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Summary 

We report on recent research developments investigating the diffraction of fractal 
(i.e., multi-scale) light waves from simple hard-edged apertures.  A bandwidth-limited 
Weierstrass function is used as a physical model for illumination, and a formalism for 
calculating diffraction patterns based on Young‟s edge waves will be detailed. 
 
Introduction: monsters in physics & mathematics 

The paraxial diffraction of a normally-incident plane wave of amplitude U0 by hard-
edged apertures, such as slits and circles [1] or regular polygons [2,3], is a classic 
problem.  One can also consider the case where apertures are complex (or fractal), 
possessing structure in the boundary across many decades of spatial scale [3].  
Here, we propose a new paradigm where the diffracting obstacle is simple but the in-
going wave is complex.  The Weierstrass function is used as an intuitive model for an 
illuminating field Uin that comprises a normally-incident wave and a superposition of 

N pairs of obliquely-inclined interfering plane waves with relative amplitude For an 
infinite slit with transverse coordinate x and width 2a, we define 
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where Kn = (2/ )n defines the constituent spatial frequencies and 1 < D ≤ 2 is the 
Hausdorff-Besicovich (or capacity) dimension.  The strength of pattern scalelength 

2/ Kn is determined by  –(2–D)n, where  > 1, and its phase is given by n (which may 

be either deterministic or random).  One can interpret  as the largest characteristic 

scalelength but there is no small-scale cut-off as N →  (see Fig. 1).   

Karl Weierstrass‟ function, as originally proposed in 1872, is continuous everywhere 
but differentiable nowhere. Frustrating essentially all early attempts at analysis, it was 
dubbed a “monster” by Charles Hermite and dismissed by many mathematicians of 
the time.  Nowadays, the Weierstrass function and several of its generalizations play 
a key role in modelling fractal-type phenomena in the physical sciences [4].   

 
Fig. 1. Left and middle panes: first six individual cosine contributions to the Weierstrass summation 

with  = 3, a /  = 1/2 and n = 0 (it is evidently not a Fourier series, where the constituent frequencies 
are harmonics that make up a uniformly-spaced „comb‟).  Superposing such geometric terms for 
increasing D values results in input waves of greater complexity [c.f., (a) D = 1.37 and (b) D = 1.60]. 



 
Fig. 2.  Diffraction patterns resulting from the input fractal wave of Fig. 1(a) for the (a) single-slit, (b) 
double-slit (here the slit separation is taken to be a small fraction of the width of the individual slits), 
and (c) circular apertures (blue lines).  Also shown are the corresponding patterns in the case of 

plane-wave illumination, where  = 0 (red lines).  The aperture Fresnel number is NF = 100. 
 
Analysis: the role of edge waves 

Problems involving linear diffraction at hard-edged apertures can often be elegantly 
solved by deployment of fundamental spatial structures known as Young‟s edge 
waves [1,2,5]. These constructs provide a convenient representation of Fresnel 
integrals, facilitating, in essence, the decomposition of a (paraxial) diffraction pattern 
by way of intuitive interference phenomena. 

To date, we have used an edge-wave prescription to solve exactly a set of paraxial 
diffraction problems involving Weierstrass-type illumination of simple apertures: 
infinite-slit, circle, and double-slit geometries (see Fig. 2).  It turns out that the 
patterns can be uniquely characterized by the aperture Fresnel number, NF [1].  We 
will also survey some of our latest results, which include the calculation of intensity 
(rather than field) power spectra [6] for diffracted fractal waves.  Recovery of 
Fraunhofer (that is, far-field) patterns in the limit NF → 0 will also be demonstrated. 

In performing physically-meaningful calculations with fractals (in optics or any other 
research field), one must pay careful attention to the notion of scalelength cut-off.  
Here, a formula will be given (based purely on considerations from diffractive optics) 
for determining an upper-limit for N in the Weierstrass summation [see Eq. (1)].  The 
truncated input waveform is then referred to as being bandwidth limited [7]. 

 

Diffracted fractals: quantifying dimension 

A key aspect of analyzing fractal-wave problems is predicting how the dimension of 
the diffracted waveform depends upon system parameters (most conveniently for 
apertures, NF).  This seemingly simple problem is somewhat subtle, and a definitive 
answer is far more elusive than one might reasonably imagine.  Our most recent 
results will be summarized, which involve a blend of computation (using specialist 
software [8]) and mathematical analysis (from asymptotic approximation methods). 
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