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ABSTRACT 

Functional Electrical Stimulation (FES) can be used to support upper-limb 

rehabilitation after a stroke. A key aspect of FES control and also patient 

monitoring is the automatic tracking of upper-limb motion during intensive and 

functional practise of upper-limb tasks. To achieve this in a home environment, 

simple on-body sensors are required. A promising approach is to use Magnetic 

and Inertial Measurement Units (MIMUs), but they provide body-segment 

orientations rather than anatomical joint angles, the latter being more meaningful. 

To solve this problem the sensor orientation data must be interpreted 

anatomically, which requires that for each body-segment the orientation of its 

sensor coordinate frame is known with respect to its anatomical coordinate frame. 

Therefore, appropriate calibration must be performed to obtain the relationship 

between each sensor frame and its corresponding body-segment anatomical 

frame. 

While many papers have been published on anatomical calibration methods for 

MIMUs, there has been no comprehensive comparison of the alternative 

approaches to establish their relative merits. For FES supported upper-limb 

therapy, the need is for simple and fast donning and calibration, whilst achieving 

acceptable accuracy and repeatability with regards to the calculated joint 

kinematics. Therefore, the main objective of the PhD research was to undertake 

such a comparison and make recommendations for donning and calibration for 

the purposes of upper-limb FES. 

To address this problem the PhD work included: 

1. Undertaking a comprehensive and critical comparison of alternative 

anatomical calibration methods for MIMUs in terms of accuracy, speed, and 

simplicity.  

2. Finding the most appropriate anatomical calibration methods for use in 

upper-limb FES applications with stroke patients. 

3. Determining the best methods for processing MIMU outputs to provide 

anatomically meaningful upper-limb kinematic data. 

4. Experimentally assessing these methods against a gold standard (a VICON 

optical motion capture system). 
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The results demonstrate that there is considerable variation between the 

alternative sensor defined anatomical frames and, hence, confirm the need for 

comprehensive comparisons. The comparisons reported in this thesis have led 

to tentative recommendations. Nevertheless, the methods reported are a sound 

foundation for future work to provide stronger recommendations, with more 

formal measures of confidence. 
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Chapter 1 – Introduction 

1.1 Background 

Every year 15 million people worldwide suffer a stroke, nearly six million of whom 

die, and another five million are left permanently disabled (WHO, 2003). Indeed, 

stroke is the second leading cause of disability, after dementia (WHF, 2016). 

Approximately 50% of stroke survivors experience significant upper-limb 

functional limitations (Broeks, Lankhorst, Rumping, & Prevo, 1999; Heller et al., 

1987; Parker, Wade, & Langton Hewer, 1986; Timmermans et al., 2009) due to 

a reduction in or inappropriate muscle activations and impaired coordination 

(Barker, Brauer, & Carson, 2008; Burgar et al., 2011; Harris & Eng, 2010; 

Timmermans et al., 2009). 

A wide range of rehabilitation interventions aim to help restore upper-limb function 

after stroke. Interventions include conventional physiotherapy, robotic assisted 

therapy, therapeutic electrical stimulation (TES), and functional electrical 

stimulation (FES). FES is the controlled use of electrical pulses to produce 

contraction of muscles in such a way as to support functional movement. The 

ideal FES control system should enable a patient to practice a variety of different 

upper limb functional tasks, using as much as possible of the patient’s own 

functional ability. The system should also adapt to changes in the patient’s ability 

to continually challenge him/her. Finally, the system should be easy to use and 

setup  (Lynch & Popovic, 2008). However, achieving satisfactory levels of FES 

control is very challenging because of the nonlinear (Ferrarin, Palazzo, Riener, & 

Quintern, 2001; Lynch & Popovic, 2008) and time-varying (Lynch & Popovic, 

2008) response of muscles to stimulation. Furthermore, perturbations from 

muscle spasticity and other central nervous system feedback loops introduce 

often unpredictable challenges to the controller (Lynch & Popovic, 2008). 

A key aspect of FES control is the automatic tracking of upper-limb motion and, 

to achieve this in a home environment, simple on-body sensors are required. 

Additionally, regular clinical assessments of rehabilitation progress are important 

and, ideally, these should be based on objective measurement of upper-limb and 

body movements during functional task practise in order to assess the effects of 
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muscle weaknesses and coordination dysfunctions. A promising approach is to 

use Magnetic and Inertial Measurement Units (MIMUs). In this context, the 

Salford group have developed a MIMUs based FES system that incorporates a 

finite-state-machine (FSM) controller, which is easy to set up and flexible enough 

to allow for varied functional task practice across a range of patients. The 

therapist can use a simple graphical user interface (GUI) to set up a variety of 

different FSM controllers, corresponding to different upper-limb functional tasks, 

tailored to the individual patient. However, the system has the following 

limitations: 

• Significant therapist input is still required to set up the FSM controller and to 

adapt the controller as the patient’s status changes; 

• It uses MIMUs to provide segment orientations, but not anatomical joint angles, 

which are more meaningful; 

• The controller cannot automatically adapt the stimulation profiles as the patient 

changes (e.g. fatigues or improves their performance with practise). 

In order to move towards a more automated approach to both setup and adapting 

to changes in the patient, further work is required. This PhD focusses on solving 

the second problem listed above. In other words, the focus is on the estimation 

of anatomical joint angles using data from MIMUs on adjoining upper-limb 

segments (Al-Ani, Howard, & Kenney, 2017). This is clinically important because 

using body segment orientations, rather than anatomical joint angles, allows 

users to compensate for muscle weaknesses and coordination dysfunctions by 

moving proximal segments to change the orientation of a more distal segment, 

without using their anatomical joints correctly as needed for good rehabilitation. 

This may also be associated with reduced patient effort to use their weaker 

muscles and hence reduced efficacy of the intervention.    

The MIMU orientation data cannot be interpreted anatomically unless the 

orientations of the MIMUs (sensors) are known with respect to the anatomy. 

Therefore, appropriate calibration must be performed to obtain the relationships 

between each sensor coordinate frame and its corresponding anatomical (body 

segment) coordinate frame, and two approaches are possible. Firstly, by careful 

positioning of the sensor on the body segment, a known geometric relationship 
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between the sensor frame and the anatomical frame may be assumed without 

the need for any additional calibration procedures. In the simplest case, the 

segment anatomical axes are equivalent to the sensor axes. In the second 

approach, the sensor does not have to be positioned as carefully and calibration 

procedures are followed to construct the anatomical frame based on sensor 

readings. These procedures can include a combination of static calibrations, 

where the body segment is held in a defined position while readings are taken; 

and dynamic (functional) calibrations where the participant performs a specific 

functional movement while readings are taken. 

Importantly, the anatomical calibration problem is still an open research question 

because no study has comprehensively compared alternative approaches to 

determine the best calibration methods. While many papers have been published 

on sensor-to-segment calibration, there has been no comprehensive comparison 

of the alternative approaches to establish their relative merits. For FES supported 

upper-limb therapy, the need is for simple and fast donning and calibration, whilst 

achieving acceptable accuracy and repeatability with regards to the calculated 

joint kinematics. Therefore, the primary objective of the PhD research was to 

undertake such a comparison and make recommendations for donning and 

calibration for the purposes of upper-limb FES. 

1.2 Objectives 

To achieve the overarching aim of estimating anatomical joint angles using data 

from MIMUs on adjoining upper-limb segments, the following research objectives 

have been set: 

1. Undertake a comprehensive and critical comparison of alternative anatomical 

calibration methods for MIMUs in terms of accuracy, speed, and simplicity. 

2. Find the most appropriate anatomical calibration methods for use in upper-limb 

FES applications with stroke patients. 

3. Determine the best methods for processing MIMU outputs to provide 

anatomically meaningful upper-limb kinematic data. 

4. Experimentally assess these methods against a gold standard (VICON 

optical motion capture system). 
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1.3 Overview of thesis 

The organisation of the thesis is based on the sequence of work. 

Chapter 2 begins with general background on healthy and damaged neural 

control. Next, upper-limb rehabilitation following stroke is introduced including 

current FES systems as well as the Salford FES system. Then a review of human 

motion tracking systems is presented, particularly focussed on the upper-limb. 

Last, a comprehensive review of the measurement of upper-limb kinematics 

using MIMUs, including calibration methods, is presented. 

Chapter 3 describes the experimental work using two synchronised 

measurement systems. Firstly, descriptions of body worn MIMUs and 

stereophotogrammetry are presented. Secondly, the synchronised measurement 

of upper-limb movement using the two systems is described, including 

experimental set-up, marker and sensor placements, and the movement trials 

(calibration trials and functional task trials). Finally, the methods for pre-

processing the raw MIMUs data and also for processing the 

stereophotogrammetry data are explained. 

Chapter 4 addresses the problem of anatomical calibration and the calculation 

of joint kinematics using MIMUs data. Firstly, the basic principles of deriving 

anatomical axes and the corresponding calibration rotation matrices are 

introduced. Secondly, the many alternative calibration methods and their 

corresponding calibration rotation matrices are presented in detail for the Thorax, 

Upper-arm, Forearm and Hand. Finally, methods are presented for calculating 

the joint rotation matrices for the Lab-thorax, Shoulder, Elbow, and Wrist, using 

the calibration rotation matrices for their proximal and distal segments. 

Chapter 5 compares the alternative calibration methods described in Chapter 4. 

Three different sets of results are presented. Firstly, for each body segment, the 

orientations of the alternative anatomical frames, relative to their common sensor 

inertial frame, are compared (each one corresponding to one alternative 

calibration rotation matrix). Secondly, for each joint, the best pair of calibration 

rotation matrices (i.e. for proximal and distal segments) is found using a 

sequential assessment process. Furthermore, for each joint, the best pair of 
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calibration rotation matrices is found using an independent assessment process. 

Finally, conclusions are discussed. 

Chapter 6 summarises the work, draws conclusions, and makes 

recommendations for future work. 
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Chapter 2 – Literature Review 

2.1 Background 

2.1.1 Neural control in healthy subjects 

The upper limb is a complex structure and, excluding scapular motion, the upper-

limb with its shoulder, elbow, and wrist joints has 7 DOF, making it kinematically 

redundant (Prilutsky et al., 2011). Therefore, multiple joint trajectories are 

possible to complete any given task. Its complexity makes it difficult to model and 

demonstrates the sophistication of the human neural control system (Miller, Kim, 

& Rosen, 2011). 

The intact CNS (brain and spinal cord) controls voluntary movements as follows. 

Firstly, visual information is required to locate the target or determine the 

movement. Secondly, the parts of the brain involved in planning the movement 

exchange information with the motor cortex (Saladin, 2001). Upper motor 

neurons that originate completely either in cerebral cortex or brain stem are then 

activated and send information to the spinal cord. Note that upper motor neurons 

axons decussate (cross over) before synapsing with lower motor neurons. Thus 

the left side of the body is controlled by the right motor cortex, and vice versa (i.e. 

contralateral control) (Monkhouse, 2005). Lower motor neurons are efferent 

nerve fibres that carry signals from spinal cord to effectors (e.g. hand) to produce 

effect or movement (Bear, Connors, & Paradiso, 1996; Burke, 2007). 

Connectivity between the upper and lower motor neurons occurs in the spinal 

neurons. 

Sensory receptors, which are part of sensory neurons and certain spinal reflexes, 

transmit sensory information (e.g. position of the limb and force applied to limb) 

towards the central nervous system via afferent fibres. Visual feedback also 

provides information to the brain which makes necessary adjustments during the 

movement (Pierrot-Deseilligny & Burque, 2005; Rothwell, 1994). 
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2.1.2 Central nervous system damage 

Damage to the CNS due to trauma, stroke, or disease, in conjunction with other 

health problems (e.g. muscle atrophy, joint contractures) can result in decreased 

sensory-motor performance. The regions of the body affected are determined by 

the extent and type of injury, stroke, or disease. For example thoracic lesions lead 

to paraplegia, cervical lesions result in tetraplegia, and brain lesions cause in 

hemiplegia or cerebral palsy (Popović, 2014). A stroke is a type of brain 

lesion/injury caused by an abnormality of the blood supply to a portion of the 

brain. When a part of the brain is damaged due to a bleed or inadequate blood 

supply, that part of brain becomes unable to perform its normal function.  

A stroke may result in many different types of dysfunctions and disabilities. Motor 

dysfunction after stroke is characterised by weak, stiff, or uncoordinated 

movement with different severities, ranging from decrease in strength to paralysis 

(Caplan, 2010). The functions of individual limbs are controlled from different 

locations within the brain and spinal cord. Thus, any impairment in the region of 

the brain associated with control of that part may lead to reduced or total absence 

of voluntary control of the affected part (i.e. loss of motor function). 

2.1.3 Artificial means of restoring function following central 

nervous system damage 

Although traditional therapeutic rehabilitation approaches may help to restore 

upper limb motor function after stroke, a considerable portion of stroke patients 

retain motor deficits after completing therapy (Management of Stroke 

Rehabilitation Working Group, 2010). However, recent studies have shown that 

in chronic stroke patients, very intensive rehabilitation upper-limb programmes 

can lead to a substantial improvement in measures of impairment and activity, 

which are also clinically meaningful (Ward, Brander, & Kelly, 2019). In Ward’s 

study patients received a total of 90 hours of therapy, delivered 6-hours/day, 5 

days a week, for 3 weeks. 

By contrast, only low intensity therapy is available to patients owing to a limited 

availability of therapists. For example, people with upper limb impairments 

following stroke receive treatment from physiotherapists and occupational 
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therapists three times per week (median value), with a mean duration of therapy 

sessions of 29 min. This shows that the current provision of upper-limb therapy 

is significantly lower than evidence suggests is required to drive recovery 

(Stockley, Peel, Jarvis, & Connell, 2019). Relatively low therapy doses are also 

found in other countries. For example, in a study of 7 sites in the United States 

and Canada, stroke patients were seen by therapists on average 4 days a week, 

1-2 times a day. Average session duration was 36±14 minutes (Lang et al., 2009).   

Therefore, another approach, the use of electrical stimulation (ES), has been 

investigated (Baker, Wederich, Newsam, & Waters, 2000). ES is a technique that 

uses electric impulses (or electrical current) to stimulate nerve(s) and hence 

cause contractions in muscle(s). Functional electrical stimulation (FES) is the use 

of electrical stimulation to assist with performance of a functional activity, such as 

walking, or reaching to grasp an object. FES can be used a means of practicing 

functional movements for therapeutic benefit (Sheffler & Chae, 2007) and an FES 

control system, coupled with residual voluntary movement, may restore elements 

of voluntary functional upper-limb movement (Howlett, Lannin, Ada, & McKinstry, 

2015). Use of FES is clinically supported (J. De Kroon, Van der Lee, IJzerman, & 

Lankhorst, 2002), and the potential of FES to restore voluntary function is 

enhanced when the person’s intention to move is associated with stimulation (J. 

R. de Kroon, Ijzerman, Chae, Lankhorst, & Zilvold, 2005) and the opportunity for 

repetitive task oriented movement practice is provided (Hughes et al., 2009). 

These studies, as well as the basic science studies reported above, support the 

potential for motor relearning to be facilitated by FES-mediated functional 

movement (Sheffler & Chae, 2007). 

FES (Baker et al., 2000) is now widely used in helping restore motor function for 

stroke patients (Lynch & Popovic, 2008). The core of any FES system is the 

controller that calculates the stimulation patterns needed to be applied to specific 

muscles at particular times in order to perform the desired function. This task is 

complicated, due to the highly non-linear, redundant and time-varying properties 

of the musculoskeletal system (Chizek et al., 1988). Furthermore, upper limb 

movements are goal-directed, (Crago, Lan, Veltink, Abbas, & Kantor, 1996) and 

hence the amplitude, velocity and direction of the motions vary greatly depending 

on the task to be performed. 



9 
 

Researchers have developed a number of different systems which use a variety 

of different types of control to address these problems. The following section 

describes the characteristics of an ideal upper-limb FES system.  

2.1.4 What are the ideal characteristics of an upper-limb FES 

system? 

To enable patients to practice at the levels of intensity suggested by (Ward et al., 

2019) , an FES system for the upper limb should ideally be able to be used at 

home. Design of a home-based FES system is challenging as the setup would 

need to be individualised to each patient’s needs and the software and hardware 

be sufficiently easy to use by patients and/or carers. Further, an FES system 

should also ideally synchronise stimulation with the patients voluntarily effort, as 

this may have a positive impact on CNS reorganisation (Rushton, 2003). Finally, 

the patient should always be challenged in the task they are practicing (Nudo, 

Plautz, & Milliken, 1997). To address this, adaptive control techniques may be 

required. 

As shown in Figure 2.1, the general concept of assistive systems which have 

been used to augment movement may include a powered exoskeleton or an FES 

system. With either type of system, the user traditionally controls the assistive 

device with a physiological command signal (e.g. EMG, EEG, residual limb 

movement). The system then assists by either moving the arm with robotic 

support or by stimulating relevant muscles. This type of system can be used in 

conjunction with residual voluntary effort to complete the desired task. 
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Figure 2.1 : General concept for a stroke assistive system (FES system) showing possible system inputs, feedback signals and outputs 
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2.1.5 Current FES systems 

Upper-limb motion is non-periodic, unrestricted, and redundant. Movement 

control of the upper-limb in stroke patients via FES is, therefore, a complex 

problem (Tresadern, Thies, Kenney, Howard, & Goulermas, 2008). Furthermore, 

the nonlinearity of target muscles, rapid changes in muscle properties due to 

fatigue, muscle spasticity, perturbations, and noise from unwanted signals from 

the nervous system are considered major problems that limit the success of FES 

control (Ferrarin et al., 2001; Lynch & Popovic, 2008) 

To address these issues, researchers have developed different types of control 

strategies. These can be classified under one or more of the following headings: 

open-loop control, closed-loop control, finite-state-machine control, hybrid 

control, iterative learning control, and adaptive control. Closed-loop control is 

particularly difficult because of the aforementioned major problems. Conversely, 

simple open-loop control (e.g. timed exercise stimulation) does not sufficiently 

involve the patient. Finite-state-machine (FSM) control provides a compromise 

that avoids the need for continuous closed-loop control, but nevertheless involves 

the patient through the voluntary triggering of the transitions between states. 

In Table 2.1 below, the published studies on FSM control of FES for the upper-

limb are reviewed. The first column contains the name of the system; a letter 

indicating whether the electrodes are Percutaneous (P), Surface (S); and the 

number of channels; the year invented. 
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Table 2.1: FSM control systems for upper-limb FES 

System Control signal 
Stimulation 

profile 

Sensors 

used 

Restricted 

to specific 

part of 

body 

Voluntary 

triggered 

by body 

worn 

sensor 

Functional 

task 

provided 

Can be 

programmed 

to particular 

functional 

task 

References 

MES-

controlled 

FES (P, 2, 

2004) 

Voluntary 

movement (MES) 

(threshold) 

(indirect) 

Manually 

adjusted 

EMG 

sensor 
Yes Yes Grasping No 

(Knutson, 

Hoyen, 

Kilgore, & 

Peckham, 

2004) 

Clinical-

setup tool  

(CST) by 

(Tresadern 

et al., 2008) 

(S, 2, 2008) 

x-acceleration, y-

acceleration, and 

time (T). In other 

word, Voluntary 

movement (when 

the accelerometer 

exceeds the 

threshold), or time 

Manually 

adjusted 

Two 2-

axes 

accelero-

meters 

No Yes 

Open and 

close the 

hand in 

drinking 

task 

Yes 
(Tresadern 

et al., 2008) 
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System Control signal 
Stimulation 

profile 

Sensors 

used 

Restricted 

to specific 

part of 

body 

Voluntary 

triggered 

by body 

worn 

sensor 

Functional 

task 

provided 

Can be 

programmed 

to particular 

functional 

task 

References 

Salford FES 

(HASOMED 

GmbH) 

(RehaStim) 

(S, 8, 

2010s) 

Switch (push-

button), time, or 

satisfy conditions 

based on 

accelerometers 

data 

Manually 

adjusted 

Xsens 

(Accelero

-meters) 

No Yes 
Different 

tasks 
Yes (Sun, 2014) 

Portable 

system 

(Crook & 

Chappell, 

1998) (S,8, 

1998) 

Wrist movement 

detected by wrist 

position sensor, 

and force sensors 

 

Adjusted 

based on 

information 

from sensors 

and pulse 

width when 

exceed 

threshold 

5 Force 

sensors 

on 

fingertips 

and 1 

sensor on 

the wrist 

Yes Yes 
Grasp-

release 
No 

(Crook & 

Chappell, 

1998) 
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2.1.6 The Salford FES system 

The Salford team, funded by the UK Department of Health have produced a 

flexible upper-limb FES system, based FSM control, which enables therapists to 

setup patient and task-specific state machine controllers (Smith et al., 2017, 

2019; Sun et al., 2016, 2018). The FSM controller represents a given functional 

activity as a sequence of movement phases or states, each of which is associated 

with stimulation to one or more muscles at user-defined levels. Additionally, 

transitions conditions for moving from one state to another (between phases) are 

governed by user-defined rules, which use inputs from body-worn Magnetic and 

Inertial Measurement Unit sensors (MIMUs) (Sun, 2014). 

However, the system limitations are as follows: 

• Significant therapist input is still required to set up the state-machine controller 

and to adapt the controller as the patient’s status changes; 

• It uses individual MIMUs to provide segment orientations, but does not 

combine information from pairs of MIMUs on adjoining segments to give 

anatomical joint angles, which are more meaningful; 

• The controller cannot automatically adapt the stimulation profiles as the patient 

changes (e.g. fatigues or improves their performance with practise). 

In order to move towards a more automated approach to both setup and adapting 

to changes in the patient, further work is required. This PhD focusses on solving 

the second problem listed above. In other words, the focus is on the estimation 

of anatomical joint angles using data from MIMUs on adjoining upper-limb 

segments. Therefore, the following section reviews literature on methods that 

have been use for measuring upper-limb motion, particularly using MIMUs. 

2.2 Human motion tracking 

Rehabilitation is a dynamic process that uses assisted practice to help patients 

to regain more normal functional movement (Sveistrup, 2004) and, hence, to 

enable patients to regain the highest possible level of independence (Zhou & Hu, 
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2007b, 2007a). To achieve assisted practice using automated technology such 

as FES, the movement of patients’ limbs needs to be continuously monitored. 

This is particularly the case in a home based rehabilitation scheme (Zhou & Hu, 

2004). More specifically, the patients should be able use the rehabilitation system 

at home without the need for a therapist to be present at each session.  Therefore, 

since the 1980s, human motion tracking for rehabilitation has been an active 

research topic. 

Many sensor technologies and estimation algorithms have been used in human 

motion tracking (Bodor, Jackson, Masoud, & Papanikolopoulos, 2003). Sensor 

data can be used to describe the movement of individual body segments such as 

the head, torso, upper-arm, forearm etc. However, the sensor signals include 

errors and noise in part because of relative movement between on-body sensors 

or markers and the underlying bones (known as the skin artefact). 

According to (Sidenbladh, Black, & Fleet, 2000), motion tracking systems can be 

classified generally under three headings: visual, non-visual, and robot-aided 

(Figure 2.2) and these headings will be used in the following brief review. 
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Figure 2.2: Classification of human motion tracking using sensor technologies 
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2.2.1 Visual tracking systems 

Visual tracking systems use optical sensors such as cameras and can provide 

high accuracy in marker position estimation. Visual tracking systems can be 

classified as follows: 

A. Marker-based visual tracking systems: This is a technique where cameras 

track markers placed upon the human body (typically on bony landmarks). 

Suppliers include Qualisys, VICON, CODA, ReActor2, ELITE Biomech, APAS, 

Polaris, and Optotrack. Camera-based motion capture systems have been 

widely used for quantifying upper- and lower-limb kinematics during different 

activities in laboratory settings (Zhang, Novak, Brouwer, & Li, 2013) and are 

often used as a “gold standard” because of the accuracy of the marker position 

data (around 1 mm). A major disadvantage of using cameras with on-body 

markers is the possibility of occlusion of markers by the moving body 

segments, which means that camera and marker placement is a non-trivial 

problem. Additionally, they are complex, very expensive, and require careful 

setup, generally in a dedicated room. This makes these systems unsuitable for 

home use (Yi Zhang, Huosheng Hu, & Huiyu Zhou, 2005; Zhou & Hu, 2008). 

B. Marker-free visual tracking systems: Marker-free visual tracking systems 

use cameras to capture the point clouds representing the individual body 

segments without requiring markers. Complex image processing techniques 

are then used to fit an anatomical model to the point clouds (stick figures and 

volumetric representations). The advantage of such systems is that they do 

not need careful placement of markers on the body and, therefore, may be 

more usable in a home setting. However, they are less accurate than marker-

based systems and rely on good lighting conditions, clothing that is tight and 

stands out against the background. Furthermore, cameras with high resolution 

and speed, and intensive computation are required (Zhou & Hu, 2008). 

C. Hybrid tracking systems: These combine the advantages of marker and 

mark-free systems and, therefore, they can achieve higher accuracy. For 

instance, the boundaries of body segments can still be captured when not all 

of the markers on the segments are in the field of view of the cameras. 
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Nevertheless, intensive calibration and computation is required (Tao, Hu, Park, 

& Kingdom, 2003). 

In summary, despite their advantages and reasonably good accuracy, camera-

based systems are not well suited to home use because of the need to carefully 

place multiple cameras, which is not possible in most living accommodation, and 

also the complexity of the setup procedures. 

2.2.2 Robot-aided tracking systems 

Robot-aided tracking refers to the use of sensors that are embedded in a 

rehabilitation robot or exoskeleton that is being used to guide and support the 

patient’s limb. These track the motion of the robot and, hence, indirectly the 

motion of the patient’s limb. Therefore, the measurement variables are usually 

the robot joint angles, which are used to derive limb kinematics. Typical sensor 

technologies include rotary potentiometers and encoders (see (Hillman, 2004; 

Speich & Rosen, 2004) for more information). 

2.2.3 Non-visual tracking systems 

These systems normally use sensors attached to the human body to collect 

movement information. These sensors are commonly classified as mechanical, 

inertial, acoustic, radio or microwave, or magnetic. Each type of sensor has its 

own advantages and disadvantages. The advantages of on-body sensors include 

small size, low cost, and they do not suffer from the line-of-sight (occlusion) 

problems that visual systems do; so they are more likely to be suitable for 

rehabilitation technologies designed for home environments. However, they are 

usually less accurate, can suffer from drift problems (or errors in the absolute 

reference system) and difficulties in making the outputs anatomically relevant.  

There are different kinds of sensors of non-visual based tracking such as inertial 

sensors, magnetic-inertial sensors, magnetic sensors which use an artificially 

generated magnetic field, goniometers which are typically based on bend 

sensors, and other non-commercial systems. One of the more promising on-body 

sensor technologies is the Magnetic and Inertial Measurement Unit (MIMU), 
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which is discussed below and its use for tracking upper-limb motion is the focus 

of this PhD. 

2.3 Measuring upper-limb motion using MIMUs  

2.3.1 Overview 

A MIMU sensor consists of a 3D accelerometer, a 3D gyroscope, and a 3D 

magnetometer. The accelerometer signal is the sum of the absolute acceleration 

vector and the gravity vector (negated). Under static conditions, an accelerometer 

can be used for measuring inclination (Henk J Luinge & Veltink, 2004; 

O’Donovan, Kamnik, O’Keeffe, & Lyons, 2007). The gyroscope measures 

angular velocity, however, it suffers from drift effects when angular velocity is 

integrated in order to obtain orientation (H. J. Luinge & Veltink, 2005).  The 

magnetometer measures a magnetic field and can therefore measure the 

sensor’s heading relative to North (Roetenberg, Luinge, Baten, & Veltink, 2005; 

Schiefer et al., 2014). A drift-free 3D orientation output can be provided by using 

a sensor fusion algorithm that combines the three outputs (i.e. the acceleration, 

angular velocity, and magnetic field vectors) to provide the 3D orientation of the 

sensor-fixed coordinate system (SCS) with respect to the earth (global)-fixed 

coordinate system (GCS). This output can be presented in many different forms, 

for example: The Unit Quaternion (Euler parameters); Euler angles (roll, pitch, 

yaw); and the rotation matrix (direction cosine matrix). 

MIMUs have been used as an alternative to camera-based motion capture 

systems for tracking upper-limb kinematics, especially in real life environments 

where the use of multiple cameras is not practical (B Morrow et al., 2017; Cutti et 

al., 2010; Favre, Aissaoui, Jolles, de Guise, & Aminian, 2009; Ferrari et al., 2010; 

Lin & Kulić, 2012; T. Liu, Inoue, & Shibata, 2009; Newman et al., 2017; Picerno, 

Cereatti, & Cappozzo, 2008; Walmsley et al., 2018). Furthermore, MIMUs are not 

subject to a restricted measurement volume or occlusion problems.  

Hence, the application of MIMUs in upper-limb rehabilitation has been the subject 

of significant research over the last 10 years (Cutti, Giovanardi, Rocchi, Davalli, 
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& Sacchetti, 2008; de Vries, Veeger, Cutti, Baten, & van der Helm, 2010; Galinski 

& Dehez, 2012; H. J. Luinge, Veltink, & Baten, 2007; Pérez et al., 2010; Picerno 

et al., 2008; Plamondon et al., 2007; Luca Ricci et al., 2014). 

2.3.2 Defining upper-limb kinematics 

Many studies have worked to propose a set of standards to define segment and 

joint coordinate systems for both the upper- and lower-limb. However, most the 

studies have focused on the lower-limb (Grood & Suntay, 1983; Wu & Cavanagh, 

1995; Wu et al., 2002). The ISB (International Society of Biomechanics) standard 

for the representation of upper limb kinematics is based on Grood and Suntay’s 

joint coordinate system of the knee joint (Grood & Suntay, 1983). The ISB 

standard for the thorax, shoulder, elbow joint, and wrist joint (Wu et al., 2005) are 

presented in detail in chapter 3 section 3.3.3, but in this section the general issues 

addressed by the standard are described. 

2.3.2 The anatomical calibration problem 

The relative orientation of adjacent body segments, and hence the kinematics of 

shoulder, elbow and wrist joints, can be calculated from orientation data 

measured by MIMU sensors attached to each body segment of interest. However, 

the MIMU orientation data cannot be interpreted anatomically unless the 

orientations of the MIMUs are known with respect to their corresponding segment 

anatomical coordinate systems. Therefore, an appropriate calibration must be 

performed to obtain the relationships between each MIMU sensor coordinate 

system (SCS) and its corresponding segment local (anatomical) coordinate 

system (LCS) (Bouvier, Duprey, Claudon, Dumas, & Savescu, 2015; de Vries et 

al., 2010). The sensor-to-segment calibration procedure consists of the following 

steps: (1) positioning MIMU sensors on the thorax, upper-arm, forearm, and 

hand; (2) defining an LCS for each body segment; and (3) expressing the 

orientation of the LCS with respect to the sensor coordinate system (SCS). 

To define a segment local (anatomical) coordinate system (LCS), two anatomical 

reference vectors are used, one primary (𝒗𝒓𝒆𝒇𝟏) and one secondary (𝒗𝒓𝒆𝒇𝟐). 
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These reference vectors are unit vectors and they are non-aligned and non-

orthogonal. To construct the LCS, 𝒗𝒓𝒆𝒇𝟏 is used as one of the coordinate system 

axes. A second axis is obtained from the vector cross product of 𝒗𝒓𝒆𝒇𝟏 and 𝒗𝒓𝒆𝒇𝟐. 

Finally, the third axis is obtained from the vector cross product of the first two 

axes. In this way the chosen axes assure the orthogonality of the LCS. The 

general mathematical approach of this method may proceed as follows 

(Equations 2.1 to 2.3): 

𝑿𝑺
𝑳𝑪𝑺 = 𝒗𝒓𝒆𝒇𝟏                                                                                                 (2.1) 

𝒀𝑺
𝑳𝑪𝑺 =

𝒗𝒓𝒆𝒇𝟐× 𝑿𝑺
𝑳𝑪𝑺

|𝒗𝒓𝒆𝒇𝟐× 𝑿𝑺
𝑳𝑪𝑺|

                                                                                                                      (2.2) 

𝒁𝑺
𝑳𝑪𝑺 = 𝑿𝑺

𝑳𝑪𝑺 × 𝒀𝑺
𝑳𝑪𝑺                                                                                                              (2.3) 

In this notation the subscript signifies the coordinate system to which the axis 

belongs, and the preceding superscript signifies that the axis is expressed in the 

sensor coordinate system. Note that the sequence of the cross products can vary 

depending on: a) which coordinate system axis is defined by 𝒗𝒓𝒆𝒇𝟏 (the X-axis in 

the example above); and b) which plane is defined by 𝒗𝒓𝒆𝒇𝟏 and 𝒗𝒓𝒆𝒇𝟐 (the Z-X 

plane in the example above, the Y-axis being perpendicular to that). This sensor 

to body segment calibration process is described in more detail in section 4.2 

(chapter 4). 

Only a small number of studies have investigated the use of MIMU sensors for 

tracking the kinematics of the upper-limb in an anatomically relevant way. These 

studies have mainly focused on tracking the kinematics of the upper-arm 

(humerus) (e.g. (Coley et al., 2007)), the thorax and upper-arm (humerothoracic) 

(e.g. (Bachmann, McGhee, Yun, & Zyda, 2001)), and elbow (e.g. (Bachmann et 

al., 2001; H. J. Luinge et al., 2007; Zhou, Stone, Hu, & Harris, 2008)). Using the 

upper-arm as an example (Figure 2.3), 𝒗𝒓𝒆𝒇𝟏 and 𝒗𝒓𝒆𝒇𝟐 may be obtained from 

static calibrations (based on the gravity vector in a defined arm position) and 

dynamic calibrations (based on a functional movement). (de Vries et al., 2010; H. 

J. Luinge et al., 2007), both used dynamic movement of the upper-arm (internal-

external rotation) to define 𝒗𝒓𝒆𝒇𝟏. (de Vries et al., 2010), used elbow flexion-
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extension to define 𝒗𝒓𝒆𝒇𝟐 (using data from the forearm’s sensor), whereas (H. J. 

Luinge et al., 2007) used a static calibration to define 𝒗𝒓𝒆𝒇𝟐. Alternatively, (Cutti 

et al., 2008) used careful positioning of the sensor on the upper-arm to align the 

sensor axes with the anatomical axes, thus avoiding the need for any further 

calibration procedures. 

 

Figure 2.3: Upper-arm coordinate system and definition of motions 

2.3.3 A review of calibration methods 

Importantly, the anatomical calibration problem is still an open research question 

because no study has comprehensively compared alternative approaches to 

determine the best calibration method. In particular, no study has compared the 

many alternative methods of defining the two reference vectors (𝒗𝒓𝒆𝒇𝟏 and 𝒗𝒓𝒆𝒇𝟐). 

For this reason, a literature review was undertaken to establish the calibration 

methods used by other researchers in upper-limb applications and, hence, inform 

the author’s work. The databases that were searched include: Web of Science, 

Google Scholar, and PubMed. A critical comparison was then made of the 

alternative methods. 

The anatomical calibration methods found were classified as involving one or 

more of the following: (1) anatomical alignment of sensors; (2) static 

𝒀𝑨𝑼
 

𝒁𝑨𝑼
 

𝑿𝑨𝑼
 Flexion-extension  

Ab-adduction 

Internal-external rotation  XSI 

YSI 

ZSI 
𝒀𝑺𝑰𝑼

 

𝒁𝑺𝑰𝑼
 

𝑿𝑺𝑰𝑼
 

Sensor inertial 

coordinate system 
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measurements; or (3) dynamic measurements. Anatomical alignment involves 

aligning the sensor axes with anatomical axes defined by bony landmarks such 

as the styloid processes, humeral epicondyles, and humeral tubercle. Static 

measurements involve positioning the arm in a known posture and using the 

gravity vector (measured by the 3-axis accelerometer) to achieve anatomical 

calibration. Dynamic measurements involve moving a joint in a defined way and 

using the angular velocity vector (measured by the 3-axis rate-gyro) to achieve 

anatomical calibration. Table 2.2 below shows the alternative methods found and, 

in particular, how the two reference vectors have been defined by other 

researchers. 
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Table 2.2: Calibration methods 

Ref Segment Reference vector Note Axis 
Anatomical 

direction 

Calibration 

method 

(H. J. 

Luinge 

et al., 

2007) 

Upper-arm 

𝒗𝒓𝒆𝒇𝟏 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=  

𝝎𝑰𝒏𝒕

|𝝎𝑰𝒏𝒕|
 Internal-external rotation 𝒀 Superiorly Dynamic 

𝒗𝒓𝒆𝒇𝟐 =
𝒈𝑺𝒕𝒂𝒓𝒕 × 𝒈𝑬𝒏𝒅

|𝒈𝑺𝒕𝒂𝒓𝒕 × 𝒈𝑬𝒏𝒅|
 

Abduct the upper arm while keeping the 

elbow fixed. The direction of the z-axis 

can be found using the gravity at the start 

and end of the abduction movement 

𝒁̃ Posteriorly Dynamic 

Forearm 

𝒗𝒓𝒆𝒇𝟏 = −
𝝎𝑺𝒖𝒑

|𝝎𝑺𝒖𝒑|
=  

𝝎𝒑𝒓𝒐𝒏

|𝝎𝒑𝒓𝒐𝒏|
 Pronation-supination 𝒀 Superiorly Static 

𝒗𝒓𝒆𝒇𝟐 = −
𝒈

|𝒈|
 

Holding the palm of the hand downwards, 

it is assumed that the z-axis of the 

forearm coordinate system points in the 

vertical direction at the beginning and end 

of each trial 

𝒁̃ Posteriorly Static  
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Table 2.2: Calibration methods (Continued…) 

Ref Segment Reference vector Note Axis 
Anatomical 

direction 

Calibration 

method 

(Cutti et 

al., 

2008) 

Thorax 

𝒗𝒓𝒆𝒇𝟏 = −
𝒈

|𝒈|
 Standing straight 𝒀 Superiorly Static 

𝒗𝒓𝒆𝒇𝟐 =
𝒀 × [0 0 1]

|𝒀 × [0 0 1]|
 Rigorous positioning of MIMU 𝑿 

Laterally to 

the right 
Alignment 

Upper-arm 
𝒗𝒓𝒆𝒇𝟏 = −

𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 

Elbow flexion-extension, keeping a 

constant pro-sup and the upper-arm 

alongside the body 

𝑿 
Laterally to 

the right 
Dynamic 

𝒗𝒓𝒆𝒇𝟐 = 𝒀  𝒀 Superiorly Alignment 

Forearm 

𝒗𝒓𝒆𝒇𝟏 = −
𝝎𝑺𝒖𝒑

|𝝎𝑺𝒖𝒑|
=  

𝝎𝒑𝒓𝒐𝒏

|𝝎𝒑𝒓𝒐𝒏|
 

Upper-arm alongside the body, elbow 

flexed at 90o, forearm pronation-

supination 

𝒀 Superiorly Dynamic 

𝒗𝒓𝒆𝒇𝟐 =
𝒀 × [0 0 1]

|𝒀 × [0 0 1]|
 Rigorous positioning of MIMU 𝑿 

Laterally to 

the right 
Alignment 
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Table 2.2: Calibration methods (Continued…) 

Ref Segment Reference vector Note Axis 
Anatomical 

direction 

Calibration 

method 

(Bonnet, 

Bassom

pierre, 

Godin, 

Lesecq, 

& 

Barraud, 

2009) 

Forearm 

𝒗𝒓𝒆𝒇𝟏 =
𝝎𝑺𝒖𝒑

|𝝎𝑺𝒖𝒑|
= − 

𝝎𝒑𝒓𝒐𝒏

|𝝎𝒑𝒓𝒐𝒏|
 Forearm pronation-supination 𝑿 Inferiorly Dynamic 

𝒗𝒓𝒆𝒇𝟐 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 Elbow flexion-extension 𝒀 

Laterally to 

the right 
Dynamic 

(de 

Vries et 

al., 

2010) 

Thorax 

𝒗𝒓𝒆𝒇𝟏 = −
𝒈

|𝒈|
 Standing straight 𝒀̃ Superiorly Static 

𝒗𝒓𝒆𝒇𝟐 =
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
= −

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 Forward flexion – backward extension 𝒁 

Laterally to 

the right 
Dynamic 

Upper-arm 𝒗𝒓𝒆𝒇𝟏 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=  

𝝎𝑰𝒏𝒕

|𝝎𝑰𝒏𝒕|
 

Elbow flexed at 90o, internal-external 

rotation 
𝒀 Superiorly Dynamic 
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Table 2.2: Calibration methods (Continued…) 

Ref Segment Reference vector Note Axis 
Anatomical 

direction 

Calibration 

method 

(de 

Vries et 

al., 

2010) 

Upper-arm 𝒗𝒓𝒆𝒇𝟐 =
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
= −

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 

Upper-arm alongside the body, elbow 

flexion – extension. The data from MIMU 

on forearm is expressed in the coordinate 

system of the MIMU on the upper-arm 

𝒁̃ 
Laterally to 

the right 
Dynamic 

Forearm 

𝒗𝒓𝒆𝒇𝟏 = −
𝝎𝑺𝒖𝒑

|𝝎𝑺𝒖𝒑|
=

𝝎𝒑𝒓𝒐𝒏

|𝝎𝒑𝒓𝒐𝒏|
 Forearm pronation-supination 𝒀 Superiorly Dynamic 

𝒗𝒓𝒆𝒇𝟐 =
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
= −

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 Elbow flexion-extension 𝒁̃ 

Laterally to 

the right 
Dynamic 

Hand 

𝒗𝑟𝑒𝑓1 = −
𝒈

|𝒈|
 Keep hand flat on a table 𝑿 Anteriorly Static 

𝒗𝒓𝒆𝒇𝟐 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 

The forearm and hand flat on a table, and 

perform dorsal flexion of the hand or 

hand extension 

𝒁̃ 
Laterally to 

the right 
Dynamic 
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Table 2.2: Calibration methods (Continued…) 

Ref Segment Reference vector Note Axis 
Anatomical 

direction 

Calibration 

method 

(Yang & 

Ye, 

2011) 

Upper-arm 

𝒗𝒓𝒆𝒇𝟏 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 Shoulder flexion-extension 𝒀 

Laterally to 

the right 
Dynamic 

𝒗𝒓𝒆𝒇𝟐 = −
𝒈𝑺𝒕𝒂𝒓𝒕 × 𝒈𝑬𝒏𝒅

|𝒈𝑺𝒕𝒂𝒓𝒕 × 𝒈𝑬𝒏𝒅|
 Shoulder abduction-adduction 𝒁̃ Anteriorly Static 

Forearm 

 

𝒗𝒓𝒆𝒇𝟏 =
𝒈

|𝒈|
 

Upper-limb is stretched away from the 

body (abducted to 90o) and the palm 

faces downward 

𝒀̃ Anteriorly Static 

𝒗𝒓𝒆𝒇𝟐 = −
𝝎𝑺𝒖𝒑

|𝝎𝑺𝒖𝒑|
=

𝝎𝒑𝒓𝒐𝒏

|𝝎𝒑𝒓𝒐𝒏|
 

Upper-limb is stretched away from the 

body (abducted to 90o) and the palm 

faces downward, then pronation-

supination of the forearm about 180o 

𝑿 Inferiorly Dynamic 

Hand 𝒗𝒓𝒆𝒇𝟏 =
𝒈

|𝒈|
 

Upper-limb is stretched away from the 

body (abducted to 90o) and the palm 

faces downward 

𝒀̃ Anteriorly Static 
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Table 2.2: Calibration methods (Continued…) 

Ref Segment Reference vector Note Axis 
Anatomical 

direction 

Calibration 

method 

(Yang & 

Ye, 

2011) 

Hand 𝒗𝒓𝒆𝒇𝟐 = −
𝝎𝑺𝒖𝒑

|𝝎𝑺𝒖𝒑|
=

𝝎𝒑𝒓𝒐𝒏

|𝝎𝒑𝒓𝒐𝒏|
 

Upper-limb is stretched away from the 

body (abducted to 90o) and the palm 

faces downward, then pronation-

supination of the forearm about 180o 

𝑿 Inferiorly Dynamic 

(Prayudi 

& Kim, 

2012) 

Upper-

arm, 

forearm, 

and hand 

𝒒𝑱
𝑺 = ( 𝒒𝑺

𝑮 )
−𝟏

⨂ 𝒒𝑱
𝑮  

T-pose (arms are placed horizontally with 

thumbs point forward). During pre-defined 

pose (T-pose as predefined pose), it has 

been assumed that all joints have the 

same orientation with respect to GCF. 

This study used quaternion method to 

find the relationship between SCF and 

JCS, and eventually to find JCS with 

respect to GCS. 

  Static 
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Table 2.2: Calibration methods (Continued…) 

Ref Segment Reference vector Note Axis 
Anatomical 

direction 

Calibration 

method 

(Parel et 

al., 

2012) 

Thorax 𝒗𝒓𝒆𝒇𝟏 =
𝒈

|𝒈|
 Standing straight 𝒀 Superiorly Static 

Upper-arm 𝒗𝒓𝒆𝒇𝟏 = −
𝒈

|𝒈|
 

Standing straight, upper-arm 

perpendicular to the ground and in 

neutral rotation 

𝒀 Superiorly Static 

Forearm 𝒗𝒓𝒆𝒇𝟏 = −
𝒈

|𝒈|
 

Standing straight, elbow flexed at 90o in 

neutral forearm rotation 
𝒁 

Laterally to 

the right 
Static 

(Vignais 

et al., 

2013) 

Thorax 

𝒗𝒓𝒆𝒇𝟏 =
𝒈

|𝒈|
 Standing straight 𝒁 Inferiorly Static 

𝒗𝒓𝒆𝒇𝟐 =
𝒈𝑺𝒕𝒂𝒓𝒕 × 𝒈𝑬𝒏𝒅

|𝒈𝑺𝒕𝒂𝒓𝒕 × 𝒈𝑬𝒏𝒅|
 Forward flexion 𝑿 

Laterally to 

the right 
Static 

Upper-arm 𝒗𝒓𝒆𝒇𝟏 =
𝒈

|𝒈|
 

Neutral pose (standard anatomical 

position) 
𝒁 Inferiorly Static 
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Table 2.2: Calibration methods (Continued…) 

Ref Segment Reference vector Note Axis 
Anatomical 

direction 

Calibration 

method 

(Vignais 

et al., 

2013) 

Upper-arm Using magnetometer 
All local body frames are aligned with the 

global body frame 
𝑿 & 𝒀 

Laterally to 

the right & 

posteriorly 

Static 

Forearm 

𝒗𝒓𝒆𝒇𝟏 =
𝒈

|𝒈|
 

Neutral pose (standard anatomical 

position) 
𝒁 Inferiorly Static 

Using magnetometer 
All local body frames are aligned with the 

global body frame 
𝑿 & 𝒀 

Laterally to 

the right & 

posteriorly 

Static 

(L. Ricci 

et al., 

2013, 

2014) 

Thorax 

𝒗𝒓𝒆𝒇𝟏 = −
𝒈

|𝒈|
 Supine position 𝒁 Anteriorly Static 

𝒗𝒓𝒆𝒇𝟐 =
𝝎𝑹𝒓

|𝝎𝑹𝒓|
= −

𝝎𝑹𝒍

|𝝎𝑹𝒍|
 Axial rotation 𝑿 Inferiorly Dynamic 

𝒗𝒓𝒆𝒇𝟑 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 Flexion-extension 𝒀 

Laterally to 

the left 
Dynamic 
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Table 2.2: Calibration methods (Continued…) 

Ref Segment Reference vector Note Axis 
Anatomical 

direction 

Calibration 

method 

(L. Ricci 

et al., 

2013; 

Luca 

Ricci et 

al., 

2014) 

Upper-arm 

𝒗𝒓𝒆𝒇𝟏 = −
𝒈

|𝒈|
 

Supine position with arms alongside the 

body and palms facing down 
𝒀 Anteriorly Static 

𝒗𝒓𝒆𝒇𝟏 = −
𝝎𝑨𝒃𝒅

|𝝎𝑨𝒃𝒅|
=

𝝎𝑨𝒅𝒅

|𝝎𝑨𝒅𝒅|
 Abduction-adduction 𝒀 Anteriorly Dynamic 

𝒗𝒓𝒆𝒇𝟐 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 Flexion-extension 𝒁 

Laterally to 

the right 
Dynamic 

𝒗𝒓𝒆𝒇𝟐 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 

Flexion-extension while holding a bar with 

hands at shoulder breadth with an 

adducted thumb grasp 

𝒁 
Laterally to 

the right 
Dynamic 

Forearm 

𝒗𝒓𝒆𝒇𝟏 = −
𝒈

|𝒈|
 

Supine position with arms alongside the 

body and palms facing down 
𝒁 

Laterally to 

the right 
Dynamic 

𝒗𝒓𝒆𝒇𝟏 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 Flexion-extension 𝒁 

Laterally to 

the right 
Dynamic 
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Table 2.2: Calibration methods (Continued…) 

Ref Segment Reference vector Note Axis 
Anatomical 

direction 

Calibration 

method 

(L. Ricci 

et al., 

2013, 

2014) 

Forearm 

𝒗𝒓𝒆𝒇𝟐 = −
𝝎𝑺𝒖𝒑

|𝝎𝑺𝒖𝒑|
=

𝝎𝒑𝒓𝒐𝒏

|𝝎𝒑𝒓𝒐𝒏|
 

Pronation-supination with arms fully 

extended and hands closed 
𝑿 Inferiorly Dynamic 

𝒗𝒓𝒆𝒇𝟑 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 Flexion-extension while holding a bar 𝒀 Anteriorly Dynamic 

(Bouvier 

et al., 

2015) 

Thorax 𝒗𝒓𝒆𝒇𝟏 = −
𝒈

|𝒈|
 Standing and sitting straight 𝒀 Superiorly Static 

Upper-arm 

𝒗𝒓𝒆𝒇𝟏 = −
𝒈

|𝒈|
 

Upper-arm along the body in standing 

and sitting position 
𝒀 Superiorly Static 

𝒗𝒓𝒆𝒇𝟐 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=  

𝝎𝑰𝒏𝒕

|𝝎𝑰𝒏𝒕|
 Internal-external rotation 𝒀 Superiorly Dynamic 

Forearm 

𝒗𝒓𝒆𝒇𝟏 = −
𝒈

|𝒈|
 

Upper limbs along the body, in neutral 

forearm pronation-supination, fingers 

pointing downwards, in standing position 

𝒀 Superiorly Static 

𝒗𝒓𝒆𝒇𝟐 = −
𝒈

|𝒈|
 

Elbow flexed at 90°, neutral forearm PS, 

fingers pointing forward, in sitting position 
𝒁 

Laterally to 

the right 
Static 
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Table 2.2: Calibration methods (Continued…) 

Ref Segment Reference vector Note Axis 
Anatomical 

direction 

Calibration 

method 

(Bouvier 

et al., 

2015) 

Forearm 

𝒗𝒓𝒆𝒇𝟑 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 Flexion-extension 𝑿 Anteriorly Dynamic 

𝒗𝒓𝒆𝒇𝟏 = −
𝝎𝑺𝒖𝒑

|𝝎𝑺𝒖𝒑|
=

𝝎𝒑𝒓𝒐𝒏

|𝝎𝒑𝒓𝒐𝒏|
 Pronation-supination 𝒀 Superiorly Dynamic 

Hand  

𝒗𝒓𝒆𝒇𝟏 = −
𝒈

|𝒈|
 

Upper limbs along the body, in neutral 

forearm pronation-supination, fingers 

pointing downwards, in standing position 

𝒀 Superiorly Static 

𝒗𝒓𝒆𝒇𝟐 = −
𝒈

|𝒈|
 

upper arm along the body, elbow flexed 

at 90°, in neutral forearm PS, fingers 

pointing forward, in sitting position 

𝒁 
Laterally to 

the right 
Static 

𝒗𝒓𝒆𝒇𝟑 = −
𝒈

|𝒈|
 Hand flat on a table 𝑿 Anteriorly Static 

𝒗𝒓𝒆𝒇𝟐 = −
𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
=

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
 Hand flat on a table, wrist extension 𝒁 

Laterally to 

the right 
Dynamic 
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It can be seen in Table 2.2 that studies varied in their approach to deriving the 

primary reference vector. Some studies used the angular velocity vector, 

generated by pre-defined rotation of a limb segment, while others used the 

orientation of the gravity vector to define the primary reference vector. The most 

common way to define the secondary axis relied on the user placing their upper 

limb in specific static postures and deriving the secondary vector from the 

measured gravity vector. However, in some cases, the primary and secondary 

reference vectors were both defined using angular velocity data. Also, all the 

studies relied on careful positioning of the MIMU with respect to the anatomical 

frame. It is clear from the studies summarised above that there is no commonly 

accepted approach to defining either reference vector. 

No comparison of the alternatives shown in Table 2.2 has been found in the 

literature apart from that of (Bouvier et al., 2015), which did not cover all of the 

alternatives and only assessed accuracy and precision. (Bouvier et al., 2015), did 

not compare calibration methods in term of speed or simplicity to, for example, 

sensor misalignment. Furthermore, they did not include thorax orientation with 

respect to the GCS or LAB. In summary, no study has: 

1) Included all segments of the upper-limb; 

2) Compared all of the alternatives in Table 2.2 for defining the two reference 

vectors; 

3) Made a comprehensive comparison covering accuracy, speed, and simplicity. 

Therefore, this PhD undertakes a comprehensive and critical comparison of 

alternative calibration methods and finds the most appropriate anatomical 

calibration method for use in rehabilitation and other applications. 
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Chapter 3 – Experimental Methods 

3.1 Introduction 

If scapular motion and motion of the finger joints are excluded, the upper limb has 

seven degrees of freedom (DoF) (Miller et al., 2011), 3 at the shoulder (flexion-

extension, adduction-abduction, internal-external rotations); 2 at the elbow 

(flexion-extension, pronation-supination); and 2 at the wrist (flexion-extension, 

ulnar-radial deviation). Capturing and describing the kinematics of the upper-limb 

is needed for a variety of applications in the field of rehabilitation. For example, 

upper limb segment motion measured using body-worn IMUs has been applied 

in the control of FES systems (Sun, 2014) and upper limb prosthetic systems  

(Merad, Roby-Brami, & Jarrasse, 2016). In addition, motion tracking devices for 

the upper limb have been used as part of a home-based rehabilitation system for 

stroke patients (Zhou, Hu, & Tao, 2006). Assessment of upper-limb joint 

coordination during activities has been used to quantify motor impairment 

following neurological injury (Murgia, Kerkhofs, Savelberg, & Meijer, 2010). 

Indeed, various upper limb kinematic measures are now used as metrics to 

quantify motor impairments following stroke (Kwakkel et al., 2019; Santisteban et 

al., 2016). It is worth noting that many of these approaches use camera-based 

systems to track joint angle trajectories. 

Motion tracking systems based on stereo-photogrammetry provide high accuracy 

in tracking the position of markers on the body, which can be used to reconstruct 

other parameters, such as joint angle trajectories (A Cappozzo, 1983; Chiari, 

Della Croce, Leardini, & Cappozzo, 2005; Y Ehara, Fujimoto, Miyazaki, Tanaka, 

& Yamamoto, 1995; Yoshihiro Ehara et al., 1997). However, stereo-

photogrammetry measurements require specialised personnel to run the 

expensive camera systems, and hence this largely restricts its use to the 

laboratory. Further, setup and analysis are time-consuming, and they rely upon 

good camera placements to ensure marker visibility. 

The advent of Micro-Electro-Mechanical Systems (MEMS) technology allowed 

systems based on inertial and magnetic sensors to be used in biomedical 
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applications. These systems are potentially useful for measurements outside of 

a specialised laboratory, overcoming some of the limitations of camera based 

systems (Mancini, Zampieri, Carlson-Kuhta, Chiari, & Horak, 2009). However, to 

measure the relative motion between two adjacent body segments and hence 

derive clinically meaningful joint angle trajectories, using MIMUs, anatomical 

calibrations are needed. To compare the different calibration techniques 

published in the literature and to support future analysis methods, an 

experimental data set spanning all of the previously published methods for 

calibration, is required. To assess the different calibration methods, a set of 

functional tasks were also required.  This chapter describes the experiment to 

capture the required data sets. The chapter begins with an overview of the two 

measurement systems, the stereophotogrammetry system and the MIMU 

measurement system. This is followed by a description of the experimental 

methods used to capture synchronous data on upper limb movement using both 

measurement systems. Section 3.5 describes the analysis of the data sets in 

preparation for the work presented in the following chapter. The chapter ends 

with a discussion section. 

3.2 Measurement Systems 

The two measurement systems (MIMUs and camera-based system – 

stereophotogrammetry system) are described below. 

3.2.1 Magneto-Inertial Measurement Unit System (MIMUs) 

Four MIMUs (MTx Motion Tracker, Xsens technologies B.V., Netherlands) were 

used. Each unit is a three Degree of Freedom (3-DoF) orientation tracker,  

providing drift-free three dimensional (3D) orientations (as quaternions, rotation 

matrices, or Euler angles) as well as the following raw sensor data: 3D 

acceleration, 3D rate of turn (rate gyro) and 3D earth-magnetic field (Roetenberg, 

Luinge, & Slycke, 2013). The MIMUs are connected to an Xbus Master, which in 

turn transmits data via a USB serial cable to a PC/laptop (see Figure 3.1). The 



37 
 
 

Xbus Master delivers power to the connected MIMUs and retrieves their data 

while they are sampled synchronously. 

MIMU

MIMU

MIMU

MIMU Xbus 

Master

Host

 (PC/Laptop)

Xbus

RS-232/USB 

Cable
 

Figure 3.1: MIMU measurement system 

A sensor fusion algorithm, developed by Xsens, calculates absolute orientation 

in 3D space in real-time from the raw 3-axis accelerometer, rate-gyroscope, and 

magnetometer data (see Figure 3.2). The algorithm utilizes measurement of 

gravity (3-axis accelerometer) and magnetic north (3-axis magnetometer) to 

compensate for ever increasing errors (drift) from the integration of errors in rate 

of turn (angular velocity). This type of drift compensation is called an Attitude and 

Heading Reference System (AHRS). 
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Figure 3.2: Sensor fusion 

All MIMU sensor outputs (orientation, acceleration, rate of turn, and earth 

magnetic field) are expressed in the body-fixed right-handed sensor coordinate 

system (SCS) shown in Figure 3.3. The orientation of the sensor is measured 

with respect to a global (an earth) coordinate system (GCS) defined by the 

directions of gravity and magnetic north. It should be noted that the 3-axis 

accelerometer measures the sum of the free acceleration and gravity. 

 

Figure 3.3: MIMU with sensor-fixed coordinate system (SCS) overlaid 

The four MIMUs are connected together with Xbus cables, with the last in the 

chain connected to the Xbus Master (see Figure 3.4), allowing each MIMU to 

communicate its data to the laptop. 

Y 

Z 

X 
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Figure 3.4: Xbus Master and MIMU sensors chain connection 

3.2.2 Stereophotogrammetry System 

Stereophotogrammetry is a technique that uses cameras to track the movements 

of reflective markers placed on the human body. When combined with a 

biomechanical model, the marker data can be used to reconstruct anatomically 

relevant parameters such as body postures and joint angle trajectories.  

The stereophotogrammetry system used in this experimental work was VICON 

produced by Oxford Metrics company. The system includes 10 cameras 

positioned around the room on wall-mounted frame (see Figure 3.5) 

 

Figure 3.5: Stereophotogrammetry measurement system 

In addition, the stereophotogrammetry laboratory reference frame was identified 

using the static wand of precisely known geometry, placed over the corners of 

one of the force plates. Calibration of the capture volume used an active wand, 

which incorporates Light Emitting Diodes, the position of which are tracked 
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automatically in stereophotogrammetry software which is Nexus software. The 

same software was used for data collection. 

Synchronisation between the two measurement systems was achieved as 

follows. The MIMUs system outputs an analogue rectangular pulse signal for 

synchronisation purposes, which indicates when MIMU recording starts and 

ends. This is fed to an analogue input channel in the stereophotogrammetry 

system, which then samples the signal in synchrony with capturing the camera 

frames. Figure 3.6 shows an example of this and the camera frames 

corresponding to the start and end of MIMU recording can be identified. Camera 

frames before and after MIMU recording are discarded.      
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Figure 3.6: Synchronisation signal represents the start and the end of synchronisation frames for thorax axial movement – participant 1. 
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3.3 Measurement of upper limb motion using 

synchronised MIMUs and stereophotogrammetry  

3.3.1 Introduction 

The next sections explain the methods used to collect and process synchronous 

data from the MIMU and stereophotogrammetry systems. The section begins with 

an explanation of the placement of reflective markers and MIMUs on the 

participants. The following section describes the set of calibration movements, 

derived from Table 2.2 (Chapter 2), which were used to replicate previous studies’ 

approaches to establish anatomical coordinate frames for MIMUs and use these 

data to estimate joint angles. It also describes the functional task trials used to 

evaluate the performance of the various calibration procedures.  Section 3.5 

describes the data analysis procedures, including building an upper-limb 

kinematic model. 

The data processing reported in this section used the following software: Data 

from stereophotogrammetry system were processed using the Nexus 1.8.5 2013, 

Visual 3D v6.01.36 (2019) and MATLAB 9.6 2019a (The Math Work, USA). Data 

from the MIMU system were processed using MATLAB.  

3.3.2 Marker and sensor placement and upper limb model - 

overview 

In order to allow for subsequent comparison of data from the two measurement 

systems, markers were placed on both the anatomy and on the MIMUs. Clusters 

of markers on the MIMUs were used both to allow tracking of the MIMUs as well 

as to allow for the relative alignment of the MIMUs to the anatomical coordinate 

systems. The markers also served as technical clusters in the CAST analysis, 

described below. 
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The definition of the Anatomical Coordinate Systems (A) is based on an approach 

called CAST (Calibrated Anatomical Systems Technique) (A Cappozzo, Catani, 

Della Croce, & Leardini, 1995). The CAST technique uses a series of markers to 

track the motion of the body. The markers can be classified as either Anatomical 

Landmark markers, which can be used to identify joint axes, or technical markers, 

which are located in clusters of 3 or more on the limb segment itself. A static 

calibration is used to define a cluster marker technical frame (coordinate) (CTF) 

for each tracked segment, the relationship between this frame and the relevant 

anatomical coordinate frame, and the relationship between the anatomical 

coordinate frame and the lab frame.  

Later in this chapter, the set of dynamic (functional) calibrations are described. In 

each dynamic calibration, the participant performs a well-defined uni-axial 

rotation while angular velocity readings are taken, which are used to determine a 

functional axis of rotation. 

3.3.3 Upper-limb model 

The model of the upper-limb to be used in subsequent data processing is defined 

according International Standard of Biomechanics (ISB) recommendation (Wu et 

al., 2005). The upper limb kinematic model is based on the assumptions that the 

thorax, upper-arm (humerus), forearm, and hand are rigid segments (Cutti et al., 

2008; Wu et al., 2005) . Each segment has its associated anatomical coordinate 

system. The orientation of the thorax is computed with respect to the laboratory 

coordinate system, while the orientation of the humerus is computed with respect 

to the thorax; the forearm with respect to the humerus, and lastly the hand with 

respect to the forearm. 

The model for the upper-limb, together with the locations of the markers, is 

described in Tables 3.1 to 3.4 and Figures 3.7 to 3.14. 

Thorax 

The thorax segment is defined using the markers listed in Table 3.1 and shown 

in Figure 3.7. 
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Table 3.1: Anatomical markers – Thorax 

Thorax 

C7 Processus Spinosus (spinous process) of the 7th cervical vertebra. 

T8** Processus Spinosus (spinal process) of the 8th thoracic vertebra. 

IJ** Deepest point of Incisura Jugularis (suprasternal notch). 

PX 
Processus Xiphoideus (xiphoid process), most caudal point on the 

sternum. 

      ** means that marker was used is bigger to increase the visibility. 

 

 

Figure 3.7: Anatomical bony landmarks for thorax 

It is worth noting that C7 has an enlarged spinous process called a vertebra 

prominence. It is the most prominent structure that can be palpated when finger 

is passed downwards from the skull and easiest to identify with the head bent 

IJ 

PX 
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T8 

Posterior 
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forward. T8 was difficult to find, therefore, a physiotherapist was asked to check 

the placement. IJ is the deepest point of Incisura Jugularis which is the visible dip 

in between the neck and the two collarbones, and PX is at the end of the sternum. 

Thorax kinematics are described by three independent angles: flexion-extension, 

lateral flexion, and axial rotation, relative to the laboratory frame, as shown in 

Figure 3.8. 

 

Figure 3.8: Anatomical local coordinate system with three independent 

orientations for thorax 

The anatomical reference frame shown in Figure 3.8 has been defined following 

ISB recommendations, as follows: 

𝒀𝑨𝑻
: The line connecting the midpoint between PX and T8 and the midpoint 

between IJ and C7, pointing upward; 

𝒁𝑨𝑻
: The line perpendicular to the plane formed by IJ, C7, and the midpoint 

between PX and T8, pointing to the right; 

𝑿𝑨𝑻
: The common line perpendicular to the 𝒁𝑨𝑻

- and 𝒀𝑨𝑻
-axis, pointing 

forward. 
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Upper arm 

The upper arm segment is defined using the markers listed in Table 3.2 and 

shown in Figure 3.9. 

Table 3.2: Anatomical markers – Upper-arm 

Upper-arm 

RHA Right Humerus anterior. 

RHP Right Humerus posterior. 

RHAC 

(GH) 
Right Humerus Acromion- Glenohumeral rotation centre. 

LEH 
Lateral Epicondyle of right humerus (elbow)- Most caudal point on 

lateral epicondyle. 

MEH** 
Medial Epicondyle of right humerus (elbow)- Most caudal point on 

medial epicondyle. 

   ** means that marker used was larger to increase visibility. 
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Figure 3.9: Anatomical Bony Landmarks for Right-Upper-arm 

RHAC is the acromion which is palpable by following the clavicle laterally, it is the 

most dorsal point on the acromioclavicular joint. Next, RHA and RHP are anterior 

and posterior markers on the shoulder joint centre respectively. By flexing and 

extending the elbow joint, LEH and MEH can be found. 

Humerothoracic (shoulder) kinematics are based on a ball and socket joint model 

(see Figure 3.10) and are described by three independent angles: flexion-

extension, internal-external rotation, and abduction-adduction. 
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Figure 3.10: Anatomical local coordinate system with three independent 

orientations for upper-Arm and shoulder joint 

The anatomical coordinate for upper-arm in Figure 3.10 can be defined as follow: 

𝒀𝑨𝑼
: The line connecting GH and the midpoint of LEH and MEH, pointing to 

GH; 

𝑿𝑨𝑼
: The line perpendicular to the plane formed by LEH, MEH, and GH, 

pointing forward; 

𝒁𝑨𝑼
: The common line perpendicular to the 𝒀𝑨𝑼

- and 𝒁𝑨𝑼
-axis, pointing to the 

right. 
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Forearm 

The forearm segment is defined using the markers in Table 3.3 and shown in 

Figure 3.11. 

Table 3.3: Anatomical markers - Forearm 

Forearm 

USP Most caudal–medial point on the ulnar styloid. 

RSP Most caudal–lateral point on the radial styloid. 

 

 

Figure 3.11: Anatomical bony landmarks for right-forearm 

RSP and USP are the wrist markers, placed on the bony prominences most easily 

identified when the forearm flexed at 90° with respect to the upper-arm. 

Elbow kinematics is described by two independent angles: flexion-extension and 

pronation-supination as shown in Figure 3.12. 
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Figure 3.12: Anatomical Local Coordinate System with two Independent 

Orientations for Forearm and Elbow Joint 

For forearm, the anatomical coordinate can be found as follow: 

𝒀𝑨𝑭
: The line connecting USP and the midpoint between LEH and MEH, 

pointing proximally; 

𝑿𝑨𝑭
: The line perpendicular to the plane through USP, RSP, and the midpoint 

between LEH and MEH, pointing forward; 

𝒁𝑨𝑭
: The common line perpendicular to the 𝑿𝑨𝑭

- and 𝒀𝑨𝑭
-axis, pointing to the 

right. 
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Hand and Wrist 

The hand segment is defined by the set of markers in Table 3.4 and shown in 

Figure 3.13. 

Table 3.4: Anatomical markers – Hand 

Hand 

MCII Most distal point of second metacarpal bone. 

MCV Most distal point of fifth metacarpal bone. 

RCJ Radial side of radiocarpal joint. 

UCJ Ulnar side of radiocarpal joint. 

 

 

Figure 3.13: Anatomical bony landmarks for right-hand 
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UCJ and RCJ markers were placed on the radiocarpal joint on the projected 

extension of Ulna and Radius. Finally, MCII and MCV were easy to find when the 

hand was laid flat on the table.  

Wrist kinematics are described by two angles: flexion-extension and ulnar 

deviation (ulnar flexion) or radial deviation (radial flexion) as shown in Figure 3.14. 

 

Figure 3.14: Anatomical local coordinate system with two independent 

orientations for hand and wrist joint 

The anatomical coordinate for hand can be defined as follow: 

𝒀𝑨𝑯
: The line parallel to Radius pointing proximally to LEH; 

𝑿𝑨𝑯
: The line perpendicular to the plane formed by USP, RSP, and LEH 

pointing forward; 

𝒁𝑨𝑯
: The common line perpendicular to the 𝑿𝑨𝑯

- and 𝒀𝑨𝑯
-axis, pointing to the 

right. 
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3.3.4 MIMU placements 

Four MIMUs were placed on the thorax, upper-arm, forearm, and hand of each 

participant with double-sided sticky tape. Each MIMU also served as a convenient 

rigid body on which to mount markers used to define the cluster marker technical 

frame (coordinate) (CTF), see section 3.3.2.  The cluster also allowed for a 

marker-based coordinate frame (referred to in Chapter 4 as Sensor Marker 

coordinate frame), approximately coincident with the MIMU inertial framework. 

The individual MIMUs were carefully located and orientated according to the 

descriptions in Tables 3.5 to 3.8, thereby manually aligning the MIMU and 

marker-based coordinate frames. 

The MIMUs were placed as described in Tables 3.5 to 3.8.  
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Table 3.5: MIMUs placement – Thorax 

Thorax 

Position 

On the flat portion of thorax-sternum. The precise location of the MIMU sensor on 

the sternum is participant dependent, because of soft tissue, sensor movement, and 

marker occlusion due to the chin. 

 

Alignment 
The x-axis of the MIMU sensor is placed parallel with respect to the virtual line 

between the IJ and PX marker. 
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Table 3.6: MIMUs placement – Upper-arm 

Upper-arm 

Position 
Latero-distally of the right upper-arm, just distal of the end of the deltoid muscle and 

proximal of the end of the brachialis muscle. 

 

Alignment 
The x-axis of the MIMU sensor is placed parallel with respect to the virtual line 

between the acromion shoulder marker and the lateral elbow marker. 
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Table 3.7: MIMUs placement – Forearm 

Upper-arm 

Position 

Dorso-distally on the right forearm, close to the wrist. This 

location is a trade-off between the best place to measure 

forearm movement and interference of with the hand markers. 

 Alignment 

The x-axis of the MIMU sensor is placed parallel with respect to 

the virtual line between the middle point of the elbow and the 

middle point of the wrist. 
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Table 3.8: MIMUs placement – Hand 

Hand 

Position Dorsally on the right hand on Metacarpal II and III (MCII & MCIII). 

 

Alignment The x-axis of the MIMU sensor parallel along the hand. 
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3.4 Human experimental procedures 

3.4.1 Participants 

Five healthy participants (3 females and 2 male) from the research team took part 

in this study. The participants had no history of right upper-limb complaints.  

To avoid unwanted reflections, participants asked to avoid wearing clothing or 

jewellery which might introduce reflections. In addition, participants were asked 

to tie up hair which could occlude markers.  

3.4.2 Movements 

Two types of trials were recorded: calibration trials and functional task trials, as 

explained below.  

Calibration trials:  

These can be divided into two types, static calibration trials and dynamic 

calibration trials.  

The static calibration trials involved the participant holding the body segment in a 

defined posture while synchronous data from the MIMUs and 

stereophotogrammetry system were collected. This posture was sitting straight, 

upper-arm vertical, elbow flexed at 90o, and the hand palm flat on the table. This 

static position is similar to static trial used by (Bouvier et al., 2015). For each 

repeat, the participant was requested to hold this posture for five seconds.  

The dynamic calibration trials involved the participant performing a specific 

functional movement while synchronous data from the MIMUs and 

stereophotogrammetry system were collected. These dynamic calibration 

movements trials cover the set of calibration movements in Table 2.2 (section 

2.3.3, chapter 2) as well as some additional movements. The specific movements 

for each of the dynamic calibration trials are shown in Table 3.9. It is worth noting 

that the dynamic movements trials include systematic pauses in the motion, 
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which are used to derive reference vectors from gravity data (accelerometer 

data).   

Table 3.9: Dynamic calibration movements trials 

Thorax (3 DOF) 

1 

Sit straight with upper arm vertical, elbow flexed 90o, 

palm inward – lean forward – back to start pose – lean 

backward – back to start pose. (de Vries et al., 2010; 

Luca Ricci et al., 2014). 

Thorax flexion-

extension 

2 
Sit straight – laterally lean to right – back to start pose 

– lean to left – back to start pose.  

Thorax lateral-

flexion 

3 
Sit straight, twist to right – back to start pose – twist to 

left – back to start pose. (Luca Ricci et al., 2014). 

Thorax axial 

rotation 

Hand (2 DOF) 

4 

Sit straight with upper arm vertical, elbow flexed 90o, 

palm down on the table – extend hand – back to start 

pose. (Bouvier et al., 2015; de Vries et al., 2010). 

Hand extension 

5 

Sit straight with upper arm vertical, elbow flexed 90o, 

palm down on the table – deviate hand radially (to the 

left) – back to start pose – ulnar deviation (to the right) 

– back to start pose. 

Hand radial-ulnar 

deviation 

Forearm (2 DOF) 

6 

Sit straight with upper arm vertical, elbow flexed 90o, 

palm inward – rotate hand to palm down – back to start 

pose. (Bonnet et al., 2009; Bouvier et al., 2015; Cutti 

et al., 2008; de Vries et al., 2010; H. J. Luinge et al., 

2007; Luca Ricci et al., 2014; Yang & Ye, 2011). 

Neutral-

pronation-neutral 

(0o-90o-0o) 
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Table 3.9: Dynamic calibration movements trials (Continued…) 

Forearm (2 DOF) 

7 

Sit straight with upper arm vertical, elbow flexed 90o, 

palm inward – flex elbow – back to start pose. (Bonnet 

et al., 2009; Bouvier et al., 2015; de Vries et al., 2010; 

Luca Ricci et al., 2014). 

Elbow flexion-

extension 

Shoulder (3 DOF) 

8 

Sit straight with upper arm vertical, elbow flexed 90o, 

palm inward – rotate shoulder internally – back to start 

pose – rotate shoulder externally – back to start pose. 

(Bouvier et al., 2015; de Vries et al., 2010; H. J. Luinge 

et al., 2007). 

Shoulder internal-

external rotation 

9 

Sit straight with upper arm vertical, elbow flexed 90o, 

palm inward – flex shoulder forward to 90o – back to 

start pose. (Cutti et al., 2008; de Vries et al., 2010; 

Luca Ricci et al., 2014; Yang & Ye, 2011). 

Shoulder flexion-

extension 

10 

Sit straight with upper arm vertical, elbow flexed 90o, 

palm inward – abduct shoulder to 90o – back to start 

pose. (Luca Ricci et al., 2014). 

Shoulder 

abduction-

adduction 

 

Functional task trials:  

Each dynamic calibration movement trial was followed by the participant 

performing 4 functional tasks listed in Table 3.10.  

Table 3.10: The movements involved in each of the functional task trials 

No. The tasks 

1 Reach and sweep to side  

2 Reach and sweep back 

3 Reach and drink  

4 Reach and pour water 
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All functional tasks were performed with the right limb only. The participants were 

asked to perform these movements in a natural manner at moderate speed.  

To describe each of the functional tasks a top view of the table used is shown in 

Figures 3.15 to 3.18. 

These functional tasks have been chosen because they are both popular and 

common in clinical physiotherapy rehabilitation and assessments. They involve 

the larger muscles which move the joints of the upper-limb to produce compound 

motion. These functional tasks are better suited to FES applications, rather than 

very complex fine movements (e.g. buttoning a blouse), and they can be tailored 

to suit the impairment levels of particular stroke patients (Smith et al., 2019).    

There were five numbered marks (circles) on the table to guide the participants. 

All tasks began at Mark-1, which corresponded to the following starting posture: 

trunk close to the table (about 10 cm between abdomen and table); upper-arm 

vertical; forearm flexed at 90o with the forearm on the table; and the fingertips on 

Mark-1. The distance from Mark-1 to Mark-2 was defined as the maximum 

comfortable reaching movement of each participant. Then the locations of the 

other marks were as shown in Figures 3.15 to 3.18. Briefly, the functional tasks 

were as follows: 

1. Reach and sweep to side: This task consists of two movement phases. 

Firstly, starting from Mark-1 (the starting position), the participant reaches 

forward to Mark-2 (shoulder flexion and elbow extension). Secondly, from 

Mark-2, the hand is swept towards Mark-3 (external rotation of the shoulder is 

part of the movement).  
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Figure 3.15: Top view of the table – Task 1 

2. Reach and sweep back: This task consists of two movement phases. Firstly, 

starting from Mark-1 (the starting position), the participant reaches forward to 

Mark-2. Secondly, from Mark-2, the hand is swept towards Mark-4 (internal 

rotation of the shoulder and elbow flexion are parts of the movement). 

 

Figure 3.16: Top view of the table – Task 2 

3. Reach and drink: Starting from Mark-1, the participant reaches for a bottle 

placed at Mark-2. Next, the participant lifts the bottle to their mouth for drinking 

(elbow flexion). Then they put the bottle back in the same place and return to 

the starting position (elbow extension). 

Table 
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Figure 3.17: Top view of the table – Task 3 

4. Reach and pour water: Starting from Mark-1, the participant reaches for a 

bottle placed at Mark-2. Next, the participant lifts the bottle and pours water 

into a glass next to the bottle at Mark-5 (forearm pronation) and then the 

participant puts the bottle back in the same place (forearm supination) and 

return to the starting position (Mark-1). 

 

Figure 3.18: Top view of the table – Task 4 

Each calibration movement and functional task was repeated four times (four 

trials (see Figure 3.19)).  

Table 

Chair 

1 

2 

Table 

Chair 

1 

2 5 



64 
 
 

Start

Repetition = 4

Static calibration trial

End

Repetition = 0

Repetition + 1

Dynamic calibration 

movement trials (1 – 10) 

Table 3.9

Functional tasks (1 – 4) 

Table 3.10

No

Yes

 

Figure 3.19: Flowchart of experimental protocol for one participant 
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3.5 Analysis of both stereophotogrammetry and MIMUs 

data 

After data were collected synchronously at 50 Hz with MIMUs and 

stereophotogrammetry systems, post-processing analysing of data was 

implemented for both types of data (stereophotogrammetry data and MIMUs 

data). 

3.5.1 Analysis of stereophotogrammetry data 

The flow diagram in Figure 3.20 illustrates the data analysis steps: 

Step 1.  During the data collection, potential marker occlusions or missing 

markers were checked by examining the marker recordings using Nexus software 

following each static trial and dynamic movement trial. If any trial had missing 

or/and occluded marker then the participant was asked to repeat the trial.  

Step 2: The raw data was reconstructed to create 3D position data for each of 

the markers throughout each of the trials. 

Step 3:  Where there were gaps in the trajectories of any of the trials, first the 

length of the gaps was identified. In cases where the gaps were less than 10 

frames, the missing data were reconstructed using the gap filling function in 

Nexus. 

Step 4: Anatomical markers from the static trial were labelled manually according 

to the ISB model (Wu et al., 2005) . The technical markers were labelled 

according to their associated segment. The auto-labelling function was then used 

to label the markers for each of the dynamic trials. More detail on the labelling 

convention is given in Chapter 4 (section 4.3.2). 
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Data collected during static and dynamic calibration trials using 

stereophotogrammetry system

Data reconstruction process to provide 3D reconstruction of the each entire 

trial

Gap filling process to fill all the gaps in the trial data

Labelling and naming the markers 

Defining the final model by linking the segments with joints and define how 

segments move relative to one another

Saving the model and exporting the marker data as C3D format which can be 

used in V3D

Loading all trials in the workspace window in V3D and use only the static trial 

to build the biomechanical upper-limb model

Using model window to build all segments and joints using anatomical 

markers and saving the model

Assigning the model to all dynamic trials and save all data as C-motion output 

format

A 3
rd

 order interpolation algorithm was used to fill any gaps within the marker 

data up to a maximum of 10 frames 

Data was smoothed using a low pass filter, 4
th
 order Butterworth filter, with a 

cut-off frequency of 6 Hz to remove any noise

Computer Model Based Data function has been used to calculate joint data: 

Joint Rotation Matrix data and Joint Helical data (Axis-Angle) and finally 

exported to MATLAB for comparison with MIMUs data

1

2

3

4

5

6

7

8

9

10

11

12

 

Figure 3.20: Processing of marker data 

Step 5:  This process involved firstly defining each segment by its associated 

markers for the static trial. As an example, the forearm segment was defined by 
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markers RSP, USP, LEH, and MEH (section 3.3.3). Then the joints between each 

pair of adjoining segments were defined as having 1,2 or 3 degrees of freedom. 

Step 6:  The defined model, including the set of segments, the markers 

associated with each segment and the degrees of freedom for each joint was now 

complete. The set of data from each of the trials was exported from Nexus in C3D 

format to be ready for use in the data processing stages which used Visual 3D. 

Step 7 & 8: Using Visual 3D, the C3D file for the static trial was used build the 

biomechanical upper-limb kinematic model including the anatomical coordinate 

frames (see section 3.3.3) for each segment (see Figures 3.21 to 3.24).  This 

involved assigning the sequence of segments in proximal to distal order. The 

cluster markers were assigned as calibrated tracking markers. The anatomical 

coordinate frames, based on the ISB model (Wu et al., 2005), (section 3.3.3) were 

defined as follows 

a- Thorax: proximal joint: Mid_T8PX (joint centre); distal: RHAC (lateral) and 

Mid_C7IJ (joint centre); and the MIMU sensor’s markers (T1, T2, T3, and T4) 

(see Figure 3.21); 

 

Figure 3.21: Thorax model with anatomical coordinate frames 

Thorax 

Anatomical coordinate frame 

LAB coordinate frames 
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b- Upper-arm: proximal joint: GHJC (joint centre); distal: LEH (lateral) and MEH 

(medial); and the MIMU sensor’s markers (UA1, UA2, UA3, and UA4) (see 

Figure 3.22); 

 

Figure 3.22: Upper-arm model with anatomical coordinate frames 

c- Forearm: proximal joint: LEH (lateral) and MEH (medial); distal: Mid_Wrist 

(joint centre); and the MIMU sensor’s markers (FA1, FA2, FA3, and FA4) (see 

Figure 3.23); 

Figure 3.23: Forearm model with anatomical coordinate frames 

LAB coordinate frames 

Upper-arm 

 Anatomical coordinate frame 

LAB coordinate frames 

Forearm 

 Anatomical coordinate frames 
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d- Hand: proximal joint RCP (lateral) and USP (medial); distal: MCII (joint centre); 

and the MIMU sensor’s markers (H1, H2, H3, and H4) (see Figure 3.24); 

 

Figure 3.24: Hand model with anatomical coordinate frames 

Next the segment coordinate axes were created following ISB recommendation. 

Step 9: The upper-limb model was assigned to the all dynamic trials. 

Steps 10 and 11: Gap filling was re-done using a 3rd order polynomial 

interpolation algorithm to fill any remaining gaps up to a maximum of 10 frames. 

The data were then filtered using a 4th order Butterworth low pass filter with a 6Hz 

cut-off frequency.  

Step 12:  The joint angle trajectories for each of the dynamic trials for the 4 joints 

(thorax, shoulder, elbow, and wrist) in the format of joint rotation matrices were 

created. 

3.5.2 Analysis of MIMUs data 

The Figure 3.25 illustrates the steps of recording and analysing MIMUs data. 

LAB coordinate frames 

Hand 

 Anatomical coordinate frames 
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MIMU sensor hardware have been checked – wired connection. Additionally, 

the analogue synchronous channel output to stereophotogrammetry system 

has been checked. 

MIMUs sensor setting has been checked. Input options on real-time. 

Orientation data and calibrated sensor data have been selected on output 

options as follows: Euler angles: roll, pitch, yaw (XYZ Earth fixed type, also 

known as Cardan); and Calibrated Sensor Data (3D acceleration, rate of turn, 

magnetic field).

MIMUs data has been recorded during static and dynamic calibration trials 

synchronously at 50 Hz with stereophotogrammetry system and saved as a 

log files.

The inertial data (acceleration, angular velocity, and magnetic field data) and 

orientation data have been moved all to MATLAB directory to be processed. 

1

2

3

4

 

Figure 3.25: Processing of MIMUs data 

Step 1: The MIMUs were checked before placing them on the participant’s body 

segments. The checking involved making sure the sensors were connected 

correctly and MT manager software was working properly. Also, the output 

analogue channel signal from the MIMU system to the stereophotogrammetry 

system was setup and visually checked. This process was repeated prior to each 

trial. 
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Step 2: The MIMU sensor settings in the MT Manager software were set as 

follows: 

• Input options: The COM port used to read real time data was assigned   

• Output options: The following outputs were requested 

o Orientation data in format of Euler angles: roll, pitch, yaw (XYZ Earth fixed 

type, also known as Cardan) and 

o Calibrated sensor data (3D acceleration, rate of turn, magnetic field). 

Step 3: Data were recorded for each trial (static and dynamic calibration trials, 

and functional tasks as described in section 3.4.2) synchronously with 

stereophotogrammetry system at 50 Hz. 

Step 4: Finally, MIMUs data was read into MATLAB to be processed and 

eventually to calculate joint angle trajectories for 4 joints (thorax, shoulder, elbow, 

and wrist) in the format of joint rotation matrices in order to be ready for 

comparison with gold standard (stereophotogrammetry). This work is described 

in the following chapters. 

3.6  Discussion and conclusions 

This chapter has reported on a protocol used to collect synchronous upper- limb 

kinematic data from two motion capture systems on five participants. The chapter 

also reported on the methods to process the data ready for the subsequent work 

presented in Chapters 4 and 5.  

The set of calibration movements used in the study spanned all the previously 

published methods (Bonnet et al., 2009; Bouvier et al., 2015; Cutti et al., 2008; 

de Vries et al., 2010; H. J. Luinge et al., 2007; Parel et al., 2012; L. Ricci et al., 

2013; Luca Ricci et al., 2014; Vignais et al., 2013; Yang & Ye, 2011). Two new 

calibration movements were included, to allow for thorax lateral flexion and wrist 

radial/ulnar deviation to be estimated. 

Only two studies have previously tested their methods for estimating joint angle 

trajectories from MIMU data using functional activities. One task used by (Bouvier 
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et al., 2015) involved a rotating a circular wheel placed horizontally on a table in 

front of the participant (Figure 3.26). 

 

Figure 3.26: Wheel movement task (Bouvier et al., 2015) 

Luinge et al. evaluated their approach by asking a single subject to carry out the 

following tasks: mimicking eating routines: pouring a glass, eating soup, eating 

spaghetti, eating meat, drinking. The morning routines task consisted of: 
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splashing water on face and drying it using a towel, applying deodorant, buttoning 

a blouse, combing hair, brushing teeth.  

This study, in common with Luinge’s study (H. J. Luinge et al., 2007), used a set 

of more real-world relevant activities than those used by Bouvier (Bouvier et al., 

2015). However, as mentioned earlier, the functional tasks that have been used 

in this PhD are more suitable for testing FES systems designed for upper-limb 

rehabilitation. Conversely, the functional tasks used in Luinge’s study (H. J. 

Luinge et al., 2007) are too complex because they were chosen for healthy 

participants.  
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Chapter 4 – Theory: Deriving Joint Kinematics 
from MIMUs Data 

4.1 Introduction 

In this chapter, the mathematical methods used to process MIMUs data are 

presented. Firstly, anatomical calibration is discussed, including the basic 

principles and the alternative approaches to be compared for defining each 

anatomical coordinate frame. For each alternative, the mathematics for 

calculating the calibration rotation matrix are presented. Secondly, the derivation 

of joint rotation matrices and, hence, joint kinematics is described. This combines 

the sensor outputs (their orientations) and the calibration rotation matrices to 

obtain the orientations of the anatomical frames. Then the anatomical 

orientations of segments that are proximal and distal to a joint are used to 

calculate that joint’s rotation matrix, from which other descriptions of the joint 

kinematics can be derived. Finally, this chapter describes the difficulties 

encountered with the MIMU orientation estimators. 

4.2 Anatomical Calibration 

4.2.1 Basic Principles 

Anatomical calibration is the establishment of an anatomical coordinate frame for 

a body segment, expressed in that body segment’s MIMU (sensor) coordinate 

frame, where the latter is defined in Figure 3.3 (section 3.2.1, chapter 3). In other 

words, for a given body segment, it establishes the relationship between the 

Anatomical frame (Ak) and the Sensor Inertial frame (SIk), where the subscript k 

refers to the body segment, which can be the thorax T, upper-arm U, forearm F 

or hand H. 

The relative orientation of adjacent body segments, and hence the kinematics of 

shoulder, elbow and wrist joints, can be calculated from orientation data 

measured by MIMUs (sensors) attached to each body segment of interest. 
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However, the sensor orientation data cannot be interpreted anatomically unless 

the orientations of the sensor frames are known with respect to their 

corresponding segment anatomical frames. Therefore, appropriate calibration 

must be performed to obtain the relationship between each sensor frame and its 

corresponding segment anatomical frame (Bouvier et al., 2015; de Vries et al., 

2010). The sensor-to-segment calibration procedure consists of the following 

steps: (1) positioning sensors on the thorax, upper-arm, forearm, and hand; (2) 

defining an anatomical frame for each body segment; and (3) expressing the 

orientation of the Anatomical frame (A) with respect to the Sensor Inertial frame 

(SI) by deriving the corresponding rotation matrix ( 𝑹
𝑺𝑰𝒌

𝑨𝒌
). 

Two approaches to defining an anatomical frame are possible. Firstly, by careful 

positioning of the sensor on the body segment, a known geometric relationship 

between the sensor frame and the anatomical frame may be assumed without 

the need for any additional calibration procedures. In the simplest case, the 

segment anatomical axes are equivalent to the sensor axes. In the second 

approach, the sensor does not have to be positioned as carefully and calibration 

procedures are followed to construct the segment anatomical frame based on 

sensor readings. These procedures can include a combination of static 

calibrations, where the body segment is held in a defined position while readings 

are taken; and dynamic (functional) calibrations where the participant performs a 

specific functional movement while readings are taken. In the first case, the 

participant holds a defined static position for five seconds and the measured 

gravity vector is used to establish an anatomical reference vector (𝒗𝒓𝒆𝒇). In the 

second case, the participant performs a well-defined uni-axial rotation to 

determine a functional axis of rotation, which is used as an anatomical reference 

vector (𝒗𝒓𝒆𝒇). 

To define a segment anatomical frame, two anatomical reference vectors are 

used, one primary (𝒗𝒓𝒆𝒇𝟏) and one secondary (𝒗𝒓𝒆𝒇𝟐). These reference vectors 

are unit vectors, they are not collinear, and are non-orthogonal. To construct the 

anatomical frame, 𝒗𝒓𝒆𝒇𝟏 is used as one of the coordinate frame axes. A second 

axis is obtained from the vector cross product of 𝒗𝒓𝒆𝒇𝟏 and 𝒗𝒓𝒆𝒇𝟐. Finally, the third 
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axis is obtained from the vector cross product of the first two axes. This 

guarantees the orthogonality of the axes of the Anatomical frame (A). For 

example, the mathematical method may proceed as follows: 

𝑿
𝑺𝑰𝒌

𝑨𝒌
= 𝒗𝒓𝒆𝒇𝟏                                                                                                            (4.1) 

𝒀
𝑺𝑰𝒌

𝑨𝒌
=

𝒗𝒓𝒆𝒇𝟐× 𝑿
𝑺𝑰𝒌

𝑨𝒌

|𝒗𝒓𝒆𝒇𝟐× 𝑿
𝑺𝑰𝒌

𝑨𝒌
|
                                                                                           (4.2) 

𝒁
𝑺𝑰𝒌

𝑨𝒌
= 𝑿

𝑺𝑰𝒌
𝑨𝒌

× 𝒀
𝑺𝑰𝒌

𝑨𝒌
                                                                                        (4.3) 

In this notation the subscript Ak signifies the anatomical coordinate frame to which 

the axis belongs, and the preceding superscript SIk signifies that the axis is 

expressed in the Sensor Inertial coordinate frame. In this case, the secondary 

reference vector 𝒗𝒓𝒆𝒇𝟐 lies only approximately in the Z-direction, is a temporary Z-

axis, and the true Z-axis is obtained by using the cross product to guarantee that 

the anatomical frame axes are orthogonal (equation 4.3). For this reason, the 

following notation is also used for the secondary reference vector: 𝒗𝒓𝒆𝒇𝟐 ≡ 𝒁̃𝑺𝑰
𝑨 , 

where the tilde ~ symbol over the axis name indicates that it is a secondary 

reference vector that is used as a temporary Z-axis. Note that the sequence of 

the cross products can vary depending on: a) which anatomical axis is defined 

by 𝒗𝒓𝒆𝒇𝟏 (the X-axis in the example above, equation 4.1); and b) which plane is 

defined by 𝒗𝒓𝒆𝒇𝟏 and 𝒗𝒓𝒆𝒇𝟐 (the Z-X plane in the example above, the Y-axis being 

perpendicular to that, equation 4.2).  

Then the calibration rotation matrix, equation 4.4, describing the orientation of the 

Anatomical frame (Ak) with respect to the Sensor Inertial frame (SIk) is given by 

(Craig, 2005): 

𝑹
𝑺𝑰𝒌

𝑨𝒌
= [ 𝑿

𝑺𝑰𝒌
𝑨𝒌

𝒀
𝑺𝑰𝒌

𝑨𝒌
𝒁

𝑺𝑰𝒌
𝑨𝒌

]                                                                      (4.4) 

The columns of the calibration rotation matrix are the unit vectors describing the 

axes of the Anatomical frame (Ak) expressed in the Sensor Inertial frame (SIk). 
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While many papers have been published on sensor-to-segment calibration, there 

has been no comprehensive comparison of the alternative approaches to 

establish their relative merits (section 2.3.3, chapter 2). For FES supported upper-

limb therapy, the need is for simple and fast donning and calibration, whilst 

achieving acceptable accuracy and repeatability with regards to the calculated 

joint kinematics. Therefore, the primary objective of the PhD research was to 

undertake such a comparison and make recommendations for donning and 

calibration for the purposes of upper-limb FES. To achieve this, MATLAB 

software has been written to generate all of the alternative combinations of 

reference vectors (𝒗𝒓𝒆𝒇𝟏 and 𝒗𝒓𝒆𝒇𝟐) and the associated calibration rotation 

matrices. 

4.2.2 Alternative Reference Vectors 

As mentioned above, there is no study that presents a comprehensive 

comparison of the alternatives to determine the best approach to calibration. 

More specifically, no study has compared the many alternative methods for 

defining the two anatomical reference vectors (𝒗𝒓𝒆𝒇𝟏 and 𝒗𝒓𝒆𝒇𝟐). Therefore, in this 

section, alternative reference vectors are presented for each segment, along with 

all of the alternative derivations of the corresponding anatomical axes and 

calibration rotation matrices. The thorax has 8 alternative derivations; the upper-

arm has 8 alternatives; the forearm has 10 alternatives; and finally, the hand has 

8 alternatives. 

For each alternative derivation, the mathematics for calculating the calibration 

rotation matrix are presented in the series of tables in the following sub-sections. 

For each segment, the anatomical reference vectors are explained under two 

headings: static calibrations and dynamic calibrations. In the first case, the 

participant holds a defined static position for five seconds and the measured 

gravity vector is used to establish an anatomical reference vector. In the second 

case, the participant performs a well-defined uni-axial rotation to determine a 

functional axis of rotation, which is used as an anatomical reference vector. 
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4.2.2.1 Thorax 

Figure 4.1 shows two coordinate frames. The sensor frame is referred to by 

subscript SIT (Sensor Inertial Thorax). The anatomical frame is referred to by 

subscript AT (Anatomical Thorax). 

 

Figure 4.1: Anatomical and Sensor Inertial Frames for the Thorax 

To determine the anatomical frame’s axes, the sensor data was used as follows: 

Static Calibrations: 

The static calibration position is sitting with the thorax vertical and straight. The 

acceleration (gravity) data was used to calculate one anatomical reference vector 

as follows:  

𝒀̃𝑨𝑻𝟏
𝑺𝑰𝑻 ≅

𝒈

|𝒈|
                                                                                                       (4.5) 

The subscript AT and the preceding superscript SIT signifies that this is an 

Anatomical Thorax axis and that it is expressed in the thorax’s Sensor Inertial 

frame. The subscript 1 is used because there is more than one alternative Y-axis. 

This is not recommended for use as a primary reference vector (𝒗𝒓𝒆𝒇𝟏) because 

this static calibration position is not considered to be particularly repeatable. 

Rather it should be used only as a secondary reference vector (𝒗𝒓𝒆𝒇𝟐), which is 

indicated by the tilde ~ symbol over the axis name. It lies only approximately in 

the Y-direction, is a temporary thorax Y-axis, and the true Y-axis is obtained by 

𝒀𝑺𝑰𝑻
 

𝒁𝑺𝑰𝑻
 

𝒁𝑨𝑻
 

𝒀𝑨𝑻
 

𝑿𝑨𝑻
 

𝑿𝑺𝑰𝑻
 

𝒀𝑺𝑰𝑻
 

𝒁𝑺𝑰𝑻
 

𝒁𝑨𝑻
 

𝒀𝑨𝑻
 

𝑿𝑨𝑻
 

𝑿𝑺𝑰𝑻
 

𝒀𝑺𝑰𝑻
 

𝒁𝑺𝑰𝑻
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using the cross product to guarantee that the anatomical frame axes are 

orthogonal (see Table 4.1).   

Dynamic (Functional) Calibrations: 

Three calibration movements were used (see Figure 4.1) to calculate the 

following anatomical reference vectors: 

1) Angular velocity 𝝎 (gyro) data captured during lateral flexion of the thorax was 

used to calculate: 

𝑿𝑨𝑻
𝑺𝑰𝑻 =

𝝎𝑳𝑭𝒓

|𝝎𝑳𝑭𝒓|
= −

𝝎𝑳𝑭𝒍

|𝝎𝑳𝑭𝒍
|
                                                                                 (4.6) 

𝝎𝑳𝑭𝒓
 refers to lateral flexion to the right, while 𝝎𝑳𝑭𝒍

 refers to lateral flexion to 

the left. According to the right-hand rule and to ensure that the anatomical X-

axis points forwards, if data for lateral flexion to the right is used, then the sign 

should remain unchanged. Conversely, if data for lateral flexion to the left is 

used, the vector should be multiplied by -1. 

2) Angular velocity data captured during axial rotation of the thorax was used to 

calculate: 

𝒀𝑨𝑻𝟐

𝑺𝑰𝑻 = −
𝝎𝑨𝑹𝒓

|𝝎𝑨𝑹𝒓|
=

𝝎𝑨𝑹𝒍

|𝝎𝑨𝑹𝒍
|
                                                                               (4.7) 

𝝎𝑨𝑹𝒓
 refers to axial rotation to the right, while 𝝎𝑨𝑹𝒍

 refers to axial rotation to 

left, while 𝝎𝑨𝑹𝒍
 refers to axial rotation to the left. The subscript 2 is used 

because there is more than one alternative Y-axis (see equation 4.5 above). 

3) Angular velocity data captured during forward flexion/backward extension of 

the thorax was used to calculate: 

𝒁𝑨𝑻

𝑺𝑰𝑻 = −
𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
=

𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
                                                                                 (4.8) 

𝝎𝑭𝒍𝒆𝒙 refers to flexion, while 𝝎𝑬𝒙𝒕 refers to extension. 

Given the four anatomical reference vectors above (equations 4.5 to 4.8) and 

noting that 𝒀̃𝑨𝑻𝟏
𝑺𝑰𝑻  is only to be used as 𝒗𝒓𝒆𝒇𝟐, there are 8 ways these can be 

combined as shown in Table 4.1 together with the corresponding derivations of 

the anatomical axes and the calibration rotation matrix. The derivations are based 

on the general approach described by equations 4.1 to 4.4. 
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Table 4.1: Eight alternative derivations of the calibration rotation matrix for the thorax 

 𝒗𝒓𝒆𝒇𝟏 𝒗𝒓𝒆𝒇𝟐 Second and third axes Calibration rotation matrix 

1 𝑿𝑨𝑻

𝑺𝑰𝑻  𝒀̃𝑨𝑻𝟏

𝑺𝑰𝑻  𝒁𝑨𝑻

𝑺𝑰𝑻 =
𝑿𝑨𝑻

𝑺𝑰𝑻  × 𝒗𝒓𝒆𝒇𝟐

| 𝑿𝑨𝑻
𝑺𝑰𝑻  × 𝒗𝒓𝒆𝒇𝟐|

 , 𝒀𝑨𝑻

𝑺𝑰𝑻 = 𝒁𝑨𝑻

𝑺𝑰𝑻 × 𝑿𝑨𝑻
𝑺𝑰𝑻  𝑹𝑨𝑻𝟏

𝑺𝑰𝑻 = [ 𝑿𝑨𝑻
𝑺𝑰𝑻 𝒀𝑨𝑻

𝑺𝑰𝑻 𝒁𝑨𝑻

𝑺𝑰𝑻 ] 

2 𝑿𝑨𝑻

𝑺𝑰𝑻  𝒀̃𝑨𝑻𝟐

𝑺𝑰𝑻  𝒁𝑨𝑻

𝑺𝑰𝑻 =
𝑿𝑨𝑻

𝑺𝑰𝑻  × 𝒗𝒓𝒆𝒇𝟐

| 𝑿𝑨𝑻

𝑺𝑰𝑻  × 𝒗𝒓𝒆𝒇𝟐|
 , 𝒀𝑨𝑻

𝑺𝑰𝑻 = 𝒁𝑨𝑻

𝑺𝑰𝑻 × 𝑿𝑨𝑻

𝑺𝑰𝑻  𝑹𝑨𝑻𝟐

𝑺𝑰𝑻 = [ 𝑿𝑨𝑻

𝑺𝑰𝑻 𝒀𝑨𝑻

𝑺𝑰𝑻 𝒁𝑨𝑻

𝑺𝑰𝑻 ] 

3 𝑿𝑨𝑻

𝑺𝑰𝑻  𝒁̃𝑨𝑻

𝑺𝑰𝑻  𝒀𝑨𝑻

𝑺𝑰𝑻 =
  𝒗𝒓𝒆𝒇𝟐 × 𝑿𝑨𝑻

𝑺𝑰𝑻

|𝒗𝒓𝒆𝒇𝟐 × 𝑿𝑨𝑻

𝑺𝑰𝑻 |
 , 𝒁𝑨𝑻

𝑺𝑰𝑻 = 𝑿𝑨𝑻

𝑺𝑰𝑻 × 𝒀𝑨𝑻

𝑺𝑰𝑻  𝑹𝑨𝑻𝟑

𝑺𝑰𝑻 = [ 𝑿𝑨𝑻

𝑺𝑰𝑻 𝒀𝑨𝑻

𝑺𝑰𝑻 𝒁𝑨𝑻

𝑺𝑰𝑻 ] 

4 𝒀𝑨𝑻𝟐

𝑺𝑰𝑻  𝑿̃𝑨𝑻

𝑺𝑰𝑻  𝒁𝑨𝑻

𝑺𝑰𝑻 =
  𝒗𝒓𝒆𝒇𝟐 × 𝒀𝑨𝑻𝟐

𝑺𝑰𝑻

|𝒗𝒓𝒆𝒇𝟐 × 𝒀𝑨𝑻𝟐

𝑺𝑰𝑻 |
 , 𝑿𝑨𝑻

𝑺𝑰𝑻 = 𝒀𝑨𝑻𝟐

𝑺𝑰𝑻 × 𝒁𝑨𝑻

𝑺𝑰𝑻  𝑹𝑨𝑻𝟒

𝑺𝑰𝑻 = [ 𝑿𝑨𝑻

𝑺𝑰𝑻 𝒀𝑨𝑻𝟐

𝑺𝑰𝑻 𝒁𝑨𝑻

𝑺𝑰𝑻 ] 

5 𝒀𝑨𝑻𝟐

𝑺𝑰𝑻  𝒁̃𝑨𝑻

𝑺𝑰𝑻  𝑿𝑨𝑻

𝑺𝑰𝑻 =
𝒀𝑨𝑻𝟐

𝑺𝑰𝑻  × 𝒗𝒓𝒆𝒇𝟐

| 𝒀𝑨𝑻𝟐

𝑺𝑰𝑻  × 𝒗𝒓𝒆𝒇𝟐|
 , 𝒁𝑨𝑻

𝑺𝑰𝑻 = 𝑿𝑨𝑻

𝑺𝑰𝑻 × 𝒀𝑨𝑻𝟐

𝑺𝑰𝑻  𝑹𝑨𝑻𝟓

𝑺𝑰𝑻 = [ 𝑿𝑨𝑻

𝑺𝑰𝑻 𝒀𝑨𝑻𝟐

𝑺𝑰𝑻 𝒁𝑨𝑻

𝑺𝑰𝑻 ] 

6 𝒁𝑨𝑻

𝑺𝑰𝑻  𝑿̃𝑨𝑻

𝑺𝑰𝑻  𝒀𝑨𝑻

𝑺𝑰𝑻 =
𝒁𝑨𝑻

𝑺𝑰𝑻  × 𝒗𝒓𝒆𝒇𝟐

| 𝒁𝑨𝑻

𝑺𝑰𝑻  × 𝒗𝒓𝒆𝒇𝟐|
 , 𝑿𝑨𝑻

𝑺𝑰𝑻 = 𝒀𝑨𝑻

𝑺𝑰𝑻 × 𝒁𝑨𝑻

𝑺𝑰𝑻  𝑹𝑨𝑻𝟔

𝑺𝑰𝑻 = [ 𝑿𝑨𝑻

𝑺𝑰𝑻 𝒀𝑨𝑻

𝑺𝑰𝑻 𝒁𝑨𝑻

𝑺𝑰𝑻 ] 

7 𝒁𝑨𝑻

𝑺𝑰𝑻  𝒀̃𝑨𝑻𝟏

𝑺𝑰𝑻  𝑿𝑨𝑻

𝑺𝑰𝑻 =
𝒗𝒓𝒆𝒇𝟐 × 𝒁𝑨𝑻

𝑺𝑰𝑻   

|𝒗𝒓𝒆𝒇𝟐 × 𝒁𝑨𝑻

𝑺𝑰𝑻 |
 , 𝒀𝑨𝑻

𝑺𝑰𝑻 = 𝒁𝑨𝑻

𝑺𝑰𝑻 × 𝑿𝑨𝑻

𝑺𝑰𝑻  𝑹𝑨𝑻𝟕

𝑺𝑰𝑻 = [ 𝑿𝑨𝑻

𝑺𝑰𝑻 𝒀𝑨𝑻

𝑺𝑰𝑻 𝒁𝑨𝑻

𝑺𝑰𝑻 ] 

8 𝒁𝑨𝑻

𝑺𝑰𝑻  𝒀̃𝑨𝑻𝟐

𝑺𝑰𝑻  𝑿𝑨𝑻

𝑺𝑰𝑻 =
𝒗𝒓𝒆𝒇𝟐 × 𝒁𝑨𝑻

𝑺𝑰𝑻   

|𝒗𝒓𝒆𝒇𝟐 × 𝒁𝑨𝑻

𝑺𝑰𝑻 |
 , 𝒀𝑨𝑻

𝑺𝑰𝑻 = 𝒁𝑨𝑻

𝑺𝑰𝑻 × 𝑿𝑨𝑻

𝑺𝑰𝑻  𝑹𝑨𝑻𝟖

𝑺𝑰𝑻 = [ 𝑿𝑨𝑻

𝑺𝑰𝑻 𝒀𝑨𝑻

𝑺𝑰𝑻 𝒁𝑨𝑻

𝑺𝑰𝑻 ] 
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4.2.2.2 Upper-arm 

Figure 4.2 shows two coordinate frames. The sensor frame is referred to by 

subscript SIU (Sensor Inertial Upper-arm). The anatomical frame is referred to by 

subscript AU (Anatomical Upper-arm). 

 

Figure 4.2: Anatomical and Sensor Inertial Frames for the Upper-arm 

To determine the anatomical frame’s axes, the sensor data was used as follows: 

Static Calibrations: 

The static calibration position is sitting with the thorax vertical and straight, and 

the upper-arm vertical and aligned with the body. The acceleration (gravity) data 

was used to calculate one anatomical reference vector as follows:  

𝒀̃𝑨𝑼𝟏
𝑺𝑰𝑼 ≅

𝒈

|𝒈|
                                                                                                         (4.9) 

The subscript AU and the preceding superscript SIU signifies that this is an 

Anatomical Upper-arm axis and that it is expressed in the upper-arm’s Sensor 

Flexion-extension  

Abduction-Adduction 

Internal-External rotation  

𝑿𝑨𝑼
 

𝒁𝑨𝑼
 

𝒀𝑨𝑼
 

𝒀𝑺𝑰𝑼
 

𝒁𝑺𝑰𝑼
 

𝑿𝑺𝑰𝑼
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Inertial frame. The subscript 1 is used because there is more than one alternative 

Y-axis. 

This is not recommended for use as a primary reference vector (𝒗𝒓𝒆𝒇𝟏) because 

this static calibration position is not considered to be particularly repeatable. 

Rather it should be used only as a secondary reference vector (𝒗𝒓𝒆𝒇𝟐), which is 

indicated by the tilde ~ symbol over the axis name. It lies only approximately in 

the Y-direction, is a temporary upper-arm Y-axis, and the true Y-axis is obtained 

by using the cross product to guarantee that the anatomical frame axes are 

orthogonal (see Table 4.2).   

Dynamic (Functional) Calibrations: 

Three calibration movements were used (see Figure 4.2) to calculate the 

following anatomical reference vectors: 

1) Angular velocity 𝝎 (gyro) data captured during shoulder abduction-adduction 

was used to calculate: 

𝑿𝑨𝑼
𝑺𝑰𝑼 =

𝝎𝑨𝒅𝒅

|𝝎𝑨𝒅𝒅|
= −

𝝎𝑨𝒃𝒅

|𝝎𝑨𝒃𝒅|
                                                                              (4.10) 

𝝎𝑨𝒅𝒅 refers to adduction, while 𝝎𝑨𝒃𝒅 refers to abduction. According to the right-

hand rule and to ensure that the anatomical X-axis points forwards, if data for 

adduction is used, then the sign should remain unchanged. Conversely, if data 

for abduction is used, the vector should be multiplied by   -1. 

2) Angular velocity data captured during shoulder internal-external rotation was 

used to calculate: 

𝒀𝑨𝑼𝟐

𝑺𝑰𝑼 =
𝝎𝑰𝒏𝒕𝒓

|𝝎𝑰𝒏𝒕𝒓|
= −

𝝎𝑬𝒙𝒕𝒓

|𝝎𝑬𝒙𝒕𝒓|
                                                                            (4.11) 

𝝎𝑰𝒏𝒕𝒓
 refers to internal rotation, while 𝝎𝑬𝒙𝒕𝒓

 refers to external rotation. The 

subscript 2 is used because there is more than one alternative Y-axis (see 

equation 4.9 above). 

3) Angular velocity data captured during shoulder flexion-extension was used to 

calculate: 

𝒁𝑨𝑼

𝑺𝑰𝑼 =
𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
= −

𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
                                                                               (4.12) 
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𝝎𝑭𝒍𝒆𝒙 refers to flexion, while 𝝎𝑬𝒙𝒕 refers to extension. 

Given the four anatomical reference vectors above (equations 4.9 to 4.12) and 

noting that 𝒀̃𝑨𝑼𝟏
𝑺𝑰𝑼  is only to be used as 𝒗𝒓𝒆𝒇𝟐, there are 8 ways these can be 

combined as shown in Table 4.2 together with the corresponding derivations of 

the anatomical axes and the calibration rotation matrix. The derivations are based 

on the general approach described by equations 4.1 to 4.4. 

 



84 
 
 

Table 4.2: Eight alternative derivations of the calibration rotation matrix for the upper-arm 

 𝒗𝑟𝑒𝑓1 𝒗𝑟𝑒𝑓2 Second and third axes Calibration rotation matrix 

1 𝑿𝑨𝑼
𝑺𝑰𝑼  𝒀̃𝑨𝑼𝟏

𝑺𝑰𝑼  𝒁𝑨𝑼

𝑺𝑰𝑼 =
𝑿𝑨𝑼

𝑺𝑰𝑼  ×𝒗𝒓𝒆𝒇𝟐

| 𝑿𝑨𝑼
𝑺𝑰𝑼  × 𝒗𝒓𝒆𝒇𝟐|

 , 𝒀𝑨𝑼

𝑺𝑰𝑼 = 𝒁𝑨𝑼

𝑺𝑰𝑼 × 𝑿𝑨𝑼
𝑺𝑰𝑼  𝑹𝑨𝑼𝟏

𝑺𝑰𝑼 = [ 𝑿𝑨𝑼
𝑺𝑰𝑼 𝒀𝑨𝑼

𝑺𝑰𝑼 𝒁𝑨𝑼

𝑺𝑰𝑼 ] 

2 𝑿𝑨𝑼
𝑺𝑰𝑼  𝒀̃𝑨𝑼𝟐

𝑺𝑰𝑼  𝒁𝑨𝑼

𝑺𝑰𝑼 =
𝑿𝑨𝑼

𝑺𝑰𝑼  × 𝒗𝒓𝒆𝒇𝟐

| 𝑿𝑨𝑼
𝑺𝑰𝑼  × 𝒗𝒓𝒆𝒇𝟐|

 , 𝒀𝑨𝑼

𝑺𝑰𝑼 = 𝒁𝑨𝑼

𝑺𝑰𝑼 × 𝑿𝑨𝑼
𝑺𝑰𝑼  𝑹𝑨𝑼𝟐

𝑺𝑰𝑼 = [ 𝑿𝑨𝑼
𝑺𝑰𝑼 𝒀𝑨𝑼

𝑺𝑰𝑼 𝒁𝑨𝑼

𝑺𝑰𝑼 ] 

3 𝑿𝑨𝑼
𝑺𝑰𝑼  𝒁̃𝑨𝑼

𝑺𝑰𝑼  𝒀𝑨𝑼

𝑺𝑰𝑼 =
𝒗𝒓𝒆𝒇𝟐× 𝑿𝑨𝑼

𝑺𝑰𝑼   

|𝒗𝒓𝒆𝒇𝟐× 𝑿𝑨𝑼
𝑺𝑰𝑼 |

 , 𝒁𝑨𝑼

𝑺𝑰𝑼 = 𝑿𝑨𝑼
𝑺𝑰𝑼 × 𝒀𝑨𝑼

𝑺𝑰𝑼  𝑹𝑨𝑼𝟑

𝑺𝑰𝑼 = [ 𝑿𝑨𝑼
𝑺𝑰𝑼 𝒀𝑨𝑼

𝑺𝑰𝑼 𝒁𝑨𝑼

𝑺𝑰𝑼 ] 

4 𝒀𝑨𝑼𝟐

𝑺𝑰𝑼  𝑿̃𝑨𝑼

𝑺𝑰𝑼  𝒁𝑨𝑼

𝑺𝑰𝑼 =
𝒗𝒓𝒆𝒇𝟐× 𝒀𝑨𝑼𝟐

𝑺𝑰𝑼   

|𝒗𝒓𝒆𝒇𝟐× 𝒀𝑨𝑼𝟐

𝑺𝑰𝑼 |
 , 𝑿𝑨𝑼

𝑺𝑰𝑼 = 𝒀𝑨𝑼𝟐

𝑺𝑰𝑼 × 𝒁𝑨𝑼

𝑺𝑰𝑼  𝑹𝑨𝑼𝟒

𝑺𝑰𝑼 = [ 𝑿𝑨𝑼
𝑺𝑰𝑼 𝒀𝑨𝑼𝟐

𝑺𝑰𝑼 𝒁𝑨𝑼

𝑺𝑰𝑼 ] 

5 𝒀𝑨𝑼𝟐

𝑺𝑰𝑼  𝒁̃𝑨𝑼

𝑺𝑰𝑼  𝑿𝑨𝑼
𝑺𝑰𝑼 =

𝒀𝑼𝟐 
𝑺𝑰𝑼  × 𝒗𝒓𝒆𝒇𝟐

| 𝒀𝑼𝟐 
𝑺𝑰𝑼  × 𝒗𝒓𝒆𝒇𝟐|

 , 𝒁𝑨𝑼

𝑺𝑰𝑼 = 𝑿𝑨𝑼
𝑺𝑰𝑼 × 𝒀𝑨𝑼𝟐

𝑺𝑰𝑼  𝑹𝑨𝑼𝟓

𝑺𝑰𝑼 = [ 𝑿𝑨𝑼
𝑺𝑰𝑼 𝒀𝑨𝑼𝟐

𝑺𝑰𝑼 𝒁𝑨𝑼

𝑺𝑰𝑼 ] 

6 𝒁𝑨𝑼

𝑺𝑰𝑼  𝑿̃𝑨𝑼

𝑺𝑰𝑼  𝒀𝑨𝑼

𝑺𝑰𝑼 =
𝒁𝑨𝑼

𝑺𝑰𝑼  × 𝒗𝒓𝒆𝒇𝟐

| 𝒁𝑨𝑼

𝑺𝑰𝑼  × 𝒗𝒓𝒆𝒇𝟐|
 , 𝑿𝑨𝑼

𝑺𝑰𝑼 = 𝒀𝑨𝑼

𝑺𝑰𝑼 × 𝒁𝑨𝑼

𝑺𝑰𝑼  𝑹𝑨𝑼𝟔

𝑺𝑰𝑼 = [ 𝑿𝑨𝑼
𝑺𝑰𝑼 𝒀𝑨𝑼

𝑺𝑰𝑼 𝒁𝑨𝑼

𝑺𝑰𝑼 ] 

7 𝒁𝑨𝑼

𝑺𝑰𝑼  𝒀̃𝑨𝑼𝟏
𝑺𝑰𝑼  𝑿𝑨𝑼

𝑺𝑰𝑼 =
𝒗𝒓𝒆𝒇𝟐× 𝒁𝑨𝑼

𝑺𝑰𝑼   

|𝒗𝒓𝒆𝒇𝟐× 𝒁𝑨𝑼

𝑺𝑰𝑼 |
 , 𝒀𝑨𝑼

𝑺𝑰𝑼 = 𝒁𝑨𝑼

𝑺𝑰𝑼 × 𝑿𝑨𝑼
𝑺𝑰𝑼  𝑹𝑨𝑼𝟕

𝑺𝑰𝑼 = [ 𝑿𝑨𝑼
𝑺𝑰𝑼 𝒀𝑨𝑼

𝑺𝑰𝑼 𝒁𝑨𝑼

𝑺𝑰𝑼 ] 

8 𝒁𝑨𝑼

𝑺𝑰𝑼  𝒀̃𝑨𝑼𝟐
𝑺𝑰𝑼  𝑿𝑨𝑼

𝑺𝑰𝑼 =
𝒗𝒓𝒆𝒇𝟐× 𝒁𝑨𝑼

𝑺𝑰𝑼   

|𝒗𝒓𝒆𝒇𝟐× 𝒁𝑨𝑼

𝑺𝑰𝑼 |
 , 𝒀𝑨𝑼

𝑺𝑰𝑼 = 𝒁𝑨𝑼

𝑺𝑰𝑼 × 𝑿𝑨𝑼
𝑺𝑰𝑼  𝑹𝑨𝑼𝟖

𝑺𝑰𝑼 = [ 𝑿𝑨𝑼
𝑺𝑰𝑼 𝒀𝑨𝑼

𝑺𝑰𝑼 𝒁𝑨𝑼

𝑺𝑰𝑼 ] 
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4.2.2.3 Forearm 

Figure 4.3 shows two coordinate frames. The sensor frame is referred to by 

subscript SIF (Sensor Inertial Forearm). The anatomical frame is referred to by 

subscript AF (Anatomical Forearm). 

 

Figure 4.3: Anatomical and Sensor Inertial Frames for the Forearm 

To determine the anatomical frame’s axes, the sensor data was used as follows: 

Static Calibrations: 

1) The first static calibration position is sitting with the thorax vertical and straight, 

the upper-arm vertical and aligned with the body, and the forearm fully 

pronated with the hand palm down on the table. The acceleration (gravity) data 

was used to calculate one anatomical reference vector as follows: 

𝑿̃𝑨𝑭𝟏

𝑺𝑰𝑭 ≅ −
𝒈

|𝒈|
                                                                                               (4.13) 

The subscript AF and the preceding superscript SIF signifies that this is an 

Anatomical Forearm axis and that it is expressed in the forearm’s Sensor 

Inertial frame. The subscript 1 is used because there is more than one 

alternative X-axis. 

Flexion-extension  

Pronation-Supination 

𝑿𝑺𝑰𝑭
 

𝒀𝑺𝑰𝑭
 

 
𝑿𝑨𝑭

 

𝒁𝑨𝑭
 

𝒀𝑨𝑭
 𝒁𝑺𝑰𝑭
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This is not recommended for use as a primary reference vector (𝒗𝒓𝒆𝒇𝟏) because 

this static calibration position is not considered to be particularly repeatable. 

Rather it should be used only as a secondary reference vector (𝒗𝒓𝒆𝒇𝟐), which 

is indicated by the tilde ~ symbol over the axis name. It lies only approximately 

in the X-direction, is a temporary forearm X-axis, and the true X-axis is obtained 

by using the cross product to guarantee that the anatomical frame axes are 

orthogonal (see Table 4.3).   

2) A second gravity-based anatomical reference vector has been calculated, from 

the sensor data captured at the beginning of the pronation-supination 

movement, when the forearm is in the neutral position with the palm vertical 

as shown in Figure 4.3: 

𝒁̃𝑨𝑭𝟏

𝑺𝑰𝑭 ≅
𝒈

|𝒈|
                                                                                                  (4.14) 

Again, the subscript 1 is used because there is more than one alternative Z-

axis and the tilde ~ symbol is used because this should be used only as a 

secondary reference vector (𝒗𝒓𝒆𝒇𝟐). 

Dynamic (Functional) Calibrations: 

Two calibration movements were used (see Figure 4.3) to calculate the following 

anatomical reference vectors: 

1) Angular velocity 𝝎 (gyro) data captured during elbow flexion-extension was 

used to calculate: 

𝑿𝑨𝑭𝟐
𝑺𝑰𝑭 =

𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
= −

𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
                                                                            (4.15) 

𝝎𝑬𝒙𝒕 refers to extension, while 𝝎𝑭𝒍𝒆𝒙 refers to flexion. The subscript 2 is used 

because there is more than one alternative X-axis (see equation 4.13 above). 

According to the right-hand rule and to ensure that the anatomical X-axis points 

forwards, if data for elbow extension is used, then the sign should remain 

unchanged. Conversely, if data for elbow flexion is used, the vector should be 

multiplied by -1. 

2) Angular velocity data captured during elbow pronation-supination was used to 

calculate: 



87 
 
 

𝒀𝑨𝑭

𝑺𝑰𝑭 = −
𝝎𝑺𝒖𝒑

|𝝎𝑺𝒖𝒑|
=

𝝎𝑷𝒓𝒐𝒏

|𝝎𝑷𝒓𝒐𝒏|
                                                                              (4.16) 

𝝎𝑺𝒖𝒑 refers to supination, while 𝝎𝑷𝒓𝒐𝒏 refers to pronation. 

3) Angular velocity data captured during shoulder internal-external rotation was 

used to calculate: 

𝒁𝑨𝑭𝟐

𝑺𝑰𝑼 =
𝝎𝑰𝒏𝒕𝒓

|𝝎𝑰𝒏𝒕𝒓|
= −

𝝎𝑬𝒙𝒕𝒓

|𝝎𝑬𝒙𝒕𝒓|
                                                                              (4.17) 

𝝎𝑰𝒏𝒕𝒓
 refers to internal rotation, while 𝝎𝑬𝒙𝒕𝒓

 refers to external rotation. The 

subscript 2 is used because there is more than one alternative Z-axis (see 

equation 4.14 above).  

Given the five anatomical reference vectors above (equations 4.13 to 4.17) and 

noting that 𝑿̃𝑨𝑭𝟏

𝑺𝑰𝑭  and 𝒁̃𝑨𝑭𝟏

𝑺𝑰𝑭  are only to be used as 𝒗𝒓𝒆𝒇𝟐, there are 10 ways 

these can be combined as shown in Table 4.3 together with the corresponding 

derivations of the anatomical axes and the calibration rotation matrix. The 

derivations are based on the general approach described by equations 4.1 to 4.4 
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Table 4.3: Ten alternative derivations of the calibration rotation matrix for the forearm 

 𝒗𝒓𝒆𝒇𝟏 𝒗𝒓𝒆𝒇𝟐 Second and third axes Calibration rotation matrix 

1 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭  𝒀̃𝑨𝑭

𝑺𝑰𝑭  𝒁𝑨𝑭

𝑺𝑰𝑭 =
𝑿𝑨𝑭𝟐

𝑺𝑰𝑭  × 𝒗𝒓𝒆𝒇𝟐  

| 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭  × 𝒗𝒓𝒆𝒇𝟐|

 , 𝒀𝑨𝑭

𝑺𝑰𝑭 = 𝒁𝑨𝑭

𝑺𝑰𝑭 × 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭  𝑹𝑨𝑭𝟏

𝑺𝑰𝑭 = [ 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭 𝒀𝑨𝑭

𝑺𝑰𝑭 𝒁𝑨𝑭

𝑺𝑰𝑭 ] 

2 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭  𝒁̃𝑨𝑭𝟏

𝑺𝑰𝑭  𝒀𝑨𝑭

𝑺𝑰𝑭 =
𝒗𝒓𝒆𝒇𝟐 × 𝑿𝑨𝑭𝟐

𝑺𝑰𝑭

|𝒗𝒓𝒆𝒇𝟐 × 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭 |

 , 𝒁𝑨𝑭

𝑺𝑰𝑭 = 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭 × 𝒀𝑨𝑭

𝑺𝑰𝑭  𝑹𝑨𝑭𝟐

𝑺𝑰𝑭 = [ 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭 𝒀𝑨𝑭

𝑺𝑰𝑭 𝒁𝑨𝑭

𝑺𝑰𝑭 ] 

3 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭  𝒁̃𝑨𝑭𝟐

𝑺𝑰𝑼  𝒀𝑨𝑭

𝑺𝑰𝑭 =
𝒗𝒓𝒆𝒇𝟐 × 𝑿𝑨𝑭𝟐

𝑺𝑰𝑭

|𝒗𝒓𝒆𝒇𝟐 × 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭 |

 , 𝒁𝑨𝑭

𝑺𝑰𝑭 = 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭 × 𝒀𝑨𝑭

𝑺𝑰𝑭  𝑹𝑨𝑭𝟑

𝑺𝑰𝑭 = [ 𝑿𝑨𝑭𝟐
𝑺𝑰𝑭 𝒀𝑨𝑭

𝑺𝑰𝑭 𝒁𝑨𝑭

𝑺𝑰𝑭 ] 

4 𝒀𝑨𝑭

𝑺𝑰𝑭  𝑿̃𝑨𝑭𝟏

𝑺𝑰𝑭  𝒁𝑨𝑭

𝑺𝑰𝑭 =
𝒗𝒓𝒆𝒇𝟐 × 𝒀𝑨𝑭

𝑺𝑰𝑭

|𝒗𝒓𝒆𝒇𝟐 × 𝒀𝑨𝑭

𝑺𝑰𝑭 |
 , 𝑿𝑨𝑭

𝑺𝑰𝑭 = 𝒀𝑨𝑭

𝑺𝑰𝑭 × 𝒁𝑨𝑭

𝑺𝑰𝑭  𝑹𝑨𝑭𝟒

𝑺𝑰𝑭 = [ 𝑿𝑨𝑭

𝑺𝑰𝑭 𝒀𝑨𝑭

𝑺𝑰𝑭 𝒁𝑨𝑭

𝑺𝑰𝑭 ] 

5 𝒀𝑨𝑭

𝑺𝑰𝑭  𝑿̃𝑨𝑭𝟐

𝑺𝑰𝑭  𝒁𝑨𝑭

𝑺𝑰𝑭 =
𝒗𝒓𝒆𝒇𝟐 × 𝒀𝑨𝑭

𝑺𝑰𝑭

|𝒗𝒓𝒆𝒇𝟐 × 𝒀𝑨𝑭

𝑺𝑰𝑭 |
 , 𝑿𝑭

𝑺𝑰𝑭 = 𝒀𝑨𝑭

𝑺𝑰𝑭 × 𝒁𝑨𝑭

𝑺𝑰𝑭  𝑹𝑨𝑭𝟓

𝑺𝑰𝑭 = [ 𝑿𝑨𝑭

𝑺𝑰𝑭 𝒀𝑨𝑭

𝑺𝑰𝑭 𝒁𝑨𝑭

𝑺𝑰𝑭 ] 

6 𝒀𝑨𝑭

𝑺𝑰𝑭  𝒁̃𝑨𝑭𝟏

𝑺𝑰𝑭  𝑿𝑨𝑭

𝑺𝑰𝑭 =
𝒀𝑨𝑭

𝑺𝑰𝑭 ×𝒗𝒓𝒆𝒇𝟐  

| 𝒀𝑨𝑭

𝑺𝑰𝑭 ×𝒗𝒓𝒆𝒇𝟐  |
 , 𝒁𝑨𝑭

𝑺𝑰𝑭 = 𝑿𝑨𝑭

𝑺𝑰𝑭 × 𝒀𝑨𝑭

𝑺𝑰𝑭  𝑹𝑨𝑭𝟔

𝑺𝑰𝑭 = [ 𝑿𝑨𝑭

𝑺𝑰𝑭 𝒀𝑨𝑭

𝑺𝑰𝑭 𝒁𝑨𝑭

𝑺𝑰𝑭 ] 

7 𝒀𝑨𝑭

𝑺𝑰𝑭  𝒁̃𝑨𝑭𝟐

𝑺𝑰𝑼  𝑿𝑨𝑭

𝑺𝑰𝑭 =
𝒀𝑨𝑭

𝑺𝑰𝑭 ×𝒗𝒓𝒆𝒇𝟐  

| 𝒀𝑨𝑭

𝑺𝑰𝑭 ×𝒗𝒓𝒆𝒇𝟐  |
 , 𝒁𝑨𝑭

𝑺𝑰𝑭 = 𝑿𝑨𝑭

𝑺𝑰𝑭 × 𝒀𝑨𝑭

𝑺𝑰𝑭  𝑹𝑨𝑭𝟕

𝑺𝑰𝑭 = [ 𝑿𝑨𝑭

𝑺𝑰𝑭 𝒀𝑨𝑭

𝑺𝑰𝑭 𝒁𝑨𝑭

𝑺𝑰𝑭 ] 

8 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼  𝑿̃𝑨𝑭𝟏

𝑺𝑰𝑭  𝒀𝑨𝑭

𝑺𝑰𝑭 =
𝒁𝑨𝑭𝟐

𝑺𝑰𝑼  × 𝒗𝒓𝒆𝒇𝟐  

| 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼  × 𝒗𝒓𝒆𝒇𝟐|
 , 𝑿𝑨𝑭

𝑺𝑰𝑭 = 𝒀𝑨𝑭

𝑺𝑰𝑭 × 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼  𝑹𝑨𝑭𝟖

𝑺𝑰𝑭 = [ 𝑿𝑨𝑭

𝑺𝑰𝑭 𝒀𝑨𝑭

𝑺𝑰𝑭 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼 ] 
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Table 4.3: Ten alternative derivations of the calibration rotation matrix for the forearm (Continued…) 

 𝒗𝒓𝒆𝒇𝟏 𝒗𝒓𝒆𝒇𝟐 Second and third axes Calibration rotation matrix 

9 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼  𝑿̃𝑨𝑭𝟐

𝑺𝑰𝑭  𝒀𝑨𝑭

𝑺𝑰𝑭 =
𝒁𝑨𝑭𝟐

𝑺𝑰𝑼  × 𝒗𝒓𝒆𝒇𝟐  

| 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼  × 𝒗𝒓𝒆𝒇𝟐|
 , 𝑿𝑨𝑭

𝑺𝑰𝑭 = 𝒀𝑨𝑭

𝑺𝑰𝑭 × 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼  𝑹𝑨𝑭𝟗

𝑺𝑰𝑭 = [ 𝑿𝑨𝑭

𝑺𝑰𝑭 𝒀𝑨𝑭

𝑺𝑰𝑭 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼 ] 

10 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼  𝒀̃𝑨𝑭

𝑺𝑰𝑭  𝑿𝑨𝑭

𝑺𝑰𝑭 =
𝒗𝒓𝒆𝒇𝟐 × 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼

|𝒗𝒓𝒆𝒇𝟐 × 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼 |
 , 𝒀𝑨𝑭

𝑺𝑰𝑭 = 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼 × 𝑿𝑨𝑭

𝑺𝑰𝑭  𝑹𝑨𝑭𝟏𝟎

𝑺𝑰𝑭 = [ 𝑿𝑨𝑭

𝑺𝑰𝑭 𝒀𝑨𝑭

𝑺𝑰𝑭 𝒁𝑨𝑭𝟐

𝑺𝑰𝑼 ] 
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4.2.2.4 Hand 

Figure 4.4 shows two coordinate frames. The sensor frame is referred to by 

subscript SIH (Sensor Inertial Hand). The anatomical frame is referred to by 

subscript AH (Anatomical Hand). 

 

Figure 4.4: Anatomical and Sensor Inertial Frames for the Hand 

To determine the anatomical frame’s axes, the sensor data was used as follows: 

Static Calibrations: 

The static calibration position is sitting with the thorax vertical and straight, the 

upper-arm vertical and aligned with the body, and the forearm and hand in the 

neutral palm vertical position on the table as shown in Figure 4.4. The 

acceleration (gravity) data was used to calculate one anatomical reference vector 

as follows: 

𝒁̃𝑨𝑯𝟏

𝑺𝑰𝑯 ≅ −
𝒈

|𝒈|
                                                                                                  (4.18) 

The subscript AH and the preceding superscript SIH signifies that this is an 

Anatomical Hand axis and that it is expressed in the hand’s Sensor Inertial frame. 

The subscript 1 is used because there is more than one alternative Z-axis. 

Flexion-extension  

Pronation-Supination 

Radial-Ulnar Deviation 

𝑿𝑨𝑯
 

𝒁𝑨𝑯
 

𝒀𝑨𝑯
 

𝒀𝑺𝑰𝑯
 

𝒁𝑺𝑰𝑯
 

𝑿𝑺𝑰𝑯
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This is not recommended for use as a primary reference vector (𝒗𝒓𝒆𝒇𝟏) because 

this static calibration position is not considered to be particularly repeatable. 

Rather it should be used only as a secondary reference vector (𝒗𝒓𝒆𝒇𝟐), which is 

indicated by the tilde ~ symbol over the axis name. It lies only approximately in 

the Z-direction, is a temporary hand Z-axis, and the true Z-axis is obtained by 

using the cross product to guarantee that the anatomical frame axes are 

orthogonal (see Table 4.4).  

Dynamic (Functional) Calibrations: 

Three calibration movements were used (see Figure 4.4) to calculate the 

following anatomical reference vectors: 

1) Angular velocity 𝝎 (gyro) data captured during radial-ulnar deviation was used 

to calculate: 

𝑿𝑨𝑯
𝑺𝑰𝑯 =

𝝎𝑼𝒅

|𝝎𝑼𝒅|
= −

𝝎𝑹𝒅

|𝝎𝑹𝒅|
                                                                               (4.19) 

𝝎𝑼𝒅 refers to ulnar deviation, while 𝝎𝑹𝒅 refers to radial deviation. According to 

the right-hand rule and to ensure that the anatomical X-axis points medially, if 

data for ulnar deviation is used, then the sign should remain unchanged. 

Conversely, if data for radial deviation is used, the vector should be multiplied 

by -1. 

2) Angular velocity data captured during elbow pronation-supination was used to 

calculate: 

𝒀𝑨𝑯

𝑺𝑰𝑯 = −
𝝎𝑺𝒖𝒑

|𝝎𝑺𝒖𝒑|
=

𝝎𝑷𝒓𝒐𝒏

|𝝎𝑷𝒓𝒐𝒏|
                                                                                      (4.20) 

𝝎𝑺𝒖𝒑 refers to supination, while 𝝎𝑷𝒓𝒐𝒏 refers to pronation. 

3) Angular velocity data captured during hand flexion-extension was used to 

calculate: 

𝒁𝑨𝑯𝟐

𝑺𝑰𝑯 =
𝝎𝑭𝒍𝒆𝒙

|𝝎𝑭𝒍𝒆𝒙|
= −

𝝎𝑬𝒙𝒕

|𝝎𝑬𝒙𝒕|
                                                                               (4.21) 

𝝎𝑭𝒍𝒆𝒙 refers to flexion, while 𝝎𝑬𝒙𝒕 refers to extension. The subscript 2 is used 

because there is more than one alternative Z-axis (see equation 4.18 above). 

Given the four anatomical reference vectors above (equations 4.18 to 4.21) and 

noting that 𝒁̃𝑨𝑯𝟏

𝑺𝑰𝑯  is only to be used as 𝒗𝒓𝒆𝒇𝟐, there are 8 ways these can be 
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combined as shown in Table 4.4 together with the corresponding derivations of 

the anatomical axes and the calibration rotation matrix. The derivations are based 

on the general approach described by equations 4.1 to 4.4. 
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Table 4.4: Eight alternative derivations of the calibration rotation matrix for the hand 

 𝒗𝒓𝒆𝒇𝟏 𝒗𝒓𝒆𝒇𝟐 Second and third axes Calibration rotation matrix 

1 𝑿𝑨𝑯
𝑺𝑰𝑯  𝒀̃𝑨𝑯

𝑺𝑰𝑯  𝒁𝑨𝑯

𝑺𝑰𝑯 =
𝑿𝑨𝑯 

𝑺𝑰𝑯 × 𝒗𝒓𝒆𝒇𝟐  

| 𝑿𝑨𝑯
𝑺𝑰𝑯  × 𝒗𝒓𝒆𝒇𝟐|

 , 𝒀𝑨𝑯

𝑺𝑰𝑯 = 𝒁𝑨𝑯

𝑺𝑰𝑯 × 𝑿𝑨𝑯
𝑺𝑰𝑯  𝑹𝑨𝑯𝟏

𝑺𝑰𝑯 = [ 𝑿𝑨𝑯
𝑺𝑰𝑯 𝒀𝑨𝑯

𝑺𝑰𝑯 𝒁𝑨𝑯

𝑺𝑰𝑯 ] 

2 𝑿𝑨𝑯
𝑺𝑰𝑯  𝒁̃𝑨𝑯𝟐

𝑺𝑰𝑯  𝒀𝑨𝑯

𝑺𝑰𝑯 =
𝒗𝒓𝒆𝒇𝟐 × 𝑿𝑨𝑯

𝑺𝑰𝑯

|𝒗𝒓𝒆𝒇𝟐 × 𝑿𝑨𝑯
𝑺𝑰𝑯 |

 , 𝒁𝑨𝑯

𝑺𝑰𝑯 = 𝑿𝑨𝑯
𝑺𝑰𝑯 × 𝒀𝑨𝑯

𝑺𝑰𝑯  𝑹𝑨𝑯𝟐

𝑺𝑰𝑯 = [ 𝑿𝑨𝑯
𝑺𝑰𝑯 𝒀𝑨𝑯

𝑺𝑰𝑯 𝒁𝑨𝑯

𝑺𝑰𝑯 ] 

3 𝑿𝑨𝑯
𝑺𝑰𝑯  𝒁̃𝑨𝑯𝟏

𝑺𝑰𝑯  𝒀𝑨𝑯

𝑺𝑰𝑯 =
𝒗𝒓𝒆𝒇𝟐 × 𝑿𝑨𝑯

𝑺𝑰𝑯

|𝒗𝒓𝒆𝒇𝟐 × 𝑿𝑨𝑯
𝑺𝑰𝑯 |

 , 𝒁𝑨𝑯

𝑺𝑰𝑯 = 𝑿𝑨𝑯
𝑺𝑰𝑯 × 𝒀𝑨𝑯

𝑺𝑰𝑯  𝑹𝑨𝑯𝟑

𝑺𝑰𝑯 = [ 𝑿𝑨𝑯
𝑺𝑰𝑯 𝒀𝑨𝑯

𝑺𝑰𝑯 𝒁𝑨𝑯

𝑺𝑰𝑯 ] 

4 𝒀𝑨𝑯

𝑺𝑰𝑯  𝑿̃𝑨𝑯

𝑺𝑰𝑯  𝒁𝑨𝑯

𝑺𝑰𝑯 =
𝒗𝒓𝒆𝒇𝟐 × 𝒀𝑨𝑯

𝑺𝑰𝑯

|𝒗𝒓𝒆𝒇𝟐 × 𝒀𝑨𝑯

𝑺𝑰𝑯 |
 , 𝑿𝑨𝑯

𝑺𝑰𝑯 = 𝒀𝑨𝑯

𝑺𝑰𝑯 × 𝒁𝑨𝑯

𝑺𝑰𝑯  𝑹𝑨𝑯𝟒

𝑺𝑰𝑯 = [ 𝑿𝑨𝑯
𝑺𝑰𝑯 𝒀𝑨𝑯

𝑺𝑰𝑯 𝒁𝑨𝑯

𝑺𝑰𝑯 ] 

5 𝒀𝑨𝑯

𝑺𝑰𝑯  𝒁̃𝑨𝑯𝟐

𝑺𝑰𝑯  𝑿𝑨𝑯
𝑺𝑰𝑯 =

𝒀𝑨𝑯

𝑺𝑰𝑯  × 𝒗𝒓𝒆𝒇𝟐  

| 𝒀𝑨𝑯
𝑺𝑰  × 𝒗𝒓𝒆𝒇𝟐|

 , 𝒁𝑨𝑯

𝑺𝑰𝑯 = 𝑿𝑨𝑯
𝑺𝑰𝑯 × 𝒀𝑨𝑯

𝑺𝑰𝑯  𝑹𝑨𝑯𝟓

𝑺𝑰𝑯 = [ 𝑿𝑨𝑯
𝑺𝑰𝑯 𝒀𝑨𝑯

𝑺𝑰𝑯 𝒁𝑨𝑯

𝑺𝑰𝑯 ] 

6 𝒀𝑨𝑯

𝑺𝑰𝑯  𝒁̃𝑨𝑯𝟏

𝑺𝑰𝑯  𝑿𝑨𝑯
𝑺𝑰𝑯 =

𝒀𝑨𝑯

𝑺𝑰𝑯  × 𝒗𝒓𝒆𝒇𝟐  

| 𝒀𝑨𝑯
𝑺𝑰  × 𝒗𝒓𝒆𝒇𝟐|

 , 𝒁𝑨𝑯

𝑺𝑰𝑯 = 𝑿𝑨𝑯
𝑺𝑰𝑯 × 𝒀𝑨𝑯

𝑺𝑰𝑯  𝑹𝑨𝑯𝟔

𝑺𝑰𝑯 = [ 𝑿𝑨𝑯
𝑺𝑰𝑯 𝒀𝑨𝑯

𝑺𝑰𝑯 𝒁𝑨𝑯

𝑺𝑰𝑯 ] 

7 𝒁𝑨𝑯𝟐

𝑺𝑰𝑯  𝑿̃𝑨𝑯

𝑺𝑰𝑯  𝒀𝑨𝑯

𝑺𝑰𝑯 =
𝒁𝑨𝑯𝟐

𝑺𝑰𝑯  × 𝒗𝒓𝒆𝒇𝟐  

| 𝒁𝑨𝑯𝟐

𝑺𝑰𝑯  × 𝒗𝒓𝒆𝒇𝟐|
 , 𝑿𝑨𝑯

𝑺𝑰𝑯 = 𝒀𝑨𝑯

𝑺𝑰𝑯 × 𝒁𝑨𝑯𝟐

𝑺𝑰𝑯  𝑹𝑨𝑯𝟕

𝑺𝑰𝑯 = [ 𝑿𝑨𝑯
𝑺𝑰𝑯 𝒀𝑨𝑯

𝑺𝑰𝑯 𝒁𝑨𝑯𝟐

𝑺𝑰𝑯 ] 

8 𝒁𝑨𝑯𝟐

𝑺𝑰𝑯  𝒀̃𝑨𝑯

𝑺𝑰𝑯  𝑿𝑨𝑯
𝑺𝑰𝑯 =

𝒗𝒓𝒆𝒇𝟐 × 𝒁𝑨𝑯𝟐

𝑺𝑰𝑯

|𝒗𝒓𝒆𝒇𝟐 × 𝒁𝑨𝑯𝟐

𝑺𝑰𝑯 |
 , 𝒀𝑨𝑯

𝑺𝑰𝑯 = 𝒁𝑨𝑯𝟐

𝑺𝑰𝑯 × 𝑿𝑨𝑯
𝑺𝑰𝑯  𝑹𝑨𝑯𝟖

𝑺𝑰𝑯 = [ 𝑿𝑨𝑯
𝑺𝑰𝑯 𝒀𝑨𝑯

𝑺𝑰𝑯 𝒁𝑨𝑯𝟐

𝑺𝑰𝑯 ] 
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4.3 Joint Rotation Matrices and Joint kinematics 

4.3.1 Basic Principles 

In what follows, it is assumed that all MIMUs (sensors) share the same global 

reference frame (SG) determined by gravity and magnetic north. 

To find the joint rotation matrix describing the orientation of a distal segment with 

respect to its adjacent proximal segment, first the orientations of the 

corresponding sensors in their common global frame (i.e. the sensor outputs) are 

obtained, which are represented by the following rotation matrices: 

𝑹𝑺𝑮
𝑺𝑰𝑷

: Orientation of the Sensor Inertial frame (SIP) on the proximal segment with 

respect to the earth-fixed Sensor Global frame (SG); 

 𝑹𝑺𝑮
𝑺𝑰𝑫

: Orientation of the Sensor Inertial frame (SID) on the distal segment with 

respect to the earth-fixed Sensor Global frame (SG). 

where the subscripts P and D refer to the proximal and distal segments 

respectively, which can be the thorax T, upper-arm U, forearm F or hand H. 

Together with the calibration rotation matrices ( 𝑹
𝑺𝑰𝑻

𝑨𝑻
, 𝑹

𝑺𝑰𝑼
𝑨𝑼

, 𝑹
𝑺𝑰𝑭

𝑨𝑭
, 𝑹

𝑺𝑰𝑯
𝑨𝑯

) 

derived in the previous sections, these can then be used to obtain the orientation 

of each segment’s anatomical frame with respect to the earth-fixed Sensor Global 

frame (SG) as follows: 

𝑹𝑺𝑮
𝑨𝑷

= 𝑹𝑺𝑮
𝑺𝑰𝑷

𝑹
𝑺𝑰𝑷

𝑨𝑷
                                                                                         (4.22) 

𝑹𝑺𝑮
𝑨𝑫

= 𝑹𝑺𝑮
𝑺𝑰𝑫

𝑹
𝑺𝑰𝑫

𝑨𝑫
                                                                                       (4.23) 

Then the joint rotation matrix describing the orientation of the distal segment with 

respect to its adjacent proximal segment is given by: 

𝑹
𝑨𝑷

𝑨𝑫
= 𝑹

𝑨𝑷
𝑺𝑮 𝑹𝑺𝑮

𝑨𝑫
= ( 𝑹𝑺𝑮

𝑨𝑷
)

𝐓
𝑹𝑺𝑮

𝑨𝑫
                                                             (4.24) 
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The symbol (exponent) T refers to the matrix transpose. The joint rotation matrix 

can be used to derive many other ways of representing the orientation of a distal 

segment with respect to its adjacent proximal segment (Aurelio Cappozzo, Della 

Croce, Leardini, & Chiari, 2005), including: 

• Euler Angles (or Cardan angles) which are often referred to as roll, pitch and 

yaw. 

• A unit quaternion (also known as Euler parameters). 

• The orthogonal projections of the orientation vector (N.B. not strictly a vector). 

• Joint angles obtained by projecting axes of one coordinate frame onto planes 

of the other coordinate frame. 

All of these representations are interchangeable. However, when plotting these 

against time, quite different curves result and so it is far from obvious which 

representation is most useful. Indeed, the biomechanics community has not 

reached agreement on this (Aurelio Cappozzo et al., 2005).  

4.3.2 Joint Rotation Matrix for the Thorax 

Because the thorax has no adjacent proximal segment, its orientation was 

calculated relative to the camera defined LAB frame. This was done so that the 

MIMU based results could be compared with the camera-based results. To do 

this the orientation of the Sensor Global (SG) frame relative to the LAB frame was 

required, which was calculated using data from the static calibration of the 

camera system as follows: 

𝑹𝑳𝑨𝑩
𝑺𝑮 = 𝑹𝑳𝑨𝑩

𝑺𝑴𝑻
𝑹

𝑺𝑰𝑻
𝑺𝑮 = 𝑹𝑳𝑨𝑩

𝑺𝑴𝑻
( 𝑹𝑺𝑮

𝑺𝑰𝑻
)

𝐓
                                                  (4.25) 

where 𝑹𝑳𝑨𝑩
𝑺𝑴𝑻

 is the orientation of the marker-based sensor frame (SMT) relative 

to the LAB frame and 𝑹𝑺𝑮
𝑺𝑰𝑻

 is the orientation of the corresponding Sensor Inertial 

frame relative to the Sensor Global frame (i.e. the sensor output). It is assumed 

that the Sensor Marker frame (SM) is equivalent to the Sensor Inertial frame (SI) 

as illustrated in Figure 4.5. The derivation of 𝑹𝑳𝑨𝑩
𝑺𝑴𝑻

 is described in Appendix 1. 
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Then, for all dynamic trials, the orientation of the thorax relative to the LAB frame 

is given by:    

𝑹𝑳𝑨𝑩
𝑨𝑻

= 𝑹𝑳𝑨𝑩
𝑺𝑮 𝑹𝑺𝑮

𝑨𝑻
                                                                                     (4.26) 

 

 

Figure 4.5: Sensor Marker Frame and Sensor Inertial Frame for the thorax 

4.3.3 Joint Rotation Matrix for the Shoulder 

Using equation 4.24, the joint rotation matrix for the shoulder (orientation of the 

distal upper-arm with respect to the proximal thorax) is given by: 

𝑹
𝑨𝑻

𝑨𝑼
= 𝑹

𝑨𝑻
𝑺𝑮 𝑹𝑺𝑮

𝑨𝑼
= ( 𝑹𝑺𝑮

𝑨𝑻
)

𝐓
𝑹𝑺𝑮

𝑨𝑼
                                                            (4.27) 

4.3.4 Joint Rotation Matrix for the Elbow 

Using equation 4.24, the joint rotation matrix for the elbow (orientation of the distal 

forearm with respect to the proximal upper-arm) is given by: 

𝑹
𝑨𝑼

𝑨𝑭
= 𝑹

𝑨𝑼
𝑺𝑮 𝑹𝑺𝑮

𝑨𝑭
= ( 𝑹𝑺𝑮

𝑨𝑼
)

𝐓
𝑹𝑺𝑮

𝑨𝑭
                                                            (4.28) 

𝑿𝑺𝑰𝑻
 

𝒀̃𝑺𝑴𝑻
 

T1 
T2 

T3 
T4 

𝒀𝑺𝑰𝑻
 

𝒁𝑺𝑰𝑻
 

𝑷𝟏/𝟐 

𝑷𝟐/𝟒 

𝑷𝟑/𝟒 

𝑷𝟏/𝟑 

𝒁𝑺𝑴𝑻
 

𝑿𝑺𝑴𝑻
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4.3.5 Joint Rotation Matrix for the Wrist 

Using equation 4.24, the joint rotation matrix for the wrist (orientation of the distal 

hand with respect to the proximal forearm) is given by: 

𝑹
𝑨𝑭

𝑨𝑯
= 𝑹

𝑨𝑭
𝑺𝑮 𝑹𝑺𝑮

𝑨𝑯
= ( 𝑹𝑺𝑮

𝑨𝑭
)

𝐓
𝑹𝑺𝑮

𝑨𝑯
                                                            (4.29) 

4.4 Issues with the MIMU orientation estimators 

4.4.1 Working with the Xsens orientation estimator 

In the first implementation of the methods described above, the orientation 

estimator (Kalman filter) provided by the supplier of the MIMUs (Xsens) was used 

to obtain the sensor orientations relative to their common Sensor Global frame: 

𝑹𝑺𝑮
𝑺𝑰𝑻

, 𝑹𝑺𝑮
𝑺𝑰𝑼

, 𝑹𝑺𝑮
𝑺𝑰𝑭

, and 𝑹𝑺𝑮
𝑺𝑰𝑯

. However, following difficulties during the 

testing of the MATLAB code, it appeared that each sensor was referencing a 

different Sensor Global frame, rather than a common Sensor Global based on 

vertical and magnetic north. After some investigation, it was concluded that an 

Xsens heading reset may have occurred prior to data capture. Although there is 

no record of this in the written protocol, this seemed to explain the anomalies in 

the results. A heading reset adopts the horizontal projection of the sensor X-axis, 

at the time of the reset, as the new global X-axis. Therefore, unless the sensors 

are carefully aligned at the instant of the heading reset, they will have different 

Sensor Global frames. Furthermore, there also appeared to be issues with the 

Xsens estimator taking too long to settle, so that the first ~2 seconds of data is 

not usable. Unfortunately, this appears to affect the results and the written 

protocol is too vague on the time between starting an MIMU recording session 

and the movement beginning. 

To overcome the first problem, it was decided that the laboratory frame (LAB), 

defined by the camera system, should be used as the common global frame. This 

was possible because each sensor had reflective markers attached at each 

corner so that they could act as technical clusters for the purposes of the CAST 
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method (see section 3.3.2). These markers were used to construct Sensor 

Marker (SM) frames that are approximately aligned with the Sensor Inertial (SI) 

frames (see Figure 4.5 for example).  

Then, using data from the static calibration of the camera system, the orientations 

of the sensors in the LAB frame were obtained 

( 𝑹𝑳𝑨𝑩
𝑺𝑴𝑻

, 𝑹𝑳𝑨𝑩
𝑺𝑴𝑼

, 𝑹𝑳𝑨𝑩
𝑺𝑴𝑭

, 𝑹𝑳𝑨𝑩
𝑺𝑴𝑯

). These were used with the corresponding 

orientations of the sensors in their respective Sensor Global frames (sensor 

outputs 𝑹
𝑺𝑮𝑻

𝑺𝑰𝑻
, 𝑹

𝑺𝑮𝑼
𝑺𝑰𝑼

, 𝑹
𝑺𝑮𝑭

𝑺𝑰𝑭
, and 𝑹

𝑺𝑮𝑯
𝑺𝑰𝑯

) to derive the orientation of the 

different Sensor Global frames relative to the LAB frame as follows: 

𝑹𝑳𝑨𝑩
𝑺𝑮𝑲

= 𝑹𝑳𝑨𝑩
𝑺𝑴𝑲

𝑹
𝑺𝑰𝑲

𝑺𝑮𝑲
= 𝑹𝑳𝑨𝑩

𝑺𝑴𝑲
( 𝑹

𝑺𝑮𝑲
𝑺𝑰𝑲

)
𝐓
                                              (4.30) 

where the subscript K refers to the segment, which can be the thorax T, upper-

arm U, forearm F or hand H. It is assumed that each Sensor Marker frame (SMK) 

is equivalent to the corresponding Sensor Inertial frame (SIK). The derivation of 

𝑹𝑳𝑨𝑩
𝑺𝑴𝑲

 for the four segments is described in Appendix 1. 

Then, for all dynamic trials, the orientation of the segments relative to the LAB 

frame is given by:    

𝑹𝑳𝑨𝑩
𝑨𝑲

= 𝑹𝑳𝑨𝑩
𝑺𝑮𝑲

 𝑹
𝑺𝑮𝑲

𝑨𝑲
                                                                                  (4.31) 

Whilst working to debug the corresponding MATLAB code, a new 2019 version 

of MATLAB was released, which included a MIMU toolbox with alternative 

orientation estimators that can work with the raw data from the Xsens MIMUs. 

This led to the solution described in the next section and meant that the 

considerable effort invested in the solution described above had been 

unnecessary. 

4.4.2 Working with the MATLAB orientation estimators 

In 2019, MATLAB introduced a new Sensor Fusion and Tracking toolbox (The 

MathWorks, 2019). This toolbox includes algorithms that can fuse the data from 

a 3-axis accelerometer and either (or both of) a 3-axis rate-gyroscope or (and) a 
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3-axis magnetometer mounted in the same box (i.e. with common sensor axes) 

to estimate the orientation of the box (e.g. an MIMU box). Specifically, the 

following orientation estimators (filters) are available, with their MATLAB function 

names shown in brackets: 

1) Magnetometer and accelerometer filter (ecompass): This estimator fuses 

only accelerometer and magnetometer data.  

2) Accelerometer and gyroscope filter (imufilter): This estimator fuses only 

accelerometer and rate-gyroscope data.  

3) Accelerometer, gyroscope, and magnetometer filter (ahrsfilter): This 

estimator fuses all three types of raw data (accelerometer, rate-gyroscope, and 

magnetometer).  

In all three cases, orientation can be provided in either quaternion or rotation 

matrix form, which describe the orientation of the Sensor Global (SG) frame with 

respect to the Sensor Inertial (SI) frame. In other words, the estimator’s output 

𝑹
𝑺𝑰𝑲

𝑺𝑮𝑲
.  In this case, the SG frame axes X-Y-Z correspond to North-East-Down 

(NED). 

A comparison of these filters was undertaken to establish the best one for the 

purposes of this work. In this context, there were two requirements: 

a) The estimator must correctly find north and vertical so that all MIMUs share 

the same global frame (SG). 

b) The estimator must settle rapidly so that the data collected after the first 

second of each movement trial (MIMU recording session) is correct, where a 

movement trial corresponds to one execution of a calibration movement or a 

functional task as described in section 3.4.2 (chapter 3). 

The results of this comparison are as follows: 

1) ecompass: Although this estimator is susceptible to sensor noise, it correctly 

finds the location of north and vertical. However, because the algorithm is 

memoryless (independent of its history), the estimated orientation is not 

smooth, being significantly affected by accelerometer and magnetometer 

noise. 
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2) imufilter: Because this estimator does not process magnetometer data, it 

does not correctly estimate the direction of north. It simply assumes the 

sensor's X-axis is initially pointing northward and, hence, different MIMUs will 

not share the same global frame (SG). Furthermore, there is a significant 

settling time (𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≅ 2𝑠𝑒𝑐), which means that it does not satisfy the 

second criterion above. 

3) ahrsfilter: This estimator combines the previous algorithms to produce a 

smooth estimate of sensor orientation, while correctly estimating the direction 

of north and vertical. However, again there is a significant settling time 

(𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≅ 2𝑠𝑒𝑐), which means that it does not satisfy the second 

criterion above. 

Therefore, despite the noisy output, the ecompass estimator has been used in 

this work because it settles quickly as well as correctly estimating the direction of 

north and vertical.  

Using the selected MATLAB filter, it then appeared that the sensors were using 

the same Sensor Global frame and the mathematics described in section 4.3 

could be applied directly, without the need to describe segment orientations 

relative to the LAB frame as proposed in section 4.4.1. 
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Chapter 5 – The Results 

5.1 Introduction 

In this chapter, the alternative calibration methods described in Chapter 4 are 

compared. Specifically, the alternative calibration rotation matrices listed in 

Tables 4.1 to 4.4 are compared. Three different sets of results are presented. 

Firstly, for each body segment, the orientations of the alternative anatomical 

frames, relative to their common sensor inertial frame, are compared (each one 

corresponding to one alternative calibration rotation matrix). Secondly, for each 

joint, the best pair of calibration rotation matrices (i.e. for proximal and distal 

segments) is found using a sequential assessment process. Finally, for each joint, 

the best pair of calibration rotation matrices is found using an independent 

assessment process.  

5.2 Calibration rotation matrices 

The calibration rotation matrix, 𝑹𝑨𝒌

𝑺𝑰𝒌 , is a 3X3 matrix that represents the 

orientation of a body segment’s Anatomical frame (Ak) with respect to that 

segment’s Sensor Inertial frame (SIk), where k is the segment (T, U, F or H). The 

calibration rotation matrices for each segment have been derived using 

alternative calibration methods as explained in Chapter 4, section 4.2, and 

summarised in Tables 4.1 to 4.4 for the thorax, upper-arm, forearm and hand 

respectively. 

The static and dynamic calibration trials have all been repeated 4 times. Thus, 

each alternative calibration rotation matrix for each segment was derived 4 times. 

These 4 repetitions were then averaged using a rotation vector method described 

in (Sharf, Wolf, & Rubin, 2010). Specifically, each of the 4 rotation matrices was 

converted into its axis-angle representation using a MATLAB function and then 

into a rotation vector by multiplying the absolute angle (magnitude) by the unit 

vector (axis). Then a simple arithmetic average of the 4 rotation vectors was 

calculated, which has been shown to be a robust and meaningful average (Sharf 
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et al., 2010). Finally, the average rotation vector was converted back into axis-

angle and then into an “averaged” calibration rotation matrix. This averaging of 4 

repeats was done for each alternative calibration rotation matrix for each 

segment. As well as being a relatively simple calculation, this method of deriving 

an average rotation produces results that are close to computationally intensive 

bi-invariant solutions, which produce orientation curves that are independent of 

how one selects either the fixed or the moving reference frames (Sharf et al., 

2010). 

The columns of a calibration rotation matrix are the three-unit vectors for the axes 

of the Anatomical frame (Ak) expressed in the Sensor Inertial frame (SIk). 

Therefore, the results can be presented by showing the orientations of the 

alternative anatomical frames in their sensor inertial frames. In the following 

sections, the results for participant 1 are presented.  

5.2.1 Thorax 

The 8 alternative calibration rotation matrices for the thorax ( 𝑹𝑨𝑻

𝑺𝑰𝑻 ) have been 

computed as described in Table 4.1. The columns of each rotation matrix 

represent the axes of the corresponding anatomical frame and the alternatives 

are shown in Figure 5.1. 

 



103 
 
 

 

Figure 5.1: Eight alternative thorax anatomical frames for participant 1, expressed in their sensor inertial frame. X-axis in red, Y-axis in 

green, and Z-axis in blue.
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The alternative frames are approximately aligned with the sensor inertial frame, 

which is a result of the thorax sensor being physically aligned with the anatomy 

so that, for example, the calibration rotation matrix is approximately equal to the 

identity matrix. This was done so that an anatomical frame based on careful 

sensor alignment (an approximate geometric relationship between sensor frame 

and anatomical frame) could be compared with anatomical frames based on the 

alternative calibration approaches. 

5.2.2 Upper-arm 

The 8 alternative calibration rotation matrices for the upper-arm ( 𝑹𝑨𝑼

𝑺𝑰𝑼 ) have 

been computed as described in Table 4.2. The columns of each rotation matrix 

represent the axes of the corresponding anatomical frame and the alternatives 

are shown in Figure 5.2. 

 



105 
 
 

 

Figure 5.2: Eight alternative upper-arm anatomical frames for participant 1, expressed in their sensor inertial frame. X-axis in red, Y-axis 

in green, and Z-axis in blue. 
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The alternative frames are approximately aligned with the sensor inertial frame, 

which is a result of the upper-arm sensor being physically aligned with the 

anatomy so that, for example, the calibration rotation matrix is approximately 

equal to the identity matrix. As before, this was done so that an anatomical frame 

based on careful sensor alignment (an approximate geometric relationship 

between sensor frame and anatomical frame) could be compared with anatomical 

frames based on the alternative calibration approaches. 

5.2.3 Forearm 

The 10 alternative calibration rotation matrices for the forearm ( 𝑹𝑨𝑭

𝑺𝑰𝑭 ) have been 

computed as described in Table 4.3. The columns of each rotation matrix 

represent the axes of the corresponding anatomical frame and the alternatives 

are shown in Figure 5.3. 
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Figure 5.3: Ten alternative forearm anatomical frames for participant 1, expressed in their sensor inertial frames. X-axis in red, Y-axis in 

green, and Z-axis in blue. 
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The alternative frames are approximately aligned with the sensor inertial frame, 

which is a result of the forearm sensor being physically aligned with the anatomy 

so that, for example, the calibration rotation matrix is approximately equal to the 

identity matrix. As before, this was done so that an anatomical frame based on 

careful sensor alignment (an approximate geometric relationship between sensor 

frame and anatomical frame) could be compared with anatomical frames based 

on the alternative calibration approaches. 

5.2.4 Hand 

The 8 alternative calibration rotation matrices for the hand ( 𝑹𝑨𝑯

𝑺𝑰𝑯 ) have been 

computed as described in Table 4.4. The columns of each rotation matrix 

represent the axes of the corresponding anatomical frame and the alternatives 

are shown in Figure 5.4. 
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Figure 5.4: Eight alternative hand anatomical frames for participant 1, expressed in their sensor inertial frame. X-axis in red, Y-axis in 

green, and Z-axis in blue. 
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The alternative frames are approximately aligned with the sensor inertial frame, 

which is a result of the hand sensor being physically aligned with the anatomy so 

that, for example, the calibration rotation matrix is approximately equal to the 

identity matrix. As before, this was done so that an anatomical frame based on 

careful sensor alignment (an approximate geometric relationship between sensor 

frame and anatomical frame) could be compared with anatomical frames based 

on the alternative calibration approaches. 

5.3 Sequential assessment of alternative calibration 

methods 

Using the methods explained in Chapter 4, section 4.3, for each anatomical joint, 

the alternative calibration rotation matrices described in the previous section have 

been used to calculate alternative sequences of sensor (MIMU) derived joint 

rotation matrices ( 𝑹
𝑨𝑷

𝑨𝑫𝑴𝑰𝑴𝑼
). These describe the orientation of the joint’s distal 

segment relative to its proximal segment (henceforth referred to as joint 

orientation) throughout 4 functional tasks, each repeated 4 times, as described in 

Chapter 3, section 3.4.2. Each alternative sequence of joint orientations 

corresponds to a particular pair of calibration rotation matrices. 

The alternative MIMU sequences were compared with the equivalent sequence 

of V3D joint rotation matrices ( 𝑹
𝑨𝑷

𝑨𝑫𝑽𝟑𝑫
) obtained from an assumed gold 

standard: a VICON camera based motion capture system 

(stereophotogrammetry system), with the data post-processed using Visual 3D 

(V3D), as described in Chapter 3, section 3.5.1 These comparisons were done 

separately for five participants to establish whether the same calibration methods 

can be used with different individuals, a necessity if the methods are to be useful. 

To compare the alternative joint orientation sequences, for every sample (camera 

frame), an error rotation matrix was calculated between the MIMU derived joint 

orientation and the V3D derived joint orientation as follows (Equation 5.1). 

𝑹
𝑨𝑫𝑽𝟑𝑫

𝑨𝑫𝑴𝑰𝑴𝑼
= [ 𝑹

𝑨𝑷
𝑨𝑫𝑽𝟑𝑫

]
𝐓

. 𝑹
𝑨𝑷

𝑨𝑫𝑴𝑰𝑴𝑼
                                                           (5.1) 
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where 𝑹
𝑨𝑷

𝑨𝑫𝑴𝑰𝑴𝑼
 is the joint rotation matrix based on MIMU data, and 𝑹

𝑨𝑷
𝑨𝑫𝑽𝟑𝑫

 is 

the joint rotation matrix based on V3D data. 

This describes the rotation error between the MIMU distal frame and the V3D 

distal frame, where the proximal frame is adopted as the common reference 

frame. Then, for a whole sequence, the error rotation matrices were converted 

into error rotation vectors and averaged to give a single error measure, namely 

the average error rotation vector, henceforth simply referred to as the error 

rotation vector. Where a scalar was required for minimisation purposes, the 

magnitude of the error rotation vector has been used. This was done for each 

alternative sequence of joint orientations, corresponding to a particular pair of 

calibration rotation matrices. 

In this section, a sequential approach is used where, firstly, the best thorax 

calibration rotation matrix, that minimises the magnitude of the error rotation 

vector, is found for the lab to thorax pseudo joint. This is then used as the proximal 

calibration rotation matrix for the shoulder joint and the best distal (upper-arm) 

calibration rotation matrix is found. In turn, this is used as the proximal calibration 

rotation matrix for the elbow joint and the best distal (forearm) calibration rotation 

matrix is found. Finally, this is used as the proximal calibration rotation matrix for 

the wrist joint and the best distal (hand) calibration rotation matrix is found. 

The sequential approach has the advantage of minimising the number of 

calibration trials by using only one calibration rotation matrix per segment, even 

when that segment is involved in two joints. However, this means that it is a 

suboptimal method because it does not find the optimum pair of calibration 

rotation matrices for each joint, unlike the independent approach described in 

section 5.4.    

All of these calculations have been implemented in MATLAB with the exception 

of the V3D joint rotation matrices ( 𝑹
𝑨𝑷

𝑨𝑫𝑽𝟑𝑫
), which were outputs from the Visual 

3D post-processing of the camera data. The following subsections describe the 

results of the 4 sequential stages of assessment for the lab-thorax, shoulder, 

elbow and wrist joints respectively.  
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5.3.1 Thorax 

The error rotation vectors between each alternative MIMU sequence and the gold 

standard (V3D) sequence for the thorax and for participant 1 are presented in 

Figures 5.5 and 5.6. The magnitude (absolute angle) of the error rotation vector 

was used to select the best alternative (best thorax calibration rotation matrix). 

Note that, for the lab-thorax pseudo joint there is no proximal calibration rotation 

matrix because the proximal frame is the lab frame, not an anatomical frame. 

Alternative 7 has the lowest error. 

 

Figure 5.5: Error rotation vectors for the 8 alternative thorax calibration rotation 

matrices for participant 1 
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Figure 5.6: Magnitudes of the error rotation vectors for the 8 alternative thorax 

calibration rotation matrices for participant 1 

Table 5.1 shows the numerical error data for the best thorax calibration rotation 

matrix for all five participants (e.g. alternative 7 for participant 1). This error 

rotation vector can be used to provide a graphical representation of the error 

between the MIMU derived joint orientation and the V3D joint orientation. One 

example is shown in Figure 5.7 – alternative 7 for participant 1. 

Table 5.1: Error rotation vector for the lab-thorax pseudo joint 

Lab-Thorax Joint 

 Thorax 
Rotation vector  

components 
Magnitude 

Participant Alternative ϴx ϴy ϴz ϴ 

1 7 17.8o 9.2o 8.3o 21.7o 

2 4 3.9o 1.3o 7.7o 8.7o 

3 7 -17o 2.6o 12.9o 21.5o 

4 
1 

or 7 (+7%) 

-15.6o  

or -16.9o 

9.3o 

or 1.9o 

2.2o 

or 9.6o 

18.3o  

or 19.5o 

5 1 -14.7o 16.6o 9.5o 24.1o 
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Considering column 2 of Table 5.1, there is insufficient agreement between 

participants, which is necessary if a majority vote on the best alternative is to 

have an acceptably low probability of occurring by chance. However, after looking 

at the average errors across all alternatives for all participants, a good second 

choice for participant 4 was identified, which only increased the error by 7% 

(about 1o). This leads to agreement between 3 out of 5 participants and the 

probability of this occurring by chance alone is around 12% (see Appendix 2).        
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Figure 5.7: The lab-thorax error rotation vector for participant 1, which is a graphical representation of the average error between MIMU 

joint orientation and V3D joint orientation. The axis-angle description is shown graphically by the black arrow showing the unique axis 

and angle of rotation. 
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5.3.2 Shoulder 

The error rotation vectors between each alternative MIMU sequence and the gold 

standard (V3D) sequence for the shoulder and for participant 1 are presented in 

Figures 5.8 and 5.9. The magnitude (absolute angle) of the error rotation vector 

was used to select the best alternative (best upper-arm calibration rotation 

matrix), noting that the proximal (thorax) calibration rotation matrix has been 

established at the previous stage (see previous section). Alternative 5 has the 

lowest error. 

 

Figure 5.8: Error rotation vectors for the 8 alternative upper-arm calibration 

rotation matrices (used with alternative 7 for the thorax) for participant 1. 
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Figure 5.9: Magnitudes of the error rotation vectors for the 8 alternative upper-

arm calibration rotation matrices (used with alternative 7 for the thorax) for 

participant 1 

Table 5.2 shows the numerical error data for the best upper-arm calibration 

rotation matrix for all five participants (e.g. alternative 5 for participant 1, used 

with alternative 7 for the thorax). This error rotation vector can be used to provide 

a graphical representation of the error between the MIMU derived joint orientation 

and the V3D joint orientation. One example is shown in Figure 5.10 – thorax 

alternative 7 and upper-arm alternative 8 for participant 1.  

Considering column 3 of Table 5.2, there is agreement between 3 out of 5 

participants, which means a majority vote on the best alternative has an 

acceptably low probability of occurring by chance. Nevertheless, after looking at 

the average errors across all alternatives for all participants, a good second 

choice for participant 1 was identified, which only increased the error by 6% 

(about 1o). This leads to agreement between 4 out of 5 participants and the 

probability of this occurring by chance alone is less than 1% (see Appendix 2). 
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Table 5.2: Error rotation vectors for the shoulder joint 

Shoulder Joint 

 Thorax Upper-arm 
Rotation vector 

 components 
Magnitude 

Participant Alternative Alternative ϴx ϴy ϴz ϴ 

1 7 
5 

or 8 (6%) 

-2.3o  

or 9.9o  

18.9o  

or 17.9o  

4.8o  

or 3.5o  

19.6o  

or 20.8o  

2 4 8 -4.9o 13.3o -0.3o 14.2o 

3 7 8 0.8o -23.3o 4.8o 23.8o 

4 7 6 20.4o -6.5o 6.2o 22.3o 

5 1 8 -5o -4.1o 1.9o 6.8o 
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Figure 5.10: The shoulder error rotation vector for participant 1, which is a graphical representation of the average error between MIMU 

joint orientation and V3D joint orientation. The axis-angle description is shown graphically by the black arrow showing the unique axis 

and angle of rotation 
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5.3.3 Elbow 

The error rotation vectors between each alternative MIMU sequence and the gold 

standard (V3D) sequence for the elbow and for participant 1 are presented in 

Figures 5.11 and 5.12. The magnitude (absolute angle) of the error rotation vector 

was used to select the best alternative (best forearm calibration rotation matrix), 

noting that the proximal (upper-arm) calibration rotation matrix has been 

established at the previous stage (see previous section). Alternative 10 has the 

lowest error. 

 

Figure 5.11: Error rotation vectors for the 10 alternative forearm calibration 

rotation matrices (used with alternative 8 for the upper-arm) for participant 1 
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Figure 5.12: Magnitudes of the error rotation vectors for the 10 alternative 

forearm calibration rotation matrices (used with alternative 8 for the upper-arm) 

for participant 1 

Table 5.3 shows the numerical error data for the best forearm calibration rotation 

matrix for all five participants (e.g. alternative 10 for participant 1, used with 

alternative 8 for the upper-arm). This error rotation vector can be used to provide 

a graphical representation of the error between the MIMU derived joint orientation 

and the V3D joint orientation. One example is shown in Figure 5.13 – upper-arm 

alternative 8 and forearm alternative 10 for participant 1. 

Considering column 3 of Table 5.3, there is insufficient agreement between 

participants, which is necessary if a majority vote on the best alternative is to 

have an acceptably low probability of occurring by chance. However, after looking 

at the average errors across all alternatives for all participants, a second choice 

for participant 5 was identified, which increased the error by 18% (about 5o). This 

leads to agreement between 3 out of 5 participants and the probability of this 

occurring by chance alone is around 8% (see Appendix 2). 
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Table 5.3: Error rotation vectors for the elbow joint 

Elbow Joint 

 Upper-arm Forearm 
Rotation vector  

components 
Magnitude 

Participant Alternative Alternative ϴx ϴy ϴz ϴ 

1 8 10 17.9o -3.3o -0.5o 18.2o 

2 8 2 11o -16.5o 9.8o 22.1o 

3 8 6 16.6o -4.1o 1.2o 17.1o 

4 6 10 12.5o -13o 6.3o 19.1o 

5 8 
4 

or 10 (18%) 

23.6o  

or 14.2o 

19.2o  

or -29.9o 

-5o  

or -15.6o  

30.8o  

or 36.5o 
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Figure 5.13 : The elbow error rotation vector for participant 1, which is a graphical representation of the average error between MIMU 

joint orientation and V3D joint orientation. The axis-angle description is shown graphically by the black arrow showing the unique axis 

and angle of rotation.
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5.3.4 Wrist 

The error rotation vectors between each alternative MIMU sequence and the gold 

standard (V3D) sequence for the wrist and for participant 1 are presented in 

Figures 5.14 and 5.15. The magnitude (absolute angle) of the error rotation vector 

was used to select the best alternative (best hand calibration rotation matrix), 

noting that the proximal (forearm) calibration rotation matrix has been established 

at the previous stage (see previous section). Alternative 3 has the lowest error. 

  

Figure 5.14: Error rotation vectors for the 8 alternative hand calibration rotation 

matrices (used with alternative 10 for the forearm) for participant 1 
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Figure 5.15: Magnitude of the error rotation vectors for the 8 alternative hand 

calibration rotation matrices (used with alternative 10 for the forearm) for 

participant 1 

Table 5.4 shows the numerical error data for the best hand calibration rotation 

matrix for all five participants (e.g. alternative 3 for participant 1, used with 

alternative 10 for the forearm). This error rotation vector can be used to provide 

a graphical representation of the error between the MIMU derived joint orientation 

and the V3D joint orientation. One example is shown in Figure 5.16 – forearm 

alternative 10 and hand alternative 2 for participant 1. 

Considering column 3 of Table 5.4, there is insufficient agreement between 

participants, which is necessary if a majority vote on the best alternative is to 

have an acceptably low probability of occurring by chance. However, after looking 

at the average errors across all alternatives for all participants, a good second 

choice for participant 1 was identified, which only increased the error by 6% (0.6o). 

This leads to agreement between 3 out of 5 participants and the probability of this 

occurring by chance alone is around 12% (see Appendix 2). 
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Table 5.4: Error rotation vectors for the wrist joint 

Wrist Joint 

 Forearm Hand 
Rotation vector  

components 
Magnitude 

Participant Alternative Alternative ϴx ϴy ϴz ϴ 

1 10 
3 

or 2 (6%) 

-0.2o 

or -3.7o 

7o  

or 6.9o 

7.5o  

or 7.5o 

10.3o  

or 10.9o 

2 2 6 22.9o -5.7o 11.2o 26.1o 

3 6 2 -3.6o 8.5o 17.6o 19.9o 

4 10 2 10.5o -17.9o 7.7o 22.1o 

5 10 6 14o 19.7o 23.1o 33.4o 
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Figure 5.16: The wrist error rotation vector for participant 1, which is a graphical representation of the average error between MIMU joint 

orientation and V3D joint orientation. The axis-angle description is shown graphically by the black arrow showing the unique axis and 

angle of rotation 
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5.4 Independent assessment of alternative calibration 

methods 

In this section, for each joint, the best pair of calibration rotation matrices (for the 

proximal and distal segments) is found in an independent manner. In other words, 

the assessment process is not sequential and the results for each joint do not 

depend on any other joints. For example, for the shoulder, there are 8 calibration 

alternatives for the thorax and 8 for the upper-arm, leading to 64 combinations 

(pairs). Table 5.5 shows the number of calibration alternatives and hence 

combinations (pairs) for each joint. 

Table 5.5: Number of alternative calibration rotation matrices and, hence, the 

number of combinations (pairs) for each joint 

Joint Proximal segment Distal segment Combinations 

Lab-thorax Not applicable 8 8 

Shoulder 8 8 8×8=64 

Elbow 8 10 8×10=80 

Wrist 10 8 10×8=80 

 

Therefore, the calibration alternatives are optimised for each joint. However, 

there is no guarantee that the two calibration rotation matrices selected for a 

particular body segment (i.e. for the joints that are proximal and distal to it) will be 

the same. 

In the case of the lab-thorax pseudo joint, there is no proximal calibration rotation 

matrix because the proximal frame is the lab frame, not an anatomical frame. 

Therefore, the results presented in Table 5.1 apply. The following sections 

present the independent assessment results for the shoulder, elbow and wrist. 
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5.4.1 Shoulder 

In the case of the shoulder, there are 8 alternative calibration rotation matrices 

for the proximal segment (thorax) and 8 alternatives for the distal segment (upper-

arm). Therefore, the error rotation vectors for 64 alternative combinations (pairs) 

were compared over 4 functional tasks, each repeated 4 times, to find the best 

pair for each participant (see Table 5.6). 

For example, for participant 1, Figures 5.17 and 5.18 show the error rotation 

vectors for the 64 alternative pairs of calibration rotation matrices. The best pair, 

with the smallest magnitude of error rotation vector (absolute angle), was 

combination 39 (alternative 5 for upper-arm and alternative 7 for thorax). As 

before, the error rotation vector can be used to provide a graphical representation 

of the error between the MIMU derived joint orientation and the V3D joint 

orientation (Figure 5.19). 
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Table 5.6: Error rotation vectors for the shoulder joint 

Shoulder Joint 

 Thorax Upper-arm 
Rotation vector 

 components 
Magnitude 

Participant Alternative Alternative ϴx ϴy ϴz ϴ 

1 7 5 -2.3o 18.9o 4.8o 19.6o 

2 8 8 7.2o 4.2o -2.7o 8.8o 

3 1 8 2o -13.5o -12.7o 18.6o 

4 1 3 14.1o -1.1o 9.5o 17o 

5 8 8 -0.7o -4.5o -0.6o 4.6o 
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Figure 5.17: 64 error rotation vectors for the shoulder joint for participant 1 – combination 39 has the minimum error. The distal and 

proximal segments’ alternatives are given by 𝑫𝑨𝒍𝒕 = 𝒓𝒐𝒖𝒏𝒅 𝒖𝒑 (
𝒏

𝟖
) and 𝑷𝑨𝒍𝒕 = 𝒏 − ((𝑫𝑨𝒍𝒕 − 𝟏) × 𝟖), where 𝒏 is the combination.  
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Figure 5.18: 64 error rotation vector magnitudes (absolute angles) for the shoulder joint for participant 1 – combination 39 has the 

minimum error. The distal and proximal segments’ alternatives are given by 𝑫𝑨𝒍𝒕 = 𝒓𝒐𝒖𝒏𝒅 𝒖𝒑 (
𝒏

𝟖
) and 𝑷𝑨𝒍𝒕 = 𝒏 − ((𝑫𝑨𝒍𝒕 − 𝟏) × 𝟖), where 

𝒏 is the combination. 
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Figure 5.19: The shoulder error rotation vector for participant 1, which is a graphical representation of the average error between MIMU 

joint orientation and V3D joint orientation. The axis-angle description is shown graphically by the black arrow showing the unique axis 

and angle of rotation. 
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5.4.2 Elbow 

In the case of the elbow, there are 8 alternative calibration rotation matrices for 

the proximal segment (upper-arm) and 10 alternatives for the distal segment 

(forearm). Therefore, the error rotation vectors for 80 alternative combinations 

(pairs) were compared over 4 functional tasks, each repeated 4 times, to find the 

best pair for each participant (see Table 5.7). 

For example, for participant 1, Figures 5.20 and 5.21 show the error rotation 

vectors for the 80 alternative pairs of calibration rotation matrices. The best pair, 

with the smallest magnitude of error rotation vector (absolute angle), was 

combination 79 (alternative 10 for forearm and alternative 7 for upper-arm). As 

before, the error rotation vector can be used to provide a graphical representation 

of the error between the MIMU derived joint orientation and the V3D joint 

orientation (Figure 5.22). 

Table 5.7: Error rotation vectors for the elbow joint 

Elbow Joint 

 Upper-arm Forearm 
Rotation vector 

components 
Magnitude 

Participant Alternative Alternative ϴx ϴy ϴz ϴ 

1 7 10 9.2o -0.7o 1.1o 9.3o 

2 5 2 17.9o 0.7o 5.3o 18.7o 

3 7 6 10.1o -4.4o 0.6o 11.1o 

4 1 10 6.9o -3.7o -13.1o 15.3o 

5 8 4 23.6o 19.2o -5o 30.8o 
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Figure 5.20: 80 error rotation vectors for the elbow joint for participant 1 – alternative 79 has the minimum error. The distal and proximal 

segments’ alternatives are given by 𝑫𝑨𝒍𝒕 = 𝒓𝒐𝒖𝒏𝒅 𝒖𝒑 (
𝒏

𝟖
) and 𝑷𝑨𝒍𝒕 = 𝒏 − ((𝑫𝑨𝒍𝒕 − 𝟏) × 𝟖), where 𝒏 is the combination. 
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Figure 5.21: 80 error rotation vector magnitudes (absolute angles) for the elbow joint for participant 1 – alternative 79 has the minimum 

error. The distal and proximal segments’ alternatives are given by 𝑫𝑨𝒍𝒕 = 𝒓𝒐𝒖𝒏𝒅 𝒖𝒑 (
𝒏

𝟖
) and 𝑷𝑨𝒍𝒕 = 𝒏 − ((𝑫𝑨𝒍𝒕 − 𝟏) × 𝟖), where 𝒏 is the 

combination. 
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Figure 5.22: The elbow error rotation vector for participant 1, which is a graphical representation of the average error between MIMU joint 

orientation and V3D joint orientation. The axis-angle description is shown graphically by the black arrow showing the unique axis and 

angle of rotation. 
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5.4.3 Wrist 

In the case of the wrist, there are 10 alternative calibration rotation matrices for 

the proximal segment (forearm) and 8 alternatives for the distal segment (hand). 

Therefore, the error rotation vectors for 80 alternative combinations (pairs) were 

compared over 4 functional tasks, each repeated 4 times, to find the best pair for 

each participant (see Table 5.8). 

For example, for participant 1, Figures 5.23 and 5.24 show the error rotation 

vectors for the 80 alternative pairs of calibration rotation matrices. The best pair, 

with the smallest magnitude of error rotation vector (absolute angle), was 

combination 30 (alternative 3 for hand and 10 for forearm). As before, the error 

rotation vector can be used to provide a graphical representation of the error 

between the MIMU derived joint orientation and the V3D joint orientation (Figure 

5.25). 

Table 5.8: Error rotation vectors for the wrist joint 

Wrist Joint 

 Forearm Hand 
Rotation vector  

components 
Magnitude 

Participant Alternative Alternative ϴx ϴy ϴz ϴ 

1 10 3 -0.2o 7o 7.5o 10.3o 

2 10 6 12.4o 9.7o 8.5o 17.9o 

3 5 7 3.6o -1.1o 10.7o 11.3o 

4 5 2 5.2o -5.3o -0.3o 7.5o 

5 4 7 5.9o -9.1o 15o 18.5o 
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Figure 5.23: 80 error rotation vectors for the wrist joint for participant 1 – alternative 30 has the minimum error. The distal and proximal 

segments’ alternatives are given by 𝑫𝑨𝒍𝒕 = 𝒓𝒐𝒖𝒏𝒅 𝒖𝒑 (
𝒏

𝟏𝟎
) and 𝑷𝑨𝒍𝒕 = 𝒏 − ((𝑫𝑨𝒍𝒕 − 𝟏) × 𝟏𝟎), where 𝒏 is the combination. 
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Figure 5.24: 80 error rotation vector magnitudes (absolute angles) for the wrist joint for participant 1 – alternative 30 has the minimum 

error. The distal and proximal segments’ alternatives are given by 𝑫𝑨𝒍𝒕 = 𝒓𝒐𝒖𝒏𝒅 𝒖𝒑 (
𝒏

𝟏𝟎
) and 𝑷𝑨𝒍𝒕 = 𝒏 − ((𝑫𝑨𝒍𝒕 − 𝟏) × 𝟏𝟎), where 𝒏 is the 

combination.  
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Figure 5.25: The wrist error rotation vector for participant 1, which is a graphical representation of the average error between MIMU joint 

orientation and V3D joint orientation. The axis-angle description is shown graphically by the black arrow showing the unique axis and 

angle of rotation. 
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5.5 Conclusions 

This chapter has compared the alternative calibration methods described in 

Chapter 4. This has been done in three different ways, reported in sections 5.2, 

5.3 and 5.4 respectively. Firstly, the alternative calibration rotation matrices listed 

in Tables 4.1 to 4.4 (for thorax, upper-arm, forearm and hand respectively) are 

compared by considering the orientations of the corresponding sensor (MIMU) 

defined anatomical frames (one for each calibration rotation matrix). The results 

are shown in Figures 5.1 to 5.4 for thorax, upper-arm, forearm and hand 

respectively; and these show that there is considerable variation between these 

sensors defined anatomical frames. This confirmed the need for the 

comprehensive comparisons reported in sections 5.3 and 5.4. 

Secondly, for each joint, the best pair of calibration rotation matrices (i.e. for 

proximal and distal segments) was found using a sequential assessment 

process. This was done as a way to ensure that only one calibration method was 

required for each body segment. In other words, for a given body segment, to 

ensure that the same calibration rotation matrix is used in the calculation of both 

proximal and distal joint orientations. 

Finally, for each joint, the best pair of calibration rotation matrices was found 

using an independent assessment process. Although this may lead to more 

accurate joint orientation results, there is no guarantee that the two calibration 

rotation matrices selected for a particular body segment (i.e. for the joints that are 

proximal and distal to it) will be the same. 

The results from both sequential and independent assessment processes are 

summarised in Table 5.9. Comparing the results from the two assessment 

methods for a given participant, it is clear that there is a trade-off between 

minimising the number of calibration trials, which the sequential method does by 

using only one calibration matrix per segment, and maximizing accuracy, which 

the independent method does by finding optimum pairs of calibration rotation 

matrices for each joint. However, there are some common results across the two 

methods. Further work, based on the independent assessment method, could 
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consider lower ranked alternatives as well as the optimum alternatives, which 

may show greater agreement between the two methods. 

Comparing the results from the two assessment methods across participants it is 

clear that, regardless of which assessment method is adopted, there is no one 

set of solutions that is optimal across participants. This could be considered a 

negative result, indicating that there is no one calibration approach that suits all 

participants. However, as mentioned above, further work could consider lower 

ranked alternatives as well as the optimum alternatives, which may show greater 

agreement between the results for different participants. 

Nevertheless, it is possible to draw tentative conclusions from Table 5.9 with 

regard to recommendations for a set of calibration rotation matrices and the 

associated calibration methods. These are based only on the results for the 

sequential method to ensure that each segment only needs one calibration 

rotation matrix, which is used for both its proximal and distal joints. This minimises 

the number of calibration movements required. Then, based on the maximum 

agreement between participants, the results summarised in the top half of Table 

5.9 lead to the following recommendations: 

Thorax – Use calibration rotation matrix 7. This requires the following calibration 

movements: flexion-extension of the thorax (forward-backward lean), including 

the static position (thorax straight and upright). 

Upper-arm – Use calibration rotation matrix 8. This requires the following 

calibration movements: shoulder flexion-extension; and shoulder internal-

external rotation. 

Forearm – Use calibration rotation matrix 10. This requires the following 

calibration movements: shoulder internal-external rotation; and forearm 

pronation-supination. 

Hand – Use calibration rotation matrix 2. This requires the following calibration 

movements: wrist flexion-extension; and radial-ulnar deviation. 
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Table 5.9: Summary of best calibration methods 

Sequential assessment 

Participant Lab-Thorax Joint Shoulder Joint Elbow Joint Wrist Joint 

 Thorax Thorax Upper-arm Upper-arm Forearm Forearm Hand 

P1 7 7 8 8 10 10 2 

P2 4 4 8 8 2 2 6 

P3 7 7 8 8 6 6 2 

P4 7 7 6 6 10 10 2 

P5 1 1 8 8 10 10 6 

Independent assessment 

Participant Lab-Thorax Joint Shoulder Joint Elbow Joint Wrist Joint 

 Thorax Thorax Upper-arm Upper-arm Forearm Forearm Hand 

P1 7 7 5 7 10 10 3 

P2 4 8 8 5 2 10 6 

P3 7 1 8 7 6 5 7 

P4 1 1 3 1 10 5 2 

P5 1 8 8 8 4 4 7 
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Chapter 6 – Discussion and Conclusions 

6.1 Summary 

Around 50% of stroke survivors suffer as a result of losing significant upper-limb 

control. This can cause a remarkably negative impact on activities of daily living 

(ADLs) and hence quality of life (Barker et al., 2008). Upper-limb impairments 

may typically include: Reductions in muscle activations; inability to extend the 

shoulder, elbow, and wrist joints; and impaired coordination between upper-limb 

segments (Barker et al., 2008; Burgar et al., 2011; Harris & Eng, 2010; 

Timmermans et al., 2009). There are a wide range of different rehabilitation 

interventions, which all aim to promote upper limb recovery after stroke. These 

interventions include conventional physiotherapy, robot assisted therapy, and 

FES assisted therapy. Studies of FES assisted therapy have shown promising 

results in restoring reaching and grasping function. 

However, the problem with existing FES systems is that they are: either too 

simple and inflexible to allow bespoke upper-limb therapy to be set up for each 

patient; or they require specialist skills to set up and therefore require clinical 

engineering involvement for each patient. To overcome this limitation, the Salford 

team have produced a flexible upper-limb FES system, which enables therapists 

to setup patient and task-specific finite state machine (FSM) controllers (Smith et 

al., 2017, 2019; Sun et al., 2016, 2018). Transitions conditions for moving from 

one state to another (i.e. between movement phases) are governed by user-

defined rules, which use inputs from body-worn MIMUs (Sun, 2014). 

However, the system limitations are as follows: 

• Significant therapist input is still required to set up the state-machine controller 

and to adapt the controller as the patient’s status changes; 

• It uses individual MIMUs to provide segment orientations, but does not 

combine information from pairs of MIMUs on adjoining segments to give 

anatomical joint angles, which are more meaningful; 
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• The controller cannot automatically adapt the stimulation profiles as the patient 

changes (e.g. fatigues or improves their performance with practise). 

This PhD has focussed on solving the second problem listed above: the 

estimation of anatomical joint angles using data from MIMUs on adjoining upper-

limb segments. The solving of this problem would be of benefit to numerous other 

clinical applications, as well as the FES problem introduced above. For example, 

regular clinical assessments of rehabilitation progress are important and, ideally, 

these should be based on objective measurement of upper-limb and body 

movements during functional task practise in order to assess the effects of 

muscle weaknesses and coordination dysfunctions. 

Using body segment orientations, rather than anatomical joint angles, allows 

users to compensate for muscle weaknesses and coordination dysfunctions by 

moving proximal segments to change the orientation of a more distal segment, 

without using their anatomical joints correctly as needed for good rehabilitation. 

This may also be associated with reduced patient effort to use their weaker 

muscles and hence reduced efficacy of the intervention. However, the MIMU 

orientation data cannot be interpreted anatomically, to give joint angles, unless 

the orientations of the MIMUs are known with respect to their corresponding 

segment anatomical coordinate frames. Therefore, for each body segment, 

anatomical calibration must be performed to obtain the relationships between 

each MIMU sensor coordinate frame and its corresponding anatomical 

coordinate frame. 

6.1.1 Limitations with existing MIMU calibration studies 

The anatomical calibration problem is still an open research question because no 

study has comprehensively compared alternative approaches to determine the 

best calibration method. In particular, no study has compared the many 

alternative methods of defining the two reference vectors (𝒗𝒓𝒆𝒇𝟏 and 𝒗𝒓𝒆𝒇𝟐). For 

this reason, a review and critical comparison was undertaken of the calibration 

methods used by other researchers in upper-limb applications to inform the 

author’s work (summarised in Table 2.2, Chapter 2).  
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The anatomical calibration methods found were classified as involving one or 

more of the following: (1) anatomical alignment of sensors; (2) static 

measurements; or (3) dynamic measurements. Anatomical alignment involves 

aligning the sensor axes with anatomical axes defined by bony landmarks such 

as the styloid processes, humeral epicondyles, and humeral tubercle. Static 

measurements involve positioning the arm in a known posture and using the 

gravity vector (measured by the 3-axis accelerometer) to achieve anatomical 

calibration. Dynamic measurements involve moving a joint in a defined way and 

using the angular velocity vector (measured by the 3-axis rate-gyro) to achieve 

anatomical calibration.  

No comparison of the alternatives has been found in the literature apart from that 

of (Bouvier et al., 2015), which did not cover all of the alternatives and only 

assessed accuracy and precision. (Bouvier et al., 2015) did not compare 

calibration methods in term of speed, and simplicity. Furthermore, they did not 

include thorax orientation with respect to the global (LAB) coordinate frame. In 

summary, no study has: 

1) Included all segments of the upper-limb, and the thorax; 

2) Compared all of the alternatives for defining the two reference vectors; 

3) Made a comprehensive comparison covering accuracy, speed, and simplicity. 

Therefore, the author has undertaken a comprehensive comparison of alternative 

calibration methods by comparing MIMUs derived joint kinematics with gold 

standard data derived from stereophotogrammetry.  

6.1.2 Experimental data collection using synchronised 

stereophotogrammetry and MIMUs 

To enable comparison of joint kinematics derived from multiple body worn MIMUs 

with equivalent gold standard data, synchronised data were collected from 

MIMUs (Xsens) and stereophotogrammetry (VICON multi-camera system). Five 

healthy volunteers with no history of right upper-limb complaints participated. The 

two systems were synchronised at 50 Hz and used to record upper-limb 
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movement trials. The camera data was exported to Visual 3D (V3D) and 

processed to derive sequences of joint rotation matrices for each movement trial, 

which were then exported to MATLAB to be compared with the corresponding 

MIMUs derived sequences of joint rotation matrices.  

After static calibration of the VICON camera system, each participant performed 

two types of movement trials as follows: 

1. Calibration movements consisting of uni-axial rotations, which were used to 

derive anatomical axes from angular velocity data. These movements also 

included systematic pauses in the motion, which were used to derive 

anatomical axes from gravity (accelerometer) data. 

2. Four functional tasks, which were used to compare the MIMUs derived joint 

kinematics with camera system derived results (the gold standard). 

All movement trials were repeated four times. 

6.1.3 Deriving Joint Kinematics from MIMUs Data  

Mathematical methods for processing MIMUs data have been presented. Firstly, 

anatomical calibration is discussed in section 4.2, including the basic principles 

and the alternative approaches that were compared for defining each body 

segment’s anatomical coordinate frame. For each alternative, the mathematics 

for calculating the corresponding calibration rotation matrix has been summarised 

in Tables 4.1 to 4.4 for the thorax, upper-arm, forearm and hand respectively. 

Secondly, the derivation of joint rotation matrices and, hence, joint kinematics is 

discussed in section 4.3. This combines the sensor outputs (their orientations) 

and the calibration rotation matrices to obtain the orientations of the anatomical 

frames. Then the anatomical orientations of segments that are proximal and distal 

to a joint are used to calculate that joint’s rotation matrix, from which other 

descriptions of the joint kinematics can be derived. 

Finally, this chapter describes the difficulties encountered with the MIMU 

orientation estimators. In the first implementation of the methods described 

above, the orientation estimator (Kalman filter) provided by the supplier of the 
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MIMUs (Xsens) was used to obtain the sensor orientations relative to their 

common Sensor Global frame. However, following difficulties during the testing 

of the MATLAB code, it appeared that each sensor was referencing a different 

Sensor Global frame, rather than a common Sensor Global based on vertical and 

magnetic north. Whilst working to debug the corresponding MATLAB code, a new 

2019 version of MATLAB was released, which included a MIMU toolbox with 

alternative orientation estimators that can work with the raw data from the Xsens 

MIMUs. Using one of the MATLAB estimators resolved the problem and the 

considerable effort already invested in finding a solution had been unnecessary. 

6.1.4 Comparison of calibration methods 

In Chapter 5, the alternative calibration methods described in Chapter 4 have 

been compared in three different ways. Firstly, the alternative calibration rotation 

matrices listed in Tables 4.1 to 4.4 (for thorax, upper-arm, forearm, and hand 

respectively) are compared by considering the orientations of the corresponding 

sensor (MIMU) defined anatomical frames (one for each calibration rotation 

matrix). The results show that there is considerable variation between the 

alternative sensor defined anatomical frames. This confirmed the need for 

comprehensive comparisons, which were undertaken using two assessment 

processes as follows: 

1) Sequential assessment to ensure that that only one calibration rotation matrix 

was required for each body segment to minimise the number of calibration 

movements required. 

2) Independent assessment, which may lead to more accurate joint orientation 

results, but there is no guarantee that the two calibration rotation matrices 

selected for a particular body segment (i.e. for the joints that are proximal and 

distal to it) will be the same. 

Although the results were not conclusive, it is possible to draw tentative 

conclusions from the results, summarised in Table 5.9, with regard to 

recommendations for a set of calibration rotation matrices and the associated 

calibration methods. These are based only on the results for the sequential 
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method to ensure that each segment only needs one calibration rotation matrix, 

which is used for both its proximal and distal joints. This minimises the number of 

calibration movements required. Then, based on the maximum agreement 

between participants, the results summarised in the top half of Table 5.9 lead to 

the following recommendations: 

Thorax – Use calibration rotation matrix 7. This requires the following calibration 

movements: flexion-extension of the thorax (forward-backward lean), including 

the static position (thorax straight and upright). 

Upper-arm – Use calibration rotation matrix 8. This requires the following 

calibration movements: shoulder flexion-extension; and shoulder internal-

external rotation. 

Forearm – Use calibration rotation matrix 10. This requires the following 

calibration movements: shoulder internal-external rotation; and forearm 

pronation-supination. 

Hand – Use calibration rotation matrix 2. This requires the following calibration 

movements: wrist flexion-extension; and radial-ulnar deviation. 

6.2 Conclusions 

1. While many papers have been published on sensor-to-segment calibration, 

there has been no comprehensive comparison of the alternative approaches 

to establish their relative merits. A recent, clinically focused review highlighted 

the difficulty faced by researchers in the absence of the systematic approach 

presented here (Poitras et al., 2019).  

2. The results reported in this thesis demonstrate that there is considerable 

variation between the alternative sensor defined anatomical frames and, 

hence, confirm the need for comprehensive comparisons. 

3. The comparisons reported in this thesis have led to the tentative 

recommendations summarised above in section 6.1.4. 

4. Nevertheless, the methods reported are a sound foundation for future work to 

provide stronger recommendations, with formal measures of confidence. 
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6.3 Limitations and Future Work 

The results presented in Chapter 5 have only led to tentative recommendations 

for the best set of calibration rotation matrices and the associated calibration 

methods. This is due to a number of limitations, the most critical of which are: 

• Doubts about the quality of the experimental protocol because it was not 

recorded in sufficient detail. For example, the initialisation of the MIMUs and 

the time allowed for their orientation estimators to settle was not recorded in 

sufficient detail. 

• The low number of participants. 

• The limited nature of the analyses conducted thus far. 

• Problems with some commercial MIMU real-time orientation estimators. 

Therefore, in the first instance, future work should address these limitations. 

Firstly, the experimental protocol should be revisited and, if it is felt necessary, 

improved before further experimental data is collected. Most importantly, the 

protocol should be recorded in sufficient detail for the experiments to be repeated 

with a high level of confidence that the protocol is always the same. 

Secondly, to provide greater confidence in the conclusions, a larger number of 

participants should be recruited. With data from only 5 participants, any 

recommendations are often based on 3 from 5 judgements, which is insufficient 

to provide any worthwhile quantification of confidence. Therefore, the 

recommendations made here should be considered to be tentative. 

Thirdly, although 5 participants seem insufficient, it may be that the confidence in 

the results could be increased with further analyses. In particular, further work 

could consider lower ranked alternatives as well as the optimum alternatives, 

which may show greater agreement between the results for different participants. 

Finally, although the MATLAB orientation estimator (filter) that became available 

in 2019 led to usable MIMUs data, it is not a real-time filter embedded in a 

commercially available MIMU. Conversely, the commercial estimator that was 
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initially used (Xsens) led to many difficulties and, hence, a lack of trust in its 

accuracy. Therefore, it is important that a validated protocol is developed for 

testing MIMU real-time estimators. This should be done by a team that is 

independent of any commercial suppliers. The other future work suggested 

above should be preceded by testing of the MIMU real-time estimators using such 

a protocol. 

6.4 Novel contributions 

• The first comprehensive comparison of alternative calibration methods. 

• Given the set of anatomical reference vectors, all possible derivations of the 

calibration matrices were compared. 

• The average error rotation vector was used, which has been shown to be a 

robust method for averaging rotations (Sharf et al., 2010). Furthermore, its 

magnitude provides a single scalar for minimisation purposes. 

• Overall, the methods developed provide a strong basis for future work, 

including for both upper-limb and lower-limb.  
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Appendix 1 – Derivation of the sensor marker 
frame for the four segments (thorax, upper-arm, 

forearm, and hand) 

( 𝑹𝑳𝑨𝑩
𝑺𝑴𝑻

 , 𝑹𝑳𝑨𝑩
𝑺𝑴𝑼

 , 𝑹𝑳𝑨𝑩
𝑺𝑴𝑭

 , 𝑹𝑳𝑨𝑩
𝑺𝑴𝑯

) 

Thorax – 𝑹𝑳𝑨𝑩
𝑺𝑴𝑻

  

The markers (on the upper corners of the sensor) data has been used to calculate 

a new coordinate system called (SM) which nearly aligned with sensor inertial 

coordinate system (SI). For Thorax, four markers have been used to create SM 

as follows (Figure A1.1): 

The mathematical equations: 

𝐗𝐒𝐌𝐓
= 𝐏𝟏

𝟐
− 𝐏𝟑

𝟒
 

𝐗𝐒𝐌𝐓
: 

 𝑋𝑆𝑀 𝑇

= [
𝒙𝑻𝟏 + 𝒙𝑻𝟐 − 𝒙𝑻𝟑 − 𝒙𝑻𝟒

𝟐
,
𝒚𝑻𝟏 + 𝒚𝑻𝟐 − 𝒚𝑻𝟑 − 𝒚𝑻𝟒

𝟐
,
𝒛𝑻𝟏 + 𝒛𝑻𝟐 − 𝒛𝑻𝟑 − 𝒛𝑻𝟒

𝟐
], 

𝐗𝐒𝐌𝐓
=

𝑋𝑆𝑀 𝑇

|𝑋𝑆𝑀 𝑇
|
 

𝐘̃𝐒𝐌𝐓
= 𝐏𝟏

𝟑
− 𝐏𝟐

𝟒
 

 𝐘̃𝐒𝐌𝐓
: 

 𝑌̃𝑆𝑀𝑇

= [
𝒙𝑻𝟏 + 𝒙𝑻𝟑 − 𝒙𝑻𝟐 − 𝒙𝑻𝟒

𝟐
,
𝒚𝑻𝟏 + 𝒚𝑻𝟑 − 𝒚𝑻𝟐 − 𝒚𝑻𝟒

𝟐
,
𝒛𝑻𝟏 + 𝒛𝑻𝟑 − 𝒛𝑻𝟐 − 𝒛𝑻𝟒

𝟐
], 

 𝐘̃𝐒𝐌𝐓
=

𝑌̃𝑆𝑀𝑇

|𝑌̃𝑆𝑀𝑇
|
 

𝐙𝐒𝐌𝐓
: 

𝐙𝐒𝐌𝐓
=  

𝐗𝐒𝐌𝐓
× 𝐘̃𝐒𝐌𝐓

|𝐗𝐒𝐌𝐓
× 𝐘̃𝐒𝐌𝐓

|
 , 𝐘𝐒𝐌𝐓

= 𝐙𝐒𝐌𝐓
× 𝐗𝐒𝐌𝐓
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𝐗𝐀𝐓
= 𝐙𝐒𝐌𝐓

 

𝐘𝐀𝐓
= 𝐗𝐒𝐌𝐓

 

𝐙𝐀𝐓
= 𝐘𝐒𝐌𝐓

 

𝑹𝑳𝑨𝑩
𝑺𝑴𝑻

= [𝐗𝐒𝐌𝐓
 𝐘𝐒𝐌𝐓

 𝐙𝐒𝐌𝐓
] 

𝐗𝐒𝐌𝐓
, 𝐘𝐒𝐌𝐓

, 𝐙𝐒𝐌𝐓
 are a new coordinate system aligned with sensor inertial 

coordinate system with respect to LAB coordinate (which comes from marker 

data). Also, these are unit vectors and  𝐗𝐀𝐓
, 𝐘𝐀𝐓

, 𝐙𝐀𝐓
 are anatomical local axes 

for thorax. 

 

Figure A1.1: Sensor Marker Frame for the thorax 
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Figure A1.2 shows all coordinate frames: anatomical, sensor inertial, sensor 

marker, and LAB -coordinate frames for thorax. 

 

Figure A1.2: SIT, AT, SMT, and LAB coordinate frames for thorax 

Upper-arm – 𝑹𝑳𝑨𝑩
𝑺𝑴𝑼

 

The markers (on the upper corners of the sensor) data has been used to calculate 

a new coordinate system called (SM) which nearly aligned with sensor inertial 

coordinate system (SI). For Upper-arm, four markers have been used to create 

SM as follows (Figure A1.3): 

𝐗𝐒𝐌𝐔
= 𝐏𝟑

𝟒
− 𝐏𝟏

𝟐
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𝐗𝐒𝐌𝐔
: 

 𝑋𝑆𝑀𝑈

= [
𝒙𝑼𝟑 + 𝒙𝑼𝟒 − 𝒙𝑼𝟏 − 𝒙𝑼𝟐

𝟐
,
𝒚𝑼𝟑 + 𝒚𝑼𝟒 − 𝒚𝑼𝟏 − 𝒚𝑼𝟐

𝟐
,
𝒛𝑼𝟑 + 𝒛𝑼𝟒 − 𝒛𝑼𝟏 − 𝒛𝑼𝟐

𝟐
], 

 𝐗𝐒𝐌𝐔
=

𝑋𝑆𝑀𝑈

|𝑋𝑆𝑀𝑈
|
 

𝐘̃𝐒𝐌𝐔
= 𝐏𝟐

𝟒
− 𝐏𝟏

𝟑
 

𝐘̃𝑺𝑴𝑼
: 

 𝑌̃𝑆𝑀𝑈

= [
𝒙𝑼𝟐 + 𝒙𝑼𝟒 − 𝒙𝑼𝟏 − 𝒙𝑼𝟑

𝟐
,
𝒚𝑼𝟐 + 𝒚𝑼𝟒 − 𝒚𝑼𝟏 − 𝒚𝑼𝟑

𝟐
,
𝒛𝑼𝟐 + 𝒛𝑼𝟒 − 𝒛𝑼𝟏 − 𝒛𝑼𝟑

𝟐
], 

 𝐘̃𝑺𝑴𝑼
=

𝑌̃𝑆𝑀𝑈

|𝑌̃𝑆𝑀𝑈
|
 

𝐙𝐒𝐌𝐔
: 

𝐙𝐒𝐌𝐔
=  

𝐗𝐒𝐌𝐔
× 𝐘̃𝑺𝑴𝑼

|𝐗𝐒𝐌𝐔
× 𝐘̃𝑺𝑴𝑼

|
 , 𝐘𝐒𝐌𝐔

= 𝐙𝐒𝐌𝐔
× 𝐗𝐒𝐌𝐔

 

𝐗𝐀𝐔
= 𝐘𝐒𝐌𝐔

 

𝐘𝐀𝐔
= −𝐗𝐒𝐌𝐔

 

𝐙𝐀𝐔
= 𝐙𝐒𝐌𝐔

 

𝑹𝑳𝑨𝑩
𝑺𝑴𝑼

= [𝐗𝐒𝐌𝐔
 𝐘𝐒𝐌𝐔

 𝐙𝐒𝐌𝐔
] 

𝐗𝐒𝐌𝐔
, 𝐘𝐒𝐌𝐔

, 𝐙𝐒𝐌𝐔
are a new coordinate system aligned with sensor coordinate 

system with respect to LAB coordinate (which comes from marker data). 𝐗𝐀𝐔
, 𝐘𝐀𝐔

, 

𝐙𝐀𝐔
 are anatomical axes for upper-arm. 
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Figure A1.3: Sensor Marker Frame for upper-arm 

Figure A1.4 shows all coordinate frames: anatomical, sensor inertial, sensor 

marker, and LAB -coordinate frames for upper-arm. 
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Figure A1.4: SIU, AU, SMU, and LAB coordinate frames for upper-arm 

Forearm – 𝑹𝑳𝑨𝑩
𝑺𝑴𝑭

 

The markers (on the upper corners of the sensor) data has been used to calculate 

a new coordinate system called (SM) which nearly aligned with sensor inertial 

coordinate system (SI). For Forearm, four markers have been used to create SM 

as follows (Figure A1.5): 
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𝒁𝑺𝑴𝑼
 

𝑿𝑨𝑼
 

𝒀𝑺𝑴𝑼
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 𝐗𝐒𝐌𝐅
=

𝑋𝑆𝑀𝐹

|𝑋𝑆𝑀𝐹
|
 

𝐘̃𝐒𝐌𝐅
= 𝐏𝟐

𝟒
− 𝐏𝟏

𝟑
 

𝐘̃𝐒𝐌𝐅
: 

 𝑌̃𝑆𝑀𝐹

= [
𝒙𝑭𝟐 + 𝒙𝑭𝟒 − 𝒙𝑭𝟏 − 𝒙𝑭𝟑

𝟐
,
𝒚𝑭𝟐 + 𝒚𝑭𝟒 − 𝒚𝑭𝟏 − 𝒚𝑭𝟑

𝟐
,
𝒛𝑭𝟐 + 𝒛𝑭𝟒 − 𝒛𝑭𝟏 − 𝒛𝑭𝟑

𝟐
], 

 𝐘̃𝐒𝐌𝐅
=

𝑌̃𝑆𝑀𝐹

|𝑌̃𝑆𝑀𝐹
|
 

𝐙𝐒𝐌𝐅
: 

𝐙𝐒𝐌𝐅
=  

𝐗𝐒𝐌𝐅
× 𝐘̃𝐒𝐌𝐅

|𝐗𝐒𝐌𝐅
× 𝐘̃𝐒𝐌𝐅

|
 , 𝐘𝐒𝐌𝐅

= 𝐙𝐒𝐌𝐅
× 𝐗𝐒𝐌𝐅

 

𝐗𝐀𝐅
= −𝐙𝐒𝐌𝐅

 

𝐘𝐀𝐅
= −𝐗𝐒𝐌𝐅

 

𝐙𝐀𝐅
= 𝐘𝐒𝐌𝐅

 

𝑹𝑳𝑨𝑩
𝑺𝑴𝑭

= [𝐗𝐒𝐌𝐅
 𝐘𝐒𝐌𝐅

 𝐙𝐒𝐌𝐅
] 

𝐗𝐒𝐌𝐅
, 𝐘𝐒𝐌𝐅

, 𝐙𝐒𝐌𝐅
are a new coordinate system aligned with sensor coordinate 

system with respect to LAB coordinate (which comes from marker data). 𝐗𝐀𝐅
, 𝐘𝐀𝐅

, 

𝐙𝐀𝐅
 are anatomical axes for Forearm. 
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Figure A1.5: Sensor Marker Frame for forearm 

Figure A1.6 shows all coordinate frames: anatomical, sensor inertial, sensor 

marker, and LAB -coordinate frames for forearm. 
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Figure A1.6: SIF, AF, SMF, and LAB coordinate frames for upper-arm 

Hand – 𝑹𝑳𝑨𝑩
𝑺𝑴𝑯

 

The markers (on the upper corners of the sensor) data has been used to calculate 

a new coordinate system called (SM) which nearly aligned with sensor inertial 

coordinate system (SI). For Hand, three markers have been used to create SM as 

follows (Figure A1.7): 

𝐗𝐒𝐌𝐇
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𝑋𝑆𝑀𝐻
= [𝒙𝑯𝟏 − 𝒙𝑯𝟑 , 𝒚𝑯𝟏 − 𝒚𝑯𝟑 , 𝒛𝑯𝟏 − 𝒛𝑯𝟑], 
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 𝐗𝐒𝐌𝐇
=

𝑋𝑆𝑀𝐻

|𝑋𝑆𝑀𝐻
|
 

𝐘̃𝐒𝐌𝐇
: 

 𝑌̃𝑆𝑀𝐻
= [𝒙𝑯𝟏 − 𝒙𝑯𝟐 , 𝒚𝑯𝟏 − 𝒚𝑯𝟐 , 𝒛𝑯𝟏 − 𝒛𝑯𝟐], 

 𝐘̃𝐒𝐌𝐇
=

𝑌̃𝑆𝑀𝐻

|𝑌̃𝑆𝑀𝐻
|
 

𝐙𝐒𝐌𝐇
: 

𝐙𝐒𝐌𝐇
=  

𝐗𝐒𝐌𝐇
× 𝐘̃𝐒𝐌𝐇

|𝐗𝐒𝐌𝐇
× 𝐘̃𝐒𝐌𝐇

|
 , 𝐘𝐒𝐌𝐇

= 𝐙𝐒𝐌𝐇
× 𝐗𝐒𝐌𝐇

 

𝐗𝐀𝐇
= −𝐙𝐒𝐌𝐇

 

𝐘𝐀𝐇
= 𝐗𝐒𝐌𝐇

 

𝐙𝐀𝐇
= −𝐘𝐒𝐌𝐇

 

𝑹𝑳𝑨𝑩
𝑺𝑴𝑯

= [𝐗𝐒𝐌𝐇
 𝐘𝐒𝐌𝐇

 𝐙𝐒𝐌𝐇
] 

𝐗𝐒𝐌𝐇
, 𝐘𝐒𝐌𝐇

, 𝐙𝐒𝐌𝐇
 are a new coordinate system aligned with sensor coordinate 

system with respect to LAB coordinate (which comes from marker data). 𝐗𝐀𝐇
, 𝐘𝐀𝐇

, 

𝐙𝐀𝐇
 are anatomical axes for Hand. 
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Figure A1.7: Sensor Marker Frame for hand 

Figure A1.8 shows all coordinate frames: anatomical, sensor inertial, sensor 

marker, and LAB -coordinate frames for hand. 
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Figure A1.8: SIH, AH, SMH, and LAB coordinate frames for upper-arm 
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Appendix 2 – Probabilities for upper-limb 
segments 

Probabilities for Table 5.9 in Abdullah’s thesis 

For most segments, this is the equivalent of asking what the probability is of 

getting agreement when we throw an eight-sided dice five times (i.e. for 5 

participants). 

Firstly, the number of permutations of 5 calibration rotation matrices (one for each 

participant) have been derived, taken from 8 alternative matrices, that give each 

level of agreement between the 5 participants as follows. This has been done for 

eight alternatives to begin with, which applies to all segments except the forearm. 

1. Agreement between 5 from 5 – number of permutations 

The only way to achieve agreement between 5 from 5 participants (5 eight-sided 

dice rolls) is if they all have the same calibration matrix, of which there are eight 

alternatives. Therefore, there are eight permutations that achieve this – [1 1 1 1 

1] or [2 2 2 2 2]… or [8 8 8 8 8]. 

2. Agreement between 4 from 5 – number of permutations 

The following five patterns give agreement between 4 from 5 participants (5 eight-

sided dice rolls): 

1 1 1 1 0 

1 1 1 0 1 

1 1 0 1 1 

1 0 1 1 1  

0 1 1 1 1 

Where 1 represents the calibration matrix in agreement and 0 represents any of 

the other 7 possibilities. Therefore, for one calibration matrix (e.g. 1 as shown in 
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the patterns above), there are 35 ways to get agreement between 4 from 5 (5 

patterns multiplied by 7 possibilities for 0). 

Finally, this logic applies if 1 is replaced by any of the eight alternative matrices. 

So, the total number of permutations that give agreement between 4 from 5 

participants is 8 x 35 = 280. 

3. Agreement between 3 from 5 – number of permutations 

The following ten patterns give agreement between 3 from 5 participants (5 eight-

sided dice rolls): 

1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 

1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 

1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 

Where 1 represents the calibration matrix in agreement and 0 represents any of 

the other 7 possibilities. Therefore, for one calibration matrix (e.g. 1 as shown in 

the patterns above), there are 490 ways to get agreement between 3 from 5 (10 

patterns multiplied by 72 possibilities for [0 0]). 

Finally, this logic applies if 1 is replaced by any of the eight alternative matrices. 

So, the total number of permutations that give agreement between 3 from 5 

participants is 8 x 490 = 3,920. 

From the three cases above, a general formula can be deduced for the number 

of permutations: 

𝑁𝑃 = 8 × 𝐾 × 7(5−𝑋)  

Where 𝐾 is the number of patterns that give agreement between 𝑋 from 5 

participants (5 eight-sided dice rolls). 

4. Agreement between 2 from 5 – number of permutations 

The following ten patterns give agreement between 2 from 5 participants (5 eight-

sided dice rolls): 
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1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0  

  1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 

  1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 

Where 1 represents the calibration matrix in agreement and 0 represents any of 

the other 7 possibilities. Therefore, applying the general formula derived above 

we get: 

𝑁𝑃 = 8 × 𝐾 × 7(5−𝑋) = 8 × 10 × 73 = 27,440  

However, this led to too many permutations in total (i.e. more than 85). This is 

because 2 from 5 is a special case where the 73 possibilities for [0 0 0] can lead 

to duplicates of 3 from 5 and also two agreement pairs (e.g. 1 1 0 3 3), some of 

which are duplicates. 

For one calibration matrix (e.g. 1 as shown in the patterns above), there are seven 

ways that duplicates of 3 from 5 can arise – [2 2 2] or [3 3 3]… or [8 8 8]. 

For one calibration matrix (e.g. 1 as shown in the patterns above), two agreement 

pairs can occur because of three patterns of the 73 possibilities for [0 0 0] as 

follows: 

2 2 0 

2 0 2 

0 2 2 

Where 2 represents the second agreement pair and 0 represents any of the other 

6 possibilities (not including the calibration matrices of the agreeing pairs – 1 and 

2). This logic applies if 2 is replaced by any of the seven alternative matrices (not 

including 1). So, the number of the 73 possibilities for [0 0 0] that give two 

agreement pairs is 7 x 3 x 6 = 126. Half of these (63) are duplicates because the 

primary and secondary agreement pairs can be swapped as follows: 

1 1 0 3 3  or  1 1 0 3 3 
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Where the bolded italics is the primary agreement pair (i.e. not formed from the 

73 possibilities for [0 0 0]). 

So, there are 7 duplicates of 3 from 5 and 63 duplicates of two agreement pairs 

and, hence, the general formula is modified as follows in the 2 from 5 case: 

𝑁𝑃 = 8 × 𝐾 × (7(5−𝑋) − 70) = 8 × 10 × (73 − 70) = 21,840  

5. No agreement – number of permutations 

The number of permutations where there is no agreement is equal to the number 

of permutations without repetition, which is given by: 

𝑁𝑃 =
𝑛!

(𝑛−𝑘)!
=

8!

(8−5)!
= 6,720  

Where 8 is the number of alternatives and 5 is the length of the permutation. 

6. Summary of results 

Level of agreement Number of permutations Probability 

5 from 5 8 0.0002 

4 from 5 280 0.0085 

3 from 5 3,920 0.1196 

2 from 5 21,840 0.6665 

No agreement 6,720 0.2051 

TOTAL 32,768 0.9999 

The total number of permutations is equal to 85 as it should be, which gives 

confidence that the more complex logic for the 2 from 5 case is correct. 

Interestingly, when rolling an eight-sided dice five times, the most likely outcome 

is an agreement pair or two agreement pairs (p=0.6665). 

7. The forearm – ten alternative matrices 

In this case the formulae are modified as follows for a ten-sided dice: 

For 𝑋 > 2:   𝑁𝑃 = 10 × 𝐾 × 9(5−𝑋)  
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For 𝑋 = 2:   𝑁𝑃 = 10 × 𝐾 × (9(5−𝑋) − 117) = 10 × 10 × (93 − 117) = 61,200 

Where the number of permutations that give two agreement pairs is 9 x 3 x 8 = 

216, half of which are duplicates (108), and there are 9 duplicates of 3 from 5. So 

there are 117 duplicates in total. 

For no agreement:  𝑁𝑃 =
𝑛!

(𝑛−𝑘)!
=

10!

(10−5)!
= 30,240  

The table of permutations and probabilities is then as follows: 

Level of agreement Number of permutations Probability 

5 from 5 10 0.0001 

4 from 5 450 0.0045 

3 from 5 8,100 0.081 

2 from 5 61,200 0.612 

No agreement 30,240 0.3024 

TOTAL 100,000 1 

The total number of permutations is equal to 105 as it should be. 
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