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Abstract 26 

Objective: Considering the osteoarthritis (OA) model that integrates the biological, 27 

mechanical, and structural components of the disease, the present study aimed to 28 

investigate the association between urinary C-Telopeptide fragments of type II collagen 29 

(uCTX-II), knee joint moments, pain, and physical function in individuals with medial 30 

knee OA. Methods: Twenty-five subjects radiographically diagnosed with knee OA were 31 

recruited. Participants were evaluated through three-dimensional gait analysis, uCTX-II 32 

level, the WOMAC pain and physical function scores, and the 40m walk test. The 33 

association between these variables was investigated using Pearson´s product-moment 34 

correlation, followed by a hierarchical linear regression, controlled by OA severity and 35 

body mass index (BMI). Results: No relationship was found between uCTX-II level and 36 

knee moments. A significant correlation between uCTX-II level and pain, physical 37 

function, and the 40m walk test was found. The hierarchical linear regression controlling 38 

for OA severity and BMI showed that uCTX-II level explained 9% of the WOMAC pain 39 

score, 27% of the WOMAC physical function score, and 7% of the 40m walk test. 40 

Conclusion: Greater uCTX-II level is associated with higher pain and reduced physical 41 

function and 40m walk test performance in individuals with medial knee OA.  42 

Keywords: physical therapy; gait; biomarkers; walk test; disability evaluation. 43 

 44 

Highlights 45 

 There is no association between uCTX-II and the knee joint load; 46 

 The uCTX-II level is associated with pain and physical function; 47 

 Knee joint load showed no association with pain and physical function. 48 

Introduction 49 
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Knee osteoarthritis (OA) is one of the most prevalent diseases in the world 1, 50 

characterized by the degradation of articular cartilage. Cartilage degradation is a 51 

consequence of the loss of the normal balance between the synthesis and degradation 52 

activity of the chondrocytes 2. The degradation is considered to be a result of mechanical 53 

and biological alterations 3-5. For this reason, studies have investigated how these changes 54 

relate to OA symptoms and whether they can predict knee OA onset and progression 6-8. 55 

The unbalanced activity of the chondrocytes and consequent breakdown of 56 

articular cartilage can be caused by abnormal or excessive loading in the joint 9-11. Knee 57 

adduction moment (KAM) has been used to measure the distribution of load between 58 

medial and lateral compartments of the knee 12-15, more specifically excessive medial 59 

compartment loading as this is the most commonly affected compartment 9. KAM has 60 

been associated with pain 16,17, OA severity 5,18, and progression of the disease 8,19. Knee 61 

adduction angular impulse (KAAI), which is the time integral of the KAM curve during 62 

stance, has also been used to measure knee load through a combination of the duration 63 

and amplitude of KAM 18. KAAI is also associated with the presence 7, severity 18, pain, 64 

and disability 20 in knee OA. More recently, knee flexion moment (KFM) was proposed 65 

to improve the measurement of knee load 21, being associated with cartilage thickness in 66 

the early stages of the disease 22. A longitudinal study demonstrated that higher baseline 67 

KAM and KFM in individuals with medial knee OA were shown to be associated with 68 

reduced knee cartilage thickness at the five-year follow-up 4. Hence, knee moment 69 

variables (KAM, KAAI, and KFM) may be considered appropriate measures of knee joint 70 

load. 71 

Some authors consider mechanical alterations responsible for the occurrence of 72 

biological alterations, and consequent degradation of articular cartilage, in most cases of 73 

knee OA 5,10,11. The biological alterations of articular cartilage can be identified by 74 



4 

 

biochemical markers, also called biomarkers 23. Urinary C-tylopeptide type II collagen 75 

(uCTX-II) has been presented as one of the most important OA biomarkers to detect 76 

changes in cartilage 23. The uCTX-II level from a urine sample can measure the systemic 77 

concentration of type II collagen, which is the most abundant protein of the cartilage 78 

matrix 24,25. According to BIPED (Burden of disease, Investigative, Prognostic, Efficacy 79 

of Intervention and Diagnostic) criteria 26, uCTX-II has the ability to diagnose, predict 80 

the progression, and identify the severity of the disease 2,27-30, demonstrating also the 81 

ability to identify healthy individuals at high risk of developing knee OA30,31.  82 

Therefore, both biological and mechanical alterations have been shown to be 83 

related to the onset or progression of knee OA, however, no clear association has been 84 

shown between these components in the current literature. To our knowledge, only one 85 

study has investigated the relationship between uCTX-II and knee loads 32, with the 86 

authors finding an association between uCTX-II level and KAM and KAAI during 87 

walking. However, this association became non-significant after adjusting for disease 88 

severity and walking speed. In addition, they did not investigate the association of uCTX-89 

II with KFM nor with pain and physical function. As KFM has been shown to be 90 

associated with cartilage thickness in the early stages of the disease22, its addition could 91 

improve the understanding of the potential relationship between uCTX-II and knee joint 92 

load.  93 

Only a few studies have explored the relationship between biomarkers 33 and knee 94 

load 34, with pain and physical function. As OA is a persistent condition, current 95 

treatments target pain and physical function improvement/maintenance 3,7,19,35,36. 96 

Exploring how mechanical and biological alterations influence these parameters can 97 

bring new perspectives for pain and disability control and treatment strategies. 98 
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Therefore, the aim of this study was to investigate the association between uCTX-99 

II, knee joint moments (KAM, KFM, and KAAI), pain, and physical function in 100 

individuals with medial knee OA. We hypothesized that uCTX-II level is associated with 101 

pain, physical function, and knee joint moments (KAM, KFM, and KAAI). 102 

Material and Methods 103 

Design 104 

A cross-sectional design was used. 105 

Sample size 106 

A priori sample size calculation was performed by using G* Power 3.1. The calculation 107 

aimed to reach a statistical significance level of 0.05, power of 80%, and a medium effect 108 

size (d = 0.5), considering a correlation test and one tail. Based on these parameters, our 109 

sample size calculation estimated the need for at least 21 subjects. 110 

Subjects 111 

Community-based volunteers were recruited through advertisements in local newspapers, 112 

university websites, and social media. All volunteers underwent anteroposterior 113 

semiflexed weight-bearing, lateral view, and skyline view radiographs and were then 114 

classified according to the Kellgren and Lawrence (KL) criteria 37. As the medial knee 115 

compartment is the most commonly affected 38, only individuals with predominantly 116 

medial knee OA and medial knee pain were included. Therefore, potential participants 117 

were excluded if they presented KL grades in the lateral or patellofemoral compartment 118 

greater than the medial compartment 39. In addition, potential participants were excluded 119 

for any of the following criteria: body mass index (BMI) greater than 35kg/m2 to reduce 120 

soft tissue artifact of marker movement during quantitative gait analysis, unable to walk 121 

unaided for at least 10 minutes, history of hip or knee arthroplasty or osteotomy, had 122 

undergone knee surgery or other nonpharmacological treatment in the 6 months prior to 123 



6 

 

the study 40. For participants with bilateral knee OA, the most symptomatic knee was 124 

evaluated. All participants provided written informed consent and the present study was 125 

approved by the Ethics committee for Human Investigations at the Universidade Federal 126 

de São Carlos (UFSCar), São Carlos, SP, Brazil (CAAE: 41716015.0.0000.5504).  127 

Variables 128 

The dependent variable was uCTX-II level, while independent variables were pain, 129 

physical function, and variables obtained from three-dimensional gait analysis. 130 

Dependent variable 131 

The uCTX-II level was measured using fasting urine collected in the early morning 132 

(within 2 hours of waking), second void, and all samples were stored frozen at -80°C until 133 

analysis. The uCTX-II level was determined using an enzyme linked immunosorbent 134 

assay (ELISA) based on a monoclonal antibody raised against a linear six amino acid 135 

epitope of human type II collagen C telopeptide (Urine CartiLaps®ELISA)24. The uCTX-136 

II level was corrected with creatinine concentration (mmol/L) in the sample using an 137 

enzymatic colorimetric routine method41. For this correction we used the formula: 138 

corrected CTX-II Value = 1000xUrine CartiLaps (µg/L)/Creatinine (mmol/L)42. The 139 

intra- and inter-assay coefficients of variation are ≤7.8% and ≤12.2%, respectively42. All 140 

analyses were conducted in duplicate and blinded. 141 

Independent variables 142 

Self-reported pain and physical function were measured using The Western Ontario and 143 

McMaster Universities Osteoarthritis Index (WOMAC). The WOMAC index is a 144 

disease-specific, tri-dimensional, self-administered questionnaire used to assess health 145 

status and health outcomes in individuals with knee OA. The WOMAC contains 24 146 

questions and consists of three subscales: pain, stiffness, and physical function with five, 147 

two, and seventeen questions, respectively. Answers for each of the 24 questions are 148 
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scored on a five-point Likert scales (none=0, slight=1, moderate=2, severe=3, extreme=4) 149 

with total scores ranging from 0 to 96. Higher scores indicate worse disease severity. The 150 

WOMAC questionnaire is well recognized for its adequate validity, reliability, and 151 

responsiveness for individuals with knee OA 43. We used the Portuguese version of the 152 

WOMAC44. 153 

Objective physical function was measured using the 40m walk test. The 40m walk test 154 

was developed to evaluate the ability to walk quickly over short distances, which is an 155 

important activity for a good quality of life. This activity is usually limited in individuals 156 

with knee OA45. Two marks on the ground were placed 10m apart and a cone was placed 157 

2 meters beyond each end of the 10m walkway. Participants, wearing comfortable clothes 158 

and shoes, were instructed to walk as fast as possible, without running, along the walkway 159 

between the two cones, turn around the cone at the end, return, and repeat for a total of 160 

40 m. Participants were timed for this test and based on this time, we calculated the speed 161 

as suggested by previous studies 45-47. A previous study48 found that intra-class correlation 162 

coefficient for inter-rater reliability was 0.96 (95% CI 0.93 – 0.98) and standard error of 163 

measurement was 0.06 (95% CI 0.05 – 0.08). The same study48 found that intra-rater 164 

reliability was 0.92 (95% CI 0.82 – 0.96) and the SEM was 0.07 (95% CI 0.06 – 0.09).   165 

Three-dimensional gait analysis was performed to measure the KAAI and peak KAM and 166 

KFM. Gait was evaluated using an eight-camera Qualisys Oqus 300 motion analysis 167 

system (Qualisys, Gothenburg, Sweden) and a force plate (Bertec Corporation, OH, USA) 168 

to record kinematic and kinetic data at sampling frequencies of 120 and 1200 Hz, 169 

respectively. Participants walked barefoot at a self-selected speed along an 8 m walkway. 170 

For each subject, a static calibration trial followed by five successful trials were collected 171 

for kinetic and kinematic analysis. The following reflective markers were located on 172 

anatomical landmarks bilaterally 49,50: sternal notch, spinous process of C7, acromion, 173 
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iliac crests, anterior and posterior superior iliac spines, greater trochanters of the femur, 174 

medial and lateral femoral epicondyles, medial and lateral malleoli, first, second and fifth 175 

metatarsal heads, base of the fifth metatarsal, and calcaneus. Four clusters built with 4 176 

noncollinear markers were placed over the lateral side of thighs and shanks. Two 177 

additional clusters built with 3 noncollinear markers were positioned on the spinous 178 

process of T4 and T12. Markers on the medial and lateral malleoli, femoral epicondyles, 179 

C7, greater trochanters, and acromion were removed after the static standing calibration 180 

trial was performed. These markers were used to construct the anatomical coordinate 181 

system for the trunk, pelvis, thigh, shank, and foot segments.  182 

The ankle and knee joint centers were calculated as midpoints between the 183 

malleoli and femoral epicondyles, respectively 51. The hip joint center was measured 184 

using the regression model based on the anterior and posterior superior iliac spine markers 185 

52. The pelvic coordinate system was built from markers on the anterior and posterior 186 

superior iliac spines and then contralateral pelvic drop was measured using a laboratory 187 

coordinate system as the reference. The trunk coordinate system was built from markers 188 

on the acromion and iliac crest (bilaterally) and the ipsilateral trunk lean was measured 189 

using a laboratory coordinate system as the reference. For hip, knee and ankle kinematics 190 

we used pelvis, thigh, and shank as local coordinate system respectively. The angular 191 

motion of all assessed joints was defined using Cardan angles in accordance with the 192 

recommendations of the International Society of Biomechanics 53,54. 193 

The kinetic and kinematic data were processed using Qualisys Track Manager 194 

(Qualisys AB) and Visual3D software (C-motion Inc., Rockville, MD, USA). The kinetic 195 

and kinematic data were filtered using a fourth-order, zero-lag, low-pass Butterworth 196 

filter at cut-off frequencies of 6 and 25 Hz, respectively. Smoothing parameters were set 197 

by residual analysis and visual inspection of the processed kinematic and kinetic data. 198 
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The stance phase was determined using a force plate, where the initial contact (IC) and 199 

toe-off (TO) were identified based on a force threshold of 20N55. The kinetic and 200 

kinematic data were normalized to 101 points. KFM, KAM, and KAAI were calculated 201 

using three-dimensional inverse dynamics56,57. KFM and KAM were normalized by the 202 

body mass and height (%Bw*Ht), while KAAI was normalized by the body mass, height, 203 

and time (%Bw*Ht*s). The peak of each variable throughout the stance phase was used 204 

for analysis. 205 

Statistical Analyses 206 

All statistical analyses were performed using SPSS software (Version 20, SPSS Inc., 207 

Chicago, IL, USA). The normality of distribution of all variables was analyzed using the 208 

Shapiro-Wilk test. As the data presented a normal distribution a Pearson’s product-209 

moment correlation coefficient were used to examine the relationship between uCTX-II 210 

level, knee moments, symptoms, and physical function. For all significant correlations 211 

(uCTX-II with pain, physical function, and the 40m walk test) we processed a hierarchical 212 

linear regression.  Based on previous studies, we controlled our analysis for OA severity 213 

(mild or moderate according to the KL score) 25,58 and BMI (kg/m²)59, using these 214 

variables as the first step of the hierarchical linear regression. The second step uCTX-II 215 

levels was added to the model, which means that all changes in the results of regression 216 

analysis (R, R², ∆R², and p-value), from the first step to the second step, were due to 217 

uCTX-II levels inclusion. An alpha level of 0.05 was set for all statistical tests. 218 

Results 219 

A total of 40 potential participants presenting with knee pain were evaluated, 220 

however, 15 were excluded: two had a positive test for an anterior cruciate ligament 221 

injury, two had significant low back pain (more pain in their back than knee), two 222 

presented with hip pain, and the other nine presented with other knee compartments as or 223 
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more affected than the medial knee compartment (7 for the patellofemoral joint and 2 for 224 

the lateral knee compartment). Twenty-five subjects with knee OA were eligible for the 225 

study. For diagnosis, we considered the clinical, radiographic, and history criteria of the 226 

American College of Rheumatology 60. Group characteristics and descriptive values are 227 

presented in table 1. A significant correlation between uCTX-II level and pain, physical 228 

function, 40m walk test, and gait speed was found (Table 2 and Figure 1) while no 229 

significant correlation was found with the other measures. 230 

“INSERT TABLE 1 NEAR HERE” 231 

“INSERT TABLE 2 NEAR HERE” 232 

“INSERT FIGURE 1 NEAR HERE” 233 

After controlling for severity and BMI through a hierarchical linear regression we 234 

found that severity and BMI explained 35% of the variance of the WOMAC pain score, 235 

while uCTX-II level explained an additional 9% of this variance (Table 3). In addition, 236 

severity and BMI explained 39% of the variance in the 40m walk test, while uCTX-II 237 

level explained an additional 7% of this variance (Table 3). Finally, uCTX-II level 238 

explained 27% of the variance in the WOMAC Physical Function Score (Table 3). 239 

“INSERT TABLE 3 NEAR HERE” 240 

Discussion  241 

This cross-sectional study provides evidence that uCTX-II level is positively 242 

associated with pain (r=0.49) and physical function (r=0.53), but negatively associated 243 

with the 40m walk test (r=-0.48), even after controlling for OA severity and BMI.  244 

One objective of this study was to investigate the association between uCTX-II 245 

level and knee joint moments. Although these variables are related to the onset and 246 

progression of the disease, our study could not confirm this association. An earlier study32 247 

has reported an association of uCTX-II level with KAM and KAAI, however, when 248 



11 

 

disease severity and walking speed were controlled for in the analysis the association was 249 

no longer significant. The present study investigated this relationship not only using the 250 

KAM and KAAI, but also KFM as an important measure to improve the ability to measure 251 

the medial knee load 21. There are possible reasons why we did not find an association 252 

between uCTX-II and knee joint moments. First, although we used three parameters of 253 

medial knee load (KAM, KFM, and KAAI), they do not represent the total knee load. 254 

However, as we included subjects with predominantly medial KOA as it is the most 255 

commonly affected compartment, the medial knee load was the focus of our analysis. 256 

Second, we measured the fasting level of uCTX-II through a sample of the second void 257 

of morning urine, which means that our volunteers had limited physical effort in the hours 258 

prior to the sample collection. This may have influenced our findings given that the 259 

biomarker response to a mechanical stimulus has been shown to be more sensitive to 260 

understand the relationship between cartilage metabolism and knee load than only resting 261 

levels 61,62. For this reason, future studies should explore the stimulus-response approach 262 

to better understand the relationship between uCTX-II level and knee joint load. Third, 263 

although uCTX-II has been used to analyze individuals with knee OA, perhaps uCTX-II 264 

level was not sensitive enough to correlate with medial knee load measures because of its 265 

systemic characteristics. For this reason, future studies may consider using synovial fluid 266 

from the knee to investigate this relationship, as it would provide responses specifically 267 

from the cartilage of the knee.  268 

The present study showed that uCTX-II level explained part of the variance in 269 

WOMAC pain score (9%), WOMAC physical function score (27%), and the 40m walk 270 

test (7%). In addition, the influence of BMI and disease severity were controlled as both 271 

measures explained 35% of the WOMAC pain score and 39% of the variance in the 40m 272 

walk test. In contrast to these findings, Garnero et al.33 found no correlation of uCTX-II 273 
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levels with the WOMAC total score or subscales (pain, stiffness, and physical function). 274 

However, Garnero’s et al.33 study did not control the influence of BMI and disease 275 

severity which may have influenced their results. 276 

Taking into account that uCTX-II levels represent cartilage destruction, and 277 

considering that this is one of the factors influencing knee pain in individuals with knee 278 

OA 63, finding a variation of 9% in WOMAC pain score assigned to the uCTX-II level is 279 

quite reasonable. Although the present study cannot establish a causal relationship 280 

between uCTX-II level and pain, the results are in agreement with previous studies that 281 

have verified that uCTX-II can be used to predict knee pain in patients with knee OA 2,27. 282 

In the same way, uCTX-II predicted 27% of the variance in WOMAC physical function 283 

score and 7% in the 40m walk test, suggesting that the higher the level of uCTX-II, the 284 

worse the self-reported physical function and the worse physical performance during a 285 

fast walk. Considering that decreased physical function is related to pain 64-66, and also 286 

increased uCTX-II level is related to increased pain, a reduction in physical function, as 287 

uCTX-II level increases, could justify the presence of knee pain. However, as we did not 288 

measure pain during 40m walk test, it is not possible to use knee pain to explain our 289 

results. Further investigation is necessary to clarify the mechanism of the influence of 290 

uCTX-II on pain and physical function in individuals with medial knee OA. Moreover, 291 

longitudinal studies would clarify the causal relationship between uCTX-II, pain, and 292 

physical function.  293 

The present study has several limitations. We did not control for the menstrual 294 

cycle of our female participants, and postmenopausal women usually present high levels 295 

of uCTX-II 25. However, as we used a correlation and regression analyses, subjects were 296 

analyzed using their own data. We also did not evaluate the level of physical activity 2, 297 

although it may have some influence in our findings, our subjects had limited physical 298 
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effort before the collection as urine samples were collected in the morning. In addition, 299 

considering that distinct levels of physical activity can result in different level of knee 300 

pain67, we think that this information should be considered in future studies. The small 301 

sample size in this study may have reduced statistical power and the ability to make 302 

conclusions. Even with a small sample size, it was possible to find some statistically 303 

significant results and to provide new information regarding the relationship between 304 

cartilage metabolism and mechanical joint load. We also think that not measuring pain 305 

during 40m walk test and during the kinematic/kinetic gait assessment is a limitation, as 306 

we understand that this information would help to discuss our findings and also would 307 

help to explain participants’ performance in this functional test. We only included 308 

subjects with a BMI <35kg/m² to reduce skin movement artifacts during gait analysis. 309 

Nonetheless, given that many people with knee OA are overweight or obese, these results 310 

can be partially generalized to individuals with knee OA. In the same way, as we included 311 

only subjects with predominantly medial knee OA, although it is the most affected 312 

compartment of the knee, our findings cannot be generalized to individuals with lateral 313 

and/or patellofemoral knee OA. Finally, our sample performed barefoot walking for gait 314 

analysis, we may have influenced our results as recent studies have shown reduced peak 315 

ground reaction forces during barefoot walking when compared to shod conditions 68,69.  316 

In conclusion, greater uCTX-II level is associated with higher pain and reduced 317 

physical function and 40m walk test performance in individuals with medial knee OA. 318 

 319 
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Table 1. Demographic and subject gait characteristics. 538 

 KOA group 

(n=25) 

Female (n, %) 12 (48) 

Age (years) 58.2 ± 4.7 

Height (m) 1.7 ± 0.1 

Mass (kg) 79.5 ± 13.6 

BMI (kg/m2) 28.4 ± 3.9 

WOMAC Score  

Pain (0-20) 8.2 ± 3.8 

Stiffness (0-8) 3.4 ± 1.9 

Physical Function (0-

68) 

24.0 ± 13.5 

Walk test – 40m (m/s) 1.7 ± 0.3 

Severity (KL)  

       Grade 2 (n, %) 15 (60) 

       Grade 3 (n, %) 10 (40) 

Gait speed (m/s) 1.18 ± 0.16 

uCTX-II (ng/mmol 

crea) 

26.6 ± 14.9  

Peak KAM 

(Nm/kg.Ht) 

3.02 ± 0.82 

Peak KFM 

(Nm/kg.Ht) 

2.56 ± 1.48 

KAAI (Nm/kg.s.Ht) 1.19 ± 0.46 

Data are mean ± standard deviation or frequency (proportion).  539 

KOA: knee osteoarthritis, BMI: body mass index, WOMAC: Western Ontario & 540 

McMaster Universities Osteoarthritis Index, KL: Kellgren and Lawrence classification, 541 

uCTX-II: urinary C-Telopeptide fragments of type II collagen, ng: nanogram, mmol: 542 

millimole, crea: creatinine, Nm: newton meter, Ht: height, KAM: knee adduction 543 

moment, KFM: knee flexion moment, KAAI: knee adduction angular impulse.  544 

 545 

 546 

 547 

 548 

 549 

 550 
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Table 2. Pearson correlation coefficient (r) between uCTX-II level, knee moments, 551 

symptoms, gait speed, age, BMI and physical function. 552 

 uCTX-II Level  

r  
p-value 

WOMAC Pain score 0.49 * 0.04 

WOMAC Physical Function 

score 

0.53 * 0.02 

Walk test (40m) -0.48 * 0.04 

Peak KAM (Nm/kg.Ht) -0.04 0.89 

Peak KFM (Nm/kg.Ht) 0.03 0.55 

KAAI (Nm/kg.s.Ht) 0.14 0.90 

Gait speed (m/s) -0.54* 0.03 

Age (years) 0.37 0.10 

BMI (kg/m2) 0.17 0.75 

*Significant correlation (p<0.05). 553 

uCTX-II: urinary C-Telopeptide fragments of type II collagen, WOMAC: Western 554 

Ontario & McMaster Universities Osteoarthritis Index, BMI: body mass index, Nm: 555 

newton meter, Ht: height, KAM: knee adduction moment, KFM: knee flexion moment, 556 

KAAI: knee adduction angular impulse.  557 
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Table 3. Hierarchical Linear Regression Predicting pain and physical function. 582 

Dependent 

variable 
Step 

Independent 

variable 
R R2 ΔR2 

p-

value 

WOMAC Pain 

score 

1 
Severity and 

BMI 
0.59 0.35* 0.35 0.04 

2 uCTX-II 0.67 0.44* 0.09 0.04 

WOMAC 

Physical Function 

Score 

1 
Severity and 

BMI 
0.43 0.19 0.19 0.21 

2 uCTX-II 0.67 0.45* 0.27 0.03 

Walk test (40m) 
1 

Severity and 

BMI 
0.62 0.39* 0.39 0.02 

2 uCTX-II 0.68 0.46* 0.07 0.03 

  *Significant difference (p<0.05) 583 

WOMAC: Western Ontario & McMaster Universities Osteoarthritis Index, BMI: body 584 

mass index, uCTX-II: urinary C-Telopeptide fragments of type II collagen.  585 
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 601 

Figure 1. Scatterplots illustrating the association between uCTX-II with WOMAC pain 602 

score (a), WOMAC physical function score (b), and 40m walk test (c). 603 

 604 


