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Summary 

We present an overview of our research into space-time-symmetrized complex Ginz-
burg-Landau equations, going beyond the traditional assumption of slowly-varying 
envelopes.  Exact analytical solitary solutions are detailed, and their stability proper-
ties explored computationally through sets of initial-value problems. 
 
Introduction: Ginzburg-Landau theory & instabilities 
 

Ginzburg-Landau (GL) models play a fundamental role as complex-amplitude equa-
tions in the arena of universal wave phenomena, describing the interplay between 
dispersion, diffraction, gain, and loss [1].  In nonlinear optics, they predict the emer-
gence of stationary wavepackets (dissipative solitons) when group-velocity disper-
sion (GVD) is balanced by self-phase modulation, and attenuation (from two-photon 
absorption and gain dispersion) is compensated by amplification (typically doping the 
host medium with fluorescent ions) [2].  For purely-cubic nonlinearity, uniformly-
distributed linear growth tends to introduce instability in the zero-amplitude state such 
that finite-amplitude localized waves are rendered unstable in the long term [1–4].  
Inclusion of quintic effects is a route toward supressing any unphysical collapse [5]. 

 
Analysis: space-time symmetric model 
 

We will report on recent results for a generalization of the classic cubic-quintic GL 
model [5].  A mathematical formalism based on the spirit of special relativity is pro-

posed [6], whereby the space and time coordinates, denoted by  and , respectively 
(as measured with respect to the laboratory frame), appear with equal status in the 
governing equation for the dimensionless wave envelope u : 
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Here,  << O(1) determines the level of spatial dispersion, s = ±1 defines the GVD 

regime (+1 for anomalous, -1 for normal), and  is a ratio of group velocities.  Pa-

rameters 2,4 and 2,4 control the intensity-dependent dispersion and losses, respec-

tively, while gain dispersion is set by D and linear amplification by lin.  

Our approach is based on coordinate transformations that are directly analogous to 
those encountered in special relativity.  Frame-of-reference considerations and Lo-
rentz-type velocity combination rules also play key roles.  Moreover, the predictions 
of conventional GL theory appear asymptotically by way of a limit process similar to 
that used for recovering Newtonian mechanics as the low-speed limit of relativity [7]. 



 

 
Dissipative solutions: solitons & shockwaves 
 

Gain dispersion [the term in Eq. (1) at iD∂2u/∂

2] is omitted from our preliminary anal-
ysis – while desirable from a physical standpoint (e.g., to help stabilize the pulse in 
the Fourier domain [5]), its inclusion tends to frustrate the derivation of exact solitary 
solutions in the context of fully-second-order space-time symmetry.  For D = 0, three 
classes of interconnected stationary states can be shown to exist: hyperbolic soli-
tons, algebraic solitons, and shockwaves.  Each class possesses forward- and 
backward-propagating solution branches by virtue of the spatial dispersion term 

∂2u/∂

2, which ascribes Eq. (1) either elliptic or hyperbolic characteristics.  It is 
clearly desirable to find exact dissipative solitons to the full version of model (1), 
where finite-D effects are included, and hence to provide spatiotemporal generaliza-
tions of those corresponding conventional solutions derived by Soto-Crespo et al. [5].  
Developing mathematical and numerical techniques to look for such solitary waves 
remains a central objective of our research. 

When considering slowly-varying envelopes, and after Galilean-boosting to the local-
time frame, one can show that (zero gain dispersion) soliton families derived by Soto-
Crespo et al. [5] are subsets of our more general solutions. The space-time-
symmetric dissipative waves [which satisfy Eq. (1)] are subsequently deployed in 
computational initial-value problems with a view to addressing stability issues in the 
system’s fully-developed nonlinear dynamics. 

 
Simulations: from instability toward stability 

A summary of results from an extensive set of simulations will be given, with attention 
focusing predominantly on bright-hyperbolic solitons.  Even in the absence of linear 

gain (e.g., scenarios where lin < 0), the solitary solutions are typically unstable and 

tend to undergo dispersive spreading in finite .  Numerical investigations are current-
ly considering our new solitons as input waves for Eq. (1) when finite-D effects are 
incorporated.  Such simulations may predict the emergence of stationary states, simi-
lar to those reported numerically in Ref. [5], for the space-time-symmetric model. 
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Fig. 1.  Simulations illustrating 
the inherent instability of dissi-
pative solitary solutions [(a) 
bright hyperbolic soliton, and 
(b) shockwave] to Eq. (1).  The 
stabilization of such symmetric 
nonlinear waveforms may be-
come possible in the presence 
of finite gain dispersion. 


