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Abstract: Hadoop is a well-known parallel computing system for distributed computing 
and large-scale data processes. “Straggling” tasks, however, have a serious impact on task 
allocation and scheduling in a Hadoop system. Speculative Execution (SE) is an efficient 
method of processing “Straggling” Tasks by monitoring real-time running status of tasks 
and then selectively backing up “Stragglers” in another node to increase the chance to 
complete the entire mission early. Present speculative execution strategies meet challenges 
on misjudgement of “Straggling” tasks and improper selection of backup nodes, which 
leads to inefficient implementation of speculative executive processes. This paper has 
proposed an Optimized Resource Scheduling strategy for Speculative Execution (ORSE) 
by introducing non-cooperative game schemes. The ORSE transforms the resource 
scheduling of backup tasks into a multi-party non-cooperative game problem, where the 
tasks are regarded as game participants, whilst total task execution time of the entire cluster 
as the utility function. In that case, the most benefit strategy can be implemented in each 
computing node when the game reaches a Nash equilibrium point, i.e., the final resource 
scheduling scheme to be obtained. The strategy has been implemented in Hadoop-2.x. 
Experimental results depict that the ORSE can maintain the efficiency of speculative 
executive processes and improve fault-tolerant and computation performance under the 
circumstances of Normal Load, Busy Load and Busy Load with Skewed Data. 
 
Keywords: Distributed computing, speculative execution, resource scheduling, non-
cooperative game theory. 

1 Introduction 
In recent years, from the pace of Internet information technology to the booming trend of 
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e-commerce, Internet data information has been rapidly expanding, the big data storage 
and processing platform emerged as the times require [Zafar, Khan, Malik et al. (2017); 
Hashem, Yaqoob, Anuar et al. (2015); Lee (2013)]. It was hailed as yet another 
technological revolution in the computer industry following the Internet of Things and 
Cloud Computing, and it also made the storage and analysis programs based on big data a 
research hot-spot in academic circles both at home and abroad [Kong, Zhang, Ye et al. 
(2017); Kong, Zhang and Ye (2015); Stergiou and Psannis (2017)]. As the mainstream 
open source processing framework for big data, the Hadoop platform has been widely 
used due to its ease of use. At present, it has become a top project of Apache and has 
been used by some large Internet companies for customization [Manikandan and Ravi 
(2014)]. Hadoop was originally part of the open source project “Nutch”, which is 
implemented by Doug Cutting with reference to Google’s distributed big data storage 
model “GFS” and distributed parallel computing model “MapReduce” [Ghemawat, 
Gobioff and Leung (2003); Dean and Ghemawat (2008)]. With the continuous 
improvement and development of the Hadoop platform, many applications based on 
HDFS and MapReduce are becoming more and more abundant, such as HBase [Apache 
hive (2018)] and Hive [Bhupathiraju and Ravuri (2015)] etc., which aim at improving the 
performance of the cluster and allow people to store and process data more easily. 
However, these applications are based on the Hadoop distributed storage framework 
“HDFS” [Chang, Dean, Ghemawat et al. (2008)] and the computing framework 
“MapReduce” [Dean and Ghemawat (2008)].Therefore, many famous IT companies like 
Microsoft, Yahoo!, Google, Amazon, have launched their own big data storage and 
computing platforms such as Storm [Toshniwal, Taneja, Shukla et al. (2014)], Spark 
[Zaharia, Chowdhury, Franklin et al. (2010)], Dryad [Isard, Budiu, Birrell et al. (2007)], 
and let the development of big data platform optimization technology as the core 
development trend in the future [Storey and Song (2017)]. 
Just as the storage and CPU constitute the bottom of the computer, the distributed storage 
system HDFS and the distributed computing framework MapReduce also constitute the 
bottom layer of the Hadoop distributed platform. Therefore, the performance of HDFS 
and MapReduce directly affects the overall performance of the Hadoop cluster, such as 
job execution time, cluster throughput, etc. [Glushkova, Jovanovic and Abello (2017)]. 
MapReduce 2.0 is the core component of the Hadoop ecosystem, although its 
performance has been greatly improved compared to MapReduce 1.0, the gradual 
increase in the amount of data has also caused its performance bottleneck. Especially 
dealing with PB-level data when the data is skewed and the node processing efficiency is 
low, there will be a certain type of task running at a significantly slower speed than other 
tasks or even more than five times the average task time, which will slow down the 
overall running time of the cluster and greatly reduce resource utilization [Naik, Negi and 
Sastry (2014)]. Hadoop speculative execution mechanism is an efficient way to reduce 
the impact of this kind of “straggler” on cluster performance. It judges and discovers 
slow tasks through certain conditions, once a task is confirmed as a “straggler”, Hadoop 
will start a backup task for it, when the backup task is completed before the original task, 
the original task is killed, which can reduce the cluster running time and improve the 
fault-tolerant performance of Hadoop. 
The original speculative execution mechanism in Hadoop was called “Hadoop-Naive”, 
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but its performance is poor in heterogeneous environments due to it uses task progress to 
determine whether the task is a “Straggler”, so many researchers began to optimize the 
SE from any other aspects and several optimized strategies are proposed [Liu, Jin, Liu et 
al. (2016)], Such as LATE, MCP, ERUL and so on. These determinations of the 
“straggler” tasks in the proposed strategy are based on the estimation of the remaining 
time of the real-time task, but the inaccurate estimation will lead to improper node 
allocation. At the same time, if there exist multiple “Stragglers” in the cluster, speculative 
execution performance will greatly affect the overall performance of the cluster, which 
implies the scheduling strategy of the backup task is very important. Based on the whole 
study of speculative execution, we proposed an Optimized Resource Scheduling model 
for Speculative Execution based on a non-cooperative Game theory (ORSE) that 
introduced the idea of game theory. In the ORSE algorithm, the resource scheduling 
model of the backup task in execution is transformed into a classic multi-party non-
cooperative game problem, the game participants are the backup task group and the game 
strategies are the node in the cluster, the game’s utility function is the cluster’s overall 
task execution time, and finally when the game reaches the Nash equilibrium, the task 
scheduling scheme will be obtained. 

2 Related works 
Liu et al. [Liu, Jin, Liu et al. (2016)] lists the three core components in the speculative 
execution strategy: 
• Finding out “straggler” tasks during they are running; 
• The selection of a suitable backup node; 
• Make sure that the benefit of starting the backup task to the cluster is greater than 

not enabling it. 
Hadoop considered the three components at the beginning of the design, it implied the 
original speculative execution strategy in Hadoop, which is called “Hadoop-Naive”. 
Since Hadoop-Nave shows many deficiencies in the heterogeneous cloud environments, 
Zaharia et al. first proposed the heuristic speculative execution strategy called LATE, this 
strategy uses the remaining execution time of the task as the priority for the determination 
of the “straggler” tasks, and also considers the proper backup node [Cheng, Rao, Guo et 
al. (2014)]. The LATE strategy has been optimized to a certain extent relative to the Nave 
strategy, but many problems have been found in the application process, such as the 
estimation error of the task’s remaining time and not considering the impact of real-time 
workload on task execution. Therefore, Zhang et al. [Zhang, Zhang, Li et al. (2016)] 
further proposes a heuristic strategy “ERUL” by finding the linear relationship between 
system load and task remaining time. The MCP strategy is proposed [Chen, Liu and Xiao 
(2014)], which maximizes the benefits of the cluster by establishing the maximum cluster 
performance model and guarantee that the backup task gains more benefit to the cluster 
than the original task, but the model does not consider the value of the node itself when 
calculating the benefits. The Ex-MCP strategy is the optimization of the MCP strategy, 
which takes the node value into the benefit model [Wu, Li, Tang et al. (2014)]. 
In addition to these strategies such as LATE, MCP and ex-MCP, domestic and foreign 
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researchers have also conducted research and exploration of speculative execution 
strategies from different aspects and proposed their own optimization plans. SSE (Smart 
Speculative Execution) is an optimization strategy based on the node classification which 
depends on the hardware performance of the node and the amount of computational data 
in the node [Liu, Cai, Fu et al. (2016)]. Wang et al. [Wang, Lu, Lou et al. (2015)] also 
proposed a Partial Speculative Execution (PSE), which uses the detection point of the 
original task to start the speculative execution without restarting the entire process, which 
enhanced the Hadoop performance. Since speculative execution is a classical space-for-
time thinking, most optimization strategies ignore the storage space occupied by backup 
tasks. Therefore, Liu et al. propose a speculative execution strategy based on space-time 
optimization for multi-objection, the strategy optimized the load balancing problem 
during speculative execution based on extreme learning machine and multi-objective 
space-time optimization algorithm [Liu, Jin, Liu et al. (2016)]. SECDT is a new 
speculative execution algorithm based on the C4.5 decision tree, which estimates the 
completion time of the scheduled task based on the C4.5 decision tree [Li, Yang, Lai et al. 
(2015)]. The ATAS strategy improves the success rate of backup tasks by reducing the 
reaction time and quickly starting backup tasks [Yang and Chen (2015)]. The data skew 
of the data itself has always been one of the factors which result in “straggler” tasks, the 
Flexslot’s strategy can adaptively change the number of slots on each compute node to 
further mitigate the problem of data skew [Guo, Rao, Jiang et al. (2017)]. 

3 Model and algorithm 
Hadoop resource scheduling refers to different scheduling of tasks to different nodes 
through a ResourceManager (RM). Traditional resource scheduling algorithms such as 
FIFO, Capacity Scheduler, etc. have the problem of low cluster utilization resulting in 
low performance of the cluster, so many scholars are committed to Various dimensions of 
resource scheduling optimization, various optimization strategies based on game theory 
ideas have also been proposed [Li (2016); Zhang and Zhou (2017)]. This chapter is 
different from the traditional resource scheduling optimization algorithm in that this 
paper speculates that the execution of the backup task and the tasks being executed and 
waiting on the node select different computing nodes through the game, and seeks the 
Nash equilibrium allocation scheme in the game, thereby improving the cluster 
computing node, the utilization rate. This article mainly adopts the non-cooperative game 
model, mainly because its mathematical theory model has been proved and extended 
many times, especially the existence problems of Nash equilibrium point [Czumaj and 
Cking (2002)].  
The purpose of the game theory introduced in this chapter is to generate backup tasks 
generated by speculative execution without affecting the execution of normal tasks on 
cluster nodes. Backup tasks and original tasks can still be evenly distributed to the nodes 
of the cluster, thereby making greater use of cluster computing resources. The 
algorithmic model for the speculative execution of resource scheduling in this chapter is 
based on the following preconditions: 
• There are several nodes in the cluster, and different tasks can select different nodes 

for execution; 
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• The ultimate goal of optimization is that the backup task can be executed at the 
fastest speed and the model needs to sense the current task status of the current 
cluster in real time; 

• When the scheduling scheme is optimal, the benefit of the corresponding cluster is 
the largest; 

• There are multiple backup tasks at the same time in the execution process; 
In Yarn, users can customize the number of dropped tasks, so the number of backup tasks 
in Hadoop is limited. Second, a backup task can only be assigned to run on one node. The 
number of nodes in the cluster is also set in advance, resulting in backup tasks. The 
number of allocated nodes is limited; finally, when the task is assigned to a node, since 
the node’s operating efficiency and the task’s data volume are fixed, the task’s running 
time is also determined, so the model is regular Limited game. 
At the same time, there are two concepts in the non-cooperative game: hybrid strategy 
and Nash equilibrium. Hybrid strategy indicates that a certain task in the cluster has a 
certain probability when selecting the corresponding node. In the speculative backup task 
node scheduling, there are multiple tasks and multiple nodes, so each node has a certain 
probability to be assigned to a fixed node, in line with the hybrid strategy. Nash 
equilibrium refers to the game process, the game participants cannot obtain higher 
interests by changing the game strategy, and the core of the game theory introduced in 
this chapter is to find a balanced backup task node allocation scheme, making the task not 
to change its own operation the node achieves better benefits and there is also a Nash 
equilibrium solution. This model satisfies the non-cooperative game model. 
In the Hadoop platform, tasks are submitted by users and the number of tasks is limited. 
It has been explained above that the game model in this chapter is a limited non-
cooperative game. Therefore, according to the principle of existence of Nash equilibrium 
points in non-cooperative game theory, it can be known that there are limited non-
cooperative. In the game model, there must be one or more Nash equilibrium points. In 
this case, the situation that the resource scheduling model has no solution in this paper is 
eliminated, thereby ensuring that there is a corresponding Nash equilibrium solution for 
each resource scheduling problem. 

3.1 Design of a resource scheduling algorithm model based on a non-cooperative game 
From the above it can be seen that this article uses a resource scheduling model based on 
a non-cooperative game. The input and output of this model under Hadoop speculation 
execution involve: 
Input 1: A set of backup tasks generated by speculative execution. The game focuses on 
multi-participation. If there is only one task, it is equivalent to a unilateral optimization 
problem. Therefore, the model needs to have a group of backup tasks ( )1, ,i

 as input. 

This group of backup tasks also corresponds to the participants in the game model P . It 
is assumed that there are backup tasks in the model and the amount of data for each 
backup task is 

n
σ . 

Input 2: Compute nodes in the cluster. Since there is a backup task, there must be a 
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computing node in the cluster. The computing node corresponds to a game strategy S. 
Assume that there are computing nodes in the cluster, and the average execution rate of 
the node processing task is used as the execution rate of the node mv . 

Output: Total task execution time. The RM assigns the backup task to different compute 
nodes. At this point, the node needs to complete the backup task and the total execution 
time of the assigned original task on the node. 
In the Hadoop platform, each task is assigned by the RM  to each computing node in the 
cluster. Each task has a certain probability to be assigned by the RM to any computing 
node in the cluster. The probability that the task is assigned to the node k  is k

i
p , and the 

workload of the task i  is 
i

σ . Assuming that the task group assigned by the RM to the 

node k  is denoted as 
k

M , then the execution time of the node is the ratio of the total task 
amount of the task to be processed on the node to the node execution efficiency, as 
shown in the following formula (1). 

_
σ

∈=
∑

k

k
i i

i M
k

k

p
Execution Time

v
                                                                                               (1) 

The model of resource scheduling for the backup task in the speculative implementation 
is a hybrid strategy and can be represented by this binary group ( , )T N , where T  is the 
backup task set in the cluster, and N  is the compute node set in the cluster. For each 
backup task t , the data volume is σ t ; whilst for each compute node n , the processing 
rate is nv . Therefore, when the RM  allocates the backup task t  to the node k , the 
running time of the node k  is also the sum of the execution time of the backup task plus 
the execution time of the original task group waiting on the node, which is shown in 
formula (2). 

_ os
σ σ

≠

 + 
 =
∑ k

i i t
i tk

t
k

p
Time C t

v
                                                                                            (2) 

where kv  is the processing rate of the computing node k . k
ip  is the probability that the 

original task i  is assigned to the node k . σ i  is the data quantity of each task in the task 
set to be completed on the node, and σ t  is the work amount of the backup task t  
allocated by the RM . 
After the scheduler determines all the backup task allocation strategies, a single backup 
task cannot achieve higher benefits by changing its own computing node. At this point, 
the Nash equilibrium status of the non-cooperative game-based Hadoop speculative 
execution resource scheduling model is reached. 
For this resource scheduling model, to make it reach the Nash equilibrium point of the 
game, RM  cannot improve the benefit of the whole cluster by changing the scheduling 
strategy of any current task, then it must satisfy the following conditions, such as formula 
(3) shows. 
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_ cos min _ cos
∈

⇒ =k k k
t t tk N

p time t time t                                                                                      (3) 

where k
tp  is the probability that task t  is assigned to node k , and _ cos k

ttime t  is the cost 
function that task t  is scheduled by RM  to the node k , which is shown in formula (2). 
N  is the set of compute nodes in the cluster. 
Therefore, the resource scheduling model for the speculative backup task can be 
transformed into a classic non-cooperative game problem. The participants of the game 
are the set of backup tasks, whilst the game strategy is the different computing nodes in 
the cluster, and the utility function of the game is the final completion time of the task. In 
a distributed cloud environment, the task scheduling optimization goal is that the task can 
be completed as soon as possible, so the game’s utility function is the task’s completion 
time; that is, if a task t is scheduled to a computing node k , then the cluster has a gain, 
whereas the income becomes the profit of task t  on the node k . The individual task 
profit function is shown in formula (4), while the overall cluster’s profit function is 
shown in formula (5). 

( )_ Pr =tk tkTask ofit f a                                                                                                         (4) 

( )_ Pr =i iCluster ofit f d                                                                                                       (5) 

where tka  is game strategy, which is the plan that task t  dispatches to node k . id  is the 
scheduling scheme i . 
After the RM  schedules backup tasks every time, the metric on the tasks is task completion 
time, whilst the metric on the scheduling strategy is the overall running time of the tasks on 
the cluster. These two metrics are calculated following formulae (6) and (7). 

_

σ σ
∈

  
 +    =  
 
 
 

∑
k
t

i t
i N

tk
k

Task Profit f
v

                                                                                       (6) 

_ max

σ
∈

∈

   
       =   
  
     

∑
p

j
j M

j p M
p

Cluster Profit f
v

                                                                              (7) 

where in formula (6), σ i  is the workload of task i . k
tN  represents the original task set 

that are uncompleted in node k  when backup task t  is scheduled to node k . kv  is the 
execution rate of node k . σ t  is the workload of the backup task t  that is scheduled to be 
on the node k  during execution. 
In formula (7), σ j  is the workload of task j . pv  is the execution rate of node p . M  is 
the set of compute nodes in the cluster, and pM  represents the task sets assigned to node 
p  in the entire cluster. 
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In the actual cloud environment, the cluster load is high (the number of nodes is smaller 
than the current task to be processed) or the cluster load is low. In this strategy, the RM  
generates a possibility execution node sets for the backup task generated during 
speculative execution, which are the highest-benefit computing nodes q  for the backup 
task t , where q  is the minimum value between the number of tasks and nodes; that is 
called the set of possible running nodes of the backup task, as shown in the formula (8). 

1

1

arg max   
_

            
=

=

 >= 
 ≤

N

q
it

M
i

P M N
Possible Node

P M N
                                                                                (8) 

where ( )1arg max =
N
i qP  represents the most profitable computing nodes N  of the backup 

task t . 1=
M

iP  is M  nodes in the cluster, whereas N  is the number of backup tasks that 
need to be scheduled. At this time, due to the limited number of tasks and the number of 
nodes, the scheduling strategy for this backup task is a classical limited non-cooperative 
game problem. Therefore, according to the definition of non-cooperative games, there 
must be a Nash equilibrium solution, i.e. the Nash scheme. When there are intersections 
in the set of possible processing nodes for two or more backup tasks, these two become a 
conflicting task set, named _Conflict Tasks , as is shown in formula (9). 

_ =∪ ∩ ≠ ∅
n n

j jConflict Tasks Task Node                                                                                  (9) 

3.2 Implementation and critical steps of the resource scheduling algorithm model 
The overall flow chart of the Resource Scheduling Algorithm model is shown in Fig. 1, 
where critical steps of resource scheduling scheme on the purposes of speculative 
implementation are as follows. 
• Step 1: The RM  determines the number of backup tasks that need to be started 

based on the cluster resource operating status and the current number of “Straggler” 
queues in the cluster. At the same time, the RM  can estimate the remaining time 

_ cos k
itime t  of backup task i on each node k  and the benefit _ Pr ikTask ofit  of each 

task in each node; 
• Step 2: Arrange the set of possible running nodes _ iPossible Node  for each task in a 

descending order according to the _ Pr ikTask ofit . 

• Step 3: If conflicts of two or more tasks happen in potential execution node sets, a 
_Conflict Tasks  set is generated. 

• Step 4: A non-cooperative game strategy is applied to _Conflict Tasks  to find a Nash 
equilibrium solution, involving multiple scheduling schemes. 

• Step 5: The most benefit scheme is determined from the Nash equilibrium solution 
according to _ costime t  and _ PrCluster ofit . 

• Step 6: According to Step 5, the RM  schedules backup tasks in the cluster. 
Corresponding nodes execute the tasks following the instruction of the 
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( )−Application Manager AM . 

• Step 7: Repeat Steps 1-6 until all tasks are completed. 

 

Figure 1: Overall flow chart of ORSE strategy 
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4 Experiments and evaluation 
In order to fully analyse the performance of the ORSE, a series of comparative 
experiments has been designed and conducted in a heterogeneous distributed 
environment, including job execution time, cluster throughput, and speculative execution 
accuracy. The experimental heterogeneous environment is mainly built on the servers in 
the lab, where eight nodes were created in the cluster, as shown in Tab. 1. A Hadoop-2.6 
system was installed on them. LATE and MCP strategies have been deployed in the 
cluster to meet the contrasting experimental requirements. Each group of experiments 
was run five times in order to ensure the accuracy of the results, and then the 
performance comparison results were obtained.  

Table 1: The detailed information of each node 
NodeID Memore (GB) Core Processors 
Node 1 10 8 
Node 2 8 4 
Node 3 8 1 
Node 4 8 8 
Node 5 4 8 
Node 6 4 4 
Node 7 18 4 
Node 8 12 8 

The data sets used in this experiment are all provided by Purdue University’s 
performance testing benchmark suite including WordCount and Sort. Among them, 
WordCount input data volume is 50 G, of which the Map task volume is 200, and the 
Reduce task volume is 16; the input data volume of Sort is 30G, of which the Map task 
volume is 200 and the Reduce task volume is 15. 

4.1 Performance evaluation metrics 
In this paper, major metrics are chosen for performance evaluation, including job 
execution time and cluster throughput. 
• Task Execution Time: Task Execution Time is the completion time of a task, as an

important indicator to indicate the performance of an optimized Algorithm in the
Hadoop system.

• Cluster Throughput: Cluster Throughput is defined as the number of jobs that the
cluster runs per unit of time.

Three scenarios are designed to examine potential performance of the ORSE strategy in a 
heterogeneous distributed environment, including Normal Load Scenario, Busy Load 
Scenario and Busy Load with Data Skew Scenario. 
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4.2 Performance of the ORSE strategy in the heterogeneous environment 
Normal load scenario 
In the normal load scenario, a low-load cluster has been configured with efficient resources. 
Using the original task initialization strategy in the Hadoop system, a file was split into 
several file blocks with the size of each block setting to 64 MB and acting as a Map task. 
Data skew has been avoided by setting the input file size to be an integer multiple of 64 MB. 
The execution time of each job and the cluster throughput running WordCount and Sort 
datasets are calculated, with experimental results shown in Fig. 2 and Fig. 3, which 
respectively illustrate the implementation of different strategies during the implementation 
of WordCount and Sort. As shown in Fig. 2, ORSE is different from LATE and MCP for 
the execution time of WordCount task. The degree of improvement is about 23.2% higher 
than that of LATE, which is about 6.1% higher than that of MCP. Compared with LATE, 
ORSE is improved by about 25.8% compared to LATE in terms of cluster throughput, 
which is about 9.7% higher than MCP. Similar trends can also be seen in the execution 
results of Sort. In the design process, ORSE is based on the LWR-SE’s behind-task 
decision rule, which has optimized the prediction accuracy compared with LATE, MCP 
and other strategies using the average execution rate of the task to calculate the remaining 
time of the task. After the corresponding backup task is generated, the non-cooperative 
game model is used to find the possible execution nodes of each backup task group, and the 
node resources in the cluster are scheduled according to the Nash equilibrium scheduling 
scheme to ensure the execution efficiency of the backup task.  
 

 

Figure 2: Performance of different SE strategies on WordCount jobs in a normal load 
scenario 
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Figure 3: Performance of different SE strategies on Sort jobs in a normal load scenario 
 
Busy load scenario 
As mentioned earlier, the introduction of game theory is mainly to solve the problem of 
how to dynamically schedule the cluster resources to maximize the cluster resource 
utilization when the cluster is under high load. Therefore, in the design of the experiment 
in this chapter, we select three nodes among the eight nodes in the cluster to perform I/O 
operations such as file reading tasks to compete for resources in order to simulate the 
cluster high load scenario. At this time, the accuracy of the monitoring performed and the 
accuracy of backup node selection become particularly important. The experimental 
results are shown in Fig. 4 and Fig. 5. As can be seen from Fig. 4, For WordCount, on 
average, ORSE consumes the task execution time 27.3% less than LATE and 13.4% less 
than MCP and 6.1% less than LWR-SE. Moreover, ORSE improves cluster throughput 
by 43.2% over LATE and 15.6% over MCP and 9.5% over LWR-SE. 

 

Figure 4: Performance of different SE strategies on WordCount jobs in a high load 
scenario 
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Similarly, we can see from Fig. 5, ORSE gains a corresponding degree of optimization in 
Sort comparing with MCP, LATE and LWR-SE. On average, LWR-SE executes jobs 
31.9% faster than LATE and 18.3% faster than MCP and 9.4% faster than LWRSE, 
whereas ORSE improves cluster throughput by 49.1% over LATE and 21.9% over MCP 
and 11.1% over LWR-SE. 
When the cluster resources are in shortage, “Stragglers” can be misjudged and performed in 
the slow node by LATE. MCP optimizes the performance through the cluster benefit 
guarantee strategy, but in Hadoop 2.x and 3.x, the concept of Slot is replaced by Container. 
All the resources in a cluster are Container resources, where Maps and Reduce types are not 
divided. Therefore, the accuracy of the MCP cannot be satisfied. The LWR-SE avoids 
partial misjudgement on the basis of the MCP; however, the efficiency of the selection will 
be partially insufficient. ORSE dynamically schedules the node computing resources of 
backup tasks based on LWR-SE; that is, the LWR-SE calculates the execution time and 
benefit of the backup task, and then the ORSE finds the set of possible nodes for each task 
to reach the Nash balance, so as to ensure that free computing resources in a cluster are 
maximized when the cluster appears a set of backup tasks. 

 

Figure 5: Performance of different SE strategies on Sort jobs in a high load scenario 

Busy load with data skew scenario 
In a practical cloud environment, data skew situation is common, especially in the Map 
stage, which will result in Stragglers misjudgements due to the different size of input data. 
In order to create a data skew scenario, the WordCount and Sort jobs have been proposed 
with 30 GB of their datasets in total and 100 MB of input data in each. The input data 
were divided into two data blocks due to the Hadoop self-split strategy, which are 64 MB 
and 36 MB. Similar to the previous Busy Load Scenario, WordCount and Sort jobs were 
set up to be submitted every 150 seconds with the task execution time and cluster 
throughput being counted to be compared with the LATE, MCP and LWR-SE. 
According to Fig. 6, the performance of the ORSE has been significantly improved, 
which consumes the job execution time 46.9% less than the LATE, 18.4% less than the 
MCP and 8.9% less than the LWR-SE. Moreover, the ORSE improves the cluster 
throughput by 47.2% over the LATE, 23.1% over the MCP and 11.8% over the LWRSE. 
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Similarly, as can be seen from Fig. 7, LWR-SE also gets improvements when executing 
Sort jobs in a busy cluster with data skew. In terms of the task execution time, the ORSE 
finishes jobs 37.8% faster than the LATE, 21.3% faster than the MCP, and 12.1% faster 
than the LWR-SE. As for the cluster throughput, the ORSE increases by 45.9% over the 
LATE, 22.9% over the MCP, and 7.3% over the LWR-SE. 
When the data skew exists in the cluster, some tasks with slow execution speed appear in 
the cluster. The reason for their slow speed is not that the execution rate in the real sense is 
not high, but is due to the influence of the data volume. Therefore, these tasks are not really 
straggler tasks. The performance of LATE and MCP is significantly reduced when the data 
is skewed, because it uses the remaining progress and the average rate to calculate the 
execution time error. The ORSE strategy proposed in this chapter improves the accuracy of 
LWR- SE. Even if a task with a large amount of data is misjudged as a slow task, the RM 
will find the Nash equilibrium solution according to the possible processing set and conflict 
set of each task. The task is evenly distributed to the cluster’s compute nodes to ensure that 
the task’s execution time and cluster throughput are not affected. 

 

Figure 6: Performance of different SE strategies on WordCount jobs in a busy load with 
data skew scenario 

 

Figure 7: Performance of different SE strategies on Sort jobs in a busy load with data skew scenario 
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5 Conclusion 
In order to solve the problem that the efficiency of the backup node allocation strategy of 
classical speculative execution algorithm is not high, this paper proposes a speculatively 
executed hybrid resource scheduling strategy ORSE based on non-cooperative game, which 
transforms the resource scheduling problem of backup task into a classic non-cooperative 
game problem. The participants of the game are the set of backup tasks. The game strategy 
is the computing node in the cluster. The utility function of the game is the final completion 
time of the task. The experimental results show that ORSE has better performance than 
LATE, MCP, and LWR-SE strategies, and can make greater use of the cluster’s computing 
resources, improve cluster throughput, and estimate the efficiency of execution. 
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