
   

Electromagnetic Diffraction by Fractal Dusts, Triangles and Carpets: 

A Kirchhoff Approach to Circulation 
 

James M. Christian, Holly A. J. Middleton-Spencer
 
 

Joule Physics Laboratory, University of Salford, Greater Manchester M5 4WT, United Kingdom 

 

The diffraction of plane waves by perfectly-conducting thin screens is of fundamental physical and 

mathematical interest in electromagnetics [1].  Classic laser-optics experiments involve both open (single- and 

double-slit arrangements) and closed (circular and regular-polygon) apertures, with analyses often being 

confined to the Fresnel [2] and Fraunhofer [3] regimes.  Here, we consider a class of scattering problem 

involving fully-2D fractal screens, where the scatterer possesses the property of self-similarity.  A more general 

formulation of the diffracted wave, based on Kirchhoff‟s theory and 3D Green‟s functions [4], is also deployed. 

Our attention focuses on three well-known fractal shapes constructed from initiator-generator algorithms: the 

Cantor dust, and the triangle (see Fig. 1, top row) and carpet devised by Sierpinski [5].  The initiator may be 

regarded as a „hole‟ contained inside an otherwise-opaque plane, or as an opaque obstacle that is surrounded by 

otherwise-empty space.  These two distinct configurations––which we define as a screen and its complement, 

respectively––are related to one another in quite a subtle way [6].  Moreover, stage n = 0, 1, 2, … comprises a 

finite number of identical and suitably scaled regular-polygon subdomains (e.g. for the Sierpinski triangle, one 

has a set of 3
n
 elements, each of whose area is 1/4

n
 times that of the initiator).  The fully-developed fractal shape 

in each case also has a Lebesque measure of zero, which we interpret physically as the zero-area limit.   
 

 
Fig. 1 Top row: Initial (n = 0) and first four pre-fractal levels (n = 1 – 4) of the Sierpinski triangle, which emerges in the 

limit n →  and has a Hausdorff dimension of D = log(3)/log(2) ≈ 1.58 [5].   Bottom row: Snapshot in time of diffracted 
waves behind the screen (black lines mark the geometrical projection of the subdomain boundaries).  The initial triangle is 

contained within a circle of radius 1mm, and the illuminating wavelength is set to 539nm (corresponding to green light).  
  

In this presentation, we will show how the fractal-screens problem may be addressed by solving the scalar 

Helmholtz equation in 3D.  As a general strategy, the standard integration over the entire aperture domain is 

transformed (without approximation) into a circulation [7] around the constituent sub-domain boundaries.  This 

theoretical device proves to be an enormously powerful tool for facilitating computations on pre-fractal shapes, 

particularly those involving non-orthogonal edges (see Fig. 1, bottom row).  Boundary conditions (BCs) play a 

key role in determining uniquely the electric field in the surrounding space.  Following Kirchhoff [4], we let the 

diffracted wave and its normal derivative vanish on the screen while, in the „hole‟ regions, their incident plane-

wave values are assumed.  Fresnel and Fraunhofer formulations (both of which are largely insensitive to the 

details of the BCs) emerge asymptotically, as required.  We conclude by discussing the strengths and weaknesses 

of the Kirchhoff representation––particularly in the fractal-domains context––and pose some open questions. 
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