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Can you find the roots of a quadratic equation? It is not a trick question, but nor is
it quite so straightforward as one might imagine. While many readers can no doubt
recite the famous formula, committed to memory since high school days, that is not
quite what we mean here. Let us consider the roots of f2(z) := z2 + 1 = 0. The two
answers are evidently z = +i and z = −i, where i :=

√
−1 is the imaginary unit.

Throughout this article, we shall represent complex numbers such as z = x + iy in
the Argand plane (with the real part, x, on the horizontal axis and the imaginary part,
y, on the vertical axis).

One may instead choose to attack the problem on computer, regarding our opening
question as an exercise (albeit a seemingly trivial one) in numerical root-finding. In
that case, an off-the-shelf iterative algorithm for which many of us would probably
reach first is the Newton-Raphson (N-R) method [1]. Plugging the function f2(z) into
the standard formula zn+1 = zn − f2(zn)/f ′2(zn), with the prime denoting derivative
with respect to z, we arrive at a simple feedback loop:

zn+1 = zn −
z2
n + 1

2zn
. (1)

The discrete subscript index n = 1, 2, 3, ... labels successive iterations—hopefully
tending towards a more accurate answer—and with z0 representing a first guess at a
root. Supplying such an initial condition is always necessary in order to get the N-R
algorithm started off. We might now write a basic computer code to obtain the ‘output’
(interpreted quite generally as the collection of numbers {zn} for n = 1, 2, 3, ..) sys-
tematically for a whole range of different ‘inputs’ (taken to be z0 values). With z0 :=
x0 + iy0 suitably specified, a not unreasonable expectation is that zn = xn + iyn con-
verges to either root, z = ±i, as n→∞. In practice, one considers not the limit but
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Figure 1. Section of the (x0, y0) Argand plane of initial conditions with position of the roots
denoted by solid white circles and the dotted white line showing the unit circle. Left: Iterations
of Eq. (1) tend to z = +i (located in the upper half-plane) when z0 lies in the green region, or
to z = −i (located in the lower half-plane) when z0 is in the red region. Right: A schematic
diagram showing the expectation for the iterations of Eq. (3), prior to any number-crunching.

rather finite n sufficiently large that |zn+1 − zn| is below some desired tolerance. With
luck, only a handful of iterations will be necessary.

Surprises in a quadratic
By color-coding the outcome of each calculation, the Argand plane of initial condi-
tions, (x0, y0), is neatly broken up into two distinct regions by the straight line y0 = 0
[see Fig. 1(left)]. Initial conditions with y0 > 0 lead to iterates z1, z2, z3, ... that wan-
der around in the plane, as prescribed by Eq. (1), and converge on z = +i; those with
y0 < 0 converge on z = −i in the same sort of way. That is not a very interesting
result, but it is quite instructive to bear in mind for what follows. It also serves as a
portent for how even apparently simple systems can sometimes catch us all by surprise
[2].

The square-roots problem is usually treated very briefly (if at all) and solely as a
precursor to the much more exciting case of finding the cube roots of −1. But it is
worth paying attention to square roots for just a little longer. Suppose we separate
Eq. (1) into its real and imaginary parts so that

xn+1 =
(x2
n + y2

n)− 1

2 (x2
n + y2

n)
xn, (2a)

yn+1 =
(x2
n + y2

n) + 1

2 (x2
n + y2

n)
yn. (2b)

An initial condition with y0 = 0 is lying on the geometrical boundary between the
roots, and from Eq. (2b) it now becomes obvious that yn = 0 for n = 1, 2, 3, .... The
iterates must thus stay forever trapped on the real axis and the solution cannot converge
on either of the roots z = ±i (located on the imaginary axis). We may also consider
what happens to xn by setting yn = 0 in Eq. (2a), which leads to

xn+1 =
x2
n − 1

2xn
. (2c)

For any arbitrary x0, the iterates jump to and fro along the x axis and often seem to
behave rather erratically: plotting xn against n, the solution typically looks random. It
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Figure 2. Comparison of the iterates of Eq. (2c) with an initial condition x0 = 1.8 (blue
line) with those from Eq. (1) when z0 = 1.8 + i0 (red line). The solutions are more or less
identical until n ≈ 50, at which point they begin to separate and diverge. Closer inspection
shows that |x3 − Re(z3)| ≈ 10−16, |x20 − Re(z20)| ≈ 10−11, |x40 − Re(z40)| ≈ 10−5, and
|x50 − Re(z50)| ≈ 0.02.

is, of course, not random at all since Eq. (2c) is a purely deterministic rule [2]. Even
more curiously, we soon find that there emerges a difference between the solution
predicted by Eq. (2c) and that obtained from Eq. (1) when using the entirely equivalent
initial condition z0 = x0 + i0 (see Fig. 2). We will return to this point later on.

From quadratics to cubics
Consider now the cubic equation f3(z) := z3 + 1 = 0. After a bit of algebra, we find
that the three roots are exp(iπ/3), exp(iπ), and exp(i5π/3). Moreover, we know
they form an equilateral triangle and that they must lie on the circumference of a
unit circle centred on the origin of the Argand plane. For the function f3(z), the N-R
iterates are governed by

zn+1 = zn −
z3
n + 1

3z2
n

. (3)

Using the square roots of−1 as a guide, it feels intuitive that the (x0, y0) plane should
be divided into three equally-sized wedges. Moreover, the geometrical boundary be-
tween those regions may well be defined by straight lines described by angles relative
to the x0 axis of θ = 0, θ = 2π/3 and θ = 4π/3 [see Fig. 1(right)]. Hopefully, the
iterations from Eq. (3) will converge on one of the roots for any given z0, and we can
again color-code which root ultimately ‘wins’. From our knowledge of how the square
roots behave, we might also modify the earlier code to introduce a fourth color accom-
modating the possibility of no convergence, just in case the algorithm fails to give us
a reasonable answer for some z0 values [3,4].
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Figure 3. Basins of attraction obtained by iterating Eq. (3). The panes consider the regions
−1.2 ≤ (x0, y0) ≤ 1.2 (left), 0.5 ≤ x0 ≤ 0.6 and 0.12 ≤ y0 ≤ 0.22 (middle, where the
square domain has side 0.1) and 0.52 ≤ x0 ≤ 0.53 and 0.165 ≤ y0 ≤ 0.175 (right, where
the square domain has side 0.01).

Complex boundaries
As discovered by John Hubbard in the 1970s [5], the Argand plane does not break
up in such a straightforward way for the cube-roots problem. The basic expectation
of having ‘three separate wedges’ survives, but the boundaries between those regions
are most definitely not straight lines. They are far more complex: beautifully intricate
patterns that become objects of mathematical interest in their own right and render-
ing the original root-finding considerations purely secondary. The boundaries—which
resemble a ‘string of pearls’—appear to have the property of being fractal. That is,
they retain comparable levels of detail under arbitrary magnifications (see Fig. 3). An
alternative interpretation is that a fractal has no natural scalelength (or, equivalently,
all possible scalelengths).

With the unexpected emergence of these patterns in mind, it is helpful to reinterpret
the iterative scheme of Eq. (3) as prescribing discrete motion in a two-dimensional
map (readily obtained, after a little bit of algebra, by isolating the real and imagi-
nary parts). Viewed through the modern prism of dynamical systems [1], the three
roots we found analytically for Eq. (3) may be thought of as fixed-point attractors
in a ‘lossy’ system—that is to say, three isolated points towards which (xn, yn) tra-
jectories, bouncing around the in the (x, y) plane as n increases, are simultaneously
pulled.

In Fig. 3, the set of all initial conditions whose subsequent trajectories converge to-
ward exp(iπ/3) is shown in turquoise (those sets for exp(iπ) and exp(i5π/3) are in
yellow and red, respectively). The turquoise region is referred to as the basin of attrac-
tion for the attractor at exp(iπ/3), with similar descriptions for the other two colors
and roots [6]. The boundaries between the three principal wedges have some intrigu-
ing properties. For instance, the string-of-pearls evidently persists across three decimal
orders of scale, but it shows no sign of disappearing under further magnifications. One
also cannot move from a region of turquoise into a region of red without crossing a
region of yellow (or, more subtly, into and out of yellow regions an infinite number
of times). Similar is true for all other permutations of colors, and this mind-bending
characteristic is what topologists call the Wada property [7].

While Fig. 3 shows the basins for the cube roots of−1, it is pertinent to note that the
patterns are necessarily identical in form to those obtained when considering the simi-
lar cube roots of +1 problem instead. The basins for these two closely-related systems
are connected by a rotation because the geometrical boundaries are always determined
relative to the position of the roots. In switching between “−1” and “+1” variants, the
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Figure 4. Basins of attraction obtained numerically by iterating Eq. (4) on the domain of
initial conditions −2.0 ≤ x0 ≤ 2.0 and −2.0− δ ≤ y0 ≤ 2.0− δ (for δ =

√
2/100) when

N = 3, 4, 5 (top row, left to right) N = 6, 7, 8 (middle row, left to right), and N = 9, 10, 11
(bottom row, left to right).

equilateral triangle on whose vertices the roots sit is rotated by π/3 radians about the
origin, and hence the basins must also be rotated through the same angle.

The N th Roots of −1
Having glimpsed some of the complexity hiding inside the cube roots of−1, a natural
generalization is theN th roots of−1 class of problem, whereN > 3. The polynomial
equation to solve is then fN(z) := zN + 1 = 0. Since the derivative is f ′N(z) :=
dfN/dz = NzN−1, the N-R formula becomes a slightly more involved version of
Eq. (3):

zn+1 = zn −
zNn + 1

NzN−1
n

. (4)

The calculations shown in Fig. 4 are performed on a square grid of 2048 × 2048
points linearly spaced across the domain Σ of initial conditions −2.0 ≤ x0 ≤ 2.0
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Figure 5. Magnification of the basins of attraction around the tips of a petal region (0.7 ≤
x0 ≤ 1.1 and −0.2 ≤ y0 ≤ 0.2) for N = 7 (left), N = 9 (middle), and N = 11 (right)
using a 2048× 2048 grid with linearly-spaced points. The dashed white lines are arcs of the
unit circles shown in the corresponding panes of Fig. 4.

and −2.0 − δ ≤ y0 ≤ 2.0 − δ).1 The iterates are assumed to have converged when
|zn+1 − zn| ≤ 10−8, and the total number of iterations allowed for any particular
z0 before assuming non-convergence is chosen to be 106. For each z0, the value of
limn→∞ zn is interrogated; its argument is used to find the final angular position in the
Argand plane (and hence identify the root onto which the trajectory has converged), its
magnitude checked to make sure | limn→∞ zn| ≈ 1, and then a corresponding color
assigned. As a global observation, for increasing N we see that the central portion of
the basins pattern develops a petal-like structure with much intricate self-similar detail
(see Fig. 5).

Uncertainty dimension
In the preceding section, we saw that the N-R method in combination with solving
fN(z) = 0 provides a simple iterative scheme for generating endlessly fascinating
structures. Inspection of Figs. 4 and 5 strongly suggest that these patterns exhibit a
level of self-similarity, and they provide some anecdotal evidence supporting the con-
jecture that their mathematical nature might be bound up with multiscaled-ness. But
saying something “looks fractal” is not really very scientific. Ideally, we want to find
a way of quantifying consistently the level of fractality so as to compare different
patterns in a meaningful way.

At this juncture, one is obliged to introduce the concept of fractal dimension [8]
with an objective, broadly speaking, of translating the qualitative degree-of-complexity
into a numerical value. There are many different definitions of fractal dimension—
each with its own very specific algorithm—and a key sticking point is that not all such
yardsticks may be applied in all cases. Here, we will consider only the uncertainty
dimension [9]. It has an elegant and clear-cut interpretation that is readily understand-
able in physical terms and appeals to one’s intuition about classical cause-and-effect
relationships in general.

Estimating the uncertainty dimension D, where 1 < D ≤ 2, involves a prescrip-
tion for assigning to a dynamical system a number that is tightly connected to the
susceptibility of that system’s long-term output (namely limn→∞ zn) to small fluc-
tuations at its input. Each point on the (x0, y0) grid is subjected to a simple test by

1Offsetting the grid by a small number in this way, e.g. with δ =
√
2/100, has the desirable effect of suppress-

ing initial conditions that lie on the lines x0 = y0 and x0 = −y0, which otherwise often lead to an artificially
high number of non-converging trajectories when N is a multiple of 8.
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Figure 6. Numerical calculation of the fraction of initial conditions exhibiting final-state sen-
sitivity, Nε/NΣ, as a function of ε for four low-degree polynomials. The domain Σ of the
(x0, y0) Argand plane considered in each case is identical to that defined in the caption of
Fig. 4. The points correspond to raw data, and the best-fit lines (obtained using MATLAB’s
polyfit function) are used to estimate D.

performing computations for a triplet of initial conditions: (x0, y0 − ε), (x0, y0), and
(x0, y0 + ε) for a disturbance 0 < ε� O(1). If all three of our starting points lead
to trajectories converging onto the same attractor, then we say (x0, y0) does not ex-
hibit sensitive dependence on initial conditions (that is, the long-term behaviour of the
iterates is independent of ε). But if the the same attractor is not reached in all three
cases, we associate (x0, y0) with the property of final-state sensitivity (FSS) or, per-
haps more famously, the butterfly effect [5]: arbitrarily-small fluctuations at the input
lead to arbitrarily-large changes at the output. A system exhibiting this property is then
classified as being chaotic.

For a grid comprising NΣ points of which Nε test positive for FSS at a given ε, we
find that Nε/NΣ ∼ εα. The uncertainty exponent α is here defined to be α := 2−D,
where the significance of the factor 2 is that it denotes the topological, or Euclidean,
dimension of the space Σ being considered [evidently, that dimension must be 2 for
the N th roots of −1 class of problem since we are dealing with the (x0, y0) plane].
A back-of-the-envelope calculation shows that D is related to the slope of a log-log
graph, typically through

D = 2− d log10(Nε/NΣ)

d[log10(ε)]
, (5)

and where it is now sensible for ε to span decimal orders of scale. As the log-log
slope tends to zero, D → 2 and the structure of the basin boundaries is expected to
become more and more area-filling (with detail packed increasingly tightly into the
same space). Thus, D tells us how robust or stable a system is [9]; larger values are
associated with greater sensitivity to initial fluctuations and that physical attribute ap-
pears as increasing pattern complexity. A selection of log-log plots is shown in Fig. 6
for some low values of N and with ε spanning eight decimal orders of scale.

In Fig. 7, we estimate the uncertainty dimension D as a function of N . The curve
D(N) does not seem to approach the upper limit of 2, but rather it tends to flatten
out towards a limiting value of≈ 1.8 (at least across the range of N considered here).
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Figure 7. Computed uncertainty dimensionD, defined in Eq. (5), as a function of the polyno-
mial degree N for the domain matching that shown in Fig. 4. Almost exactly the same curve
is recovered when considering the domain used in Fig. 5.

Somewhat tellingly, the case of N = 2 is omitted from these results. That is because
the basin boundary in the square roots of −1 problem is a straight line (see Fig. 1)
rather than a self-similar pattern, and so the log-log plot in that case is not especially
meaningful.

A curious phenomenon begins to emerge for higher-N polynomials (typicallyN ≥
11), where self-similar distributions of circles appear within the basin boundaries.
These circles start off as quite small features, but they gradually grow in size with N
(see Fig. 8). It has not been possible to compute long-term trajectories for initial con-
ditions inside those circles: MATLAB returns a NaN (“Not a Number”) error, which
is usually the signature of arithmetic operations 0/0 or∞/∞. It is conceivable that
these trajectories ‘land on infinity’ without being attracted to that point (‘infinity’ is
known to be a repeller for N-R problems involving polynomials of arbitrary degree),
or they might return to the vicinity of the roots after orbiting beyond distances that can
be handled by MATLAB.

Final state sensitivity in Newton-Raphson
The key ingredient driving FSS is nonlinearity. A system can be classified, somewhat
generically, as “linear” when output ∝ input; for instance, zn+1 = λzn, where λ is
a constant. Nonlinear systems such as Eqs. (1)−(4), by definition, do not satisfy that
proportionality. One of the effects of nonlinearity, as we have seen in the previous
section, is to magnify the effect of initial fluctuations in quite a dramatic way.

Figure 2 is an illustration of how FSS can appear on computer when solving N-R
problems. Mathematically, we know that the solution generated by Eq. (2c) must be
indistinguishable from that obtained by Eq. (1) when y0 = 0; after all,

zn+1 = zn −
z2
n + 1

2zn
=

2z2
n − (z2

n + 1)

2zn
=
z2
n − 1

2zn
. (6)

The right-hand side is then identical to Eq. (2c) when zn is replaced by xn. However,
one is obliged to recognize that there is a small but finite difference, computationally
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Figure 8. Magnification of the basins of attraction for N = 32 across three decimal orders
of scale. Left: −2.0 ≤ x0 ≤ 2.0 and −2.0− δ ≤ y0 ≤ 2.0− δ, with δ =

√
2/100. Middle:

0.7 ≤ x0 ≤ 1.1 and −0.2 ≤ y0 ≤ 0.2. Right: 1.04 ≤ x0 ≤ 1.08 and −0.02 ≤ y0 ≤ 0.02.
Initial conditions lying in the dark blue circles give rise to numerically indeterminable trajec-
tories in the long term.

speaking, between the two numbers

X − X2 + 1

2X
and

X2 − 1

2X
. (7a)

That difference is so tiny, so close to zero, as to be almost imperceptible. For instance,
whenX = 1.8 (corresponding to the initial condition in Fig. 2), it is easy to show that

ε =

(
1.8− 1.82 + 1

2× 1.8

)
−

(
1.82 − 1

2× 1.8

)
≈ 1.1102× 10−16. (7b)

Under ‘normal’ circumstances, the fact that ε is so small is unimportant and it can
be safely neglected. But in the world of nonlinear equations (even just the N = 2
case, let alone N = 3 or beyond), it can be absolutely essential. When comparing the
solutions in Fig. 2, what we are really seeing is an effect mimicking the introduction
of tiny fluctuations at the input (strictly, at stage n = 1), and which subsequently grow
at an incredibly fast rate. Just think for a moment about the numbers involved here:
after only 100 iterations of the N-R method, an initial deviation whose magnitude is
O(10−16) has grown to dominate the solution [we also note in passing that for the
initial condition (x0, y0) = (1.8, 0), Eqs. (2a) and (2b) provide a third solution that
differs from both those shown in Fig. 2]. That simple result is a prime example of
nonlinearity—and the butterfly effect—in action.

Concluding remarks
By starting with a simple root-finding problem, we have seen that the N-R method can
give rise to enormous complexity in the Argand plane when seeking iterative solutions
to polynomial equations with N > 2. While the classic case of cube roots is no doubt
well known to many readers, it is hoped that the higher-degree cases briefly discussed
here offer something not quite so familiar, and that the estimation of the uncertainty
dimension is something new to ponder over and play with. We have also considered
the impact of finite computational precision—in essence, “a − a 6= 0”—on solving
nonlinear equations.

The topic of this article has been something of a center-piece, teaching-wise, in the
Physics Department at the University of Salford for the last decade or thereabouts.

9
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As a numerical technique introduced during computing classes, using the N-R method
for root-finding can seem rather antiquated: most modern software packages include
library routines for solving polynomial equations that yield almost instantaneous an-
swers to incredible accuracy (for instance, the roots command in MATLAB). But
we believe there is much to be gained from studying simple problems of the type
discussed here. What undergraduate student can see the striking patterns generated by
Newton-Raphson and not be immediately inspired by the profound beauty of such sim-
ple mathematics? The problem has nonlinearity, chaos, and fractals. When we inter-
pret Eqs. (1)−(4) as dynamical systems, we find a seamless merging of mathematics,
physics, and computation facilitated entirely by a feedback process that was (quoting
from Gleick’s gem) “already old when Newton invented it” [5].

Summary. We consider a systematic generalization of the well-known cube roots of−1 prob-
lem to include the N th roots. The associated fractal basin boundaries are computed, and we
also explore how sensitive this class of systems is to fluctuations at its input by estimating the
“uncertainty” fractal dimension. Other curious results are uncovered along the way.
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