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Abstract

The di�raction of light by an aperture in an oth-
erwise perfectly conducting plane screen of in-
�nite extent is a phenomenon of fundamental
interest in electromagnetics. Here, we consider
classes of problems where the aperture domain is
complex (possessing self-similar structure across
a range of spatial scales) and modelled on �nite
iterations of the fractal shapes devised by Can-
tor and Sierpinski.

Rayleigh-Sommerfeld (RS) integrals are de-
ployed to predict electric �elds in the space be-
hind the screen. This approach captures more
fully the details of wave scattering, eliminating
many of the approximations inherent with sim-
pler analyses in Fraunhofer and Fresnel regimes.
The solutions are essentially exact for Cantor-
set apertures, at least within Kirchho�'s treat-
ment of the boundary conditions. Di�raction
patterns from Cantor dust and Sierpinski tri-
angle apertures are computed by transforming
integrations over the domain into circulations
around the constituent subdomain boundaries.
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1 Introduction

We consider an in�nite screen Γ∞ that is a per-
fect conductor of zero thickness and which occu-
pies an entire axis (in 2D) or an entire plane (in
3D). If Γ denotes a bounded aperture in Γ∞,
then the Dirichlet and Neumann RS integrals
for the electric �eld E behind the screen are

ED(x) = −2

∫
Γ
dΓ′E(x′)

∂

∂n′
G0(x|x′), (1a)

EN (x) = 2

∫
Γ
dΓ′G0(x|x′) ∂

∂n′
E(x′), (1b)

respectively, where G0 is the free space Green's
function of the corresponding Helmholtz equa-
tion [1]. These formulations of the di�raction
problem inherently respect the Sommerfeld ra-
diation condition [2]. Since either E(x′) or its
(outward) normal derivative (∂/∂n′)E(x′) are

anticipated to vanish on the screen, one needs to
specify their values on Γ. Following Kirchho�'s
prescription, we set these quantities to match
those of the incident plane wave; Eqs. (1a) and
(1b) are then internally self-consistent [1].

2 Cantor set

Consider removing a closed interval of width 2a
from the centre of an in�nite screen Γ∞ that
is de�ned along a straight line. This initiator
stage, labelled by index n = 0, creates a gap of
empty space [−a, a] which represents a bounded
aperture Γ (see Fig. 1). At the �rst pre-fractal
level (n = 1), the open middle third of that gap
is �lled-in to produce two closed sub-intervals of
empty space, [−a,−a/3] and [a/3, a]. The iter-
ative process of �lling-in the open middle thirds
may continue inde�nitely, with the limit n→∞
de�ning a Cantor set whose capacity dimension
is log 2/ log 3 ≈ 0.63 [3]. We then take the com-
plex domain Γ as the union of 2n closed aperture
sub-intervals, each of width 2a/3n.

When the electric vector of the incident wave
is linearly polarized and perpendicular to the
propagation plane, Eqs. (1a) and (1b) prescribe

Figure 1: Examples of complex domains�the
initiator and �rst three pre-fractal levels of the
Cantor set (top), Cantor dust (middle), and
Sierpinski triangle (bottom). White: bounded
aperture Γ. Black: unbounded screen Γ∞\Γ.
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Figure 2: Numerical calculations of the Dirichlet RS integral [that is, <e(ED)] for the initiator and �rst
four pre-fractal levels of the (top) Cantor dust and (bottom) Sierpinski triangle. Black lines correspond
to the geometrical projections of the aperture domain boundaries onto the observation plane.

the vector E = (0, 0, ED,N ). In this case, ED,N

and its partial derivatives must be zero on the
unlit surface of the screen. One may then cal-
culate the magnetic �eld components from B =
−(i/ck)∇×E, prove that∇·E = 0 and∇·B = 0
(as required by Maxwell's equations), and work
out the energy �ow from the Poynting vector.
It is also possible to reconstruct the electromag-
netic �eld in front of the screen by restoring the
incident and re�ected waves, and to devise a
moderate form of Babinet's principle by consid-
ering a complementary problem [2].

3 Cantor dust & Sierpinski triangle

We now consider apertures based on the Cantor
dust and Sierpinski triangle (see Fig. 1) [3]. In
the limit, these shapes have capacity dimensions
of log 4/ log 3 ≈ 1.26 and log 3/ log 2 ≈ 1.58, re-
spectively. In these cases, the relationship be-
tween the scalar �elds of Eqs. (1a) and (1b) and
the full vector solution for the electromagnetic
wave is not so obvious. Polarization e�ects are
thus neglected here, but we expect ED,N to cap-
ture the dominant contribution in E.

Evaluating the RS integrals for a given 2D
domain is nontrivial, but progress can be facil-
itated by applying the divergence theorem and
transforming integrations over area Γ into circu-
lations around the boundaries ∂Γ of all the con-
stituent subdomains. Such a technique renders
the calculations more manageable (see Fig. 2)
but they can still remain computationally ex-
pensive as the pre-fractal level increases.

4 Concluding remarks

The RS di�raction formulae are best suited to
high-frequency regimes and have many advan-
tages over their far �eld (Fraunhofer) and parax-
ial (Fresnel) counterparts. One must be par-
ticularly mindful of limitations [1, 2], however,
within the complex-domains arena. All three
apertures have a Lebesgue measure of zero, in-
terpreted physically as vanishing area for n →
∞. Equations (1a) and (1b) will inevitably re-
turn a wave with zero amplitude as Γ shrinks to
a set of points (though the validity of Kirchho�'s
approximation will have been compromised well
before then). Formulating the scattering prob-
lem more rigorously, it has recently been proved
that classes of zero-measure screens can some-
times support a transmitted wave [4].
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