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Summary 

We present a theoretical and numerical analysis of near-field diffraction patterns from 
hard-edged apertures whose shapes correspond to the iterations of (closed) classic 
fractal curves. The Fresnel (paraxial) area integral is transformed into a circulation 
around the aperture boundary, and edge waves play a key role in the formulation. 
 
Introduction: fractal apertures 
 

Diffraction at closed hard-edged apertures is a fundamental phenomenon in Fresnel 
optics.  Typically, one might consider one-dimensional textbook problems such as 
squares and circles [1].  Regular-polygon boundary conditions are more interesting, 
but also far more complicated [2] since the edges are non-orthogonal. Here, we 
consider families of curves familiar from fractal geometry: the classic von Koch 
snowflake, its lesser-known pentaflake and exterior counterparts, the Gosper island, 
and the Cesaro fractal.  Such shapes comprise a collection of N(n) straight-line edge 
elements, constructed through n = 0, 1, 2, 3 … applications of a simple initiator-
generator algorithm (see Fig. 1) [3].  The mathematical result is a closed curve with  
self-similar substructure down to arbitrarily-short scalelengths, and whose capacity 

(or Hausdorff-Besicovich) dimension D lies within the range 1 < D ≤ 2 as n   [3]. 

 
Fig. 1.  Initiator (first pane) and first three applications of the generator algorithm for the von Koch 
pentaflake, which comprises self-similar sequences of isosceles triangles.  Iteration n comprises N(n) 

= 10  4
n
 sides, and the capacity dimension of the fully-developed curve is found to be D ≈ 1.44. 

 

 
 

 

 

 

Theoretical formulation: boundary conditions & circulation 
 

By applying the divergence theorem to the standard (paraxial) Fresnel formula with 
an illuminating plane wave U0, one can convert the integral over the aperture area to 
a circulation around its edge [4].  A further transformation can express that circulation 
as a piecewise superposition of edge waves, each of which emanates from the N(n) 
constituent line elements that define the aperture boundary so that [2] 
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Fig. 2.  Fresnel diffraction patterns (top row) and magnifications (bottom row) for iterations n = 0, 1, 2 
and 3 of the von Koch pentaflake, computed using Eq. (1).  The aperture Fresnel number is NF = 45. 
 

 

 

Here, U(p) is the pattern at point p in the observation plane, nj and tj are the normal 
and tangential unit vectors, respectively, to edge element qj which has length Lj.  The 

function (p) = 1 if p lies within the geometrical projection of the aperture, and it is 
zero otherwise.  Diffraction patterns may thus be parametrized solely by the Fresnel 

number NF ≡ a2/L, where a is the radius of the circle inscribing the aperture,  the 
optical wavelength, and L the distance between the aperture and observation planes.  

 
Numerical calculations: pentaflakes & islands 
 

We will present computations of fully-two-dimensional diffraction patterns for a range 
of (pre-) fractal aperture geometries as functions of NF (see Fig. 2).  A distinct 
advantage of using the edge-wave formulation in Eq. (1) is that we can magnify 
prescribed regions of any pattern by an arbitrary amount (more traditional methods, 
such as fast Fourier transforms, do not offer such a highly desirable feature) [2]. 

Finding Fresnel patterns from fractal apertures presents an enormous computational 
challenge.  As n increases, one typically runs into a geometric divergence in N(n) so 
that the feasibility of performing numerical calculations at all becomes an important 

practical concern (e.g., the nth iteration of the pentaflake algorithm has N = 104n 
sides). Fortunately, arbitrary-n apertures are generally not physically meaningful and 
diffraction itself acts to limit the range of n that needs to be considered.  We will detail 
the derivation of a cut-off condition predicting n = nmax, beyond which additional 
substructure in the aperture boundary in effect no longer contributes to the predicted 
pattern.  Further results from the specialist software package BENOIT [5], quantifying 
various fractal-dimension measures for calculated finite-n patterns (roughness-
length, rescaled-range, and variogram methods, for instance), will also be given. 
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