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Abstract 30 

This study investigates the effect of engine temperature during cold start and hot start engine 31 

operation on particulate matter emissions and engine performance parameters. In addition to a 32 

fundamental study on cold start operation and the effect of lubricating oil during combustion, 33 

this research introduces important knowledge about regulated particulate number emissions 34 

and particulate size distribution during cold start, which is an emerging area in the literature. 35 

A further aspect of this work is to introduce waste lubricating oil as a fuel.  By using diesel and 36 

two blends of diesel with 1 and 5% waste lubricating oil in a 6-cylinder turbocharged engine 37 

on a cold start custom test, this investigation studied particle number (PN), friction losses and 38 

combustion instability with diesel and waste lubricating oil fuel blends. In order to understand 39 

and explain the results the following were also studied: particle size distribution and median 40 

diameter, engine oil, coolant and exhaust gas temperatures, start of injection, friction mean 41 

effective pressure (FMEP), mechanical efficiency, coefficient of variation (CoV) of engine 42 

speed, CoV of indicated mean effective pressure (IMEP) and maximum rate of pressure rise 43 

were also studied. The results showed that during cold start the increase in engine temperature 44 

was associated with an increase in PN and size of particles, and a decrease in FMEP and 45 

maximum rate of pressure rise. Compared to a warmed up engine, during cold start, PN, start 46 

of injection and mechanical efficiency were lower; while FMEP, CoV of IMEP and maximum 47 

rate of pressure rise were higher. Adding 5% waste lubricating oil to the fuel was associated 48 

with a decrease in PN (during cold start), decreased particle size, maximum rate of pressure 49 

rise and CoV of IMEP and was associated with an increase in PN and nucleation mode particles 50 

(during hot start) and FMEP. 51 

Keywords: Cold-start; engine warm up; waste lubriacating oil; Particulate matter; PN; 52 

particle size distribution.  53 
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1. Introduction 54 

There are a number of studies in the literature on using waste materials as a fuel instead of 55 

fossil fuels [1-5], owing to some negative aspects of using fossil fuels such as environmental 56 

aspects, cost and their depletion [6], and also due to the fact that some alternative fuels from 57 

wastes can improve the engine emission and performance parameters [7]. For example, Amid 58 

et al. [8] investigated the effects of waste-derived ethylene glycol diacetate on performance 59 

and emission characteristics of a diesel engine fueled with diesel/biodiesel blends and reported 60 

that the selected fuel blends could significantly mitigate carbon dioxide emission; however, 61 

NOx and unburned hydrocarbons increased and it also negatively affected engine performance 62 

parameters such as fuel consumption and thermal efficiency. Verma et al. [9] investigated the 63 

possibility of using waste tyre oil as a fuel in internal combustion engines looking at engine 64 

performance and emissions parameters and reported that it adversely affected the thermal 65 

efficiency and fuel consumption and increases the CO and HC. It has been reported that using 66 

waste cooking oil as a fuel can reduce particulate matter emissions. Nabi et al. [10] used 67 

biodiesel derived from waste cooking oil as a fuel in a diesel engine and reported a substantial 68 

reduction in particulate matter emissions (maximum 88% in PN and 84% in PM). Using waste 69 

cooking oil derived biodiesel (due to its fuel oxygen content) was also reported to be the reason 70 

for a reduction in PM and PN emissions under steady-state [11] and transient engine operations 71 

[12]. In terms of engine performance parameters, Zare et al. [13] reported that using 100% 72 

biodiesel derived from waste cooking oil can increase the thermal efficiency and decrease the 73 

friction power in a diesel engine. Another example of using waste material as a fuel in a diesel 74 

engine could be the use of triacetin as a fuel additive which led to a significant reduction in PM 75 

and PN emissions [14, 15].  76 

This study also introduces the waste lubricating oil as a fuel. Between waste materials, 77 

lubricating oil represents 60% of residual oils which are produced massively every year 78 



4 

 

worldwide (24 million tonnes/year) [16]. Given the amount produced every year and the 79 

availability, waste lubricating oil can potentially be used as a fuel, however, the effect of using 80 

such a fuel needs to be investigated under different engine operating conditions such as cold 81 

start. 82 

It is common for many vehicles to be started in the morning when it is cold, driven from home 83 

to work, parked for some hours, started in the afternoon when it is again cold, driven back 84 

home and then parked overnight. In cities, this is the daily norm for the majority of vehicles 85 

[17] and many trips start and finish before the engine fully warms up [18]. A studying on 55 86 

vehicles over 1000 trips (71000 km with the total duration of 1260 hours) showed that one third 87 

of the trips occurred within cold start [17]. Modelling of excess emissions during cold start in 88 

a study, which used the data of 1,766 passenger cars (35,941 measurements) estimated 5.2 km 89 

to be the average cold start distance in which the exhaust emissions stabilise [19].  90 

Cold start can be defined from the engine start either for 5 minutes or until the engine coolant 91 

temperature reaches 70 degC (EU Directive 2012/46/EU). During cold start the engine 92 

temperature is not optimal, which can adversely affect the engine performance parameters such 93 

as fuel consumption and thermal efficiency [20], and emission parameters such as NOx [21]. 94 

One of the reasons is the sub-optimal temperature of the cylinder walls and engine block. For 95 

example, Robert et al. [22] reported that the low temperature of the cylinder wall increased the 96 

emissions and also impacted fuel economy. A study by Cao [23] showed that the low 97 

temperature of the engine block caused incomplete combustion and therefore could be 98 

attributed to increased emissions. During cold start, the low temperature of the fuel and engine 99 

can also impact the fuel atomisation and evaporation process, which also adversely affect 100 

engine performance and emissions [24].  101 
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Cold start emissions have been reported to be a significant portion of the total emissions [18, 102 

25]. For example, around 30% of the total PM from the LA92 Unified Driving Cycle was 103 

related to Phase 1, which represents only 12% of the total distance in that cycle. Also comparing 104 

Phase 1, which was cold start, to Phase 3, where the engine was hot, showed that the PM from 105 

Phase 1 was 7.5 times higher than from Phase 3 [26]. Bielaczyc et al. [27]  reported that PM 106 

emissions from the first three minutes of cold start were much higher than that of hot start 107 

contributing more than 40% of the total emissions. Another study used the FTP test cycle and 108 

showed that cold start NOx emissions can be up to two times higher than those of hot start [28]. 109 

Cold start operation affects the engine performance as well [29, 30]. Increased friction losses 110 

and decreased thermal efficiency were also the result of sub-optimal engine temperature. This 111 

is because during cold start, the viscosity of the engine lubricating oil is higher than during hot 112 

start [22, 31]. Will and Boretti [32] reported 2.5 times higher friction losses during cold start 113 

when compared to hot start. The higher friction losses during cold start leads to higher fuel 114 

consumption. A study by Samhaber et al. [33] showed a 13.5% increase in fuel consumption 115 

as a result of cold start, when compared to hot start. Zare et al. [20] showed that during cold 116 

start the indicated torque, fuel consumption, engine instability and friction losses are higher 117 

than during hot start.  118 

The literature states that the efficiency of after-treatment systems during cold start is one of the 119 

main reasons for higher emissions [22]. While understanding the impact of cold start on after-120 

treatment is critically important, there is also a need for fundamental studies showing how the 121 

engine temperature can be influential on the feedgas emissions. Currently, there is no 122 

fundamental study in the literature investigating how a transient increasing engine temperature 123 

influences the total concentration of particles and also the size of particles during cold start at 124 

constant engine load and speed. The current work here will investigate this. 125 
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Most of the literature on cold start operation used a driving cycle which includes the cold start 126 

section at the start. Given that driving cycles are characterised by various speed and load 127 

changes, cold start emissions and performance within cycles are significantly influenced by 128 

such changes, which consequently affects the fuel injection strategy and other engine 129 

parameters [34]. Given that under different operating conditions, the engine performance and 130 

emission parameters can be affected by different factors reinforcing or cancelling the effect of 131 

one another, having different variables over a cycle when it comes to data analysis can limit 132 

the fundamental study into the pure effect of engine temperature change. In most of the 133 

literature, cold start data is presented as an average value over the cold start section, which 134 

limits the value of the study given that cold start has different stages, which will be discussed 135 

and addressed in this study.  136 

Outside of the fundamental cold start investigation, this study looks into the effect of 137 

lubricating oil which exists inside the cylinder during combustion. It is reported in the literature 138 

that the presence of lubricating oil in addition to the injected fuel during combustion can 139 

influence engine performance and emissions [35]. This study artificially adds lubricating oil 140 

into the cylinder with the fuel through blending, therefore facilitating a study into the effect of 141 

lubricating oil on engine performance parameters (such as mechanical efficiency and 142 

combustion stability) and exhaust emissions (such as PN and PN size distribution). This study 143 

is significantly important from the particle size distribution point of view given that smaller 144 

particles are more toxic [36]. The current literature has related some small particles to the 145 

existence of lubricating oil during combustion [35]. Presently, the authors were not able find a 146 

fundamental study in the literature looking at the effect of engine lubricating oil on PN and PN 147 

size distribution during cold start.  148 

This study serves as a reference for engine researchers and car manufacturers when it comes to 149 

new emissions regulations, in which, in addition to PN, the size of the particles will also be 150 
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important. In the most recent European emissions regulation, Euro 6.2, the current method 151 

which is called the particle measuring program (PMP), only considers solid particles with a 152 

size above 23 nm [37]. However, for the upcoming regulation, there is a plan to include sub-153 

23 nm particles in the PN measurement [38]. Currently, different research groups are working 154 

on that. For example, the SUREAL-23 project received funding from the European Union’s 155 

Horizon 2020 research and innovation programme under grant agreement No 724136 to work 156 

on sub-23 nm particles. Therefore, this study is of importance given that the existence of 157 

lubricating oil in the combustion significantly affects the sub-23 nm particles. 158 

In the literature, there are some studies evaluating waste lubricating oil as a fuel [32, 35, 39-159 

41]. However, the authors could not find any study investigating the influence of using this 160 

fuel on PN, PN size distribution, friction losses and combustion instability parameters during 161 

different stages of cold start in comparison to hot start; cold start operation is of significant 162 

importance owing to the fact that during this period the after-treatment systems do not perform 163 

well. 164 

2. Experimental facilities 165 

2.1 Engine specifications  166 

Meeting the emissions limit of new regulation such as Euro IV-VI forces car manufacturers to 167 

use exhaust after-treatment systems such as the Diesel Particulate Filter (DPF) for their new 168 

vehicles. With such engines, emissions will be dependent on the type and performance of the 169 

after-treatment system, therefore using such engines for research purposes can limit the 170 

fundamental study on the pure effect of engine temperature or the fuel properties on engine 171 

emissions during cold start, which are the aims of this study. Therefore, in order to gain better 172 

insight into the actual engine dependent particulate matter emissions, avoiding the mentioned 173 

limitations, it was opted to conduct the experiment on a Euro III engine, as specified in Table 174 
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1. The engine in this study was a 6-cylinder turbocharged common-rail diesel engine which 175 

was coupled to a hydraulic dynamometer to control the speed and load. 176 

 177 

Table 1 Engine specifications 178 

 179 

2.2 Fuel selection 180 

Apart from D100 (100% diesel), this investigation used 1% (by volume) waste lubricating oil 181 

with 99% diesel (D99W1), and 5% waste lubricating oil with 95% diesel (D95W5). The fuel 182 

properties of diesel waste lubricating oil are shown in Table 2. A GC/MS instrument (model 183 

ISQ, single quadrupole MS, Trace 1310 Gas chromatograph) was used for D100, D99W1 and 184 

D95W5 fuel analysis and the analysis result is shown in Table 3. As can be seen, D100 has the 185 

highest aromatic and aliphatic compounds and no cyclic hydrocarbons, while D99W1 and 186 

D99W5 had cyclic hydrocarbons. Waste lubricating oil and D100 have similar calorific values, 187 

therefore the blends with 1 and 5% waste lubricating oil have a similar heating value to D100 188 

[40]. The higher viscosity of the waste lubricating oil can adversely affect the fuel atomisation 189 

and evaporation during cold start (owing to the low temperature) which consequently impacts 190 

engine performance and emissions parameters [42]. It is known that high sulfur content 191 

Model Cummins ISBe220 31 

Emission standard Euro III 

Capacity (l) 5.9 

Aspiration Turbocharged 

Maximum power  162 kW at 2500 rpm 

Maximum torque  820 Nm at 1500 rpm 

Fuel injection High pressure common rail  

Cylinders 6 in-line 

Bore × stroke (mm x mm) 102 × 120 

Compression ratio 17.3:1 

Dynamometer type Electronically-controlled water brake dynamometer 
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increases particulate emissions, therefore the higher sulfur content of the lubricating oil can 192 

potentially increase the number of particles [35].  193 

Given that the current literature has related some small particles to the existence of lubricating 194 

oil during combustion  [35], artificially adding 1% lubricating oil into the cylinder with the fuel 195 

through blending can facilitate the study by highlighting the changes in PN. Using 5% blend 196 

can confirm the result and also evaluate the possibility of using it as an alternative fuel. 197 

However, due to high viscosity and sulfur content of lubricating oil, it is decided not to use a 198 

higher portion of this fuel at this stage.   199 

 200 

Table 2 Diesel and waste lubricating oil properties [40, 43] 201 

 202 

Table 3 Fuel analysis with GC/MS 203 

 
 

Area% 

aromatic aliphatic 
cyclic 

hydrocarbons 

D100 1.43-5.66 1-12.24 - 

D99W1 0.04-0.10 0.05-0.69 0.07-0.13 

D95W5 0.03-0.07 0.03-0.12 0.03-0.07 

 204 

 Diesel Waste lubricating oil 

Density (g/cc) 0.84 0.89 

Viscosity (mm2/s) 2.64 30.3 

Heating value (MJ/kg) 41.77 43.07 

Flash point (degC) 71 98 

Sulfur (ppm) 5.9 7500 

Ash (ppm) 1 7400 
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2.3 Design of experiment 205 

There are different methods of running a cold start test. In most of the literature, cold start data 206 

is related to the first section of a driving cycle in which the engine coolant temperature is less 207 

than 70 degC or the first 5 minutes of the cycle. For example, in WLTC (worldwide harmonised 208 

light vehicles test cycle) the cold start section is related to the first 5 minutes of the test or 209 

similarly in the NEDC, the urban section contains cold start. According to the aim of this study, 210 

which is the evaluation of engine emissions and performance during different stages of cold 211 

start and hot start, using a driving cycle may not be effective. The reason is that driving cycles 212 

contain frequent speed and load changes (such as ESC, NEDC, WLTC and RDE test route [44, 213 

45]) which adds more effective parameters to the cold start data analysis and makes the 214 

judgment more difficult, consequently, it limits the fundamental study into cold start. 215 

Therefore, this study uses a constant engine speed of 1500 rpm under 25% load in order to 216 

decrease the number of influential parameters aiding a better judgment about the direct effect 217 

of engine temperature. 218 

2.4 Test set-up procedure 219 

A schematic diagram of the experimental facility is shown in Figure 1. To measure PN and PN 220 

size distribution, this study used a Scanning Mobility Particle Sizer (SMPS) which consists of 221 

a TSI 3071A classifier—to preselect particles within a size range, and a TSI 3782 condensation 222 

particle counter (CPC)—to grow particles making them optically detectable. During the 223 

experiments, raw exhaust gas was diluted with HEPA-filtered ambient air in a dilution tunnel 224 

and then directed to the SMPS. In order to calculate the dilution ratio, CO2 was sampled before 225 

the dilution tunnel with a CAI-600 CO2 (with repeatability > 1% of full scale and linearity > 226 

0.5% of full scale [46]) and after the dilution tunnel with a SABLE CA-10 Carbon CO2 gas 227 

analyser (with an accuracy of 1% of reading within the range of 0-10% [47]). In order to 228 

measure the in-cylinder data, a Kistler 6053CC60 piezoelectric transducer (manufactured 229 
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stated sensitivity of ≈ -20 pC/bar) was used to measure the in-cylinder pressure, a Kistler type 230 

2614 (manufacture stated resolution= 0.5 crank angle degree) was used to measure the crank 231 

angle, the fuel injection signal was directly interrogated by measuring the voltage applied to 232 

the first injector. Refs. [48, 49] can provide more information about the experimental facility 233 

used in this study.  234 

 235 

 236 

Figure 1 Experimental facility schematic diagram 237 

 238 

2.5 Experimental procedure 239 

Cold start tests were conducted every day morning after an overnight (minimum 12 hours) 240 

engine-off at ambient temperature. Engine coolant and oil temperatures were checked before 241 

each test (temperatures were 23 ± 3 degC). The engine for each test was started at 1500 rpm 242 

under a quarter load and ran for at least 30 minutes to fully warm up and stabilise. Before 243 

running each test, the engine fuel lines were flushed to make sure there was no leftover fuel 244 

from the previous test in the lines. 245 



12 

 

3. Results and discussion 246 

This section studies PN concentration, and to better explain the observed phenomena, it uses 247 

PN size distribution and median diameter and also some of the engine performance parameters 248 

such as start of injection and engine oil, coolant and exhaust gas temperatures. This section 249 

also studies friction losses using friction mean effective pressure (FMEP) and mechanical 250 

efficiency; and the combustion instability using CoV of engine speed and CoV of indicated 251 

mean effective pressure (IMEP) supporting the results with the maximum rate of pressure rise 252 

data. Results in each sub-section will be analysed from two aspects; the effect of cold start and 253 

engine temperature and the effect of fuel properties under different engine operating conditions. 254 

Before moving to the next section, it is worth mentioning about the engine coolant and oil 255 

temperature profiles during cold start, which can be the indicators of engine warm up. Figure 256 

2 shows the how the exhaust gas, oil and coolant temperatures change during cold start. As 257 

mentioned before, cold start can be defined from the engine start either for 5 minutes or until 258 

the engine coolant temperature reaches 70 degC (EU Directive 2012/46/EU). In order to meet 259 

the formal definition of cold start, the engine needs to be started after at least 12 hours soak 260 

(engine-off) without forced cooling or 6 hours with forced cooling at ambient temperature (EU 261 

Directive 2012/46/EU). The definition of cold start in the regulation might give the impression 262 

that outside the mentioned boundary, the engine operates as hot start and normal. However, a 263 

study by Zare et al. [20] showed that even after the engine coolant temperature reaches 70 264 

degC, the engine still produces sub-optimal exhaust emissions and performance. For example, 265 

there is a period in which the engine coolant temperature reached to 70 degC, therefore, it is 266 

not cold start anymore; however, the coolant temperature is still sub-optimal and increasing 267 

which consequently affects the engine performance and emissions. There can also be another 268 

situation in which the engine coolant temperature is optimal, however, the engine oil 269 

temperature is still sub-optimal and increasing. The reasons is the lag between the engine 270 
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coolant and oil temperatures optimal value [20, 50]. In such a situation the operation is not cold 271 

start as per the definition of cold start in EU Directive 2012/46/EU, therefore it is classified as 272 

hot start; however, the operation is not yet optimal. As can be seen in Figure 2, when the coolant 273 

temperature reaches the steady state value—which consequently leads to the thermostat 274 

opening and dissipating heat to the environment through the radiator—the oil temperature is 275 

still increasing. This is due to the different temperature rise rate profiles of engine oil and 276 

coolant, given that they have different properties [20]. The lag between oil and coolant 277 

temperatures to reach the optimal point, which depends on the engine operating condition [20] 278 

also has a significant effect on inefficiencies during cold start [51, 52], is not confined to one 279 

type of engine [53], and has been frequently reported by other researchers [54-56].  280 

 281 

 282 

Figure 2 Coolant, oil and exhaust gas temperature within the custom test for all the tested fuels 283 

 284 

3.1 Particulate matter  285 

Particulate matter—liquid and solid mixtures in the exhaust gas emissions—is a complicated 286 

pollutant which is not a chemically well-defined substance in terms of how it forms, what it is 287 
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composed of and how it can be controlled. Particulate matter emissions depend on various 288 

factors such as fuel properties, engine speed, engine load, temperature, and after-treatment 289 

systems [57]. Particulate matter can negatively impact our ecosystem; it has been recognised 290 

as a global risk factor for diseases as small particles are associated with cardiorespiratory health 291 

issues [58]. It is also reported that prolonged exposure to particulate matter, which can be 292 

associated with reactive oxygen species, can lead to adverse health effects [59-64]. Vaughan 293 

et al. [62] studied the effect of organic content from diesel exhaust particles on oxidative stress 294 

and inflammation and reported that inflammatory responses may be a key mechanism of 295 

response to diesel emissions, more so than oxidative stress. Using an alternative fuel, a study 296 

on cytotoxic, inflammatory and oxidative potential caused by engine emissions, Vaughan et al. 297 

[64] reported that compared to diesel, using a low fraction of a fuel derived from coconut oil 298 

decreased the inflammation and increased antioxidant expression. Stevanovic et al. [59] studied 299 

the oxidative potential of combustion emissions and reported that the fuel oxygen content has 300 

a positive correlation with the particle phase oxidative potential. A similar result was reported 301 

by Hedayat et al. [61] when they studied the effect of fuel oxygen content on particulate 302 

oxidative potential using biodiesel.  303 

The count of individual particles, PN, has gained a lot of attention recently as it was recognized 304 

that measurement of the particulate mass only is not sufficient and informative enough to report 305 

on the potential health impact of particulate pollution. It is hypothesized that smaller particles 306 

can penetrate deeper in lungs and have larger surface area to react within lungs, and the toxicity 307 

of particles increases as the particle size decreases [36].  308 

Many of the techniques used to mitigate particulate mass (PM) cause of increase in PN, this 309 

increase is primarily in the nucleation mode. Apart from the PM limit, which is already part of 310 

the current emissions standard regulations [65], PN emissions have become regulated for 311 

emissions certification tests in many countries. For example, China’s CN5 regulation included 312 
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the limit of 6x1011 (#/km) for PN emissions, the EU Commission added a limit of 6x1011 (#/km) 313 

for PN emissions to the Euro 5b regulation for the type approval of diesel light-duty vehicles 314 

in 2011 and to Euro 6 regulation for the type approval of gasoline direct injection light-duty 315 

vehicles in 2014 [65]. PN emission has become more dominant in the most recent emissions 316 

regulation such as WLTP. For example, in real driving emission (RDE) type approval tests for 317 

compression ignition vehicles, which is a part of WLTP implemented from Sep 2017, only PN 318 

needs to be measured and not PM [65]. This could be owing to the fact that after-treatment 319 

systems, such as the diesel particulate filter (DPF) can significantly reduce PM , but it is not 320 

very effective at reducing the small particles which are very light with no considerable mass 321 

(but are significantly more toxic than their larger counterparts). However, there has been a 322 

number of research conducted to improve DPFs recently, such as optimisation of microwave 323 

energy consumption in the heating process of composite regeneration [66] or performance 324 

enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter or 325 

diesel soot continuous regeneration performance based on field synergy theory and model [67-326 

69]. 327 

In the current method of PM measurement in the recent regulation (Euro 6), which is called 328 

PMP (Particle Measuring Program), only solid particles with a size of 23 nm and above are 329 

measured [37]. However, sub-23 nm particles are more toxic compared to bigger particles; 330 

therefore, this study has a special focus on smaller particles (sub-23 nm). 331 

PN emissions are influenced by a number of different factors which may cancel or reinforce 332 

the effect of one another under different conditions. The following analysis will first look at 333 

the effect of cold start and then the effect of fuel on PN emissions during the custom test.  334 

This study used an SMPS particle analyser to sample the exhaust emissions. Each sample took 335 

2 min, hence the first and second samples (Stage #1 and #2) are from engine start until the 336 
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engine coolant temperature (shown in Figure 2) reaches to ~65 degC, the next three samples 337 

(Stage #3, #4 and #5) correspond to the duration in which engine coolant temperature is above 338 

~70 degC (shown in Figure 2) but less than its optimum value, therefore these stages cannot be 339 

considered as cold start as per the regulation and also not as steady-state owing to the fact that 340 

the engine temperature is still increasing. The data of these stages are of importance as it can 341 

show that these sections (which are not cold start) are different to steady-state results. The last 342 

two samples (Stage #6 and #7) correspond to steady-state condition as the engine coolant 343 

temperature is stable, and therefore can be considered steady state. The findings will be 344 

discussed in detail first from the cold start effect point of view and then from the fuel properties. 345 

3.1.1 Cold start effect 346 

Figure 3 shows the PN concentration for all of the tested fuels through the custom test measured 347 

by an SMPS. In general, the figure shows that PN increases as the engine warms up, which 348 

means that the cold start section has lower PN compared to hot start. As explained, there are 7 349 

consecutive stages (each corresponds to the average of two minutes) from the beginning of the 350 

cold start test; and PN emissions during each stage will be discussed.  351 

Stages #1 and # 2 fall in the cold start period. As per the regulation, cold start is defined from 352 

the engine start (after a proper soak) until 5 minutes or until the engine coolant temperature 353 

reaches 70 degC. As can be seen, Stages #1 and #2 had a similar PN concentration for all the 354 

fuels. For example, with D100, PN concentration from Stages #1 and #2 were 1.50E7 and 355 

1.52E7; and the difference was less than 1.5%. With D95W5 the difference between Stages #1 356 

and 2 was less than ~1.7%. These two stages correspond to the first 300 s of the test where the 357 

engine coolant temperature (shown in Figure 2) increased from ~23 to ~65 degC. During these 358 

two stages the engine injection strategy did not change. This can be seen by analysing the start 359 

of injection parameter which is a part of injection strategy commanded by the engine 360 

controlling unit (shown in Figure 4). As can be seen in Figure 4, during this period, the start of 361 
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injection was constant which could be one of the reasons for the insignificant change in PN 362 

concentration during this period.  363 

Stage #3 has a significantly higher PN when compared to cold start (Stages #1 and #2). For 364 

example, in Stage #3, D100, D99W1 and D95W5 had 32, 74 and 70% higher PN compared to 365 

Stage #1. This stage cannot be considered as cold start according to the regulation as it 366 

corresponds to a time that the engine coolant temperature has already reached 65 degC (shown 367 

in Figure 2) and the injection strategy is changing. This stage is related to an unsteady warm 368 

condition. Figure 4 shows a slight change in the start of injection in Stage #3 when compared 369 

to Stages #1 and #2. However, Figure 4 cannot show a significant change owing to the fact that 370 

it shows the average value over 2 minutes. But, inspecting further showed that during this stage, 371 

the start of injection increased (commanded by engine injection strategy) providing the reason 372 

for the unsteady condition during this stage.  373 

Stages #4 and #5 are not cold start as per the regulation because the coolant temperature shown 374 

in Figure 2 is above 70 degC. However, this duration cannot represent the steady state 375 

condition; as the engine exhaust gas, oil and coolant temperatures are still increasing (Figure 376 

2).  As shown in Figure 4, in this period, the start of injection is stable; however, it changed 377 

compared to Stage #1 and #2 because of the increase in engine temperature. As shown in Figure 378 

3, PN for Stages #4 and #5 are higher than cold start (Stages #1 and #2) for all of the fuels. For 379 

example, Stage 4 shows that D100 with 2.34E7 has 56% higher PN than Stage #1 and also 56% 380 

than Stage #2.  381 

Stages #6 and #7 represent the hot start steady state condition as they were collected in a 382 

duration in which the engine coolant temperature was above 70 degC and also optimal, as 383 

shown in Figure 2. These two stages represent the steady-state condition owing to the engine 384 

being stable as the start of injection (Figure 4); and coolant, oil and exhaust gas temperatures 385 
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(Figure 2) are stable. As can be seen in Figure 3, PN concentration for all the fuels are higher 386 

during these steady state stages when compared to during cold start. PN with D100, D99W1 387 

and D95W5 during steady state (Stage #7) is 54%, 46% and 197% higher than cold start (Stage 388 

#1), respectively.  389 

 390 

 391 

Figure 3 PN concentration within the custom test for all the tested fuels  392 

 393 

 394 

Figure 4 Start of injection within the custom test 395 
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Nanoparticles are the main contributor of PN emissions. A study in the literature reported that 397 

nanoparticles increase as the exhaust gas temperature increases [35]. Figure 5, which shows 398 

the size distribution of the particles for all the tested fuels through the custom test, indicates 399 

that the number of nucleation mode particles increases as the engine warms up. To better 400 

understand the effect of temperature on PN, this study looks at the size of particles in each 401 

stage. 402 

Based on the size distribution, particles can fall into two main categories: nucleation mode and 403 

accumulation mode. Nucleation mode particles have a diameter of 3-30 nm. The particles in 404 

this mode consist of sulfur, volatile organic compounds and also small portion of solid 405 

compounds from carbon and metal [70]. These small particles which are significantly affected 406 

by dilution parameters and sampling systems typically contribute 0.1 to 10% of PM and up to 407 

90% of PN [70]. The other category is the accumulation mode, which covers particles with a 408 

diameter of 30-500 nm. Adsorbed materials and carbonaceous agglomerates compose the 409 

particles in this mode [70]. Condensation of volatile materials which can lead to the 410 

agglomeration of particles in the nucleation mode can form accumulation mode particles [71]. 411 

As mentioned, PN in Stages #1 and #2 were similar, shown in Figure 3. Having a similar trend 412 

for all of the fuels may conclude that during this period increasing the engine temperature did 413 

not affect the PN concentration. As can be seen in Figure 5, separately for each fuel, the PN 414 

size distribution of Stage #1 seems similar to Stage #2; however, looking in detail shows that 415 

particles are slightly bigger in Stage #2 than Stage #1. This can be better presented by 416 

evaluating the median diameter of the particle size from the size distribution graph (there are 417 

other ways of looking into this such as analysing the primary particle size [72]). Figure 6 shows 418 

the median diameter in the PN size distribution graph within the custom test for all of the tested 419 

fuels. As shown, the median diameter increment from Stage #1 to Stage #2 for D100, D99W1 420 

and D95W5 are 82.8 to 90 nm, 78.7 to 83.5 nm and 82.1 to 82.2 nm, respectively. Given that 421 
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the start of injection remained constant, increasing engine temperature through these two stages 422 

could be the reason for that.  423 

Comparing Stage #2 to Stage #3 in Figure 6 shows that the median diameter for D100 and 424 

D99W1 increased from 90 and 83.5 nm (in Stage #2) to 99 nm and 97 nm (in Stage #3), 425 

respectively. While, for D95W5 the median diameter did not change significantly; it slightly 426 

decreased from 82.2 to 80.9 nm. Figure 4 shows that for Stage #3, compared to Stages #1 and 427 

#2, the start of injection slightly increased as within Stage #3, the injection strategy of the 428 

engine changes the start of injection, and given that Figure 4 shows the average value over 2 429 

minutes, the conclusion about the correlation between injection parameters and particle size 430 

might not be very accurate.  431 

Figure 6 shows that with D100 and D99W1, Stage #4 has bigger particles than cold start 432 

(Stages #1 and #2), while, D95W5 has smaller particles. Figure 6 also shows that Stages #4 433 

and #5 have smaller particles compared to Stage #3. The figure also shows that the median 434 

diameter after Stage #3 started decreasing; this can be owing to the increasing number of 435 

particles in the nucleation mode shown in Figure 5. This increase is more significant when it 436 

comes to D95W5, which has more waste lubricating oil in it. This is because of the fuel 437 

properties which will be discussed further in the fuel effect sub-section, Section 3.1.2. Looking 438 

at Figure 4 and further analysis of the injection parameters showed that the ignition delay 439 

during these two stages are higher than Stage #3, consequently there will be more time for fuel 440 

atomisation and evaporation.  441 

With D100 and D95W5, Stages #6 and #7 have smaller particles compared to cold start and 442 

also other stages. With D95W5, the nucleation mode particles increase gradually as the engine 443 

warms up, this could be the reason for the higher PN emissions as nucleation mode particles 444 

are the main contributor. Figure 4 and further analysis of the injection parameters showed that 445 
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the ignition delay during these two steady state stages are higher than cold start stages, 446 

therefore, there will be better fuel atomisation during these stages which can be another reasons 447 

for smaller particles. However, despite this, the driving force for this increase is likely to be 448 

the fuel properties.  449 

 450 
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451 

452 

 453 

Figure 5 PN size distribution within the custom test for all the tested fuels  454 
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 456 

 457 

Figure 6 Median diameter in PN size distribution within the custom test for all the tested fuels 458 
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weakens the effect of temperature rise on the size of particles. This can be seen from the median 474 

diameter change from Stage #1 to Stage #2, where the start of injection (shown in Figure 4) 475 

was constant and the increase in the engine temperature—which itself was associated with an 476 

increase in median diameter for each fuel—will be less effective when the share of waste 477 

lubricating oil in the fuel increases. For example, for D100, the increase from Stage #1 to Stage 478 

#2 was ~7 nm while for D99W1 and D95W5 the increase were ~4 nm and 0 nm, respectively.  479 

During Stage #3, D95W5 has the lowest PN, similar to Stages #1 and #2; however, the 480 

difference between PN with D95W5 and the fuel with the highest PN decreased through these 481 

three stages. During Stage #4, D95W5 has the lowest PN, similar to Stages #1, #2 and #3; 482 

however, the difference between PN with D95W5 and the fuel with the highest PN decreased 483 

through these four stages and eventually PN with D95W5 from Stage #5 onward was not the 484 

lowest value compared to the other fuel. This is because of the increasing trend of nucleation 485 

mode particles (shown in Figure 5) owing to the presence of waste lubricating oil, which 486 

significantly affects the PN emissions.  487 

Figure 3 shows that in Stages #6 and #7, D95W5 has the highest PN between the fuels. For 488 

example, in Stage #6, D95W5 has 2.6E7 PN which is ~13% higher than D100. The reason can 489 

be better explained by looking at the size of the particles. Smaller particles typically have a 490 

greater contribution to the total PN and particles with bigger median diameter contributes more 491 

to larger particles [75]. Figure 6 shows that the median diameter of particles with D95W5 in 492 

Stages #6 and 7 is less than 50 nm while for the other two fuels it is above 80 nm. This 493 

significantly lowers the median diameter compared to the other two fuels and explains the 494 

higher PN. Figure 5 shows that with D95W5, from Stage #1 to Stage #7 the number of particles 495 

in the nucleation mode increases, making a more visible bimodal size distribution. An increase 496 

in the nucleation mode particles decreases the median diameter as shown in Figure 6. This is 497 

owing to the presence of 5% waste lubricating oil in the fuel, which increases the nucleation 498 
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mode particles consequently decreasing the median diameter. As mentioned before, PN and 499 

PN size distribution are affected by different parameters cancelling or reinforcing the effect of 500 

one another under different condition.  501 

A study by Kittelson et al. [35] showed that the sulfur content of lubricating oil increased the 502 

nanoparticles. Nucleation mode particles—which mainly form during the exhaust gas cooling 503 

and dilution process—are composed of soluble and volatile organic fractions formed from the 504 

portion of fuel and evaporated lubricating oil which escaped from the oxidation process [76]. 505 

Therefore, higher evaporated lubricating oil can potentially increase the nucleation mode 506 

particles. During cold start, the low temperature of the cylinder wall leads to a lower 507 

temperature of the charged air in the cylinder. This, and also the low temperature of the fuel, 508 

will negatively impact the fuel and lubricating oil vaporization, leading to less nucleation mode 509 

particles during cold start; however, by increasing the engine temperature the charged air 510 

temperature in cylinder increases, leading to better fuel vaporization and increased evaporated 511 

lubricating oil which consequently increases nucleation mode particles. Given that the presence 512 

of lubricating oil during combustion affects the nucleation mode particles, compared to D100 513 

the fuel blends with waste lubricating oil (D99W1 and D95W5) have more nucleation mode 514 

particles as the engine warms up. This can be seen in Figure 5 where the nucleation mode 515 

particles with D95W5 increases significantly as the engine warms up. 516 

 517 

3.2 Friction losses and mechanical efficiency  518 

FMEP is the difference between indicated mean effective pressure (IMEP) and brake mean 519 

effective pressure (BMEP). This parameter indicates the engine friction losses from different 520 

parts of the engine, such as pumps (fuel, water and oil pumps) and mechanical friction. Figure 521 

7 shows the FMEP within the custom test through 7 stages, each corresponds to the average of 522 
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two minutes from the beginning of the cold start test. As can be seen, FMEP during cold start 523 

is higher than during the hot section. For example, with D100, FMEP from Stage #1 which is 524 

related to the first two minutes of the test is 146% higher compared to Stage #7 in when the 525 

engine is warmed up. As can be seen from Figure 7, FMEP decreases as the engine warms up. 526 

For example, compared to Stage #1, the FMEP reduction with D100 in Stage #2 to #7 was 527 

24.6, 35.7, 46.3, 53.6, 56.6, and 59.4%, respectively. Or with D95W5, the decrease compared 528 

to Stage #1 was 20.6, 33.7, 46.4, 53.6, 54.3 and 57.7% for Stage #2 to #7, respectively. The 529 

reason for the higher FMEP during cold start is due to the higher viscosity of the lubricating 530 

oil because of its low temperature. As the engine warms up, the engine oil temperature 531 

increases and consequently the lubricant viscosity decreases which leads to less friction losses, 532 

therefore less FMEP. Comparing Figure 2 to Figure 7 shows the correlation between FMEP 533 

and engine oil temperature. As can be seen from Stage #1 to Stage #4, the FMEP decrease was 534 

significant corresponding to a significant increase in engine oil temperature through these 535 

stages; while, from Stage #4 to Stage #7 the FMEP decreased gradually with a lower rate, 536 

similar to the lower lubricating oil temperature rise rate when compared to the rate from Stages 537 

#1 to #4.  538 

FMEP is affected by other parameters as well. As can be seen in Figure 7, by adding waste 539 

lubricating oil to the fuel FMEP increases. For example, in Stage #7, FMEP with D100 is 69.5 540 

kPa, but adding 1 and 5% waste lubricating oil increased FMEP to 69.7 and 73.7 kPa, or in 541 

Stage #3 in which FMEP with D100, D99W1 and D95W5 was 110, 112 and 116 kPa, 542 

respectively. It can be also be seen that difference between D95W5 (with 5% waste lubricating 543 

oil) and D100 on FMEP is more significant during cold start, compared to when the engine is 544 

fully warmed up. For example, in Stages #1 and #2, FMEP with D95W5 is ~8% higher than 545 

with D100, while in Stage #7 the difference in 6%. The reason could be due to the lower 546 



27 

 

viscosity of the waste lubricating oil when the engine is fully warmed up compared to cold 547 

start.   548 

 549 

 550 

Figure 7 FMEP within the custom test for all the tested fuels 551 
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efficiency was 88%. Regarding the effect of fuel on mechanical efficiency, it can be seen from 565 

the figure that the difference is not significant, however, in most of the stages D95W5 with 5% 566 

waste lubricating oil in the blend had a slightly lower efficiency (nearly 1%) compared to D100 567 

and the other fuel. This aligns with FMEP, as these two parameters have an inverse correlation. 568 

 569 

 570 

Figure 8 Mechanical efficiency within the custom test for all the tested fuels 571 
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Given that the cold start test was at constant speed, the first study will be on engine speed by 581 

calculating the CoV—standard deviation divided by average—over 2 min stage (which will be 582 

~1440 engine cycles) during the custom test for all the tested fuels. In terms of engine speed 583 

stability during the test, the CoV for engine speed was calculated for 7 stages (each two 584 

minutes) from the start of the cold start test until the engine was warmed up for all of the tested 585 

fuels, shown in Figure 9. As can be seen, the CoV for all of the tested fuels during the test was 586 

less than 0.2% which shows the stability of the engine speed during the test. D99W1 had the 587 

highest CoV in all of the stages; while, D95W5 had the lowest CoV (except for Stage #1 in 588 

which D95W5 was slightly higher than D100). The figure also shows that CoV with D95W5 589 

was slightly higher during cold start (the first three stages) compared to when the engine was 590 

warmed up (Stages #6 and #7). As mentioned, the changes are insignificant (less than 0.2%) 591 

and the difference seen in the figure might not be meaningful in terms of cold start or fuel 592 

effects. 593 

 594 

 595 

Figure 9 Engine speed coefficient of variation within the custom test for all the tested fuels  596 
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Figure 10 shows the CoV of IMEP within the custom test for all the tested fuels. As can be 598 

seen, the CoV of IMEP during cold start (Stage #1) is significantly higher when compared to 599 

Stage #7 in which the engine is warmed up. For example, in Stage #1, the CoV of IMEP with 600 

D100, D99W1 and D95W5 are 1.7, 1.2, and 1.1%, respectively; while, in Stage #7 are 0.9, 0.6 601 

and 0.6%. Also, it can be seen that this parameter has a decreasing trend as the engine warms 602 

up through Stages #1 to #7. The reason for the higher CoV of IMEP during cold start could be 603 

the low temperature of the cylinder wall during cold start, which can adversely influence the 604 

fuel vaporisation and fuel ignition making the in-cylinder pressure gradient steeper. This can 605 

be seen in Figure 11 where the maximum rate of pressure rise is significantly higher during 606 

cold start and decreases with increasing engine temperature. For example, with D100, the 607 

maximum rate of pressure rise during cold start (Stage #1) is 1.7 times higher than when the 608 

engine is warmed up (Stage #7). Generally, noise and instability in diesel engines highly 609 

depend on the premixed combustion phase [81], and maximum rate of pressure rise highly 610 

depends on the premixed combustion phase.  611 

 612 

 613 

Figure 10 Coefficient of variation of IMEP within the custom test for all the tested fuels  614 
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 615 

Figure 11 Maximum rate of pressure rise within the custom test for all the tested fuels 616 
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• During Stage #3, which was after the cold start threshold (defined by the engine 630 

strategy), PN increased up to 74% due to the injection strategy change and unstable 631 

condition. 632 

• Stages #4 and #5, which are not cold start and also not steady state, had a similar PN 633 

but higher than cold start stages.  634 

• Stage #7, which was related to the steady state condition, had 54% higher PN than cold 635 

start when diesel was used. With 5% waste lubricating oil in the fuel blend, this PN 636 

increase was 197%. 637 

• Nucleation mode particles increased as the engine warmed up. During cold start, an 638 

increase in engine temperature was associated with an increase in particle size, while 639 

during hot operation and steady state, an increase in engine temeprature was associated 640 

with a decrease in particle size. This was owing to an increase in nucleation mode 641 

particles. 642 

• During cold start, adding 5% waste lubricating oil to the blend decreased PN by 43%, 643 

while during steady state it increased PN by ~13%. 644 

• Adding waste lubricating oil significantly increased the number of nucleation mode 645 

particles and decreased the size of the particles during steady state. 646 

• Compared to steady state, during cold start FMEP was higher (~146%) and 647 

mechanical efficiency was lower (~15%). 648 

• Adding waste lubricating oil to the fuel increased the FMEP and slightly decreased 649 

the mechanical efficiency. 650 

• The CoV of IMEP and maximum rate of pressure rise during cold start were higher than 651 

steady state. Adding waste lubricating oil to the fuel during cold start decreased the 652 

CoV of IMEP and the maximum rate of pressure rise.   653 

 654 
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 904 

7. Appendix 905 

Test repeatability was ensured by conducting the cold and hot start tests two times. The 906 

statistical analysis—average, standard deviation (SD) and coefficient of variation (CoV)—of 907 

different engine performance and emissions parameters further confirmed the repeatability of 908 

the tests. For example, Table A1 presents the statistical analysis of the two repeated tests for 909 

engine torque, speed and CO2. As can be seen, the difference between two cold start tests for 910 

engine torque, speed and CO2 were 0.82, 0.02 and 0.12%, respectively, which clearly 911 

demonstrate the repeatability of the test. In addition to CO2 emissions, the repeatability of the 912 

engine speed and torque between the tests were also evaluated given that these two parameters 913 

can be the indicative of any change in engine operation between the tests.  914 
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 915 

Table A1 Test repeatability statistical analysis 916 

 

Engine torque (Nm) Engine speed (rpm) CO2 (%) 

Average SD 
CoV 

(%) 
Average SD 

CoV 

(%) 
Average SD 

CoV 

(%) 

Cold start Test 1 225.28 8.43 3.74 1498.87 2.22 0.15 6.36 0.06 0.97 

 Test 2 227.20 12.32 5.42 1499.19 1.95 0.13 6.51 0.15 2.27 

 Difference 0.82% 0.02% 0.12% 

Hot start Test 1 238.28 3.2 1.34 1498.94 2.20 0.15 6.47 0.03 0.51 

 Test 2 242.02 2.42 1.00 1499.49 2.16 0.14 6.64 0.02 0.36 

 Difference 1.5% 0.04% 0.17% 

 917 

As a validation step and to show the test-to-test variation and its influence, Figure A1 shows 918 

the IMEP and the error bar representing the standard deviation on each experimental points.  919 

 920 

Figure A1 IMEP within the custom test for all the tested fuels 921 
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