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Abstract

The diffraction of light by an aperture in an oth-
erwise perfectly conducting plane screen of in-
finite extent is a phenomenon of fundamental
interest in electromagnetics. Here, we consider
classes of problems where the aperture domain is
complez (possessing self-similar structure across
a range of spatial scales) and modelled on finite
iterations of the fractal shapes devised by Can-
tor and Sierpinski.

Rayleigh-Sommerfeld (RS) integrals are de-
ployed to predict electric fields in the space be-
hind the screen. This approach captures more
fully the details of wave scattering, eliminating
many of the approximations inherent with sim-
pler analyses in Fraunhofer and Fresnel regimes.
The solutions are essentially exact for Cantor-
set apertures, at least within Kirchhoff’s treat-
ment of the boundary conditions. Diffraction
patterns from Cantor dust and Sierpinski tri-
angle apertures are computed by transforming
integrations over the domain into circulations
around the constituent subdomain boundaries.

Keywords: Fractal screens, Cantor set, Cantor
dust, Sierpinski triangle

1 Introduction

We consider an infinite screen I'o that is a per-
fect conductor of zero thickness and which occu-
pies an entire axis (in 2D) or an entire plane (in
3D). If T' denotes a bounded aperture in Ty,
then the Dirichlet and Neumann RS integrals
for the electric field E behind the screen are

EP(x) = —2/FdF'E(X’)86n/G0(X|X'), (1a)

EN(x) = 2/dF' Go(X‘X/)iE(X/), (1b)
T on'

respectively, where G is the free space Green’s
function of the corresponding Helmholtz equa-
tion [1]. These formulations of the diffraction
problem inherently respect the Sommerfeld ra-
diation condition [2]. Since either E(x') or its
(outward) normal derivative (9/0n’)E(x’) are

anticipated to vanish on the screen, one needs to
specify their values on I'. Following Kirchhoff’s
prescription, we set these quantities to match
those of the incident plane wave; Eqs. (1a) and
(1b) are then internally self-consistent [1].

2 Cantor set

Consider removing a closed interval of width 2a
from the centre of an infinite screen I', that
is defined along a straight line. This initiator
stage, labelled by index n = 0, creates a gap of
empty space [—a, a] which represents a bounded
aperture I' (see Fig. 1). At the first pre-fractal
level (n = 1), the open middle third of that gap
is filled-in to produce two closed sub-intervals of
empty space, [—a, —a/3] and [a/3,a]. The iter-
ative process of filling-in the open middle thirds
may continue indefinitely, with the limit n — oo
defining a Cantor set whose capacity dimension
is log2/log 3 ~ 0.63 [3]. We then take the com-
plex domain I" as the union of 2" closed aperture
sub-intervals, each of width 2a/3".

When the electric vector of the incident wave
is linearly polarized and perpendicular to the
propagation plane, Egs. (1a) and (1b) prescribe

Figure 1: Examples of complex domains—the
initiator and first three pre-fractal levels of the
Cantor set (top), Cantor dust (middle), and
Sierpinski triangle (bottom). White: bounded
aperture I'. Black: unbounded screen I'o\T'.
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Figure 2: Numerical calculations of the Dirichlet RS integral [that is, Re(EP)] for the initiator and first
four pre-fractal levels of the (top) Cantor dust and (bottom) Sierpinski triangle. Black lines correspond
to the geometrical projections of the aperture domain boundaries onto the observation plane.

the vector E = (0,0, EP-V). In this case, EPN
and its partial derivatives must be zero on the
unlit surface of the screen. One may then cal-
culate the magnetic field components from B =
—(i/ck)V X E, prove that V-E =0and V-B =0
(as required by Maxwell’s equations), and work
out the energy flow from the Poynting vector.
It is also possible to reconstruct the electromag-
netic field in front of the screen by restoring the
incident and reflected waves, and to devise a
moderate form of Babinet’s principle by consid-
ering a complementary problem [2].

3 Cantor dust & Sierpinski triangle

We now consider apertures based on the Cantor
dust and Sierpinski triangle (see Fig. 1) [3]. In
the limit, these shapes have capacity dimensions
of log4/log3 ~ 1.26 and log 3/log 2 =~ 1.58, re-
spectively. In these cases, the relationship be-
tween the scalar fields of Eqgs. (1a) and (1b) and
the full vector solution for the electromagnetic
wave is not so obvious. Polarization effects are
thus neglected here, but we expect EPV to cap-
ture the dominant contribution in E.
Evaluating the RS integrals for a given 2D
domain is nontrivial, but progress can be facil-
itated by applying the divergence theorem and
transforming integrations over area I' into circu-
lations around the boundaries 0T of all the con-
stituent subdomains. Such a technique renders
the calculations more manageable (see Fig. 2)
but they can still remain computationally ex-
pensive as the pre-fractal level increases.

4 Concluding remarks

The RS diffraction formulae are best suited to
high-frequency regimes and have many advan-
tages over their far field (Fraunhofer) and parax-
ial (Fresnel) counterparts. One must be par-
ticularly mindful of limitations [1,2], however,
within the complex-domains arena. All three
apertures have a Lebesgue measure of zero, in-
terpreted physically as vanishing area for n —
oo. Equations (1la) and (1b) will inevitably re-
turn a wave with zero amplitude as I' shrinks to
a set of points (though the validity of Kirchhoff’s
approximation will have been compromised well
before then). Formulating the scattering prob-
lem more rigorously, it has recently been proved
that classes of zero-measure screens can some-
times support a transmitted wave [4].
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