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ABSTRACT 

A comprehensive theoretical and numerical investigation is presented for two fluids with different physical 

properties.  The effects of buoyancy and viscous heating are addressed.  Non-isothermal wall conditions are 

applied at the walls.   The front and rear walls of the duct are perfectly insulated.  Numerical solutions for 

the reduced non-dimensional Navier-Stokes equations and coupled energy conservation equation are 

obtained using a finite difference method with second-order accuracy. Opting suitable conditions at the 

interface the two different solutions for two different fluids are extracted. The effects of Grashof number 

(thermal buoyancy parameter), viscosity ratio, thermal conductivity ratio, Eckert number (dissipation 

parameter), Prandtl number and duct aspect ratios (for the two immiscible fluid regions) on the flow field 

are visualized graphically.  The value of the average Nusselt number is also tabulated for the two-fluid 

model. A grid-independence study is conducted. The solutions obtained by the numerical code are also 

validated by comparing with the benchmark solutions of the one fluid model and also with the simpler 

solutions of two fluid models available in the literature. Promoting Grashof number, Eckert number, 

Prandtl number and upper region aspect ratio (i.e. simultaneous decrease lower region aspect ratio) the 

Nusselt number increases at the left wall and decreases at the right wall in both the regions. However, the 

converse effect is computed with greater values of ratio of conductivity and viscosity.  With increasing 

viscosity ratio parameter significant flow acceleration is induced in the upper half region of the duct 

whereas deceleration is caused at the bottom of the duct. Prescribing different values of aspect ratios in the 

upper and lower duct regions is found to generate a noticeable movement of the interface. The 

computations show that percentage changes in  
0y

Nu
=

 (heat transfer rate at the left wall of the duct) are 

19.3334, 19.9350, 19.9423, 19.9965, 20.1926% in correspondence with a change in Grashof number from 

5, 10, 20, 50, to 100 respectively.  Percentage changes in Nusselt number are 19.9102, 19.9547, 19.9999, 

20.0451, 20.0901% for values of Prandtl number of 0.01, 0.5, 1.0, 1.5, 2 respectively. The simulations are 

relevant to crystal growth technologies, buoyancy-driven fires in atria and geophysical convection.  

 

KEYWORDS: Immiscible fluids; thermal convection; buoyancy; aspect ratio; variable thermophysical 

properties; interface; viscous dissipation; finite difference method; Nusselt number; 3-D rectangular duct. 
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T    temperature 
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Superscripts 

1,2i=    quantities for region-1 and region-2 respectively. 

 

1.  INTRODUCTION 

Natural convection in open-ended cavities has received considerable attention 

among applied mathematicians and engineering scientists by numerical and experimental 

approach. This interest  evolves owing to the usefulness of duct geometries in 

architectural solar heating (Moosavi et al., 2014), enclosure fire dynamics (Zukoski et al. 

1980), electronic cooling component,  geothermal movement and  aircraft habitation 

(Davis, 1968, Kimura and Bejan, 1984, Hall et al., 1988). The primitive flow structure is 

to consider free convection for the fluid filled in a closed conduit applying                  

non-isothermal conditions at the walls.  Investigations of thermal properties in a 

rectangular duct for thermally insulated horizontal walls have been extensively 

documented in the scientific literature and culmination accuracy has been observed 

between experimental and the solutions obtained using numerical methods.   

The examples of free convection in tubes can be observed in crystal growth and 

heat storage systems.  The increased speed of modern computers and improvements in 

numerical algorithms have greatly accelerated activity in computational simulations of 

natural convection in enclosure ducts. Many different numerical methodologies have 

been employed to analyze a variety of thermal convection transport phenomena in 

rectangular duct systems. Rudraiah et al. (1995) studied free convection in the existence 



4 

 

of magnetic filed in a conduit.  A numerical study was described by Umavathi et al. 

(2005) for convective flow in a vertical channel employing the Brinkman-Forchhiemier-

extended Darcy equation. Hydromagnetic mixed convection flow with asymmetric and 

asymmetric wall heat conditions and heat source/sink was investigated by Ali (2002), 

who showed that flow reversal occurs only for asymmetric wall temperatures and is 

enhanced with heat source (generation) and applied magnetic field. Volume-average 

equations were developed by Ali (2013) for the hydrodynamic mixed convection non-

Darician flow with or without heat sources embedded in a porous matrix, and backflow 

zones were identified. Using temperature-dependent properties Ali (2001) formulated the 

problems of unsteady laminar fully developed flow and heat transfer with source/sink for 

an electrically conducting fluid.  Turbulent and laminar convective flow in a chamber 

using finite volume of conducting solid component was analyzed by  Marcelo (2005) 

applying a finite volume computational algorithm to compare two different approaches 

(i.e. the porous-continuum, homogeneous or macroscopic and the continuum, 

heterogeneous or microscopic models). A multi-step differential transform method was 

implemented to solve the nonlinear differential equations in third grade fluid flow by 

Keimanesh et al. (2011), who demonstrated that this method is significantly faster and 

easier to implement than homotopy methods.  Kefavati et al. (2011) used the D2Q9 grid 

and Bhatnagar-Gross-Krook (BGK) model for relaxation to equilibrium in Lattice 

Boltzmann method (LBM) computations of free convection of silicon dioxide-water 

nanofluids in narrow enclosures with aspect ratios ranging from 0.5 to 2 and for Rayleigh 

numbers between 1000 and 100,000. Bhargava et al. (2017) deployed a variational finite 

element code and implicit finite difference method to study the double-diffusive 

convection of micropolar fluids in rectangular cavities.  Fully developed free convection 

of a micropolar fluid in a vertical channel was considered by Ali et al. (2002), who 

showed that increasing non-Newtonian (micropolar) effects decelerate the flow. Zehba 

and Raiza (2016) utilized an incompressible smoothed particle hydrodynamics (ISPH) 

method to study copper-oxide water nanofluid natural convection in multiple enclosure 

geometries. Venkatadri et al. (2020) employed the Harlow-Welch marker-and-cell 

(MAC) difference scheme to compute hydromagnetic phase-change natural convection in 

variable aspect ratio enclosures. Ravnik et al. (2008) simulated natural convection in 
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cubic and parallelepipedal inclined enclosures with a boundary element method (BEM) 

with aspect ratio of 1:2. Kuharat et al. (2019) used a finite volume SIMPLE algorithm to 

simulate buoyancy effects on natural convection flows of gold-water nanofluid in three-

dimensional prismatic enclosures, considering inclination, aspect ratio and volume 

fraction effects. Ali et al. (2018) reviewed the applications of nanofluids in micro 

channels.  They concluded that the Nusselt number was escalated with Reynolds number.  

The presence of nano particles augments thermal and fluid flow properties in 

microchannels. Convective flow, heat transfer and entropy generation in an odd-shaped 

geometry was presented by Salva and Chamkha (2014).  They showed that the Rayleigh 

number elevates the Nusselt number and entropy generation heat transfer term and 

suppresses the entropy generation viscous term. Using convective boundary conditions 

RamReddy et al. (2013) studied the influence of Soret (thermo-diffusive) effect on 

nanofluid flow in the boundary layer region.  They concluded that the Soret effect boosts 

the skin friction, heat, nanoparticle mass and regular mass transfer rates in the medium.   

Hybrid 2 3Al O Cu−  water nanofluid free convection in a differentially heated porous 

cavity by Mehryan et al. (2017) The presence of heat source and the impact of its location 

on natural convection in a C-shaped enclosure saturated by a nanofluid was investigated 

by Rushal et al. (2017). They found that with heat source located in the upper part and 

with high Rayleigh numbers, there was an increase in Nusselt number. Other studies 

include Abu-Nada (2015) (which featured a dissipative particle dynamics numerical code 

for a differentially heated cavity), Bég et al. (2016) (who used network electrothermal 

simulation and forward time centered space FTCS difference schemes for natural 

convection-radiation flows in annular duct solar enclosures) and Pepper and Wang 

(2008) who applied an optimized hp‐adaptive finite element model for partitioned duct 

enclosures. 

 The majority of the above investigation were confined to closed zones occupied 

by only one fluid. Many problems relating to industrial materials processing, 

petrophysics of reservoirs, atmospheric stratified flows and fire dynamics (air and smoke 

interface) involve multi-fluid dynamics. The behavior of different fluid layers is also of 

considerable interest in the design and operation of fluid experiments in low gravity 

space environments in modern spacelab astronautics (Ostrach, 1982). Longlois (1985) 
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and Schwabe (1986) claim that for good quality crystal growth, the natural convection in 

non-miscible fluids are more relevant.  Considering the model of hexadecane and water, 

Sparrow et al. (1986) elucidated the transport characteristics in two-fluid enclosure 

convection.  The combination of spindle oil-water and spindle oil-ethylene glycol filled 

in a conduit was explored by Kimura et al. (1986).  Parallel numerical computations were 

also conducted by Kimura et al. (1986).  These studies furnished important data for 

evaluating the mechanisms dominating natural convection in two-layered liquid systems. 

Unsteady flow of a particulate suspension in an electrically conducting fluid through 

channels and circular pipes was examined by Ali (2000). Ali and Mansour (2009) 

focused on the modeling of the problem of hydrodynamic buoyancy-induced flow of a 

particulate suspension through a vertical pipe with source/sink effects. Prakash and 

Koster (1996, 1997) present the excellent surveys of key works focused on not miscible 

fluids.  

To recognize the structure and physics of two non-miscible fluids, several studies 

have been executed which speculate that there exist two specific mechanisms which 

explain the linking between the thermal and mechanical forces. In non-isothermal 

scenarios, a variety of complicated circumstances arise.  To perceive in a proper way the 

conditions at the interface needs careful explanation with mathematical models. The 

added dynamical increments are the stresses at the interface and change in the shape at 

the interface. Meyer and Garder (1954) were the first to analyze the logistics for the 

interface that occur between the fluid and porous matrix. A key study for forced 

convection occurring in multiple non-immiscible fluids was presented by Kuznetsov 

(2000). Assuming that the shear stresses are equal at the interface Vafai and Kim (1990) 

determined exact solutions.  Various types of conditions at the interface were 

summarized by Alzami and Vafai (2001).  A three-layer model for the flow through a 

porous matrix with different permeabilities and thermal conductivities was developed by 

Nield and Kuznetsov (2000). Fully developed laminar free convection flow in a vertical 

channel filled with two immiscible fluids (i.e. micropolar fluid and viscous Newtonian 

fluid) was examined by Prathap Kumar et al. (2010). They observed that greater 

rheological (micropolar) material parameter suppresses velocity whereas it enhances the 

microrotation (angular velocity) in both the regions.  Hydromagnetic two-phase flow in a 
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channel was investigated by Ali (1995), who established that the flow rates of the fluid 

and particle phases were reduced in the presence of particles in the channel. The flow of 

dusty and electrically conducting fluid through a pipe was considered by Ali (1994) who 

showed that volumetric flow rates and skin friction coefficient are reduced with stronger 

magnetic field.  Packham and Shail (1971), Shail (1973) and Loharsbi and Sahai (1998) 

have all scrutinized the interfacial conditions that appear between two non-miscible 

fluids.  The best model for non-Darcy flows is that which assumes stresses and velocities 

to be continuous at the clear and porous matrix interface. This robust approach has been 

implemented extensively by Umavathi and co-workers (1997, 2001, 2005, 2006a,b, 

2007) who have analyzed the fluid mechanics of  diverse combinations of  non-miscible 

fluids. Betchancourt et al. (1999) studied natural convection of a two-layer fluid in a side-

heated cavity. They did not make any priori assumptions on the shape and dynamical role 

of the interface. The behavior of the interface was established as part of the solution. 

Unsteady oscillatory flow in a horizontal composite porous medium was simulated by 

Umavathi et al. (2001). They concluded that the oscillation amplitude amplifies the flow 

field. Kim and Sin (2006) experimented on two-phase flow distribution of air-water 

annular flow in a parallel flow heat exchanger.  

Inspite of the emphasis on the appearance of convection in non-miscible fluids, 

significant questions in this area of thermal science still remain unanswered.  This is the 

motivation for the present communication which considers in detail the thermal 

convection in immiscible viscous two-fluid layered natural convection with variable 

thermophysical properties in a vertical tube. A second-order accurate finite difference 

method is implemented to solve the non-dimensional conservation equations with 

appropriate boundary and interface conditions. Extensive visualization of computations is 

provided for a range of Grashof number (thermal buoyancy parameter), viscosity ratio, 

thermal conductivity ratio, Eckert number (dissipation parameter), Prandtl number and 

duct aspect ratios (for the two immiscible fluid regions). Verification of the finite 

difference code is achieved via comparisons with a range of benchmark solutions for the 

one-fluid model and two-fluid models available in the literature. A novelty of the present 

work is therefore the specific appraisal of variable thermophysical properties on 

immiscible thermal convection duct (tube) flow. Previous studies have been largely 



8 

 

confined to constant property models and have generally neglected viscous heating 

effects also.  

 

2.  PHYSICAL MODEL AND ASSUMPTIONS 

 Figure 1 illustrates the physical model and adopted co-ordinate system.  The 

vertical rectangular conduit is filled with two immiscible viscous fluids with different 

properties. The flow is assumed to be steady, laminar and hydrodynamically fully-

developed i.e., only the Z -component  W  of the fluid is non-vanishing. 

( ) ( )( )1 2

2

a a+
 is 

the length and  b  is the width of the tube. Non-isothermal wall conditions are enforced 

( )( 1w
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 , thermal expansion coefficient ( )1

t  and thermal conductivity 

( )1
K .  The region 
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( )1 2
2

2 2

a a
X   and 0 Y b   is occupied by a different (immiscible) 

fluid having density 
( )2

 , viscosity 
( )2

 , thermal expansion coefficient 
( )2

t  and thermal 

conductivity 
( )2

K .   Both fluids are assumed to be Newtonian and have constant 

properties except the density variation in the buoyancy term of the momentum equation 

which is approximated with the Oberbeck-Boussinesq approximation. Under these 

assumptions, the governing equations for momentum and energy conservation in the two 

regions of the duct are: 
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Figure 1 Physical configuration for two-fluid natural convection in a 3-dimensional 

rectangular duct 
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where ( )1
W  and ( )2

W   are the velocities of the fluids in region-1 and region-2, 
( )1

T  and  

( )2
T are the temperatures of the fluids in region-1 and region-2, 

( )1
  and 

( )2
  are the 

densities of the fluids in region-1 and region-2, 
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  and 
( )2

  are the viscosities of the 

fluids in region-1 and region-2, 
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K  and 
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for the convection in the tube.  Further, the velocity, temperature, shear stress and flux 

are continuous at the region of interface (following Alzami and Vafai, 2001).  Eqns. (1) 

to (4) are solved subject to the following boundary and interface conditions:  
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Introducing the following dimensionless variables:  
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Eqns. (1) to (4) can be written as:  
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Here Gr   is the Grashof number, Re  is the Reynolds number, Ec is the Eckert number,  

Pr is the Prandtl number, m  is the ratio of thermal expansion coefficients, n  is the ratio 

of densities,   is the ratio of viscosities,   is the ratio of thermal conductivities, 
( )1

A  is 

the aspect ratio of region-1 and 
( )2

A  is the aspect ratio of region-2. These parameters are 

defined as follows: 

( ) ( ) ( ) ( )( )
( )

( ) ( )

( )

( )

( ) ( )( ) ( ) ( )

1 1 2 12 3
1 1 1 2 2

1 1 1 12 2 1
, Re , ,

w w

w w

p

g b T T b w w b P
Gr Ec p

ZwC T T

  

  

− 
= = = =

−

 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )
( )

( )
( )1 2 2 1 2 1 2

1 2

1 1 1 2 1
Pr , , , , , ,

2 2

pC K a a
m n A A

b bK K

   
 

  
= = = = = = =      (12)     

 

3.  NUMERICAL SOLUTION 

Two layers of immiscible, viscous Boussinesq fluids are contained in the vertical 

rectangular duct. Since the governing equations are highly nonlinear, coupled, partial 

differential equations, extracting analytical solutions is intractable. Hence, a numerical 

solution is sought. Eqns. (7) – (10) are solved numerically under the boundary and 

interface conditions stipulated in Eqn. (11). The governing reduced steady Navier-Stokes 

equations, energy equation, slip condition, stress balance and kinetic condition at the free 

surface and the interface are all discretized using a robust finite difference method.  The 

rectangular duct is divided into a grid of mesh points 
( )( )1

,i jx y  in region-1 and 
( )( )2

,i jx y  

in region-2 where i  ranges from 1 to 1Nx  in region-1, i  ranges from 1 to 2Nx  in region-

2 and j  ranges from 1 to Ny  in both the regions as shown in Figure 2. x  and y  

represent the uniform step lengths in the x   and y   directions.   
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Figure 2 Grid points in numerical simulation  

 

Space derivatives are discretized by means of a second-order central differencing 

scheme. Using central differences, Eqns. (7) – (10) at each grid point ( ),i j  take 

respectively the form of difference equations: 

 

Region-1 

( ) ( ) ( )

( )( )

( ) ( ) ( )

( )
( )
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p

yx


+ − + −

 
 − + − + 

+ + − = 
      
 

                      (13) 
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( ) ( ) ( )

( )( )

( ) ( ) ( )

( )

( ) ( )

( )

( ) ( )

1 1 1 1 1 1

1, , 1, , 1 , , 1

2 2
1

2 2
1 1 1 1

1, 1, , 1 , 1

1

2 2

Pr 0
22

i j i j i j i j i j i j

i j i j i j i j

yx
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Ec

yx

     + − + −

+ − + −

 
 − + − + 

+ + 
      
 

    − −
 + =   
        

                                                 (14)       

                                                                                                   

Region-2 

( ) ( ) ( )

( )( )

( ) ( ) ( )

( )
( ) ( )

2 2 2 2 2 2

1, , 1, , 1 , , 1 1 1

,2 2
2

2 2
0
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i j i j i j i j i j i j

i j

w w w w w w Gr n m
p

yx


 

+ − + −

 
 − + − + 

+ + − = 
      
 

     (15) 

( ) ( ) ( )

( )( )

( ) ( ) ( )

( )

( ) ( )

( )

( ) ( )

2 2 2 2 2 2

1, , 1, , 1 , , 1

2 2
2

2 2
2 2 2 2

1, 1, , 1 , 1

2
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Pr
0

22
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i j i j i j i j

yx

w w w wEc

yx

     

 

+ − + −

+ − + −

 
 − + − + 

+ + 
      
 

    − −
 + =   
        

                                              (16) 

 

The interfacial and boundary conditions become: 

 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1

,0 ,1 ,0 ,1, 1 , at 0 for 0i i i iw w Y x A = − = − − =    

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1

, 1 , , 1 ,, 1 at 1 for 0i Ny i Ny i Ny i Nyw w Y x A + += − = − =    

( ) ( ) ( ) ( ) ( )1 1 1 1 1

0, 1, 1, 0,, at 0 for 0 1j j j jw w x y = − = =    

( ) ( ) ( ) ( )

( )
( )

( )

( ) ( )( ) ( )

( )

2 1 1 2

2 1, 1, 1, 2,

1
1

1 2 2 1

1, 2, 2 1, 1,2

,

at for 0 1
,

Nx j Nx j Nx j Nx j

Nx j Nx j Nx j Nx j

w w w w

x A yx
w w w w

x

+ +

+ +

= + −


=  
= − + 

 

            

( ) ( ) ( ) ( )

( )
( )

( )

( ) ( )( ) ( )

( )

2 1 1 2

2 1, 1, 1, 2,

1
1

1 2 2 1

1, 2, 2 1, 1,2

,

at for 0 1
,

Nx j Nx j Nx j Nx j

Nx j Nx j Nx j Nx j

x A Yx

x

   

    

+ +

+ +

= + −


=  
= − + 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 1 2 2

,0 ,1 ,0 ,1, 1 , at 0 fori i i iw w y A x A = − = − − =    

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 1 2 2

, 1 , , 1 ,, 1 at 0 fori Ny i Ny i Ny i Nyw w y A x A + += − = − =    
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( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 1 2

0, 1, 1, 0,, at for 0 1j j j jw w x A A y = − = = +        

                            (17) 

 The difference equations (13) – (16) are iterated after implementing the boundary 

conditions (17).    

The nonlinear system is iteratively solved until two convergence criteria for 

velocity and temperature are satisfied.  The iteration is stopped till value of the tolerance 

is achieved. The convergence criteria for both velocity and temperature is prescribed as 

710− . Validation of the numerical code is achieved with both a grid independence study 

and by comparing with results from the available literature. 

 

3.1. Grid-Independence Study   

 The average Nusselt number at the left wall of the tube is delineated in Table-1 

for the autonomy of the grids. This table illustrates that refining the mesh density from  

101 101  or 201 201  does not induce any significant modification in the solutions. 

Therefore mesh independence can be assumed to have been achieved with the 

101 101 grid size and this grid design achieves acceptable accuracy.  

Size of the grid Average Nusselt number 

11 11  1.00307968209008 

51 51  1.00318803202941 

101 101  1.00319174673160 

151 151  1.00319243858460 

201 201  1.00319268101602 

 

Table-1 Grid independence study  

 

 

3.2. Validation of the code by comparing with the available literature: 

Validation of the present code is performed against three different studies from 

the available literature and the comparisons are shown in Table-2.  Sanchez et al. (2004) 

and Kaminski and Prakash (1986)  considered a cavity  filled with single viscous fluid 
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and bounded by single or double walls with finite length and thermal conductivity 

whereas Oztop et al. (2009) considered the natural convection in a composite system 

(water-partition-air or air-partition-water) in a differentially heated square cavity. From 

Table-2 one can conclude that the obtained results show good agreement with the 

literature, confirming the accuracy of the current finite difference numerical code. 

 

 

Gr      Sanchez et al. 

(2004) 

Kaminski 

and Prakash (1986) 

Haken et al. 

(2009) 

Present 

510   5 2.078 2.08 2.187 2.10842848261764 

510  25 3.49 3.42 3.394 3.48619977713609 

610  5 2.80 2.87 2.741 2.80654437023274 

610  25 5.91 5.89 5.815 5.90383813271836 

 

Table-2   Comparison of the average Nusselt number with the literature 

We further validate the code by comparing with benchmark solutions and with 

experimental results.  Nikolay (2002) used a finite difference approximation to solve the 

Navier-Stokes equations under the Boussinesq-fluid assumption to analyse the flow and 

heat transfer in a two-layer system of an immiscible incompressible fluid in a rectangular 

enclosure.  Computations were first performed for the widely used benchmark problem of 

a buoyancy-driven flow in a square cavity (de Vahl Davis, 1983; de Vahl Davis and 

Jones, 1983). The governing parameters in the present problem are Grashof number, 

Reynolds number, Eckert number and Prandtl number. In order to compare the results 

obtained with the benchmark solution the governing parameter required is the Rayleigh 

number. Since the Rayleigh number is the product of Grashof number and Prandtl 

number, the governing parameters are redefined to evaluate the average Nusselt number.  

Table-3 displays the benchmark values and the values of Nikolay (2002).  Nikolay 

(2002) also compared his computations with the laboratory experiment conducted by 

Dobretsov and Kyrdyashkin (1993). The experiment of Dobretsov and Kyrdyashkin 

(1993) consists of a two-layer model of mantle convection.  Two immiscible liquids, 

glycerin and hexadecane were used in the experiment.  Table-3 indicates that the 
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solutions obtained are in good agreement with the benchmark solutions and with the 

numerical solutions of Nikolay (2002), the latter also concurring with experimental data.  

This justifies confidence in the fact that the present finite difference numerical code 

produces acceptable results. 

 

Rayleigh 

number 

de Vahl Davis 

and 

Jones (1983) 

Moshkin 

 (2002) 

Present 

310  1.118 1.113 1.14350679110854 

410  2.243 2.198 2.10739845012118 

510  4.519 4.430 4.37982524603028 

610  8.800 9.045 8.94901538324246 

 

Table 3.  Values of average Nusselt number  

 

 

4.  RESULTS AND DISCUSSION 

A computational study has been performed to investigate natural convection in a 

vertical rectangular duct filled with two viscous immiscible fluids.  The effects of 

governing parameters such as Grashof number Gr , viscosity ratio  , thermal 

conductivity ratio  , Eckert number Ec , Prandtl number Pr  and aspect ratios 
( ) ( )1 2

,A A   

on the flow field are evaluated numerically and visualized in Figs. 3 to 7 . We note that 

all data has been carefully selected from standard sources in convective heat transfer, 

namely Gebhart et al. (1988), Kays and Crawford (1993), Rohsenow et al. (1998) and 

Pop and Ingham (2001). The data is physically representative of real fluids, geometries 

and actual thermophysical scenarios encountered in industrial heat duct systems.  
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Figure 3a: Contours of the velocity and temperature distinct values of Grashof number, 

Gr  
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Figure 3b Portraits of velocity and temperature for different values of Grashof number, 

Gr  
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Figure 4a Contours of the velocity and temperature for distinct values of viscosity ratio, 
   
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Figure 4b Portraits of velocity and temperature for different values of viscosity ratio,   
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Figure 5a Contours of the velocity and temperature for distinct values of thermal 

conductivity ratio,    
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Figure 5b Portraits of velocity and temperature for different values of thermal 

conductivity ratio,    
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Figure 6a Contours of the velocity and temperature for distinct values of Eckert number, 

Ec   
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Figure 6b Portraits of velocity and temperature for different values of Eckert number, Ec   
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Figure 7a Contours of the velocity and temperature for distinct values of Prandtl number, 

Pr  
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Figure 7b Portraits of velocity and temperature for different values of Prandtl number, Pr  

 

 



26 

 

 
Figure 8a Contours of the velocity and temperature for distinct values of aspect ratio, A   
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Figure 8b Portraits of velocity and temperature for different values of aspect ratio, A   
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 Region-1 Region-2 

 
0y

Nu
=

 
1y

Nu
=

 
0y

Nu
=

 
1y

Nu
=

 

Gr      

5 1.00002647558 0.999934218804 1.00002647558 0.999934218804 

10 1.00010830136 0.999813062987 1.00010830136 0.999813062987 

20 1.00047480011 0.999367557524 1.00047480011 0.999367557524 

50 1.00319174673 0.996398861098 1.00319174673 0.996398861098 

100 1.01303336733 0.985919573505 1.01303336733 0.985919573505 

      

0.1 1.00842906339 0.990509837298 1.01798289150 0.979618331411 

0.25 1.00546824270 0.993809055995 1.00837351924 0.990581253220 

0.5 1.00414541714 0.995304806598 1.00503562913 0.994332403717 

0.75 1.00355133762 0.995985064589 1.00383851681 0.995673426175 

1.0 1.00319174673 0.996398861098 1.00319174673 0.996398861098 

      

0.1 1.00424898975 0.995259872848 1.02106876439 0.974952448685 

0.25 1.00396933016 0.995568561323 1.00960809805 0.988844210899 

0.5 1.00362420167 0.995938574299 1.00550814623 0.993702980600 

0.75 1.00337715861 0.996201755690 1.00400575580 0.995457369157 

1.0 1.00319174673 0.996398861098 1.00319174673 0.996398861098 

Ec      

0.1 1.00319174673 0.996398861098 1.00319174673 0.996398861098 

0.5 1.01582789841 0.981796831208 1.01582789841 0.981796831208 

1.0 1.03134405437 0.963078469336 1.03134405437 0.963078469336 

1.5 1.04657351828 0.943806662769 1.04657351828 0.943806662769 

2.0 1.06154083944 0.923939250194 1.06154083944 0.923939250194 

Pr      

0.01 1.00004569088 0.999948691037 1.00004569088 0.999948691037 

0.5 1.00228118450 0.997429732829 1.00228118450 0.997429732829 

1.0 1.00455555740 0.994849571201 1.00455555740 0.994849571201 

1.5 1.00682319484 0.992259415933 1.00682319484 0.992259415933 

2.0 1.00908417258 0.989659166577 1.00908417258 0.989659166577 
( ) ( )1 2

,A A      

( )

( )

1

2

0.1

0.9

A

A

=

=
 

1.00263289473 0.997073628573 1.00325384136 0.996323886971 

( )

( )

1

2

0.25

0.75

A

A

=

=
 

1.00288278000 0.996775638980 1.00329473564 

 

0.996273268471 

( )

( )

1

2

0.5

0.5

A

A

=

=
 

1.00319174673 0.996398861098 1.00319174673 0.996398861098 

( )

( )

1

2

0.75

0.25

A

A

=

=
 

1.00329473564 0.996273268471 1.00288278000 0.996775638980 



28 

 

( )

( )

1

2

0.9

0.1

A

A

=

=
 

1.00325384136 0.996323886971 1.00263289473 0.997073628573 

 

Table 4:  Values of average Nusselt number with 

  
 

The graphs are plotted in three (3D), two (2D) and one (1D) dimensions to 

enhance understanding of the flow behavior. The one dimensional graphs are plotted for 

variations of y  ranging from 0 to 1 for fixed value of x  at 0.5.  The graphs plotted in the 

top position are for 3D, in the bottom position are for 2D in the figure captions with the 

letter “a” and 1D with the figure captions using the letter “b”. 

The effects of Grashof number Gr  on the velocity and temperature fields are 

shown in Figs. 3a and 3b.  Figure 3a (3D) shows that as the Grashof number increases 

flow increases in the upward direction.  For small values of  Gr  the velocity contour is 

flat in the lower half region of the duct and steep in the upper half region of the duct. For 

large values of Gr  the contours are steep in both the lower and upper region of the duct.  

From the 3-D graph one can also clearly identify the line of separation from region-1 and 

region-2.  This is, due to the fact that, the value of the velocity in region-1 and region-2 is 

repeated at the interface as we have assumed the continuity of velocity at the interface.  

Therefore, in the numerical code at the interface, the value of the velocity appears twice 

and hence there is a clear boundary delineating region-1 and region-2.  It is also evident  

from the 2D graph (Fig 3a) that the number of velocity contours are sparse in the lower 

half region and their density is increased as Gr  increases.  The effect of Grashof number 

Gr  on the temperature is not significant.  Here there is again a clear line in the 3D plot 

showing the separation of region-1 and region-2. This is again due to the assumption that 

the temperature is continuous at the interface.   

The temperature contours (2D) are linear in nature for all values ofGr .  To 

understand the effect of Grashof number at a fixed location ( x ) , a 1D graph is drawn at 

0.5x =  with y varying from 0 to 1 as shown in Fig. 3b. The velocity (values are negative) 

decreases as Gr  increases in the downward direction in the region 0 0.5y  (lower 

zone 2). However, velocity (the values are positive) increases in the upward direction in 

the region 0.5 1.0y   (upper zone 1).  Therefore, increasing buoyancy force exerts a 
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different impact in the two different zones. The temperature profiles are generally in 

close proximity for all values of Gr .  However, temperature is enhanced at certain points 

in the enclosure with stronger buoyancy effect (higher Grashof number). An 

intensification of convective flow with Grashof number Gr is associated with a 

dominance of the buoyancy force relative to the viscous hydrodynamic force (all profiles 

correspond to Gr >1) the modifications in temperature distributions concur with classical 

results. The effect of Grashof number on the flow is also similar to results observed by 

Malashetty et al. (2006) for the magneto-convective flow of immiscible fluids in a 

vertical channel. 

The effect of viscosity ratio   on the velocity distribution is shown in Figs. 4a, b.  

The viscosity ratio   is defined as the ratio of viscosity of the fluid in region-1 to the 

fluid in region-2. The Fig. 3a shows that as   increases flow increases in region-2 

( )0 0.5x  .  The value of 0.1 =  implies that the viscosity of the fluid in region-2 is 10 

times more than the viscosity of the fluid in region-1 ( )0.5 1.0x  .  The 3D graphical 

plot for 0.1 =  shows that the curvature of the flow in region-2 is flat, whereas for 

0.5 = , it is apparent that there is a curved topology to the flow in region-2 and the flow 

in region-1 and region-2 are asymmetric. For the value of  1.0 =  (the viscosity of the 

fluids in region-1 and region-2 are equal) it is seen in Fig. 3a that the flow is symmetric 

in region-1 and region-2. Velocity magnitudes are known to be significantly lower for 

highly viscous fluids when compared with lower viscosity fluids.  Therefore, as the 

viscosity of the fluid in region-2 decreases, there is an accompanying enhancement in 

velocity in region-2 whereas the velocity in region-1 remains unaltered since the viscosity 

ratio in region-1 is constrained as 1. Inspection of the plot also reveals the interfacial 

boundary line which distinguishes the flow in region-1 and region-2. The 2D graph also 

indicates that the contours are flat for values of   less than unity and are symmetric for 

1.0 = .  The effect of   on the temperature is not substantial as seen in Fig. 3a. The 

temperature contours are linear in nature and the temperature field is only mildly 

distorted by the variations of the viscosity variation parameter  .  Figure 3b implies that 

as   increases the velocity (for which values are negative) also increases in the upward 

direction in the region 0 0.5y  whereas it is depleted (velocity values of are positive) 
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in the region 0.5 1y  .  The 1D graph also clearly indicates that the temperature field is 

generally undisturbed with the variations of  . 

The effect of the thermal conductivity ratio parameter   on the velocity and 

temperature profiles is displayed in Figs. 5a and 5b.  The thermal conductivity is defined 

as the ratio of thermal conductivity of region-2 to the thermal conductivity of region-1.  

Figures 5a and 5b indicate that the velocity remains invariant to changes in  .  Figure 5a 

also indicates that the flow is symmetric in both upper and lower duct regions and also 

the numbers of contours are equal for all values of  . The 1D graph also reflects that 

both the temperature profiles are basically unaltered for all values of the ratio of thermal 

conductivity parameter,  . Although thermal conductivity parameter    appears in the 

energy equation, it is observed from Figs. 3a and 3b that the temperature field is not 

modified prominently with this parameter. Increase in thermal conductivity parameter 

does not influence the flow since the top and bottom plates are insulated and hence there 

is no notable changes in the energy distribution and thereby no marked modification in 

velocity. 

The effect of Eckert number on the flow field are displayed in Figs. 6a and 6b.  

From Fig. 6a one can infer that Eckert number does not induce any significant changes. 

The curvature (3D) and the number of contours (2D) are similar for all values of Eckert 

number except that one contour is concentrated in the upper cell for 1.0Ec=  when 

compared with  0.1Ec=  and the number of contours remain the same for 1.0Ec=  and  

for 2.0Ec= .  However, Fig. 6b (1D) clearly visualize that as Eckert number increases 

there is slight increase in the velocity magnitudes i.e. the flow is weakly accelerated. The 

temperature profile generally is only marginally disturbed. However, where the 

temperature field is magnified, at a particular point, it is also further amplified as the 

Eckert number increases. Eckert number increases the dissipation effect (conversion of 

kinetic energy into thermal energy) and this assists the thermal buoyancy force in the 

momentum equation.    

The effect of Prandtl number on the velocity and temperature fields is drawn in 

Figs. 7a and 7b.  These figures reveal a similar influence to that which is caused by 

changing the Eckert number (Figs. 6a and 6b) on the velocity. With increasing Prandtl 
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number, the thermal conductivity of the fluid (s) is decreased, and temperatures are 

reduced. The effect of Eckert number and Prandtl number produce similar behaviors to 

those reported by Umavathi et al. (2010) for the Couette flow in a composite channel. 

The effects of aspect ratios 
( )1

A   and 
( )2

A  on the velocity and temperature fields 

are shown in Figs. 8a and 8b.  Since the aspect ratio 
( )1

A  is defined as the ratio of height 

of the fluid in region-1 to half of the width of the duct and the aspect ratio 
( )2

A  is defined 

as the height of the fluid in region-2 to half of the width of the duct, altering the values of 

the aspect ratios will result in displacement of the interface.  For the value of ( )1
0.25A =  

and 
( )2

0.75A =  the interface is near the left wall of the duct, for the values of 
( )1

0.5A =  

and ( )2
0.5A =  the interface is at the centre of the duct and for the values of ( )1

0.75A =  

and 
( )2

0.25A =  the interface migrates to near the right wall of the duct.  The position of 

the interface can be clearly seen in Fig. 8a (3D).  Since the sum of the aspect ratios in 

region-1 and region-2 will be 1 for three different values of aspect ratios in region-1 and 

region-2, the velocity and temperature fields are undisturbed for the variations of the 

aspect ratios.  Only the position of the interface is changed.  The 1D graph (Fig. 8b) is 

drawn for only one set of values of aspect ratios 
( ) ( )1 2

0.5A A= = .  For other two 

combinations of the aspect ratios the profiles are not modified and hence not displayed.   

Table-4 shows the values of Nusselt number for all the governing parameters at both left 

and right walls of the duct for region-1 and region-2.  The values indicate that as the 

Grashof number Gr  , Eckert number Ec , Prandtl number Pr  and aspect ratio 
( )1

A  

increases (
( )2

A  decreases), there is an escalation in the Nusselt number at the left wall 

whereas there is a suppression in Nusselt number at the right wall in both regions 

whereas the contrary effect is observed for increasing values of viscosity ratio   and 

thermal conductivity ratio  . Furthermore, it is noteworthy that the values of Nusselt 

number remain the same in region-1 and region-2 with changing the Grashof number Gr , 

Eckert number Ec  and Prandtl number Pr whereas the Nusselt number magnitudes are 

different in region-1 and region-2 with changing the viscosity ratio  , conductivity ratio 

  and aspect ratios  
( )1

A , 
( )2

A .  Table-4 clearly indicates that there is not much variation 
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in the values of Nusselt number with Eckert number which has only a slight effect on the 

flow. The dissipation is swamped by buoyancy effects (Grashof number) which are 

dominant in this regime. It can also be stated that the Nusselt number does not vary 

significantly with any of the governing parameters as there is no notable change in the 

energy at the boundaries (plates).  However, the rank of impacting parameters in Nusselt 

number, from highest to lowest, can be listed as respectively, aspect ratio, Eckert number, 

thermal conductivity ratio, viscosity ratio, Grashof number and Prandtl number. In terms 

of percentages, 
0y

Nu
=

 changes are 19.3334, 19.9350, 19.9423, 19.9965, 20.1926% in 

correspondence with a change in Grashof number from 5, 10, 20, 50, to 100 respectively.  

For aspect ratio (the highest ranking) percentage change in Nusselt number is 19.9916 

( ) ( )( )1 2
0.1, 0.9A A= = , 19.9966 

( ) ( )( )1 2
0.25, 0.75A A= =  , 20.0028 

( ) ( )( )1 2
0.5, 0.5A A= = , 20.0048 

( ) ( )( )1 2
0.75, 0.25A A= = , 20.0040 

( ) ( )( )1 2
0.9, 0.1A A= = .  The percentage change in Nusselt number (the lowest ranking) is 

19.9102, 19.9547, 19.9999, 20.0451, 20.0901% for values of Prandtl number of 0.01, 0.5, 

1.0, 1.5, 2 respectively. These variations show that there is a non-trivial sensitivity of  the 

wall heat transfer rate with different control parameters in the model. 

 

5.  CONCLUSIONS 

 The steady laminar fully developed natural thermal convection flow in two 

immiscible viscous incompressible fluids in a vertical rectangular duct has been 

investigated.  The dimensionless momentum and energy equations governing the flow in 

the two regions have been solved numerically using a finite difference method and the 

following conclusions are drawn: 

1. The validity of the solutions is confirmed with a grid (mesh) independence study. 

The computational solutions obtained have also been compared with the benchmark 

solutions of de Vahl Davis and Jones (1983), Sanchez et al. (2004) Kaminski and 

Prakash (1986) for the one-fluid model and with Haken et al. (2009) and Moshkin 

(2002) for the two-fluid model and experimental results.  
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2. The effects of the emerging pertinent thermophysical and hydrodynamic parameters 

on the momentum and thermal characteristics have been visualized graphically and 

interpreted. It has been found that as Grashof number, Eckert number and Prandtl 

number are increased there is a substantial enhancement in the velocity and a less 

prominent influence on temperature distributions.  

3. As the viscosity ratio parameter increases flow acceleration is induced in the upper 

half region of the duct and deceleration is caused in the lower half of the duct. 

4.  The viscosity ratio and thermal conductivity ratio parameters do not exhibit a 

significant impact on the flow and heat transfer.   

5. Assigning different values of aspect ratios in the two regions (
( )1

A and 
( )2

A ) 

generates a noticeable movement of the interface whereas the magnitude of the flow 

and heat transfer is largely unaltered.  

6. As the Grashof number, Eckert number, Prandtl number and aspect ratio  
( )1

A  

increase (i.e. with simultaneous decrease in 
( )2

A ) the Nusselt number increases at the 

left wall and decreases at the right wall in both the regions. However, the reverse 

effect is observed for increasing values of viscosity ratio and thermal conductivity 

ratio.  

7.  The present numerical code provides stable and accurate solutions for two-fluid 

convection heat transfer flows and may be applied in future to extend the current 

study to consider non-Newtonian liquids.  
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