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Summary 

A vector model, fully-second-order in both space and time, is proposed for coupled 
electromagnetic modes in nonlinear waveguides.  Our formalism has strong overlaps 
with the special relativity.  Exact two-component solitons are derived, asymptotic 
analysis recovers classic solutions, and simulations address wave robustness. 
 
Introduction: beyond slowly-varying envelopes 
 

The origin of conventional models for nonlinear optical pulse propagation lies in the 
ubiquitous slowly-varying envelope approximation (SVEA) in conjunction with a 
Galilean boost to a local-time frame.  While such a near-universal procedure typically 
results in a simple model of the nonlinear Schrödinger-type, a more general but less 
well-explored class of wave equation underpins the wider propagation problem. 

Menyuk's seminal analysis [1] has undeniably helped lay the foundations of today's 
understanding of coupled waves in nonlinear optical systems.  Formulated in terms of 
slowly-varying envelopes and Galilean boosts, scores of vectorized Schrödinger-type 
models have been proposed and studied over nearly three decades.  While the 
SVEA remains a theoretical mainstay of describing wave-based nonlinear systems, 
Biancalana and Creatore [2] have pointed out that there exist modern contexts (for 
instance, in condensed-matter physics) where its validity may be reassessed. In 
particular, they assert that spatial dispersion (related to light-exciton coupling inside 
superlattice host materials) is not necessarily well-described by the SVEA. 

In this paper, we generalize our earlier scalar approach to pulse evolution [3] by 
accommodating the simultaneous propagation of two coupled optical waves which 
may represent, for instance, the excitations in two orthogonal polarizations of a fibre 

waveguide whose core has (3) (Kerr-type) nonlinearity.  Moreover, the mathematical 
context of finding exact solitary solutions to universal hyperbolic or elliptic envelope 
equations (as generalizations of parabolic models) is both timely and novel. 
 

Spatiotemporal model: transformations & relativity 
 

We consider a pair of normalized fully second-order (in space and time) coupled 
equations describing optical wave envelopes uj , where j = 1 and 2 and 
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Here,  and  are the dimensionless time and (longitudinal) space coordinates in the 

laboratory frame, respectively, j is related to the (linear) group velocity, spatial 

dispersion is quantified by j << O(1), group-velocity dispersion (GVD) by sj [positive 
and negative values for anomalous- and normal-GVD regimes, respectively, and 

typically with | sj | = O(1)], and  determines the strength of cross-phase modulation. 



Fig. 1. Instability of exact conventional dark-bright [(a) 
bright |u1|

2
, (b) dark |u2|

2
] and dark-dark [(c) |u1|

2
, (d) |u2|

2
] 

solitons when used as initial conditions in Eq. (1) [1 = 

1.010
–3

,2 = 2.510
–3

, and  = 2/3].  Pulse splitting, 
snaking, and radiation shedding are observed. 

Frame-of-reference considerations take centre stage in our approach, and space-
time coordinate transformations dominate much of the analysis [3]. Conventional 
pulse theory emerges asymptotically from Eq. (1) and its solutions in much the same 
way that Newtonian mechanics corresponds to the low-speed limit of Einstein's 
relativistic physics (e.g., the velocity combination rule for spatiotemporal pulses is 
akin to that for particles in relativistic kinematics). 

Operationally, one can recover (a generalized version of) Menyuk's classic vector 

model [1] alongside all its predictions by: (i) assuming | j ∂
2uj /∂ 

2| << | ∂uj /∂ |, and (ii) 

Galilean-boosting to a local-time frame moving at an averaged group speed 1/ by 

introducing new coordinates loc =  – and loc = , where  ≡ (1 + 2)/2. 
Implementing such a transformation without first making the SVEA hinders rather 
than helps the analysis of spatiotemporal effects (e.g., by generating mixed-
derivative terms that can be awkward to interpret physically) [3]. 
 
Dark-bright and dark-dark waves: solitons & stability 
 

Exact analytical dark-bright and dark-dark solitons of Eq. (1) will be presented, 
derived by combining ansatz methods with transformations in the space-time plane. 
Such phase-topological solutions offer the greatest potential impact in the arena of 
future optical device designs when their continuous-wave (cw) backgrounds are not 
susceptible to spontaneous fluctuations.  A vector generalization of our scalar linear 
analysis [4] has been deployed to quantify the modulational instability spectrum for 
cw solutions (obtained by solving an 8th-degree polynomial characteristic equation) 
that have been subjected to small 
disturbances.    Simulations with Eq. 
(1) have tested, and subsequently 
verified, theoretical predictions for 
the most-unstable frequency in the 
system. 

Finally, we will report results from 
numerical perturbative analyses 
demonstrating instability in some 
conventional dark-bright and dark-
dark solitons [5] when used as 
initial conditions in Eq. (1) (see Fig. 
1). In contrast, we fully expect the 
more general spatiotemporal dark-
type vector solitons to be relatively 
robust entities when operating in 
regimes where the constituent cw 
backgrounds are modulationally 
stable. 
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