFRC 95.57 88.49 85.50 86.96 86.99 4.43 0.056
3 MFRC, MFRC-MFRC-MFSRC 95.53 88.44 85.40 86.87 86.92 4.47 0

Also, similar results are achieved by classifying the BIG2015 based on three ensembles (MFRC, MFRC-MFSRC),
(MFRC, MFRC-MFRC), and (MFRC, MFRC-MFRC-MFSRC), which are shown in Table 14. Although the P(z) of
(MFRC, MFRC-MFSRC) is 0, the accuracy of (MFRC, MFRC-MFRC-MFSRC) is higher. Moreover, Table 15 shows the
results of 10− f old and these three ensembles on BIG2015, which clearly shows that (MFRC, MFRC-MFRC-MFSRC)
with P(z) = 0.001 has the best performance.

Moreover, Table 16 shows the results of these three ensembles on VS, which 0.4068, 0.0149 and 0.003 are P(z)
of (MFRC, MFRC-MFSRC), (MFRC, MFRC-MFRC), and (MFRC, MFRC-MFRC-MFSRC), respectively. Furthermore,
Table 17 shows the results of 10 − f old and these three ensembles on BIG2015, which may show that (MFRC,
MFRC-MFRC-MFSRC) with P(z) = 0.002 has the best performance. According to these experiments, it is safe to
conclude that the (MFRC, MFRC-MFRC-MFSRC) ensemble is the best ensemble to classify malware datasets.

Figure 5a disputes the confusion matrix resulted by (MFRC, MFRC-MFRC) on RT. 53 of 54 Cerber samples are
detected correctly. 4 and 1 of these samples are categorized into CryptoWall, and TeslaCrypt, respectively. In
contrast, 2 samples of CTB-Locker are categorized as Cerber. From Table 18, we can see that (MFRC, MFRC-MFRC)
wrongly categorizes RT samples as three families Locky, CryptoWall, and TeslaCrypt. In addition, 9, 4, 9, 3, and 3
of CryptoWall, CTB-Locker, Locker, Sage, and TeslaCrypt samples did not categorize as any category. As we had
predicted, the number of samples not classified by MFRC was reduced.
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Table 14. Ensemble performances of BIG2015 dataset.

# Method Accur .% Prec .% Recall% F1% BEP% Hloss% P(z)
1 MFRC-MFSRC 67.18 87.09 23.57 37.09 55.33 32.82 0
2 MFRC, MFRC-MFSRC 96.58 90.46 80.98 85.46 85.72 3.42 0
3 MFRC-MFRC 98.27 91.06 93.22 92.13 92.14 1.73 0.6291
4 MFRC, MFRC-MFRC 97.56 90.58 87.85 89.19 89.22 2.44 0.0019
5 MFRC-MFRC-MFSRC 90.06 47.37 56.25 51.43 51.81 9.94 0.2105
6 MFRC, MFRC-MFRC-MFSRC 97.56 90.68 87.79 89.21 89.24 2.44 0.0004

Table 15. Ensemble performances of 10 − f old classification of BIG2015 dataset.

# Method Accur .% Prec .% Recall% F1% BEP% Hloss% P(z)
1 MFRC, MFRC-MFSRC 97.01 89.4 84.58 86.91 86.99 2.99 0.0086
2 MFRC, MFRC-MFRC 97.47 91.14 86.76 88.89 88.95 2.53 0.18
3 MFRC, MFRC-MFRC-MFSRC 97.49 91.3 86.84 89.01 89.07 2.51 0.001

Table 16. Ensemble performances of VS dataset.

# Method Accur .% Prec .% Recall% F1% BEP% Hloss% P(z)
1 MFRC-MFSRC 60.2 81.53 27.01 40.58 54.27 3.98 0.041
2 MFRC, MFRC-MFSRC 91.28 85.32 69.37 76.52 77.35 8.72 0.4068
3 MFRC-MFRC 95.09 79.85 89.54 84.42 84.7 4.91 0.1511
4 MFRC, MFRC-MFRC 94.73 85.15 83.56 84.35 84.36 5.27 0.0149
5 MFRC-MFRC-MFSRC 78.6 87.65 43.03 57.72 65.34 21.40 0.0246
6 MFRC, MFRC-MFRC-MFSRC 94.66 86.46 82.38 84.37 84.42 5.34 0.0003

Table 17. Ensemble performances of 10 − f old classification of VS dataset.

# Method Accur .% Prec .% Recall% F1% BEP% Hloss% P(z)
1 MFRC, MFRC-MFSRC 92.57 86.27 73.82 79.5 80.04 7.43 0.009
2 MFRC, MFRC-MFRC 95.64 88.11 86.06 87.07 87.08 4.36 0.0075
3 MFRC, MFRC-MFRC-MFSRC 95.67 88.59 85.88 87.21 87.23 4.33 0.002

Figure 5b depicts the confusion matrix resulted by (MFRC, MFRC-MFRC-MFSRC) on RT. 53 out of 54 Cerber
samples were detected correctly. 4 and 1 of the samples are categorized into CryptoWall, and TeslaCrypt,
respectively. In contrast, 2 samples of CTB-Locker are categorized as Cerber. From Table 19 we see that (MFRC,
MFRC-MFRC-MFSRC) wrongly categorizes RT samples into four families Locky, CryptoWall, Sage, and TeslaCrypt.
In addition, 2 of the Locker samples was not categorized in any category. As expected, the number of samples
that are not classified by (MFRC, MFRC-MFRC) was reduced.
MFRC classifies BIG2015 with an accuracy of 97.04%. To improve the identification accuracy, the ensemble

(MFRC, MFRC-MFRC) classified BIG2015 with an accuracy of 97.47%. Next, to reduce the error value, we have
applied (MFRC, MFRC-MFRC-MFSRC) with an accuracy of 97.49%. Tabel 20 and Tabel 21 show the order of
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Table 18. Incorrectly classified samples based on (MFRC, MFRC-MFRC) multi-class classification on RT. Here, malware
families in the first column exhibit similarity with one or more families in the second column. The families in the second
column are arranged in descending order of the similarity.

Name Incorrectly classified as
Cerber CryptoWall, TeslaCrypt.
CryptoWall Locky, CTB-Locker, Sage.
CTB-Locker CryptoWall, Locky, Cerber.
Locky TeslaCrypt, Sage, CryptoWall, CTB-Locker.
Sage Locky.
TeslaCrypt Locky, CryptoWall, Sage, CTB-Locker.

(a) Confusion matrices of (MFRC, MFRC-MFRC) on RT.
(b) Confusion matrices of (MFRC, MFRC-MFRC-MFSRC) on
RT.

Fig. 5. Confusion matrices of (MFRC, MFRC-MFRC) and (MFRC, MFRC-MFRC-MFSRC) on RT.

Table 19. Incorrectly classified samples based on (MFRC, MFRC-MFRC-MFSRC) on RT. Malware families in the first column
exhibit similarity with one or more families in the second column. The families in the second column are arranged in
descending order of the similarity.

Name Incorrectly classified as
Cerber CryptoWall,TeslaCrypt.
CryptoWall Locky, Sage, CTB-Locker, TeslaCrypt.
CTB-Locker Sage, Locky, CryptoWall, Cerber.
Locky TeslaCrypt, Sage, CTB-Locker, CryptoWall.
Sage Locky, TeslaCrypt, CTB-Locker.
TeslaCrypt CryptoWall, Locky, Sage, CTB-Locker.

incorrect classification of MFRC and (MFRC, MFRC-MFRC-MFSRC) on BIG2015, respectively. (MFRC, MFRC-
MFRC-MFSRC) tries to reduce the value of instance coverage, P(z). Then, incorrectly identification has not
reduced in Table 21.
Therefore, a growth of 2.55% on accuracy and 30.81% on precision were achieved by comparing the second

row of Table 8 with six rows in Table 12. MFRC classifies BIG2015 with an accuracy of 96.9%, as shown in the
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Table 20. Incorrectly classified samples based on MFRC on BIG2015. Malware families in the first column exhibit similarity
with one or more families in the second column. The families in the second column are arranged in descending order of the
similarity.

Name Incorrectly classified as
Ramnit Lollipop, Gatak.ACY, Kelihos_ver1, Kelihos_ver3, Tracur, Vundo.
Lollipop Ramnit, Gatak.ACY., Tracur, Kelihos_ver1, Kelihos_ver3, Obfuscator.ACY, Vundo.
Kelihos_ver3 Obfuscator.ACY, Kelihos_ver1, Ramnit, Gatak.ACY, Lollipop, Tracur.
Vundo Lollipop, Ramnit, Kelihos_ver3, Kelihos_ver1, Gatak.ACY, Simda, Tracur, Obfuscator.ACY.
Simda Lollipop, Ramnit.
Tracur Ramnit, Kelihos_ver3, Lollipop, Vundo, Simda, Kelihos_ver1.
Kelihos_ver1 Kelihos_ver3, Ramnit, Gatak.ACY, Tracur, Obfuscator.ACY.
Gatak.ACY Ramnit, Lollipop, Kelihos_ver3, Tracur, Kelihos_ver1, Obfuscator.ACY.
Obfuscator.ACY Ramnit, Gatak.ACY, Lollipop, Kelihos_ver3, Tracur.

Table 21. Incorrectly classified samples based on (MFRC, MFRC-MFRC-MFSRC) on BIG2015. Malware families in the first
column exhibit similarity with one or more families in the second column. The families in the second column are arranged in
descending order of the similarity.

Name Incorrectly classified as
Ramnit Lollipop, Gatak.ACY, Kelihos_ver1, Kelihos_ver3, Tracur, Vundo, Obfuscator.ACY.
Lollipop Ramnit, Gatak.ACY., Tracur, Kelihos_ver1, Kelihos_ver3, Obfuscator.ACY, Vundo.
Kelihos_ver3 Obfuscator.ACY, Kelihos_ver1, Ramnit, Gatak.ACY, Lollipop, Tracur.
Vundo Lollipop, Ramnit, Kelihos_ver3, Kelihos_ver1, Gatak.ACY, Simda, Tracur, Obfuscator.ACY.
Simda Lollipop, Ramnit, Tracur, Gatak.ACY, Obfuscator.ACY.
Tracur Ramnit, Kelihos_ver3, Lollipop, Vundo, Simda, Kelihos_ver1, Gatak.ACY, Obfuscator.ACY.
Kelihos_ver1 Kelihos_ver3, Ramnit, Gatak.ACY, Tracur, Obfuscator.ACY, Vundo.
Gatak.ACY Ramnit, Lollipop, Kelihos_ver3, Tracur, Kelihos_ver1, Obfuscator.ACY.
Obfuscator.ACY Ramnit, Gatak.ACY, Lollipop, Kelihos_ver3, Tracur.

fourth row of Table 8. Despite the marginal improvement, MFRC did not classify 37.7% of samples while (MFRC,
MFRC-MFRC-MFSRC) did not classify 0.36% of samples. Also, MRFC classified VS with an accuracy of 93.57 and
P(z) = 0.099 while (MFRC, MFRC-MFRC-MFSRC) classified it with an accuracy 94.66 and P(z) = 0.0003.

In Section 4.2, machine learning techniques classified VS, RT, and BIG2015 datasets. The resultant classification
of the RandomForest method was more accurate than the other tested machine learning methods. Since learning
methods are often single labeled and are more accurate than multi-label classifiers. However, the ensemble-base
method has desirable accuracy. RandomForest classified VS, RT, and BIG2015 with an accuracy of 96.7%, 88.46%,
and 98.85%, respectively. In contrast, as shown in Table 13, Table 15, and Table 17, (MFRC, MFRC-MFRC-MFSRC)
ensemble classified RT, BIG2015, and VS with accuracy of 95.53%, 97.49% and 95.67%, respectively. Therefore,
comparing to the accuracy of RandomForest, (MFRC, MFRC-MFRC-MFSRC) classified RT with higher accuracy.

5 RELATED WORKS
Most of the prior studies collected a set of features and utilized similarity measurements or leveraged machine
learning techniques to classify malware families or segregate malware from benign samples [4, 13, 21, 31, 34].
However, previous works were mainly focused on binary classification to divide instances into a single class.
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Table 22. Deep Neural Network 10 − f old classification of VS, RT and BIG2015 datasets.

# Dataset Accur .% Prec .% Recall% F1% BEP% Hloss% P(z)
1 VS 95.67 88.59 85.88 87.21 87.23 4.33 0.002
2 RT 95.67 88.59 85.88 87.21 87.23 4.33 0.002
3 BIG2015 95.67 88.59 85.88 87.21 87.23 4.33 0.002

For instance, H. HaddadPajouh et al. [10] and A. Azmoodeh et al. [3] leveraged a deep recurrent neural
network and a deep Eigenspace learning method to detect Internet of things malware via Opcode sequence,
respectively. Also, I. Santos et al. [24] presented variants of known malware families detection method based
on Opcode sequence frequencies and leveraged cosine similarity to detect variants of known malware families.
Similarly, Wong and Stamp [36] utilized a hidden Markov model to detect metamorphic malware by using Opcode
sequences.

Y. Li et al. [18], presented a fuzzy hash function which extracts 5-grams from code section of Windows Portable
Executable (PE) files and maps to a bit array to provide a fingerprint. In their approach, the bitwise Jaccard
distance function is the fingerprint cooperator. Their proposed method was tested based on a set of malware
families collected from VirusTotal and the authors have leveraged a binary classifier to classify these samples. As
turns out, the samples were classified by a binary classifier with a precision of 0.919 and recall of 0.914.

More recently, A. Shalaginov et al. [28] presented a multi-label malware family classification based on PE file
format. They initially focused on generating fuzzy rules based on Neuro-Fuzzy (NF) techniques. Later on, they
improved their model accuracy by adding malware dynamic behavioral features [27].

In an extended work by A. Shalaginov et al. [27], they leveraged static and dynamic features extracted from PE
files to classify malware instances by a multi-label classifier. They have proposed deep NF multi-label classifier to
classify samples collected from VirusShare and archive and labeled by VirusTotal API [33]. While C4.5 binary
classifier identifies samples with an accuracy of 82.85%, their proposed deep NF categorized samples with an
accuracy of 69.44%. This method improved the accuracy of simple NF and deep neural network to 49.335% and
7.347%, respectively.

The method presented in [27] is a good multi-label classier for malware identification, but this method leverages
both static and dynamic features. Extracting dynamic features in edge layer devices is expensive. To remedy this
problem, we have utilized static analysis methods to identify malicious programs. In the experiment, we have
understood that fuzzy multi-label classifiers [17, 28] suffer from instance coverage problem. To solve this problem,
we present a new fuzzy multi-label classifier and provide ensembles to improve malicious program identification.

6 CONCLUSION AND FUTURE WORKS
Since the number of unknown malware is increasing rapidly, malware analysis is becoming a time and resource
consuming task. Malicious actors are using this gap to cause significant damage. The risks of these attacks are
further increased in CPS and IoT networks were a cyber attack could cause real harm to the end user. Moreover,
the majority of previous malware targeted IoT networks shared a substantial amount of codes, functionalities, and
even malware files properties. A multi-label classifier would significantly reduce analysis space by identifying
similarities between new instances and previously known malware. Therefore, in this paper, we built a multi-label
malware family classification engine using relevance fuzzy classification techniques that can be implemented in
the edge layer of CPS networks. We leveraged MFRC to classify malicious instances.

As many multi-label classifiers failed to classify a significant number of samples to any family, we built a new
relevance fuzzy method, called MFSRC. MFSRC uses fuzzy transformation, generation of centroid vectors, and
fuzzy clustering with specified thresholds for training. In testing, fuzzy transformation and cluster membership
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functions in regard to set thresholds were used to classify samples. MFSRC classified three datasets, VS, BIG, and
RT, with an accuracy of 33.95%, 91.71%, and 64.8% while MFRC classified VS, BIG, and RT with an accuracy of
93.57%, 96.9%, and 42.88% which was better than previous fuzzy classifiers. However, as of instance coverage,
resultant recall and precision of our classification method were still not convincing (i.e. sometimes worst than a
random guess), we built an ensemble by combining MFSRC and MFRC classifiers. Our ensemble could classify
malware in VS, BIG and RT datasets with an accuracy of 94.66%, 97.56%, and 94.26%, respectively which shows a
significant improvement.
In the future, we will extend this work by improving the generation of centroid vectors step and we will

evaluate our classifiers on bigger data sets. Furthermore, we will improve the performance of our system to be
used as an inline, real-time system for protecting CPS networks.
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