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Summary 

The spontaneous pattern-forming properties of three discrete nonlinear optical 
systems are investigated, including the proposal of two new physical contexts for 
coupled-waveguide geometries. Linear analyses predict Turing threshold instability 
spectra with multiple minima, and simulations demonstrate emergent static patterns. 

 
Introduction: simplicity and complexity 
 

Alan Turing's profound insight into morphogenesis, published in 1952, has provided 
the cornerstone for understanding the birth of pattern and form in Nature.  When the 
uniform states of a nonlinear reaction-diffusion system are sufficiently stressed, 
arbitrarily-small disturbances can drive spontaneous self-organization into simple 
patterns with finite amplitude.  Emergent structures have a universal familiarity 
(including hexagons, honeycombs, squares, stripes, rings, spirals, and vortices), and 
they are characterized by a single dominant scalelength that is associated with the 
most-unstable Fourier component. 

Here, Turing's ideas are extended to three wave-based discrete nonlinear optical 
models with a wide range of boundary conditions.  In each case, the susceptibility of 
the uniform states to vanishingly-small symmetry-breaking fluctuations is addressed 
and we predict a threshold instability spectrum for static patterns that comprises a 
multiple-minimum structure. These multi-Turing systems are also studied numerically, 
uncovering instances of simple and complex (i.e., fractal) pattern formation. 

 
Cavities: nonlinear Fabry-Pérot 
 

We begin by considering a thin slice of nonlinear (diffusive Kerr-type) material that is 
sandwiched between two partially reflecting mirrors.  Light injected from an external 
source bounces back and forth between the mirrors, and passes through the slice on 
each transit.  This very simple nonlinear Fabry-Pérot (FP) cavity is the epitome of a 
complex optical system, involving the interplay between diffraction, diffusion, counter-
propagation, and cavity feedback (i.e., periodic pumping, mirror losses, interferomic 
mistuning, and time delays). 

The Turing threshold instability spectrum [1] for the FP cavity is generally found to 
possess a discrete island structure as opposed to the lobes of the closely-related 
single feedback-mirror (SFM) system [2] [see Fig. 1(a)]. By controlling the spatial 
frequencies that are allowed to propagate, simulations have predicted a range of 
simple patterns when the cavity is initialized with a perturbed plane wave solution 
above threshold [see Figs. 1(b)–(e)]. We will also present evidence of a spontaneous 
fractal-generating capacity [see Figs. 1(f)–(i)].  Such multi-scale pattern formation is 
connected to a hierarchy of comparable minima in the threshold spectrum [3]. 



 
 

Fig. 1. (a) Multi-Turing threshold instability spectrum for an FP cavity (top) and its corresponding SFM 
system (bottom). Emergence of a static hexagon pattern from a perturbed plane-wave solution in the 
FP cavity [(b)–(e)], and its transformation towards a volume-filling fractal [(f)–(i)]. 
 
Cavities: coupled nonlinear waveguides 
 

The first discrete nonlinear-Schrödinger (dNLS) context to consider involves 
confining a waveguide array inside a ring cavity. The complex amplitude in each 
channel is coupled to those in its nearest neighbours, and the host medium has a 
local Kerr-type response. The governing equation is also supplemented by the 
classic ring-resonator boundary condition.  We will report on our analysis of this class 
of dNLS-type problem, and discuss the (periodic-in-K) multi-Turing threshold 
spectrum.  Results from simulations will be presented, demonstrating simple pattern 
emergence in arrays with one and two transverse dimensions. Our approach goes 
beyond mean-field descriptions of other related dNLS-based cavity models, which 
are analytically more tractable at the expense of averaging propagation effects [4]. 
 
Counterpropagation: coupled nonlinear waveguides  
 

We have also re-considered the fundamental optical configuration of counter-
propagating (CP) laser beams [5] but within the context of nonlinear waveguide 
arrays.  A dNLS-type model has been proposed for describing the evolution of 
forward- and backward-wave envelopes, which is essentially a discrete analogue of 
the continuum equations.  The perturbative technique used to investigate the stability 
of the uniform states (subject to equal-intensity constant plane wave pump fields) is 
reminiscent of that deployed for the continuum model [6], and involves a boundary-

value problem whose solution requires the exponentiation of a 44 matrix.  We will 
report on the multi-Turing threshold instability spectrum for this novel discrete 
generalization, and present a set of simulations to illustrate pattern formation. 
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