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Abstract 

   

Emotion is a core part of the human experience. Many artistic and creative applications 

attempt to produce particular emotional experiences, for example films, games, music, dance, 

and other visual arts. However, while emotional states are ubiquitous, they are also complex, 

proving difficult to describe to others by conventional psychometric means (e.g., traditional self-

report mechanisms).  

  

 Neural technology offers the potential to circumvent these difficulties by allowing the 

creation of a real-time, objective, metric of felt emotion to assist in emotionally-driven 

experience design across a range of disciplines. 

  

 This chapter discusses how neural technology based on the processing of the 

electroencephalogram may be used to measure human emotions in natural environments. We 

also present a set of case studies of applications which use neural technology to measure 

emotions. We are particularly interested in the use of neural technology to inform applications 



which can respond to the felt-experience of the individual. We describe two case studies focused 

on driving scenarios and brain-computer music interfacing. 

  

 The chapter concludes with a discussion of the challenges inherent in developing neural 

technology to measure emotion and a set of suggestions for future research directions in 

developing applications that use neural technology as an objective measure of emotion. 

 

1 Introduction  

 

The experience of emotion is a core part of our humanity, it is the driver behind much of our 

behavior, and forms the bedrock of the motivations behind many of our actions throughout our 

lives. Yet, despite the overwhelming importance of emotion in defining who we are and what we 

do, we still do not fully understand the neural or physiological bases of emotion  (Darwin, 1998; 

Reeve, 2014). 

 

An emotion may, broadly speaking, be defined as an action, or a pattern of multiple actions that 

occur in response to one or more external stimuli or that arise spontaneously in an individual’s 

(Barrett, Mesquita, Ochsner, & Gross, 2007). Emotions may arise either as a result of 

environmental stimuli or from the body (for example by memories or in response to physical 

pain or discomfort) (Mier et al., 2010). 

 

In order to scientifically understand emotions, it is first necessary to develop a quantifiable 

framework by which emotion may be measured. Efforts to do so in the field of Psychology have 

resulted in the development of multi-dimensional frameworks for describing emotions within a 

variety of contexts as well as quantifiable labelling systems to allow the systematic description of 

emotions. 

 

The scientific study of emotion first seeks to identify a system by which different emotions 

(affective states) may be categorized. A large number of different systems have been proposed to 

achieve this goal, including category labelling systems and multi-dimensional systems spanning 

different numbers of dimensions.  

 

The multi-dimensional schemes developed to categorize emotions include the valence-arousal 

circumplex model of affect (Russell, 1980), the three dimensional Schimmack and Grob model 

(Schimmack & Grob, 2000), and other multidimensional models such as the three dimensional 

pleasure, arousal, dominance model (Mehrabian, 1996). Alternatively category labelling systems, 

such as the Geneva emotional music scale (GEMS) (Zentner, Grandjean, & Scherer, 2008) or the 

Ortony, Clore, and Collins category model (Ortony, Clore, & Collins, 1988) may be used to 

categorize affect via a set of discrete labels. 

 

Multidimensional categorization schemes map affective states to a continuous space. For 

example, the valence-arousal circumplex model maps emotions onto a continuous two-

dimensional plane and specific affective states can be placed at any location. This approach has 

the advantage of allowing fine grained measurement and differentiation of affective states, but 

may not be the most suitable or accurate categorization. 

 



Indeed it has been argued that, despite the wide-spread use of the two dimensional valence-

arousal circumplex, emotions are not accurately represented using just two dimensions and 

dimensionless category labelling schemes, such as GEMS, are more accurate (Fontaine, Scherer, 

Roesch, & Ellsworth, 2007). 

 

Arguably, the most widely used emotion categorization system is the two dimensional valence-

arousal circumplex (Russell, 1980). This framework classifies all emotions along two axes, 

valence (the pleasantness or unpleasantness of the emotion) and arousal (the level of excitement 

of the emotion). Thus, for example, ``fear'' may be placed on the two dimensional plane of the 

circumplex at a position with low (negative, or `unpleasant') valence and high (positive, or 

`exciting') arousal, while ``excitement'' may be placed on the circumplex at a position of high 

valence (very pleasant) and high arousal (very exciting). 

 

The valence-arousal circumplex is illustrated in Figure 1. 

 

 
Figure 1. The valence-arousal circumplex. 

 

This two dimensional framework has been extended by others to include a third dimension, 

tension, which is defined as the level of strain or stress a particular emotion involves 

(Schimmack & Grob, 2000). Indeed, some research suggests this three dimensional framework 

may provide a more complete and accurate description of emotional responses (Ian Daly et al., 

2014). However, others suggest that the linear two or three dimensional relationships suggested 

by these frameworks is misleading and in fact emotion is a highly non-linear, multi-dimensional 

experience that is not well described by two or three dimensional Cartesian geometry (Fontaine 

et al., 2007). 

 



Efforts to quantify and describe emotions in a multi-dimensional space have made use of labels 

to describe emotional responses in a discipline specific framework. For example, the Geneva 

music scale (GEMS) attempts to describe emotional responses to a piece of music via a set of 

selected adjectives, which an individual is asked to select from in order to describe their current 

emotional experience. However, such systems are not as readily amenable to quantification or 

translation between languages or cultures. Thus, for the present, the two- or three-dimensional 

quantifiable frameworks, such as the valence-arousal circumplex, remain widely used. 

 

Although emotions are ubiquitous in life and analogous to vision or hearing in their effect on our 

moment-by-moment perception of the world, they, historically, have received far less interest 

from the scientific community (Kassam, Markey, Cherkassky, Loewenstein, & Just, 2013). 

Consequently, the neural basis of emotions is far less well-understood than the neural basis of 

our other senses (Kassam et al., 2013). 

 

Meta-analysis of neuroimaging studies investigating the neural basis of emotion has revealed a 

network of brain regions that are involved in emotional responses (Koelsch, 2010). This network 

includes, amongst other brain areas, the amygdala, hippocampal formation, right ventral 

striatum, pre-supplementary motor cortex, left caudate nucleus, and the cingulate cortex 

(Koelsch, 2014). 

 

Exploration of this network via techniques such as functional magnetic resonance imaging 

(fMRI) (which measures slow changes in concentrations of oxy-hemoglobin throughout the 

brain) or electroencephalography (EEG) (which measures fast changes in electro-potential in the 

cortex) has revealed particular patterns of neural activity to relate to specific felt emotions. For 

example, changes in a participants felt valence (how pleasant or unpleasant they find a stimulus 

or situation), also referred to as ‘approach-withdrawal’ behavior (Hunter & Schellenberg, 2010), 

involves changes in activity in the paralimbic system and amygdala, amongst others (Blood & 

Zatorre, 2001). These changes in neural activity are also reflected in the EEG, for example in the 

prefrontal asymmetry (Coan & Allen, 2004a). 

 

However, there remains much to discover about how our brains, and our bodies, work together to 

generate the experience of emotions. 

 

Better understanding of the basis of emotions can lead to numerous benefits. The most valuable 

of these, arguably, relate to medical interventions for individuals living with mood disorders 

such as depression or anxiety (Hou et al., 2017). However, more accurate understanding of the 

basis of emotions can also lead to numerous other applications, including within the field of 

neuroergonomics to design systems that better respond to our current felt emotions in a way that 

is useful or beneficial to us. 

 

Accurately identifying an individual's current emotion is not trivial. One could simply ask an 

individual, or a group of individuals, what emotions they are feeling after exposure to a stimulus. 

However, individuals respond to a stimulus in a way that depends on their lived experiences, 

memories, current mood, recent levels or rest, and other emotional and physiological wants and 

desires (which themselves change from moment to moment) (Barrett et al., 2007). Consequently, 



the way an individual emotionally responds to a situation is specific to them and may vary 

considerably from the way another individual may respond to the same situation. 

 

Furthermore, individuals may also not be able to accurately evaluate or describe their own 

emotions. The particular choice of words that an individual uses to describe their current 

emotions are largely dependent on their background and can change radically, even between 

individuals with very similar backgrounds (e.g. between siblings). One could use a standard scale 

to allow individuals to report their emotions (for example, by providing a discrete set of pre-

chosen key-words as used in the Geneva emotional music scales system (Vuoskoski & Eerola, 

2011)), but even this approach is not without flaws as each individual may interpret the chosen 

words or scale differently. 

 

Finally, individuals may not be honest when reporting some of their emotional responses. This is 

particularly the case with emotions at the more extreme ends of the scale or in response to 

stimuli which may have some associated socially-dictated negative or embarrassing connotations 

for an individual.  

 

These problems are increasingly being tackled by making use of our growing understanding of 

the neural basis of emotions. Specifically, neural technology is being developed and used to 

produce systems that are able to measure and respond to an individual's current emotional 

(affective) state. 

 

Neural technology allows for the development of a set of metrics that are able to provide 

objective measures of an individual’s current felt-emotions. Such metrics have numerous 

advantages. For example, they can allow objective measurement of an individual's felt response 

to a stimuli or situation. This has numerous applications, including in Psychology or 

Neuroscience experiments to overcome the problems with traditional emotion assessment 

methods outlined above. 

 

Neural technology-based affect metrics may also be used within a neuroergonmic context to 

allow a system to respond to neural measures of an individual’s current felt affective state. For 

example, an application could identify when a user is becoming frustrated with some aspect of 

the application and adjust accordingly. 

 

Recent research on the development of neural technology-based metrics for measuring emotions 

makes use of measures of an individual’s physiological state. Some initial applications have been 

developed that make use of these metrics for applications designed to aid people in their 

interactions with the world. 

 

Of course, the use of neural technology to measure physiological correlates of emotion 

introduces its own specific considerations. For example, physiological correlates of emotion 

differ between individuals as a result of inter-person differences in physiology, signal noise, and 

differences in measured signal strength. These factors mean identifying a common signal 

component that can be used as a reliable indicator of emotion presents a considerable challenge. 

 



In this chapter we first introduce how neural technology, and in particular neural technology 

based on the EEG, can be used to provide a metric of an individual’s affective state before 

introducing some existing neural technology-based methods that have been developed to monitor 

affective states. We then go on to describe two case studies that illustrate how these metrics may 

be used to monitor affect and the applications that may be built around these metrics. Finally, we 

discuss some possible future directions in the development of this technology and the associated 

challenges that still need to be overcome. 

 

2 Neural technology-based measures of emotions 

 

There are several neuro-imaging technologies available to measure activity in the brain and these 

vary in resolution (in space, time, and frequency), as well as in their cost and portability. Many 

of these technologies can be used to provide an objective measure of felt emotion (Canli, 

Desmond, Zhao, Glover, & Gabrieli, 1998; Ishii et al., 2014; Skouras, Gray, Critchley, & 

Koelsch, 2013). However, of the available neuroimaging technologies the electroencephalogram 

(EEG) is generally considered to be the most suitable for providing real-time, portable, and 

accurate measures of an individual’s current affective state due to its relative low cost, 

portability, high temporal and spectral resolutions, and its ability to be used directly without 

invasive surgery (Niedermeyer & Silva, 2005). 

 

EEG is a measurement of summed electrophysiological activity from large numbers of cortical 

neurons. It is recorded from the surface of the scalp by either passive or active electrodes and has 

a time resolution in the order of hundreds or thousands of samples per second (Niedermeyer & 

Silva, 2005). 

 

When using the EEG to measure an individual’s affective state there are a few key features that 

have been reliably identified and shown to allow accurate real-time measurement and tracking of 

an individual’s current affective state. The most widely used of these metrics are: 

 

1. The pre-frontal asymmetry 

2. Midline theta bandpower 

3. Functional connectivity 

 

Prefrontal EEG asymmetry is a measure of the relative difference in EEG activity in the left and 

right hand prefrontal cortices (Coan & Allen, 2004b). The ratio of EEG activity in this region is 

known to vary within specific frequency bands - including, but not limited to, the alpha (8-

13Hz), beta (13-25Hz), and theta (4-8Hz) frequency bands - as a function of approach-

withdrawal behavior in response to numerous different types of stimuli, including images (Irene 

Winkler, Mark Jäger, Vojkan Mihajlović, 2010), videos (Jones & Fox, 1992), and music 

(Schmidt & Trainor, 2001). This is expressed in the “hemispheric valence hypothesis”, which 

states emotions related to approach to a stimulus (i.e. positive responses to a stimulus) are 

processed more in the left prefrontal cortex, while withdrawal (negative) responses to a stimulus 

are processed more in the right prefrontal cortex (Canli et al., 1998; Silberman & Weingartner, 

1986). Additionally, the parietotemporal cortex in the right hemisphere has been shown to be 

involved in autonomic behavior, while arousal is also involved in suppression of alpha power in 



the right posterior cortex and increases in theta EEG power in the left prefrontal lobe 

(Rogenmoser, Zollinger, Elmer, & Jäncke, 2016). 

 

A less frequently explored, yet robust, metric of felt affect is the midline theta, the change in 

power of the EEG within the theta frequency band as measured along the central sulcus (the 

midline) (Aftanas, Varlamov, Pavlov, Makhnev, & Reva, 2001). This metric has been reported to 

be positively correlated with the valence of an affect (Sammler, Grigutsch, Fritz, & Koelsch, 

2007). Specifically, the more pleasant a stimulus or situation is felt to be by the individual the 

greater their midline theta activity. 

 

Finally, functional connectivity (a measure of the statistical relationships between different 

regions of the brain (Sporns, 2007)) has also been reported to be used as a metric of the felt 

emotional response to a stimuli (Ian Daly et al., 2014). Functional connectivity refers to the 

statistical relationships between neural activity signals recorded in different locations within, or 

on the surface of, the brain (Raichle, 2011). Larger statistical relationships between different 

signals suggests a meaningful relationship between the measured regions of the brain. 

 

Functional connectivity may be differentiated from anatomical connectivity, which measures 

anatomical connections between different brain regions (Sporns, 2007). For example, in the case 

of functional connectivity a statistical relationship may exist as a result of a common anatomical 

connection both measured brain regions share with a third, unmeasured, brain region (Sporns, 

2007). 

 

Functional connectivity has been shown to change a result of changes in felt affect in a growing 

number of studies, including in responses to music (Nicolaou et al., 2017) and after watching 

film clips chosen to explicitly specific emotional response (Lee & Hsieh, 2014). Furthermore, 

functional connectivity patterns have also been observed to vary significantly as a result of major 

depression (Fingelkurts et al., 2007) and other disorders of mood (Davidson, Abercrombie, 

Nitschke, & Putnam, 1999) within clinical populations. 

 

Human emotion is increasingly understood to be an embodied experience (Effron, Niedenthal, 

Gil, & Droit-Volet, 2006). Felt emotional response to a stimuli or situation is not just a product 

of the activity in the brain but also a product of the autonomic response system (Kreibig, 2010). 

Thus, accurate physiological metrics of affective states may be identified by incorporating other 

physiological measures recorded from the body. These may include measures such as the heart 

rate, galvanic skin response, respiration rate, and blood oxygenation levels (Kreibig, 2010). 

 

The relationships between physiological responses to emotion and specific categorization 

systems for emotion are varied and complex. For example, the heart rate (as measures by the 

ECG) is well known to correlate with felt arousal, but also relates to felt valence responses to 

some types of stimuli, such as music (I. Daly et al., 2015). 

 

A system which combines some or all of these physiological measures along with neural 

measures of EEG indices of affect is defined as a ‘hybrid measure’ and is increasingly used in, 

amongst other applications, hybrid brain-computer interface systems for monitoring and 

measuring affective states in individuals by recording and classifying combinations of neural and 



physiological activity (Fazli et al., 2012; Müller-Putz et al., 2011; Nicolas-Alonso & Gomez-Gil, 

2012; Pfurtscheller et al., 2010). 

 

It may be argued that measures of the autonomic systems alone may be sufficient to accurately 

measure affective responses to stimuli and that, in fact, there is no need for measures of the 

neural response to stimuli. However, this has been shown not to be the case (Ian Daly et al., 

2015). Indeed hybrid measures incorporating both neural and physiological measures of affective 

states have been shown to be able to more accurately measure an individual’s current affective 

state than either set of measures alone (Ian Daly et al., 2015). 

 

We conclude that there are a growing range of neural technology-based measures of emotions. 

These may be used in a wide variety of applications, as we will illustrate in our case study below. 

 

3. Case study 1: Affective brain-computer music interfacing 

 

3.1 Introduction 

 

In this section we introduce and describe a case study of a brain-computer music system (BCMI) 

developed to monitor and respond to an individual’s current affective state. This system was 

originally described in full in (Ian Daly et al., 2016a) and is presented here in brief. 

 

Music is a unique and powerful method for influencing an individual’s current affective state 

(Sacks, 2006). Even very short clips of music can produce varied and powerful emotional 

responses in the listener. For example, something as simple as a few piano keys played over a 

few seconds can produce fear, excitement, contentment, or melancholy depending on the exact 

nature of the music, the current mood of the listener, and other extraneous factors. 

 

Because of this, music is increasingly being explore as a tool in therapy (Bradt, Magee, Dileo, 

Wheeler, & McGilloway, 2010; Erkkilä et al., 2011; Livingstone & Thompson, 2009). Indeed, 

music therapy is increasingly used as a therapeutic technique to help facilitate emotional 

communication in patients with a range of emotional disorders. The BCMI described in this case 

study is an attempt to provide a form of automated music therapy. 

 

3.2 Outline 

 

An overview of the BCMI developed and used in this case study is illustrated in Figure 1.0. 

 



 
Figure 2. Schematic of the BCMI system developed in case study 1. 

 

The following physiological signals are recorded from the users at a sample rate of 1,000 Hz: 

EEG, electrocorticogram (ECG), galvanic skin response, and respiration. These are then used to 

attempt to detect the users current affective state, as described in section 3.3 below. A case based 

reasoning system (Webber, Aha, Muñoz-Ávila, & Breslow, 2000) is then employed to identify 

the ideal set of music to play to the participant in order to move them from their current affective 

state to a new target affective state. Finally, a music generator (Williams et al., 2015), (Williams 

et al., 2017) is used to generate the music identified by the case based reasoning system and play 

it to the BCMI user. 

 

A typical use case envisioned for this BCMI is modulating the affective state of an individual 

who is feeling mildly depressed, i.e. in a low valence, low arousal state (Russell, 1980). In this 

case the affective state detection system would identify the user's current affective state as ‘low 

valence’, ‘low arousal’. The case-based reasoning system would then identify the set of musical 

features that would be most effective at improving that users affective state, before the music 

generator is used to generate and play this music to the user. 

 

Of note, this system does not make any a-priori assumptions about what musical transitions 

would be most effective for each user. This is motivated by evidence that each individual 

responds to music differently (Eerola, 2012). For example, a piece of music that makes one 



person happy may bore or frustrate another. Instead, the optimal set of music pieces to produce a 

target affect in an individual is determined in a training session with each individual prior to use 

of the BCMI. 

 

3.3 Affective state detection 

 

The affective state detection method used in this BCMI makes use of EEG band powers in a 

range of frequency and spatial regions. Specifically, the EEG is sub-divided into channel sets 

placed over 10 key regions of the scalp, including the prefrontal, central, and occipital regions. 

These candidate features were chosen based on their reported successful use in classifying 

affective states in prior work. For example, a system proposed in (Stikic, Johnson, Tan, & Berka, 

2014) uses these spatial regions to train a feature selector and classifier. This use of a wide range 

of different spatial regions to detect an individual’s affective state is supported by work from 

several authors that suggests a broad involvement of different spatial regions in affective states 

(Ian Daly et al., 2014; Heller, 1993; Rogenmoser et al., 2016). The EEG within each region is 

also filtered into 10 different frequency bands, encompassing all the key frequency bands widely 

used in EEG analysis and their sub-bands (Schomer & Lopes de Silva, 2011). 

 

In total 10 different spatial regions and 10 different frequency bands are used in the study, 

resulting in 100 candidate EEG features. These were complemented by additional features 

describing each of the other physiological signals used. Specifically, the mean heart rate (peak-

to-peak intervals), mean blood oxygenation rate (peak-to-peak intervals), dominant frequency of 

the respiration rate, and mean amplitude of the change in galvanic skin response were also used 

as descriptive features. This resulted in a total of 104 candidate features.  

 

A stepwise linear regression feature selection method was then used to identify the subset of 

these features that was most effective at classifying the users current affective state. Affective 

states were quantized into 9 different values. Each of these quantized affective states is 

represented by a tuple composed of valence and arousal, each of which can take one of three 

values: high, medium, and low. 

 

A support vector machine (SVM) classifier was trained and used to attempt classification of the 

affective states. Specifically, we attempt to identify a participants reported felt affective state via 

an SVM classifier trained on that participants EEG and physiological features. 

 

Full details of the development of this metric are described in (I. Daly et al., 2016) and its 

implementation in the BCMI is described in more detail in (Ian Daly et al., 2016b). 

 

3.4 Evaluation 

 

The BCMI was evaluated with a cohort of 22 healthy participants over a series of experimental 

sessions (Ian Daly et al., 2016b). The first 4 sessions were used to train the case-based reasoning 

system and the affective state detection method, while the final session was used to evaluate the 

system. 

 



Training and evaluation sessions took place over several, non-consecutive, days. The training 

sessions were used to map relationships between music features and individual affective 

responses in order to train the case-based reasoning system. They were also used to train the 

feature selection and classification steps of the affective state recognition system. 

 

Additionally, the BCMI was also evaluated in a follow-up case study with a single individual 

with Huntington's disease to demonstrate its ability to also work for users with medical 

conditions who may stand to benefit from BCMI use (Ian Daly et al., 2017). 

 

Huntington's disease affects 7-12 in 100,000 people. It is a progressive central nervous system 

disorder that, over 10-12 years, reduces movement control and impairs cognition and behavior. It 

also impairs an individual’s emotion regulation and, it is suggested, music therapy techniques 

(such as BCMI), may be beneficial (Bates, Tabrizi, & Jones, 2014; Pridmore, 1990). 

 

Evaluation - with both the healthy user cohort and the individuals with Huntington's disease - 

was performed by asking the system to attempt to make a series of specific modulations to the 

user’s affective states. Four objectives were selected, based upon potential music therapy use 

case scenarios. These objectives were: 

 

1. Make the user happy (move the user from a low valence to a high valence state). 

2. Calm the user (reduce the user’s arousal). 

3. Reduce stress (increase valence, while simultaneously reducing arousal). 

4. Excite the user (increase the users felt arousal). 

 

In each trial a target change in affective state was selected at random and participants were not 

informed about which affective state transition was being targeted. The music was then 

generated according to the rules of the case-based reasoning system determined in the training 

sessions of the experiment. 

 

The success of the BCMI at each of these objectives was measured by comparing the resulting 

trajectories of changes in user-reported affective states with trajectories that would be achieved 

by a random system, i.e. a system that just played randomly selected music to the users. 

 

Users reported their current felt affect throughout the experiment using the real-time affect 

reporting tool FEELTRACE, which allows users to report, in real-time, their current felt 

affective states as a coordinate trajectory on the 2-dimensional valence-arousal circumplex as 

they listen to the music (Cowie et al., 2000). We hypothesized that if the BCMI was not working, 

users affective state trajectories, as reported via FEELTRACE, would be random. On the other 

hand, if the BCMI was working correctly, changes in valence and arousal that correspond to the 

target objectives would be observed. Full details of the experiment design are described in (Ian 

Daly et al., 2016b). 

 

3.5 Results 

 

The affective state detection method developed in the BCMI was able to identify affective states 

with statistically significant classification accuracies for the majority of participants. This is best 



illustrated in the work described in (I. Daly et al., 2015), which evaluates the affective state 

detection method in isolation with a separate population of healthy participants. 

 

The results are listed in Table 1 for valence classification and in Table 2 for arousal 

classification. 

 
Table 1. Classification accuracies resulting from our affective state detection method for differentiating high and low valence 

conditions. Statistical significance (p) is estimated from the binomial distribution. `Acc' denotes accuracy and `STD' denotes 

standard deviation. 

Participant Acc. (mean) Acc. (STD) P 

1 0.753 0.066 <0.001 

2 0.597 0.059 0.032 

3 0.619 0.084 0.019 

4 0.609 0.087 0.055 

5 0.628 0.069 0.014 

6 0.633 0.079 0.034 

7 0.629 0.081 0.034 

8 0.599 0.057 0.018 

9 0.671 0.063 0.009 

10 0.537 0.122 0.160 

11 0.629 0.048 0.006 

12 0.649 0.054 0.002 

13 0.647 0.067 0.006 

14 0.705 0.072 <0.001 

15 0.549 0.068 0.067 

16 0.604 0.069 0.021 

17 0.568 0.059 0.053 

Avg. 0.624 0.071 - 

 
Table 2. Classification accuracies resulting from our affective state detection method for differentiating high and low arousal 

conditions. Statistical significance (p) is estimated from the binomial distribution. `Acc.' denotes classification accuracy and 

`STD’ denotes standard deviation. 

Participant Acc. (mean)  Acc. (STD) P 

1 0.724 0.048 <0.001 

2 0.726 0.074 <0.001 

3 0.694 0.065 <0.001 

4 0.779 0.061 <0.001 

5 0.746 0.061 <0.001 

6 0.561 0.060 0.061 

7 0.591 0.099 0.081 

8 0.701 0.050 <0.001 

9 0.795 0.056 <0.001 

10 0.598 0.099 0.097 

11 0.700 0.051 <0.001 

12 0.659 0.053 <0.001 



13 0.677 0.059 0.002 

14 0.733 0.057 <0.001 

15 0.694 0.052 <0.001 

16 0.729 0.055 <0.001 

17 0.688 0.144 0.003 

Avg. 0.694 0.067 - 

 

It may be observed that for the majority of the affective state detection attempts the affective 

state detection method was able to identify the correct affective states with statistically 

significant accuracies (p < 0.05). This demonstrates how neural engineering may be employed to 

accurately identify an individual’s current emotions in the context of a BCMI system. 

 

The BCMI system was able to significantly modulate the user’s affective states under all 

scenarios in the majority of cases. Examples of the affective trajectories achieved by the system 

are illustrated in Figure 3. Valence and arousal are plotted as separate trajectories to allow easier 

interpretation of the results. 

 

 
Figure 3. Examples of affective state trajectories achieved by the BCMI system. FEELTRACE report indicates the output of the 

FEELTRACE interface used to allow participants to report their current affective states. 

It may be observed that, in each case, the BCMI was able to move the users from their starting 

affective state (the first 20s of the trial) to the target affective state (the last 20 s of the trial). The 

BCMI begins to attempt to change each users affective state from 20 s into each trial and this can 

be clearly seen in the plots of the mean affective state trajectories across all participants. 

 

Specifically, there is a clear, visible change in reported affective state as the BCMI is used. For 

example, the third objective is to reduce the participant's level of stress (`de-stress' in the figure), 

which corresponds to increasing the felt valence and reducing the felt arousal (i.e. making the 

participant happier and calmer). This result may clearly be seen in the figure; the mean valence 

increases, and the mean arousal decreases. These changes in affective state are statistically 

significantly different from random affective state changes (p < 0.05) as assessed by comparing 

to distributions of random trajectories generated under the null hypothesis. 



 

When the BCMI is employed with an individual with Huntington's disease in our follow-up case 

study, significant changes in valence are achieved with results comparable to those delivered 

with healthy participants. However, no significant changes in arousal are achieved. These results 

are illustrated in Figure 4, which illustrates the change in FEELTRACE trajectories reported by 

our participant for each of the BCMI evaluation goals. 

 

 
Figure 4. Affective state trajectories achieved by the BCMI system when it was employed with an individual with Huntington's 

disease to attempt to increase the individual's valence. FEELTRACE report indicates the output of the FEELTRACE interface 

used to allow participants to report their current affective states. 

A full description of the results of the evaluation of the BCMI with the individual with 

Huntington's disease is available here (Ian Daly et al., 2017). 

 

3.6 Discussion 

 

This case study provides an example of one of the first efforts to develop an automated BCMI 

system for aiding music therapy. The system uses a real-time hybrid metric of affective states to 

monitor an individual’s emotions and respond to them. The metric uses a combination of EEG 

and other physiological processes and is able to accurately identify and respond to a user’s 

current affective state. 

 

There are some considerations to be made when evaluating the results of this system. First, there 

is considerable variability in the reported affective states. This is likely to be a result of the large 

amount of known inter-person variability in individual affective responses to stimuli and large 

inter-person differences in neural and physiological signal properties, upon which the affective 

state detection method that underpins the BCMI is based. 

 

Additionally, it may be argued that the use of the FEELTRACE interface itself is interfering with 

individual felt affective states. FEELTRACE is controlled by a joystick or mouse and the act of 

concentrating on the control of this interface may affect an individual’s affective state. However, 



as FEELTRACE is used throughout all parts of the experiment its effect on felt affective states 

may be treated as a continuous background noise signal and is unlikely to adversely affect the 

classification performance of the system. 

 

This case study provides an illustration of how neural and physiological metrics may be 

developed and employed to allow computer systems to monitor and respond to a user’s 

emotions. 

 

The results highlight how a particular neural technology may be used to detect and monitor an 

individual's emotions over time. The resulting system has potential for use in automated music 

therapy for individuals with emotion regulation problems. This is highlighted by the case study 

demonstrating the systems potential with an individual with Huntington's disease. 

 

4. Case study 2: Driving 

 

Neural technology for measuring emotions has many other potential applications. In this section 

we present a second such possible application; the use of neural technology to measure the 

emotional states of drivers. 

 

Driving is an area of day-to-day life which can be negatively influenced by emotional state 

(stress, road rage, and so forth). Some recent studies have used bio-physiological measurement to 

attempt to help quantify drivers’ emotional states and to consider whether there are any particular 

independent variables which might help drivers to be more mindful of their emotional state. The 

study outlined below considered acoustic cues according to two different types of engine, and 

aimed to evaluate the link between acoustic environment, driver mood, and bio-physiological 

response, to the new electric taxi. 

 

Four London taxi drivers participated in an experiment using discrete brain and body sensors to 

measure bio-physiological cues as they drove an electric and a diesel taxi.  

 

Acoustic cues extracted from a stereo recording suggested that the electric vehicle cab was not 

necessarily quieter, but had an increased dynamic range and lower spectral centroid, both 

correlates of fatigue in music listening exercises. Drivers described their own experience in the 

electric vehicle as happier and less stressful than the diesel vehicle, and heart rate and heart rate 

variability metrics corroborated these descriptions. Brain responses suggested a degree of 

emotional interaction, and an unexpected finding: correlates of higher concentration when 

driving the electric vehicle. 

 

4.1 Background 

 

Quentin Willson of Top Gear/Fifth Gear described the experience of electric vehicles as “silent 

speed. A totally new concept for today's drivers”.  There are a number of proposed acoustic 

correlates for mental states, and many people in Britain describe their experience of the 

environment as excessively noisy.  

 



Previous driving metrics have suggested that heart rate and skin resistance are most correlated 

with driver stress (Healey & Picard, 2005). 

 

The ratio and duration of alpha and beta waves in brain activity has been shown to be correlated 

to stress (Puglisi-Allegra & Oliverio, 1990) and used as an analogue to stress in evaluation of 

driver mental state using virtual reality driving simulations (Benoit et al., 2009; Schier, 2000). 

However, recent improvements in portability, combined sampling, and durability of analogue to 

digital conversion allows for real-world testing (Ollander, Godin, Charbonnier, & Campagne, 

2016; Rigas, Goletsis, & Fotiadis, 2012). This experiment combines acoustic measurement 

(stereo recording) with bio-physiological and self-report metrics conducted on professional 

London taxi drivers in two conditions: electric and diesel vehicles, across a series of randomized 

case series trials. 

 

4.2 Method 

 

Experiment information sheets were explained, and copies given to participants before 

undertaking the tests. Consent forms in accordance with the University of York ethics approval 

process were signed and collected from all participants. 

 

Four professional taxi drivers undertook 12 trials around the Regents park area in the TX4 

(diesel) and TX (electric) taxi cabs. Each trial took approximately 20 minutes. 

 

 
Figure 5. Map of the route taken by the drivers around Regent’s Park, London (approx. 3.5 miles). 

 

 

4.3 Data collected 



 

Stereo recording of audio files were taken from the cab at a sampling rate of 44.1 kHz, with 

synchronous 720p video recording. 

 

Galvanic skin response (electro-dermal activity) was recorded from the left ear lobe of the driver 

(chosen for safety reasons to allow drivers to look to the right to check their blind spot). 

Although galvanic skin response has been previously shown to be useful in evaluating stress, it 

was difficult to place the sensors required in situ in the accepted position for this experiment. 

The sensors are traditionally placed over the finger and wrist, which would be impractical for 

drivers in the real-world data collection scenario. The GSR sensor was therefore placed behind 

the ear lobe. 

 

The heart rate of each driver was also measured via an optical wrist meter. The wrist meter 

measured levels of oxy-hemoglobin, heart rate was then inferred from this metric by peak 

counting. 

 

Electroencephalogram (EEG) was recorded from each driver via dry electrodes with 8 channels 

placed at positions Fp1, Fp2, C3, C5, P7, P8, O1, and O2 in the 10/20 configuration. The EEG 

was sampled at 250 Hz and measured at an impedance of 10 kΩ. 

 

Self-reports were taken from each driver after each trial across 5 descriptors drawn from a survey 

of psychological evaluation of driving conditions, using a 9-point Likert scale, with 1 being 

‘least’ and 10 being ‘most’. The evaluation responses were: stress, anger, distraction, fear, and 

happiness. Additionally, a 3-channel accelerometer was used to record driver movement, with 

data recorded at a sampling rate of 250 Hz. The accelerometer was mounted on a small 3D 

printed plastic frame just above the nape of the neck. 

 

4.4 Analysis techniques 

 

Readings for each vehicle type were summed and passed through an acoustic feature analysis 

pipeline (custom software, MATLAB). The values of five features were calculated: Peaks, RMS, 

Dynamic range, auto correlation, crest factor, and spectral centroid. 

 

The EEG was low pass filtered at 50Hz and then Butterworth filtered in the alpha and beta 

ranges. EEG was then inverse convolved with the accelerometer data to smooth the data with 

significant head movement. This approach was inspired by work in (Luu & Dinh, 2018) and 

interested readers may also wish to consult (Ian Daly, Billinger, Scherer, & Mueller-Putz, 2013) 

for an alternative approach to solving the same problem. 

 

Additionally, heart rate variability was also calculated on a per participant and per trial basis. 

 

Across each self, -report and descriptor per vehicle the mean, standard deviation, and variance of 

each of the above features were taken. These were compared between both types of vehicle. 

 

4.5 Results 

 



Self-report measures are shown in Table 3 and indicate that participants described their 

experience of driving the electric vehicle as: 

 

1. Less stressful than driving the diesel vehicle. 

2. Making them neither more or less angry than driving the diesel vehicle. 

3. Less distracting than driving the diesel vehicle. 

4. Making them neither more or less afraid than driving the diesel vehicle. 

5. Making them happier than driving the diesel vehicle 

 
Table 3. Self-reported responses to the electric and diesel vehicle conditions made by drivers using a 9-point Likert scale (with 1 

being ‘least’ and 10 being ‘most’) across five descriptors. Collected after each trial. `Var' denotes the variance of the reports. 

Diesel Stress Anger Distraction Fear Happiness 

Mean 3.50 1.33 3.83 1.17 6.83 

STD 0.89 0.52 1.97 0.00 1.41 

Var. 0.80 0.27 3.90 0.00 2.00 

      

Electric Stress Anger Distraction Fear Happiness 

Mean 2.17 1.33 2.67 1.50 8.17 

STD 1.47 0.52 1.51 1.84 1.47 

Var. 2.17 0.27 2.27 0.70 2.17 

 

 

Heart rate: Drivers generally exhibited slightly lower mean heart rate in the electric vehicle 

driving trials, as shown in Figure 6. 

 

 
Figure 6. Heart rate across diesel (white line) and electric (black line) care driving trials for driver A. 

 

Note, the overall lower heart rate comparing the electric trial to the diesel trial for the same 

driver. This pattern can be seen in plots for 3 out of 4 of the driver participants (drivers A, B, and 

C). However, driver D showed a markedly similar mean heart rate when comparing diesel and 

electric trials, as shown in Figure 7. 

 



 
Figure 7. Heart rate across diesel (white) and electric (black) vehicle driving trials for driver D. Note only a slight reduction was 

observed in the range of the heart rate and increased variability in diesel driving trials, with large peaks and troughs occurring 

throughout the trial. 

Whilst data regarding participant hearing was not collected, it was noted that the participant in 

question (driver D above) did wear a hearing aid. This suggests that whilst the sound world may 

have minimal influence on the mean heart rate, there was nevertheless a degree of heart rate 

variability increase in the diesel trials in comparison to the electric vehicle trials in this case, as 

was also seen in the other participant trials. All drivers exhibited lower heart rate variability in 

the electric vehicle driving trials.  

 

The drivers in the diesel trials frequently exhibited frontal asymmetry, which has been correlated 

with both negative and positive affect (Schaffer, Davidson, & Saron, 1983). Asymmetry in itself 

is not necessarily a useful indicator of affect in this case (Chu, Tranel, & Damasio, 1994) and is 

to some extent a default, though frontal and parietal asymmetry has been shown more recently in 

EEG studies to be well correlated with the valence of the emotion (Palmiero & Piccardi, 2017). 

Perhaps more unusually, the electric trials exhibit less asymmetry and higher levels of beta 

frequency band power in comparison to alpha frequency band power. Alpha frequencies tend to 

be correlated with restful or relaxed states of mind, and beta frequencies with concentration. This 

finding is thus quite unexpected for the electric trials -- drivers reported more happiness, less 

stress, in the electric vehicle -- so it may be that the electric vehicle was less distracting and in 

fact allowed drivers to concentrate more, resulting in less overall fatigue at the end of a driving 

session.  

 

The GSR showed little difference between either vehicle type across the trials but these values 

were also below the statistical significance threshold. A distribution is shown in Figure 8. 

 



 
Figure 8. Distribution of galvanic skin response values across timestamp values for recordings (Electric vehicle in blue, Diesel 

vehicle in red). 

Six acoustic features (peak values, root mean square amplitude, dynamic range, auto-correlation, 

crest factor, and spectral centroid) were extracted using the signal processing toolbox in 

MATLAB and are shown in Table 4.  

 
Table 4. A comparison of acoustic features extracted from stereo recordings made inside the diesel and electric vehicles during 

each trial. Although the order of the trials was randomized during the collection, for ease of comparison here they are presented 

as follows: odd numbers are recordings from the diesel cab (shaded grey), even numbers from the electric cab (no shading). 

Peaks (max, 

min) 

RMS Range 

(dBFS) 

Autocorrelation Crest factor 

(dB) 

Spectral 

centroid 

Max 0.944 

Min -0.943 

0.140 89.811 2.802 16.560 4112.533 

Max 0.723 

Min -0.708 

0.108 87.493 2.807 16.519 3290.366 

Max 0.856 

Min -0.877 

0.164 88.962 10.255 14.364 6789.525 

Max 0.914 

Min -0.929 

0.172 89.528 7.383 14.485 6704.825 

Max 0.997 

Min – 1.000 

0.176 90.286 4.192 15.057 6772.741 

Max 0.635 

Min -0.614 

0.113 86.367 15.710 14.974 7980.007 

Max 0.909 

Min -0.866 

0.169 89.482 15.710 14.565 6750.248 

Max 0.909 

Min -0.866 

0.169 89.482 15.710 14.565 6750.241 

Max 0.999 

Min -1.000 

0.276 90.309 0.145 11.186 11194.000 



Max 0.916 

Min -0.893 

0.177 89.551 1.432 14.268 5684.410 

Max 0.856 

Min -0.877 

0.164 88.962 10.255 14.364 6789.525 

Max 0.914 

Min -0.929 

0.172 89.528 7.383 14.485 6704.825 

 

The electric vehicle samples indicate lower peak values in comparison to the diesel vehicle 

recordings, with higher spectral centroid in some samples in the diesel vehicle, and slightly lower 

mean amplitude (RMS) in the electric vehicle. Surprisingly, some electric vehicle trials indicated 

a larger dynamic range, though the variance across the dynamic range in all trials was minimal, 

consistently less than 5dB full scale.  In layman's terms, these descriptors would typically 

correlate to a slightly sharper (higher spectral centroid), louder (higher RMS and lower dynamic 

range) perceived sound in the diesel vehicle. The lower dynamic range might be directly 

correlated to the idle engine sound of the diesel vehicle as these analyses were extracted from 

complete trials. 

 

4.6 Conclusions 

 

Drivers self-reported little difference in anger or fear between either vehicle type, with no 

variation in response to anger and minimal variation in response to fear across the two vehicle 

conditions. Given these are professional drivers with many decades of experience on London 

roads, it is perhaps unsurprising that the drivers felt little sense of anger or fear undergoing these 

trials. The electric vehicle was reported to be less stressful and less distracting, as well as a 

happier driving experience by the drivers than the diesel vehicle - with the largest improvement 

being in self-reported happiness. The only diesel vehicle ratings with significant inter-participant 

variation were for the distraction descriptor. There was a greater degree of inter-participant 

variation amongst the electric vehicle ratings than the diesel ratings for stress, and to a lesser 

extent, happiness.  

 

The EEG showed correlates in various regions, particularly asymmetry, suggesting different 

emotional responses in each trial, but more significantly a greater level of beta frequency band 

power in the electric vehicle trials than in the diesel vehicle trials. Alpha and beta frequencies 

have well documented and agreed upon correlates in relaxation (alpha), and active concentration 

(beta). We hypothesized, based on the self-report measures, that the electric vehicle, which 

drivers described as more fun and less stressful, would be accompanied by higher levels of alpha 

than beta - but the opposite appears to be the case. This might be because drivers were in fact 

able to concentrate more without the noise of the diesel engine, which becomes most noticeable 

when the vehicle is at a standstill (e.g., waiting at lights).  

 

For the majority of trials, there was a marked difference in mean heart rate, though this is not in 

itself a prominent correlate of mental state. Heart rate variability (HRV) however is a well 

understood correlate for stressed mental states (Kim, Cheon, Bai, Lee, & Koo, 2018), and, even 

in the case of the driver who exhibited little difference in mean heart rate between the two 

conditions, there was a marked increase in HRV in the diesel vehicle trials. The driver who 

exhibited no significant difference in mean rate between the two trials did wear a hearing aid 



device -- which suggests there might be a correlation between the sound world and the resulting 

influence on heart rate -- but this would be impossible to establish without a larger number of 

participants.  

 

Whilst the biophysiological responses are not necessarily what would be expected given the self-

report results, there seems to be a strong case to suggest that the drivers in the electric vehicle 

trials were less mentally and physically fatigued by the drive. 

 

5. Conclusions and future research directions 

 

Computer systems that are able to measure their users current emotional (affective) states have 

tremendous potential to provide improvements in therapeutic applications for a wide range of 

clinical populations, as well as their potential to improve interactions with computer systems and 

other technologies for general users. Neural technology that is able to provide such a metric, 

therefore has great potential. 

 

This chapter introduced and discussed some of the most well-known and frequently investigated 

neural technology-based metrics for measuring emotion. These metrics most frequently make use 

of the electroencephalogram (EEG), but can also make use of other neuroimaging technologies, 

such as functional magnetic resonance imaging or functional near infrared spectroscopy. These 

metrics provide a quantifiable objective measure of an individual’s current felt emotion. 

 

Neural technology-based measures of an individual’s current emotions have been shown to be 

able to identify an individual’s current level of valence and arousal. Furthermore, when they are 

coupled to physiological measures, they may provide relatively more accurate measures of a 

wide range of different emotional states from an individual in a variety of different contexts. 

 

Neural technology-based measures of affect have a large number of potential applications. 

Emotion is an intrinsic part of the human experience and, increasingly, our experience of the 

world is mediated through information communications technology. Thus, accurate metrics that 

allow our technology to understand how we are feeling are increasingly important in building 

systems that adapt and react optimally to our needs. 

 

However, there are numerous challenges to overcome before neural technology can be most 

effectively used in a wide range of applications. Specifically, neural technology for measuring 

emotions faces challenges related to its accuracy, setup time and convenience, and its reliability. 

 

The accuracy of any neural technology-based metrics of emotion is largely mediated by the 

quality of the signals used, the variability of those signals, the quality of the signal processing 

and machine learning techniques used to interpret those signals, and the unreliability of the 

ground-truth measure upon which those methods are calibrated. For example, EEG suffers from 

artifact contamination from a variety of sources and, thus, constitutes a noisy, non-linear, and 

non-stationary measure of brain activity (Schomer & Lopes de Silva, 2011). Furthermore, the 

machine learning methods trained to interpret this signal are, typically, trained via a supervised 

learning approach and, the ground truth labels used in this approach can be unreliable as 



individuals may not be able, or willing, to accurately quantify their emotional responses in every 

situation. 

 

Setup time and convenience of neural technology is also a key impediment to its wide spread 

adoption. EEG is the one of the most suitable forms of neural technology for measuring emotion 

due to its relative low cost, relative portability, and high time resolution However, it still takes 

between 5 to 20 minutes to setup an EEG recording, a process that typically involves mounting 

electrodes within a cap and forming a conductive bridge with the scalp via conductive gel, a 

process that can be uncomfortable and inconvenient. Modern EEG systems seek to overcome 

these issues via the use of “dry electrode” technology, which does away with gel, and wireless 

systems, that remove the need for attaching multiple wires to the user. However, further 

advances in setup speed and convenience are still needed. 

 

Furthermore, other physiological measures are not well suited to all situations. An example of 

this is seen in our driver case study, in which GSR could not be used in the conventional way 

(recording from the hands) as this would be unsafe in a driving context. 

 

Finally, the reliability of neural technology is hampered by factors including the inherent non-

stationarity of brain activity, as well as artifact contamination of the signal. Signal processing 

techniques seek to overcome these via automated cleaning of the EEG and more accurate and 

robust classification methods. However, considerable advances are still needed in this area 

before neural technology can be sufficiently reliable. 

 

Future research in a wide range of fields will benefit from overcoming these problems and from 

identifying and building neural technology that is able to accurately, reliably, and conveniently 

identify an individual's current emotional state. 
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