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A numerical investigation of two dimensional steady magnetohydrodynamics heat and mass transfer by 
laminar free convection from a radiative horizontal circular cylinder in a non-Darcy porous medium is presented 
by taking into account the Soret/Dufour effects. The boundary layer conservation equations, which are parabolic 
in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, 
implicit, stable Keller–Box finite-difference scheme. We use simple central difference derivatives and averages at 
the mid points of net rectangles to get finite difference equations with a second order truncation error. We have 
conducted a grid sensitivity and time calculation of the solution execution. Numerical results are obtained for the 
velocity, temperature and concentration distributions, as well as the local skin friction, Nusselt number and 
Sherwood number for several values of the parameters. The dependency of the thermophysical properties has been 
discussed on the parameters and shown graphically. The Darcy number accelerates the flow due to a 
corresponding rise in permeability of the regime and concomitant decrease in Darcian impedance. A comparative 
study between the previously published and present results in a limiting sense is found in an excellent agreement. 
 

Key words: implicit finite difference scheme, Keller-Box method, non-Darcy porous media transport, magnetic 
field; horizontal circular cylinder. 

 

1. Introduction 
 
 During the past decades there has been an increased interest in solving systems of nonlinear differential 
equations associated with physical problems. Most of the problems arising in science and engineering are 
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nonlinear. They are naturally difficult to solve. Traditional analytical approximations are valid only for weakly 
nonlinear problems, and often break down for problems with strong nonlinearity. However, remarkable 
progress has been made in developing new and powerful techniques for solving the nonlinear differential 
equations, particularly in the fields of fluid mechanics, biology, aerospace engineering, chemical engineering, 
etc. Due to the difficulties of the problems researchers frequently pursue to obtain numerical solutions to a 
nonlinear problem. One such technique, which has shown a great potential over the past few years, is the 
Keller-box method. An alternative implicit method due to Keller is now described and is referred to as the Box 
method. This method has several very desirable features that make it appropriate for the solution of all 
parabolic partial differential equations. The main features of this method are:  

 only slightly more arithmetic to solve than the Crank-Nicolson method, 
 second order accuracy with arbitrary (non-uniform) x and y spacing, 
 allows very rapid variations, 
 allows easy programming of the solution of large numbers of coupled equations. 

 This method, originally developed for low speed aerodynamic boundary layers by Keller [1] has 
been employed in a diverse range of nonlinear magneto-hydrodynamics and coupled heat transfer problems. 
These include magnetic boundary layers (Chiam [2]), wavy thermal boundary layers [Rees and Pop [3]], 
rotating hydro-magnetic convection (Hossain et al. [4]), thermal convection in porous regimes (Rees and 
Hossain [5]), magneto-viscoelastic heat transfer in porous media (Bég et al.[6]), radiation-convection 
viscoelastic boundary layers (Bég et al. [7]), hydro-magnetic convection from an elastic cylinder (Ishak et al. 
[8]) and hydro-magnetic thermophoretic mixed convection in porous media (Damseh et al. [9]), heat and 
mass transfer in micropolar regime (Bég et al. [10]), radiative-convective porous media flows (Prasad et al. 
[11]). Recently, Gorla and Vasu [12] and Gorla et al. [13] have studied an unsteady convective heat transfer 
in a non-Newtonian nanofluid. 
 This method has been found to be efficient and flexible in dealing with the problems of boundary 
layer flows. This method is chosen since it seems to be the most flexible of the common methods, being 
easily adaptable for solving equations of any order.  
 Transport phenomena in porous media constitute numerous important flow regimes in many branches 
of engineering and applied physics. The vast majority of models have considered isotropic, homogenous porous 
media, usually employing the Darcy law, which is valid for low velocity, viscous-dominated transport. 
However, porous media are generally heterogeneous and exhibit variable porosity. An early study of flow 
through variable porosity media was conducted by Roblee et al. [14] for the case of radial variation in chemical 
engineering systems. Much later a seminal theoretical and experimental study was presented by Vafai [15] who 
studied the influence of variable porosity and also inertial forces (Forchheimer drag) on thermal convection 
flow in porous media, with the channelling effect being studied in detail. Zueco et al. [16] used network 
simulation to investigate the hydromagnetic heat transfer of a micro-structural liquid material in a vertical pipe 
containing a Darcy-Forchheimer porous medium. An important study of natural convection boundary layers in 
Darcian porous media was presented by Minkowycz and Cheng [17], although they did not consider the 
magnetic case. Hamzeh Taha et al. [18]investigated the effect of radiation on magnetohydrodynamic free 
convection boundary of a solid sphere with Newtonian heating. Kumari and Gorla [19]presented the MHD 
boundary layer flow past a wedge in a non-Newtonian nanofluid. Kameswaran et al. [20] considered a mixed 
convection from a wavy surface embedded in a thermally stratified nanofluid saturated porous medium with 
non-linear Boussinesq approximation. Beg et al. [21] studied numerically the computational modelling of 
magnetohydrodynamic convection from a rotating cone in orthotropic Darcian porous media. Very recently, 
Vasu et al. [22] investigated the entropy generation analysis in nonlinear convection flow of thermally stratified 
fluid in a saturated porous medium with convective boundary condition. 
 Bég et al. [23]used the local non-similarity method with a shooting procedure to analyze mixed 
convective heat and mass transfer from an inclined plate with Soret/Dufour effects with applications in solar 
energy collector systems. Bhargava et al. [24] also studied oscillating hydromagnetic heat and mass transfer 
with Soret and Dufour effects. El-Kabeir and Chamkha [25] focused on the study of heat and mass transfer 
by mixed convection over a vertical slender cylinder in the presence of chemical reaction and thermal-
diffusion and diffusion-thermo effects. Bhattacharyya et al. [26] presented a mathematical model for the 
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Soret and Dufour effects on the convective heat and mass transfer in stagnation-point flow of viscous 
incompressible fluid towards a shrinking surface.  
 The objective of the present paper is to investigate the effects of Soret (thermo-diffusion) and Dufour 
(diffusion-thermal) on the hydromagnetic convective boundary layer on a horizontal permeable cylinder 
embedded in a non-Darcy porous regime where radiation is included by assuming Rosseland diffusion 
approximation. An implicit numerical solution is obtained to the transformed boundary layer equations.  
 
2. Mathematical analysis 
 
 A steady, laminar, two-dimensional, viscous, incompressible, electrically-conducting, buoyancy-
driven convection boundary layer heat and mass transfer from a horizontal permeable cylinder embedded in 
a non-Darcy saturated regime with radiation and Soret/Dufour effects is analyzed. A uniform magnetic field 
B0, is applied in the radial direction, i.e. normal to the cylinder surface. Figure 1 shows the flow model and 
physical coordinate system.  
 

 
 

Fig.1. Physical model and coordinate system. 
 

 The x - coordinate is measured along the circumference of the horizontal cylinder from the lowest 
point and the y - coordinate is measured normal to the surface, with ‘a’ denoting the radius of the horizontal 
cylinder. x a  , is the angle of the y - axis with respect to the vertical ( )0     . The gravitational 
acceleration g, acts downwards. The magnetic Reynolds number is assumed to be small enough to neglect 
magnetic induction effects. Hall current and ion slip effects are also neglected since the magnetic field is 
weak. We also assume that the Boussinesq approximation holds, i.e. that density variation is only 
experienced in the buoyancy term in the momentum equation. Additionally, the electron pressure (for weakly 
conducting fluids) and the thermoelectric pressure are negligible. Both the horizontal cylinder and the fluid 
are maintained initially at the same temperature and concentration. Instantaneously they are raised to a 
temperature wT  ( ,T the ambient temperature of the fluid) and concentration wC  ( ,C  the far-field 
concentration) remain unchanged. The fluid properties are assumed to be constant except the density 
variation in the buoyancy force term. In line with the approach of Yih [27] and introducing the boundary 
layer approximations, the governing conservation equations can be written as follows 
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 The boundary conditions are prescribed at the cylinder surface and the edge of the boundary layer 
regime, respectively as follows 
 

  , , , atw w wu 0 v V T T C C y 0     ,  
   (2.5) 

  , , asu 0 T T C C y       
   
where u  and v  are the velocity components in the x  - and y - directions, respectively, K and Г - the 

respective permeability and the inertia coefficient of the porous medium,   is the kinematic viscosity of the 

conducting fluid,   and *  - the coefficients of thermal expansion and concentration expansion, 

respectively, T  and C  - the temperature and concentration, respectively,  - the electrical conductivity, 0B  

- the externally imposed magnetic field in the y -direction,   - the density, mD  - the mass diffusivity, pc - 

the specific heat capacity, sc  - the concentration susceptibility,   - the thermal diffusivity, mT  - the mean 

fluid temperature, TK  - the thermal diffusion ratio, T - the free stream temperature, C - the free stream 

concentration and wV  - the uniform blowing/suction velocity. The assumption that the magnetic Reynolds 
number is small and the induced magnetic field is negligible compared with the applied magnetic field is 
implicit in the present model. The Hall current is also neglected. It should be noted that in the momentum 
Eq.(2.2), the fifth term on the right hand side is the porous medium Darcian drag force representing pressure 
loss due to the presence of the porous medium. The sixth term on the same side is the inertial drag force (also 
referred to as the Forchheimer impedance) which accounts for additional pressure drop resulting from inter-
pore-mixing appearing at high velocities, as described by Plumb and Huenefeld [28]. The Rosseland 
diffusion flux model is used and is defined following Modest as follows 
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where *k  is the mean absorption coefficient and *  is the Stefan-Boltzmann constant. Following Raptis 
and Perdikis [29] we can express the quadratic temperature function in Eq.(2.6) as a linear function of 

temperature. The Taylor series for 4T , discarding higher order terms can be shown to give 
 

 
4 3 4T 4T T 3T   . (2.7) 
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Substitution of this expression into Eq.(2.6) and then the heat conservation Eq.(2.3), eventually leads to the 
following form of the energy equation 
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 The stream function   is defined by u y    and v x   , and therefore, the continuity 
equation is automatically satisfied. In order to write the governing equations and the boundary conditions in 
dimensionless form, the following non-dimensional quantities are introduced.    
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 In view of Eq.(2.9), Eqs (2.1), (2.2), (2.8) and (2.4) reduce to the following coupled, nonlinear, 
dimensionless partial differential equations for momentum, energy and species conservation for the regime 
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 The transformed dimensionless boundary conditions are 
 

 , , , atwf 0 f f 1 1 0         , 
  (2.13) 
 , , asf 0 0 0      . 

 
 In the above equations, the primes denote the differentiation with respect to  , the dimensionless 

radial coordinate,   is the dimensionless tangential coordinate and  the azimuthal coordinate,   - the local 
inertia coefficient (Forchheimer parameter), Da - the Darcy parameter, N - concentration to thermal 
buoyancy ratio parameter, k - thermal conductivity, Pr -  the Prandtl number, Sc - the Schmidt number,  
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Du - the Dufour number, Sr - the Soret number, M - the magnetic parameter, wf  - the blowing/suction 

parameter and Gr - the Grashof (free convection) parameter, F is the radiation parameter. fw<0 for wV 0
(the case of blowing), and wf 0  for wV 0 (the case of suction). Of course, the special case of a solid 
cylinder surface corresponds to fW = 0. The engineering design quantities of physical interest include the 
skin-friction coefficient, Nusselt number and Sherwood number, which are given by 
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3. Numerical solution 
 
 In this study an efficient Keller-Box implicit difference method has been employed to solve the non-
similar, nonlinear parabolic partial differential Eqs (2.10) to (2.12) with boundary conditions (2.13) 
numerically described in the book by Cebeci and Bradshaw [30]. The basic idea of the Keller-Box method is 
to write the governing equations in the form of a system of first order equations. We use simple central 
difference derivatives and averages at the mid points of net rectangles to get finite difference equations with 
a second order truncation error. The finite difference method is unique among other numerical techniques as 
it allows us to effectively control the rate of convergence via an initial approximation. Very few papers, 
however, have provided guidance for researchers as to customization of the Keller-box scheme to magneto-
hydrodynamic heat transfer problems. We therefore present a more detailed exposition here.  
 Essentially, 4 phases are central to the Keller Box scheme. These are  
a. Reduction of the Nth order partial differential equation system to N first order equations. 
b. Finite difference discretization. 
c. Quasilinearization of non-linear Keller algebraic equations. 
d. Block-tridiagonal elimination of linear Keller algebraic equations. 

 

Phase a: Reduction of the Nth order partial differential equation system to N first order equations 
 

 Equations (2.10) – (2.12) subject to the boundary conditions (2.13) are first written as a system of 
first-order equations. For this purpose, we reset Eqs (2.10) – (2.12) as a set of simultaneous equations by 
introducing the new variables u, v, t and p 
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where primes denote differentiation with respect to  .  
 In terms of the dependent variables, the boundary conditions become 
 

At : , , , ,
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w0 u 0 f f s 1 g 1

u 0 s 0 g 0
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Phase b: Finite difference discretization 
 
 A two dimensional computational grid is imposed on the -η plane as sketched in Fig.2. The 
stepping process is defined by 
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where kn and hj denote the step distances in the ξ and η directions, respectively. 
 

 
 

Fig.2. Grid meshing and a Keller box computational cell. 
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We now show the finite-difference approximation of Eqs (3.1) – (3.4) for the mid-point  / , n
j 1 2  , below 
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(3.8e) 

 

    / ,1 n n n
j j j 1 j 1 2h p

                            (3.8f) 
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    

 (3.8g) 

 
where we have used the abbreviations 
 

  

/n 1 2

nk


  ,          

 /

/

sin n 1 2

n 1 2
B









, (3.9) 

 

  

       

 

/ / //

/ / / ,
Da

2n 1 j j 1
1 j j 1 2 j 1 2 j 1 2j 1 2

j

j 1 2 j 1 2 j 1 2

v v
R h 1 f v 1 u

h

1
B N M u

 
  

  

 
          
  

          

              (3.10a) 
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 (3.10c) 

 
 The boundary conditions are 
 

  , , , , ,n n n n n n n
0 0 0 0 J J Jf u 0 1 1 u 0 0 0           .  (3.11) 

 
Phase c: Quasi-linearization of non-linear Keller algebraic equations 
 

 If we assume , , , , , ,n 1 n 1 n 1 n 1 n 1 n 1 n 1
j j j j j j jf u v t p        to be known for 0 j J  , Eqs (3.8a) – (2.8g) are a 

system of 7J+7 equations for the solution of 7J+7 unknowns , , , , , ,n n n n n n n
j j j j j j jf u v p t  j = 0, 1, 2 …, J. This non-

linear system of algebraic equations is linearized by means of Newton’s method as explained in Vasu et al. [31].  
 
Phase d: Block-tridiagonal elimination of linear Keller algebraic equations 
 
 The linear system (3.8) can now be solved by the block-elimination method. The linearized difference 
equations of the system have a block-tridiagonal structure. Commonly, the block-tridiagonal structure consists 
of variables or constants, but here, an interesting feature can be observed, that is, for the Keller-box method, it 
consists of block matrices. Following the procedure, as explained in Vasu et al. [31], the complete linearized 
system is formulated as block matrix system, where each element in the coefficient matrix is a matrix itself. 
The numerical results are affected by the number of mesh points in both directions. After some trials in the η-
direction a larger number of mesh points are selected, whereas in the ξ direction significantly less mesh points 
are utilized. ηmax has been set at 40 and this defines an adequately large value at which the prescribed boundary 
conditions are satisfied. ξmax is set at 3.0 for this flow domain. Accurate results are produced by performing a 
mesh sensitivity analysis (shown in Tab.2) and convergence criteria. Further details of the solution procedure 
are documented in for example Vasu et al. [31], and omitted here to save of space. 
 
4. Calculations of system performance 
 
 The computations were carried out on WIPRO Computer of Processor: Intel I Core(TM) i5 CPU 760 
@ 2.80Ghz, 2.79Ghz with internal memory (RAM): 4.00 GB running by Windows 7 Professional 64-bit 
Operating System. In order to measure the performance of calculation, we calculated the computation time of 
the program in MATLAB using CPUTIME function, the TIMEIT or TIC and TOC functions and CLOCK 
function, which enable to time how long the code takes to run. Table 1 shows the current calculation time in 
seconds for different grid points, time taken for running the program increases together with an increase in 
the number of grid points. This agrees the physical relevance in increasing the complexity and nonlinearity in 
the calculation.  
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Table 1.  Calculation of computation time to measure the performance of MATLAB program when Da .0 1 , 
 = 0.1, Pr = 0.71, N = 1, fw = 0.5, Sc = 0.25, .F 0 5 , Sr = 0.25, Du = 0.2. 

 

S No Grid or mesh 
Calculation of computation time 

TIC TOC CPU Time Clock 
1 11 X 1501 14.8875 14.8669 14.889 
2 21 X 1501 34.5117 34.4138 34.513 
3 31 X 1501 62.3754 62.1352 62.378 
4 31 X 2001 102.404 102.227 102.41 
5 31 X 2501 165.049 164.721 165.058 

 

 Generally, for CPU-intensive calculations that run on Microsoft® Windows® machines, the elapsed 
time from CPUTIME and from TIC and TOC are close in value, ignoring any first-time costs. There are 
cases, however, that show a significant difference between these functions. 
Like TIC and TOC, TIMEIT provides more reliable results than CPUTIME. However, the TIMEIT function 
also considers first-time costs. 
 
5. Grid sensitivity analysis 
 
 Several different grid distributions have been tested to ensure that the calculated results are grid 
independent. Table 2 shows the comparison of the skin friction ( ( , )f 0  ), Nusselt ( ( , )0  ) and Sherwood  

( ( , )0  ) coefficients values for the different grid distributions. A uniform grid distribution has been used 
to discretize the computational domain. We noticed that increasing the grid numbers in the computation 
domain does not change significantly the Skin friction, Nusselt and Sherwood coefficients values. Therefore, 
the grid which consists of 31 and 2001 nodes in the horizontal and vertical directions, respectively has been 
selected for the present calculations. It is shown that ( ( , )f 0  ), ( ( , )0  ) and ( ( , )0  ) values are 

independent of the number of grid points when the thermophysical values Da .0 1 ,  = 0.1, Pr = 0.71,  
N = 1, fw = 0.5, Sc = 0.25, .F 0 5 , Sr = 0.25, Du = 0.2. 
 

Table 2.  Grid independence analysis when Da .0 1 ,  = 0.1, Pr =0.71, N =1, fw = 0.5, Sc = 0.25, .F 0 5 , 
Sr = 0.25, Du = 0.2. 

 

S. No Mesh ( , )f 0   ( , )0   ( , )0   

1 11 X 501 0.504095158573570 0.176151036859258 0.202775932535556 
2 11 X 1001 0.507258446573282 0.153562294768314 0.187507133142110 
3 11 X 1501 0.507469223969663 0.151682025580220 0.186866447056417 
4 11 X 2001 0.507487404379979 0.151496063763370 0.186834971147045 
5 11 X 2501 0.507489134570660 0.151476917086506 0.186833411101278 
6 21 X 501 0.536397017514021 0.145057355152699 0.162812195485454 
7 21 X 1001 0.541279510767156 0.113509758467140 0.139345138517288 
8 21 X 1501 0.541659584227665 0.110381422017085 0.138193105087817 
9 21 X 2001 0.541700758420850 0.109977228625472 0.138133585394828 
10 21 X 2501 0.541706184576448 0.109917107740069 0.138132533358192 
11 31 X 501 0.0562813476618773 0.108559160200178 0.111428411003198 
12 31 X 1001 0.0577083727913430 0.0342643034319676 0.0399389574362061 
13 31 X 1501 0.0578190152471138 0.0265703137920884 0.0361104361629599 
14 31 X 2001 0.0578273199368282 0.0258069281910071 0.0359302128003149 
15 31 X 2501 0.0578284624512443 0.0256815693267795 0.0359206028650375 
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6. Results and discussion 
 
 A representative set of numerical results is presented graphically to illustrate the influence of the 
hydromagnetic parameter (M), Darcy number (Da), Prandtl number (Pr), tangential coordinate (), radiation 
parameter (F) and Schmidt number (Sc) on velocity, temperature, concentration, shear stress, local Nusselt 
number and Sherwood number profiles. In all cases we have assumed the following default values (unless 
otherwise stated) for the parameters: Pr= 0.71 (air),  = 0.1 (weak second order Forchheimer drag), F = 0.5, 
M = 1.0 (equivalent hydromagnetic and viscous forces), Da = 0.1 (very high permeability of regime),  
fw = 0.5.  
 In order to verify the accuracy of our present method, we have compared our results with those of 
Merkin [32] and Yih [27]. Table 3 shows the comparisons of the values of ( , )0  . It is also observed from 
Tab.3 that the temperature gradient is clearly decreased with increasing the distance from the leading edge, 
i.e. along the cylinder surface from the leading edge. 
 
Table 3.  Values of the local heat transfer coefficient (Nu) for various values of   with Da  ,  =0,  

Pr = 1, N = 0, fw = 0, Sc = 0, F  , Sr = Du = 0. 
 

 
 

( , )0   

Merkin [32] Yih [27] Present results 

0.0 
0.4 
0.8 
1.2 
1.6 
2.0 
2.4 
2.8 
  

0.4212 
0.4182 
0.4093 
0.3942 
0.3727 
0.3443 
0.3073 
0.2581 
0.1963 

0.4214 
0.4184 
0.4096 
0.3950 
0.3740 
0.3457 
0.3086 
0.2595 
0.1962 

0.4214 
0.4185 
0.4097 
0.3952 
0.3741 
0.3460 
0.3087 
0.2597 
0.1964 

 
 Figures 3a – 3c show the effect of the Darcy number (Da) on dimensionless velocity  f  , 

temperature    and concentration    with transformed radial coordinate    at a location close to the 

lower stagnation point  .0 1  . 
Gr

Da
2

K

a
 , for a fixed value of the cylinder radius a, and the free 

convection parameter Gr (Grashof number) is directly proportional to permeability K, of the porous regime. 

In the momentum conservation Eq.(2.10), the Darcian drag term, 
Da

1
f    

 
, is inversely proportional to Da. 

Increasing Da increases the porous medium permeability and simultaneously decreases the Darcian 
impedance since progressively less solid fibers are present in the regime. The flow is therefore accelerated 
for higher Da values causing an increase in the velocity  f   as shown in Fig.3a. Maximum effect of rising 

the Darcy number is observed at an intermediate distance from the cylinder surface around   ~ 1. It is noted 
that all the profiles correspond to a location some distance from the lower stagnation point on the cylinder at 

.0 5  . Conversely, the temperature   depicted in Fig.3b is opposed by increasing the Darcy number. The 
presence of fewer solid fibers in the regime with increasing Da, inhibits the thermal conduction in the 
medium which reduces distribution of thermal energy. The regime is therefore cooled when more fluid is 
present and   values in the thermal boundary layer are decreased. Profiles for both velocity and temperature 
are smoothly decay to the free stream indicating that excellent convergence (and stability) is obtained with 
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increase in the number of grid points. Increasing the radiation parameter, F decreases velocity and temperature 
but increases concentration. Increasing the Darcy number, Da increases velocity but reduces temperature and 
concentration. We noticed that increasing the grid numbers in the computation domain does not change 
significantly the skin friction, Nusselt and Sherwood coefficients values.  
 

Nomenclature 
 

 a − radius of the cylinder 
 0B  − externally imposed radial magnetic field 

 C − concentration 
 Cf − skin friction coefficient 
 Da − Darcy parameter 
 Dm − mass diffusivity 
 F − radiation parameter 
 f − non-dimensional steam function 
 g − acceleration due to gravity 
 Gr −Grashof number 
 K − thermal diffusivity 
 *k  − mean absorption coefficient  
 M − magnetic parameter 
 N − buoyancy ratio parameter 
 Nu − local Nusselt number 
 Pr − Prandtl number 
 qr − radiative heat flux 
 Sc − Schmidt number 
 Sh − local Sherwood number 
 T − temperature 
 u, v − non-dimensional velocity components along the x- and y- directions, respectively 
 x, y − non-dimensional Cartesian coordinates along the surface and its normal, respectively 
   − thermal diffusivity 

  , *  − coefficients of thermal expansion and concentration expansion, respectively  

   − azimuthal coordinate 
   − non-dimensional concentration 

   − the Forchheimer inertial drag coefficient 
   − dimensionless radial coordinate  

   − dynamic viscosity 

   − kinematic viscosity 
   − non-dimensional temperature 
   − density 

   − electrical conductivity 
 *  − the Stefan-Boltzmann constant 
   − dimensionless tangential coordinate 

   − dimensionless stream function 
 

Subscripts 
 

 w − conditions on the wall 
   − free stream conditions 
 

Superscripts 
 

 ‘− differentiation with respect to   
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