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ABSTRACT 
 

The quality of life and cost of care for elderly people varies dramatically between those 

living independently and those receiving acute or long-term care, which takes place at home, 

in residential care or in hospital. The common aim of national health service providers is to 

keep elderly people safe at their own homes for as long as possible to promote independent 

living, increase their quality of life and reduce hospital costs. Hence, the application of 

autonomous sensing systems to enhance everyday life of such population will be valuable and 

has been considered here.   

Recently, Microsoft Kinect v2 has been used for gait analysis systems, to perform data 

classification of gait pattern changes based on walking speeds. This system enables the tracking 

without the need of any markers. Moreover, the Kinect camera is considered a low-cost device, 

and is quick to install, even in an unprepared environment. However, the primary challenge of 

such a device is that it provides a low data rate which leads to a decrease in the quality of 

extracted features, compared to other Motion Capture Systems (MoCap). Furthermore, in the 

data classification stage, the performance of classification is greatly affected by the boundary 

between different classes which is called decision boundary. This raises other questions such 

as: how to weight the features from the class labels, and which kind of similarity metric can be 

used.    

To improve the quality of features, the Amplitude Modulation (AM) and Convolutional 

Encoder (CE) can play a major role in detection and in ranking the gait pattern changes based 

on walking speed. For this purpose, the collected data is mapped into a higher frequency 

spectrum using the AM domain.  Consequently, the “AM-modified gait signal” is produced to 

improve the quality of extracted gait features, by increasing the level of the frequency sampling 

rate. 

In this research, the main novelty is the combination of Amplitude Modulation (AM) 

and Convolutional Encoder (CE) techniques in one system (AM/CE) in order to understand 

and identify the walking speed effects on gait parameters. The former is proposed to extract 

new gait features without the need to determine the gait cycle phases, while the latter is 

developed to classify gait data based on walking speeds. Therefore, the performance of the CE 

technique is improved efficiently in gait data classification by weighting the bit positions in 
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Hamming Distance (HD) length, which leads to an increase in the accuracy of measurement of 

the similarity metric.
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1. INTRODUCTION AND MOTIVATION  
___________________________________________________________________________ 

This chapter presents the motivation, the main aim, objectives and the contributions of the 

research. It also briefly reviews the most relevant aspects of the study.   

___________________________________________________________________________ 

1.1 Introduction  

Human gait is a clinical terminology which refers to locomotion performance during 

the walking process. Since there is a significant correlation between gait disorder and some 

cognitive diseases (Choi, Park, Lee, Yoo, Kim, Jang & Oh, 2019), gait analysis becomes a 

highly recommended approach for use in the discrimination between normal and abnormal 

gaits (Jarchi, Lee, Tamjidi, Mirzaei & Sanei, 2018). This analysis has been exploited widely in 

different applications, for instance, in rehabilitation treatments (Steultjens, Dekker, Van Baar, 

Oostendorp & Bijlsma, 2000), sports analysis (Wahab & Bakar, 2011), biomedical engineering 

(Gabel, Gilad-Bachrach, Renshaw & Schuster, 2012), and other medical purposes (Ries, 

Echternach, Nof & Gagnon Blodgett, 2009).  

Recently, a 3D skeleton for the lower body limbs was retrieved using the Microsoft 

Kinect sensors. The widespread use of Kinect sensors is due to its capability of providing the 

joints’ skeleton data without the need for markers to be placed on the body (Andersson & 

Araujo, 2015). Moreover, it is inexpensive and easy to install even in unequipped facilities. 

This make it an efficient approach for gait analysis by tracking elderly people in their homes, 

which might improve the quality of life for such residents (Soufian, Nefti- Meziani and Drake, 

2020), (Malekmohamadi et al 2018). However, one of the key challenges that exists in these 

approaches is the necessity of gait cycle identification, i.e. detection of a gait cycle phases is 

required as a first task in gait analysis. Furthermore, the use of the Kinect camera in data 

collection might affect the measurements accuracy as it is considered a low data rate device.  

In this research, many approaches have been examined (Elkurdi, Soufian & 

NeftiMeziani, 2018) for gait analysis of human walking behaviour to assess the level of the 

abnormal changes that could exist in gait pattern based on gait speed changes. Among these, 

the proposed AM/CE approach reduces the need to detect gait cycle phases, since during gait 

features extraction, it deals with the whole data collected on the AM domain. 
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 The enhancement of extracted gait feature quality is important because the efficiency 

of extracted features can affect the accuracy of data classification. For this purpose, the 

combination of AM and CE techniques in one system is performed. First, the use of AM aims 

to convert a gait length signal into AM domain (Elkurdi, Caliskanelli and Nefti-Meziani, 2018), 

which enables the signals to be modified and analysed on the higher frequency’s spectrum. 

This leads to increased accuracy of measurements especially during gait feature extraction. In 

the data classification stage, the CE technique is proposed for determining three decision 

classes by calculating the similarity matrices based on Hamming Distance (HD), where a low 

quantity of HD means a high similarity in class prediction. 

1.2 Research Motivation 

The rapid growth of the ageing population is caused by a reduction of fertility (Gavrilov 

and Heuveline, 2003). Notably, the population is ageing (over 60 years old) in most of the 

world’s regions and this is anticipated to increase in the next decades. According to the World 

Data Bank (2011-2014), the ratio of old-age dependency (65 years old or over) to working-age 

(less than 65 years old) is growing, especially within developed countries. Figure 1.1 illustrates 

the proportion of elderly people in the UK, starting from mid-1974 until 2014 for three age 

categories. It is noticeable that the number of people over the age of 85 increased by almost 

four percent in 2014.  

 

Figure 1.1:  UK Population of the Elderly from 1974 - 2014 (Source: UK National Archives). 
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For all ages, there is a tangible rise in the population over the last four decades. For 

instance, in mid-1974, thirteen percent of the population was above 75, whereas by the end of 

2014 this had increased to almost sixteen percent. The increase in the ageing population of the 

UK indicates that the human living period has become longer than ever before, with this 

achievement resulting in pride. However, with longevity, significant challenges have emerged 

due to sickness and health issues being prolonged (Brown, 2015). Therefore, of foremost 

importance is the provision of support for people during these health-related years. The 

consequences of longevity are reflected in the UK’s expenditure on healthcare.   

According to a recent report by the UK government, the largest number of hospital care 

users are the elderly, with 62% of total bed days in 2014/2015 (Humphries e al., 2016). Figure 

1.2 shows an increase in healthcare costs for people over 65 from 2006 to 2016. At the same 

time, a demand for housing is also likely to increase due to the anticipated rise of the elderly 

population. However, existing housing standards may not always meet this change in needs, 

which could lead to a critical situation. This will put more pressure on hospital unless there are 

changes that can be adapted to the new housing needs. Such housing can assist individuals to 

remain living at home, which has the greatest potential to lead to cost savings. Consequently, 

their quality of life and end of life functioning will be improved. The support can potentially 

be applied in two different ways: by improving the quality of life or by providing high quality 

medical support 

 

Figure 1.2: The UK Expenditure on Health Care for People over 65 (Source: UK Public Spending) 
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Figure 1.3 (MacIntosh et al., 2014) below, shows a correlation between the quality of 

life versus the cost of care. On the one hand, quality of life can be improved when elderly 

people are healthy, under disease prevention and living independently in their own homes. 

Whilst, quality of life is decreased if they are receiving acute care in hospitals. The cost of care 

is the highest when acute care is being received, whereas it is low for those who are healthy 

under disease prevention and living independently in their own homes. The life quality and 

cost of care varies dramatically between living independently and receiving acute care, which 

takes place in either a home or residential care. The target is to keep people safe in their own 

homes for as long as possible to promote independent living, increase their quality of life and 

reduce hospital costs. 

 

Figure 1.3: Quality of Life VS Cost of Care (Source: MacIntosh et al., 2014). 

The expenditure of healthcare and an improvement in the quality of life for older people, along 

with the longevity challenges, are driving developments in the assistive living field, where 

technologies, smart applications and machine learning are involved. From this perspective, 

Ambient Assisted Living  (AAL)  is  defined  as  “the  use  of  information  and  communication  

technologies  (ICT)  in  a  person’s  daily  living  and  working  environment  to enable them 

to stay active longer, remain socially connected  and  live  independently  into old age” 

(www.aal-europe.eu) (Monekosso et al., 2015). 

Furthermore, low-cost, technology-based solutions, including ambient living and 

remote healthcare management systems, are under development to tackle some of the aspects 

http://www.aal-europe.eu/
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of ageing. Such solutions aim to improve the quality of life and safety, while reducing treatment 

costs, as well as aiding healthcare systems to enable people to live safely in their own home for 

as long as possible. The most effective and indicative way to assess the quality of life and 

wellbeing is to track a subject’s activities, for example through the monitoring of several walk 

patterns in their own environment. This insight into their daily activities (Malekmohamadi et 

al., 2018), could help to detect frailty (Bravo et al., 2018), neurological disorders (McGough et 

al., 2013) and even Mild Cognitive Impairment (Soufian et al., 2020). The subject’s activity 

and walking speed are of paramount importance in such examinations. A person’s 

characteristics such as gait feature changes may also be monitored using a variety of sensors. 

Many studies have been conducted for gait tracking to extract gait features.  One study by Liu, 

et al., (2009) focused on the lower trunk inclination being estimated gait phase detection. The 

authors used acceleration data collected during the mid-stance of gait.  Another study used an 

accelerometer for gait tracking (Takeda, et al., 2009). The authors extracted the component of 

gravitational acceleration from acceleration data recorded during walking to calculate joint 

position. Chapter 2 provides further information on additional influential research in the fields 

of gait analysis for residential and clinical use. 

This thesis has been motivated by some global issues including the ageing population 

(Al-Yaman, 2004), diseases that are related to the elderly, a shortage of professional nurses, 

and the high financial expenditures on health care for patients and elderly care. These 

phenomena will be more complicated in the future (Zeitler et al., 2012, Soufian et al., 2020). 

However, autonomous robotic sensing systems have been adopted by researchers and clinicians 

to improve the quality of life for patients and the elderly, with some approaches being 

considered as a low cost, reliable and robust solution. Hence, this thesis proposes a low-cost, 

tech-based solution to automate gait features extraction and classification, that can be deployed 

in residential environments.   

1.3 Research Scope  

The use of walking speeds as a measure in gait analysis system, for elderly people in 

their homes is the main concern of this research. For improvement, the accuracy and reliability 

of the measurements recorded using a gait analysis system are supported by different automated 

techniques, learning algorithms and vision systems, which can provide rich information of the 

gait movement. This system can be used to improve the quality of life for elderly people, thus 

enabling them to live in their home safely and independently for as long as possible. In Timed 
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Walk Test (TWT), the measure of gait speed is highly recommended for evaluating the gait 

pattern changes. To address existing concerns, the proposed system involves multiple stages 

for collecting, smoothing, extracting and reducing the gait data, to be used in data classification 

based on walking speed.  

This study focuses on enabling elderly people, who live in a residential setting, to be 

monitored and tracked without the use of any attached devices to their bodies or video data to 

respect their privacy. The MS Kinect sensor as an efficient tool can satisfy these requirements 

and hence improve the quality of life by reducing the cost of healthcare and helping such 

environments to meet some needs of elderly people.  Unfortunately, the Kinect camera provides 

a low data rate which leads to inaccuracy in measurements. However, the use of Amplitude 

Modulation and Convolutional Encoder techniques can play a major role in gait analysis, by 

improving the quality of extracted gait features, which leads to the enhancement of data 

classification accuracy.  

1.4 Research Question  

To achieve the aim and objectives of the study, this research is primarily concerned 

with the development of a gait analysis technique using Kinect camera for the extraction of the 

most representative gait parameters that can efficiently represent changes in walk pattern. 

Furthermore, these extracted features will be used to improve the accuracy of data classification 

based on walking speeds. The research question is: 

“Can the automated gait analysis technique be used to improve the effectiveness of 

distinguishing gait pattern changes and ranking them based on walk speed, in particular when 

a low-cost, low data rate sensing device is used to collect the data?”.    

1.5 Research Aim and Objectives 

The aim of this research is to develop an autonomous gait analysis system to detect and 

rank the changes in gait pattern based on walk speed, by avoiding gait cycle phases 

determination in case of using low data rate device. Moreover, the literature showed a 

widespread belief of a relation between the changes in gait parameters and walking at speeds 

that range from slow to fast (Fukuchi, Fukuchi & Duarte, 2019). Hence, this research attempts 

to enhance the performance of a gait analysis system, using a Kinect camera by improving the 
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accuracy of gait data classification based on walk speed. To address this aim, the following 

research objectives will be covered:  

• To develop a low-cost and affordable system to track and collect the 3D skeleton 

data for the participant’s legs during walk process. 

• To select the efficient smoothing data approach among a set of filtering techniques 

for reducing the level of noise from the collected data using Kinect camera.  

• To validate the effectiveness of Kinect camera compared to high data rate camera 

systems.  

• To develop an autonomous system that can perform a timed walk test for 

investigating that, the changes in walk speed might be detected efficiently by 

increasing the quality of extracted gait data. 

•  To map the baseband frequency of gait length signal into passband frequency using 

Amplitude Modulation (AM) technique for extracting new gait features without 

requirement for gait cycle determination.  

• To use Principle Component Analysis (PCA) technique to calculate the most 

representative vectors of gait features to reduce the dimensionality of data matrix. 

• To improve the accuracy of gait data classification in different cases of walk speeds 

using Convolutional Encoder (CE) technique.  

1.6 Proposed Methods 

In this research, a combination of both the Amplitude Modulation AM and 

Convolutional Encoder CE techniques is proposed, to automatically distinguish among the 

changes of gait pattern based on walking speed using the skeletal data of lower limb movement. 

However, a smoothing and filtering process is required due to the noise level in collected data 

when using a Kinect camera. An appropriate filter is chosen based on the fast response and 

time delay. Gait cycle determination is commonly used as a first task in human gait analysis 

(Kharb et al., 2010). Though, the AM approach is used for the extraction of gait features 

without the need to determine a gait cycle. Kinematic and spatiotemporal gait features are 

employed to extract the major of gait features. In addition, the performance of Amplitude 

Modulation (AM) technique in gait feature extraction is evaluated compared to traditional 

methods. In the dimensionality reduction of gait features, a Principal Component Analysis 
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(PCA) is used to reduce the matrix dimension of extracted features, where feature vectors are 

selected based on eigenvalues that offer a more representative pattern. During the classification 

stage, several supervised classifiers are used to classify the gait pattern changes. Moreover, use 

of the Convolutional Encoder (CE) technique is proposed, to classify the extracted gait features 

according to their changes in the gait pattern, then its accuracy is compared to a set of 

supervised classifiers. Finally, different evaluation metrics are applied to evaluate the accuracy 

of the whole proposed system. 

1.7 Research Contribution 

The major contribution of this research is to explore autonomous gait tracking 

techniques that can be effectively used for distinguishing gait pattern changes based on walk 

speed. The specific expected contributions will include:    

• Identification of the best smoothing technique among six filters, for the reduction 

of the noise from skeletal positional data that is collected by a Kinect camera, by 

using correlation coefficients and fitting curve approaches for input and output data 

of filters. 

• Investigate the effectiveness of extracting gait features using Amplitude 

Modulation technique comparing to Frequency Modulation technique in case of a 

low-data rate of sensing device.  

• Introduce a new technique called Amplitude Modulation for extracting new gait 

features without need to determine gait cycle.  

• Building a full system of autonomous gait analysis called (AM/CE) for detecting 

and ranking the gait pattern changes based on gait speed.  

1.8 Thesis Structure 

This thesis contains six chapters. Chapter 1 has presented the main topics that launched 

the study by introduction and motivation. Followed by the research problem and scope, 

addressing the main aim and objectives. Finally, proposed methods that will contribute in 

solving some problems and study structures.  

• Chapter 2: Effects of Walking Speed on Gait Parameters  
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Chapter 2 reviews the walking speed effects on gait parameters. Contents; a general description 

of elderly care in a residential environment for increasing the quality of life, where gait analysis 

is being adopted using sensing technologies and smart approaches.  

• Chapter 3: Literature Review 

The purpose of this chapter is to review the most relevant subjects for this research by exploring 

previous studies. This review also involves the use of a Kinect camera in gait analysis. The 

main topics include; 3D positional skeleton data collection, several techniques that were used 

in smoothing and filtering the skeleton data, a summary of gait cycle detection, a 

comprehensive guide to the extraction of gait features (i.e. kinematic and spatiotemporal gait 

features), reduction of gait features matrix, and gait pattern classification based on gait speed 

changes.     

• Chapter 4: Implemented Methods and Proposed approaches 

Chapter 4 demonstrates the methods and approaches that will be used for obtaining the results, 

with the proposed methods be derived mathematically in steps and explained through 

examples. 

• Chapter 5: Results and Discussion 

This chapter describes the aim of the experiment and the collation of results, which are 

illustrated in figures and tables. An analysis of the results is explained at the end of each 

experiment separately. 

• Chapter 6: Conclusion and Recommendations 

Chapter 6 concludes with a summary of the findings, then offers research recommendations 

and issues with potential future work, that could be followed up in future research projects. 
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2. THE EFFECTS OF WALKING SPEED ON GAIT 

PARAMETERS 
__________________________________________________________________________________ 

This chapter explains the effects of walking speed on gait parameters during feature extraction.  

In addition, gait analysis use in certain environments are reviewed, including residential living 

and a clinical walk test for the elderly using a Kinect camera. 

__________________________________________________________________________________ 

2.1 Introduction  

Gait speed is a common measurement across several gait assessment tests, which is 

used to describe and rank walking ability. For instance, a Timed Walk Test (TWT) is a clinical 

approach used to assess gait performance, where the walk speed is an essential measure. 

Although such tests are considered as subjective assessments, the use of these approaches with 

supporting technological tools could assist in making decisions. Especially for the elderly who 

prefer to live independently. Moreover, Ambient Assisted Living (AAL) is designed to 

improve the quality of life in such environments. Particularly when a residential setting does 

not have a  medical license. Consequently, the cost of healthcare can be reduced, and the quality 

of life could be improved. In addition, an objective assessment can be provided by introducing 

technologies which may aid clinicians to make decisions, rather than relying on the use of a 

subjective assessment. Therefore, this study proposes to automate a gait analysis system that 

can be used efficiently during the detection and classification of gait pattern changes using a 

Microsoft Kinect V2, which may contribute to the improvement of the quality of life for the 

elderly, who prefer to live in their own home.   

2.2 Gait Parameters Changes due to Walking Speeds 

Human gait analysis is an attractive field of study for many researchers and clinicians 

at present, especially with the use of a vision tracking system. This analysis involves 

measurement, compression, description, classification and assessment of the changes in gait 

pattern (Ghoussayni, Stevens, Durham, & Ewins, 2004). It is commonly used to detect gait 

phases, extract the kinematic and spatiotemporal gait parameters, and classify the gait data.   

Notably, walking speed is a fundamental evaluative tool in gait assessment (Robertson, 

Parsons, Sidtis, Hanlon Inman, Robertson, Hall & Price, 2006). In fact, the biomechanical 



11 
 

variables are correlated to the changes in gait speed such as kinematics gait features, kinetics 

gait features, spatiotemporal gait features, muscle activity and ground reaction forces (GRF) 

amongst others. In this context, numerous studies have been explored, which explain the effects 

of walking speed on gait patterns in different fields of gait analysis. For example, (Jordan, 

Challis & Newell, 2007) clarified the fluctuation of gait cycle parameters (interval & length of 

step & stride gait) due to walking speeds. While, (Ardestani, Ferrigno, Moazen & Wimmer, 

2016) investigated changes in cadence and stride length because of gait speed changes from 

slow to fast by using joint movement from the lower extremity. Furthermore, spatiotemporal 

gait features showed speed-dependency for distinguishing between healthy and unhealthy 

people, who live with bilateral vestibulopathy (BVP) (McCrum, Lucieer, Van De Berg, 

Willems, Fornos, Guinand & Meijer, 2018). It was explained that the most significant 

differences were at slower walking speeds with temporal and sagittal plane spatial gaits, while 

frontal plane spatial gait variability was demonstrated at faster walking speeds.   

Clinically, a walk speed is used as a measurement for gait assessment in many 

approaches of Timed Walk Tests. For example, Behrens, Pfüller, Mansow-Model, Otte, Paul 

& Brandt (2014) assessed 22 patients with MS disease, nine of whom were males. A Kinect 

sensor was placed 2m in front of the patients to measure gait speed. The author was then able 

to determine an acceptable correlation between the gait speeds measured using a Kinect and 

the clinical measurements. The tracking of the lower body joint movements was conducted 

using skeletal data. Furthermore, Galna, Barry, Jackson, Mhiripiri, Olivier & Rochester (2014) 

tested 9 people with Parkinson’s disease, three of whom were male. The authors measured the 

up/down displacement of the knees within the movement timing and spatial displacement using 

skeletal data.   

2.2.1 Timed Get Up and Go (TUG) 

 

TUG is a timed test commonly used to measure an elderly person’s ability to turn 

around 180° (Podsiadlo & Richardson, 1991), where functional mobility, walking balance and 

the ability to stand to sit and sit to stand are also considered. In this assessment, a person is 

instructed to stand up, walk forward 3 meters, turn around 180°, walk back and sit on the chair 

(Dubois, Bihl & Bresciani, 2017) see Figure 2.1 below for more details.  
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Figure 2.1:  Timed-Up & Go Test 

If the participant can complete this task in 11 to 20 seconds, this can be considered normal 

(Shumway & Woollacott, 2007). However, Shumway-Cook, Brauer & Woollacott (2012) 

suggest that more than 30 seconds to complete the TUG test could mean that the participant 

may be at a fall risk. While, Straudi, Martinuzzi, Pavarelli, Charabati, Benedetti, Foti & 

Basaglia (2014) used TUG for 10 subjects with MS disease to assess their mobility. Moreover, 

further research was carried out by Vernon, Paterson, Bower, McGinley, Miller, Pua & Clark 

(2015) who compared data that was measured by a Kinect to clinical test measurements. The 

Up and Go test (TUG) was used as a clinical timed test. Thirty participants were recruited aged 

between 15 to 68 years, 21 of whom were male. In this case, the Kinect showed excellent 

association with the TUG’s clinical test.   

2.2.2 Timed 25-foot walk (T25FW) 

The T25-FW test is managed for walking speed assessment (Hubbard, Wetter, Sutton, 

Pilutti & Motl, 2016). In this test, participants are instructed to walk as fast as possible, but 

safely. This is done over a 25-feet carpeted surface (Fischer, Rudick, Cutter, Reingold & 

National MS Society Clinical Outcomes Assessment Task Force, 1999). The time taken is 

recorded for participants over two trials. The average completion time over two completed 

trials is the score for the T25-FW, and this average can be converted into walking speed 

(Kieseier & Pozzilli, 2012). Management of the T25-FW test covers trials 1&2 and the 

recording of the report form. In trial one, the subject should be instructed to walk from the 

starting line, and to finish the task of safely walking 25 feet as fast as possible. The departure 

time is recorded from the starting line till arrival at the finish line, which are considered as 

begin time and stop time respectively, as shown in Figure 2.2 below. In trial two, the subject 

must repeat the same instructions as trial one when he/she reaches the second line. To complete 

the record form, completion time of the two tasks together (trials 1 and 2) can only be recorded 

as a successfully completed task.   
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Figure 2.2: Timed 25-Foot Walking 

  
Several methods have been introduced to determine a clinically significant change in 

this measurement. For instance, a range of values has been developed for the T25-FW to assess 

changes in walk-time. Examples include changes of gait features that occur during an 

exacerbation of multiple sclerosis. Ries, Echternach, Nof & Gagnon Blodgett (2009) suggest 

that an increase in test score may indicate a significant gait feature change. Moreover, the T25-

FW has been considered as a reliable test, especially in longitudinal studies with different 

physicians assessing patients (Freedman, Patry, Grand'Maison, Myles, Paty & Selchen, 2004). 

In the same context, Clark, Vernon, Mentiplay, Miller, McGinley, Pua & Bower (2015) 

compared Kinect data to clinical test measurement. A 10m walking test was used as a clinical 

assessment. Thirty participants were recruited, nine of whom were females, to measure step 

length and gait speed by using one Kinect sensor to provide the skeletal data.   

2.2.3 Multiple Sclerosis Walking Scale (Rating Scales) 

Gait velocity is described as an important primary tool in Multiple Sclerosis (MS) 

clinical assessment by the National Multiple Sclerosis Society’s Clinical Outcomes 

Measurement Task Force (Fischer et al., 1999) & Robertson, Parsons, Sidtis, Hanlon Inman, 

Robertson, Hall & Price (2006). One standard scale for MS is the Expanded Disability Status 

Scale (EDSS). The use of this scale is to classify disability levels (for further details see Figure 

A.1 in appendix A), which have a numerical range from 0 to 10 for patients with MS (Kurtzke, 

1983). While, the Hauser Ambulation Index (AI) is another scale for patients with MS to assess 

ambulation-related disability (Hauser, Dawson, Lehrich, Beal, Kevy, Propper & Weiner, 

1983). However, the AI scale provides outcomes in walking speed assessment for patients at a 

more reliable level than the EDSS (Schwid, Goodman, Mattson, Mihai, Donohoe, Petrie & 

McDermott, 1997).  
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Another clinical scale is the 12-item MS walking scale (MSWS-12) which is a self-report for 

individuals who have Multiple Sclerosis (Allen, Diane, Bennett, Brandfass, Pittsburg, 

Stratford, Widener & Flint, 2011). The MSWS-12 is highly recommended for patients with 

Multiple Sclerosis to assess their walk ability with five levels: 1 means no disability, while 5 

means extreme disability (see Table A.1 in appendix A).  

The Multiple Sclerosis Evaluation Database to Guide Effectiveness (EDGE) task force 

outlines 63 outcome measurements (OMs) (Potter et al., 2014), (see Table A.2 in appendix A). 

These OMs cover the list of recommended tests for patients with MS including T25-FW, TUG, 

and MSWS-12. These tests and scales use the Timed Walk Test and the ‘ability of walk’ as a 

primary tool for achieving the assessment. For this purpose, the use of a marker-less based 

vision system in walk assessment is adopted for this research. Particularly for use in a home, 

or even a clinical setting, as this may enable the automation of gait feature extraction, which is 

required for improvement in measurement accuracy.   

2.3  Residential Care for Elderly People  

Assisted living facilities and nursing homes provide services such as personal care and 

medical amenities. However, residential homes (or assisted living facilities) are not licensed to 

give nursing care. Typically, an assisted living facility is a place where elderly people live, and 

where they receive help in the activities of daily living (Helal & Abdulrazak, 2006).   

Assisted living facilities do not include licensed nurses nor do they have any connection 

with nurses. These settings are considered as non-medical services. Even if nurses are available 

amongst the staff of an assisted living facility, the nurse cannot carry out the duties of nursing, 

such as administering oxygen, insulin, or other clinical jobs. Assisted living facilities are 

organized by the state Department of Social Services (Zimmerman, Scott, Park, Hall, 

Wetherby, Gruber-Baldini & Morgan, 2003), (Zimmerman & Sloane, 2007). Whilst, nursing 

homes are organized by the Department of Health. However, the population of these settings 

continues to grow and includes residents with dementia diseases, which can have a 

demonstrable impact on assisted living facilities. A study conducted by the National Academy 

on an Aging Society (2000), reports that almost 4 million USA residents aged 65 years or over, 

have Alzheimer’s disease. Furthermore, it states that this number is predicted to triple by 2050. 

Additionally, another study reported that the amount of people who live in a residential setting 

with mental diseases such as dementia had reached at least half of the total population (United 

States General Accounting Office, 1997).  
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In other words, it is possible to surmise that some assisted living communities have 

become places for people who live with dementia or Alzheimer’s disease. According to a study 

that conducted a visit to 22 random assisted living places, research showed that two out of the 

three residents living there had Alzheimer’s disease (Rosenblatt, Samus, Steele, Baker, Harper, 

Brandt & Lyketsos, 2004). In the same context, another study recorded that out of every three 

residents, one had a cognitive impairment, ranked between moderate to severe (Hawes, 

Phillips, Rose, Holan & Sherman, 2003). Recently, some studies have also reported that 

diseases such as MS and Parkinson’s, which are associated with ageing, may decrease an older 

person’s independence of their daily living needs. Moreover, the ageing population is 

increasingly becoming a larger part of the population. Subsequently, home care approaches 

will not be sustainable. However, sensing technologies have been introduced to develop 

“Assistive Environments” that aid the elderly and enhance their quality of life, with safe and 

independent environments.  

Consequently, there is a need to address the problem from both a societal and economic 

standpoint. As support can be driven into either increasing the quality of life or providing high 

quality medical support. For instance, Fried, Cwikel, Ring & Galinsky (1990) designed the 

“Extra-Laboratory Gait Assessment Method” or ELGAM, which was designed to assess gait 

in the home or in an outpatient setting, with the gait speed measured by stop-watch. However, 

these clinical tests are considered as semi-subjective assessments, as they are carried out by 

specialists who assess a patient’s gait through observation of their walking.  

One such support system is Ambient Assisted Living (AAL), which has been adopted 

to play a major role in the assistance of elderly people within a low-cost environment with 

continuous social communication. Ambient Assisted Living is an area where sensors can be 

involved to create an intelligent environment for ageing or cognitively impaired patients, thus 

enabling them to stay independent, safe and active for longer in their preferred environment 

(Monekosso, Florez-Revuelta & Remagnino, 2015). A walking analysis is explored in such 

environments specifically to detect falling (Lombardi, Ferri, Rescio, Grassi & Malcovati, 

2009). This can contribute to an increase in the quality of life and a cost reduction for public 

health systems (Kleinberger, Becker, Ras, Holzinger & Müller, 2007).  Research in the AAL 

community has covered a large range of studies. Notably, most research has been conducted in 

the area of human activity recognition and behaviour comprehension, with the objective of 

detecting activities within an environment. Furthermore, the recognition and detection of 

events is an important topic in AAL solutions. One example is fall detection, where wearable 
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sensors have been widely used for detecting falls, but one limitation is that they must always 

be worn. More recently, researchers have included optical sensors in assisted living 

environments. However, the challenges of the optical sensor include clutter, obstruction and 

other noises. Moreover, statistics show that the largest number of falls has been recorded in the 

bathroom, a location where privacy concerns are highest. To tackle this issue, Infra-Red IR 

sensors are used for privacy-aware techniques.     

2.4 Sensor Technologies 

Gait speed assessment has been experienced widely using different kinds of sensors. 

Recently, vision-based tracking with marker-less systems has been involved in research that 

aims to track human movement data in real-time. Whilst, different sensor technologies have 

been used in the tracking of human movement. Examples include inertial, marker and RGB/IR 

sensors.   

2.4.1 Non-vision-based Tracking System  

In non-visual based systems, sensors are attached to parts of the body to collect data on 

position and velocity (Zhou & Hu, 2008). These sensors can be classified as inertial, acoustic, 

magnetic sensing, mechanical and RF sensing. The advantages and limitations of these sensors 

are dependent on the sensor type. Limitations include frequent battery operations and 

replacements, along with modality-specific, measurement-specific and circumstance-specific 

issues (Zhou & Hu, 2004). For example, as part of inertial sensors, accelerometer sensors (also 

known as inside-out systems) are employed on an object to sense an external source (e.g. the 

earth's gravitational field as reference) to provide information in 3D. However, the limitation 

of this system is its dependence on an external source. In addition, an accelerometer suffers 

from ‘drift problems’ during measurement. For example, when the accelerometer estimates 

location or velocity, a drift might take place due to sensor noise or offsets. Consequently, 

additional correction is required throughout the tracking process (Bouten, Koekkoek, Verduin, 

Kodde & Janssen, 1997). Furthermore, resolution and signal bandwidth are normally limited 

by the interface circuitry (Bouten et al., 1997). 

2.4.2 Vision Based Tracking System  

The vision system-based tracking system can be categorised into two parts: vision-

based tracking, with and without markers. In the former part, optical sensors (cameras) are used 



17 
 

to track and monitor human movements, which are captured by placing markers (identifiers) 

on the parts of the human body involved. Examples include a Vicon camera. As skeletal human 

movement is highly articulated, rotations and twists require full 3D movement tracking (Bray, 

2001). This system has been used successfully in biomedical fields (Delahunt, Monaghan & 

Caulfield, 2007), where it enables the participant to move continuously in and out of the camera 

view. Consequently, this leads to consistent and reliable tracking of the human body. However, 

one major limitation of vision sensors with markers is that they cannot be used outside 

laboratory environments. This leads to difficulty in preparation and installation; therefore, such 

systems are unsuitable for unstructured clinical and residential settings. In addition, this kind 

of system suffers from obstruction and ghost problems due to interference (Sullivan, Eriksson, 

Carlsson & Liebowitz, 2002).  

In the second category, which is vision-based tracking with marker-less systems, 

computer vision algorithms are employed with an inexpensive camera to estimate the position 

data of human gait (Andersson & Araujo, 2015). Use of these sensing technologies adds 

another dimension to traditional RGB cameras, which is an RGB-Depth device, such as the 

Microsoft Kinect, thus providing a robust solution to infer 3D scene information regarding 

human gait analysis through continuous-projection onto a screen.  In later sections, more details 

will be provided on the principal work of marker-less vision-based tracking systems.   

2.4.3 Microsoft Kinect Sensor Based Depth Data 

Basically, Microsoft Kinect is a set of devices that work together to make it a powerful 

product (Lachat, Macher, Mittet, Landes & Grussenmeyer, 2015). The Kinect contains a colour 

camera, depth sensor (IR camera & IR projector) and four microphones, as can be seen in 

Figure 2.3 below. The Kinect can be used for motion sensing and tracking, as well as capturing 

and interpreting full-body movements. Consequently, researchers quickly realized that the 

Kinect could be used for purposes other than games (Zhang, 2012). 

 

Figure 2.3: The Main Components of Microsoft Kinect 
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Due to the Kinect’s depth sensor and low cost, it can be used in different fields. One 

example is the detection and tracking of skeleton joints. The depth camera sensors make it 

possible to obtain the depth data of an object’s parts in a scene. The information is provided by 

the RGB-D camera, where each pixel has information on the estimated distance from the RGB-

D camera to a certain point on the object. The pixels’ location can be formed in frames (30 

frames per second). The position information from the RGB-D sensor allows the tracking of 

several human body joints (25 joints with Kinect V2) in 3D as shown in Figure 2.4 below. The 

skeleton joint positions can be acquired by the MS Kinect using the MS Kinect SDK, which is 

a middleware framework. In recent years, depth cameras have commonly been used as sensors 

to capture depth images in real time (frame rates). In this section, some of the studies that have 

involved the capturing of depth information using a Microsoft Kinect in their applications will 

be reviewed.   

    

              

(a) 

 

(b) 

Figure 2.4: Human Body Joints: (a) Skeleton of Human Body (b) Hierarchal Human Body Joints 
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One example of application is provided by Aitpayev & Gaber (2012) who used MS 

Kinect for collision objects (human body parts) in augmented reality. The author developed the 

new Kinect SDK to improve the accuracy of skeleton motion recognition. In the same year, 

Tong, Xu & Yan (2012), proposed skeleton animation motion data based on the Kinect. The 

joint position data was captured first, followed by a joint rotation calculation to enhance the 

3D model. The author designed a low-cost system for 3D motion, but jittering was observed in 

the implementation process. Furthermore, Zeng, Liu, Meng, Bai & Jia (2012) presented a 

technique of motion capture and reconstruction using depth information from the Kinect. This 

method was based on a model of the human body reconstructed using 3D motion. The authors 

recorded high accuracy of human motion and posture with low latency in the system process. 

Although noise and errors are usually generated during the process of data acquisition, this 

issue is solvable.  For instance, Ma, Xu & Liu (2011) collected 3D positions of human joints 

in real time using the MS Kinect, and then rotation matrices were computed for those joints. 

The authors obtained a target skeleton for animation of 3D characters. Significantly, the noise 

and errors in joint position were removed. 

Notably, using multiple Kinects instead of a single camera increases performance and 

reliability. For example, Tong, Xu & Yan (2012) designed an algorithm for scanning a 3D 

human body using low cost devices such as the Kinect. The authors were able to deal with the 

interference phenomenon and obstructions using multiple Kinects. However, the 

reconstruction model quality was still poor, due to the low accuracy of the depth data captured. 

Specifically, skeleton tracking techniques were studied using different technologies that were 

either marker based or without marker data vision. For instance, the following studies adopted 

sensing technology for skeleton tracking using both methods (markers/marker-less). One study 

was carried out by Fern'ndez-Baena & Lligadas (2012) who conducted a comparison of the MS 

Kinect with another visual motion capture device (Vicon) for the validation of human body 

joint movements (upper/lower) for rehabilitation treatments. In this case, it was demonstrated 

that the accuracy of the Kinect was less than that of the Vicon. However, the Kinect is still 

beneficial as it is marker less, portable and has a low-cost. 

2.4.4 Gait Analysis using Microsoft Kinect Sensor 

The use of a Kinect camera as a gait analysis instrument has emerged in the last few 

years as an attractive tool in marker-less vision-based tracking systems. Moreover, recent 
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studies have suggested that the Microsoft Kinect can be exploited to estimate spatiotemporal 

gait parameters (Clark, Bower, Mentiplay, Paterson & Pua, 2013), and gait kinematics features 

(Gabel, Gilad-Bachrach, Renshaw & Schuster, 2012).   

Gait analysis has been explored widely by researchers and clinicians, with the focus on 

gait feature extraction, which can explain gait pattern changes. One study by Clark et al., (2013) 

used skeletal data to assess the gait step time, gait speed, gait step length, gait stride time, gait 

stride length and velocity of foot swing for twenty-one participants. More accuracy for stride 

length, step length and gait speed were observed than for the other parameters. Another study 

by Mentiplay, Perraton, Bower, Pua, McGaw, Heywood & Clark (2015) used 3D skeleton data 

for thirty participants. They placed the Kinect in front of the subjects, to test gait velocity, speed 

variability, length/width of step gait, swing leg duration, and displacement of the pelvis. The 

flexion for ankle/hip, and flexion/adduction for the ankle were also measured. Furthermore, 

Xu, McGorry, Chou, Lin & Chang (2015) recruited twenty participants, half were male, to 

assess gait cycle parameters such as stride time, step time, swing time, stance time and double 

limb support time. The joint angles of the hip and knee during a gait cycle were also measured. 

Notably, the measurements of step time, stride time, and step width were more accurate when 

compared to the measurements of the Kinematic parameters. In addition, Auvinet, Multon & 

Meunier (2015) computed the largest distance between the knees to estimate heel strike events. 

Eleven participants were recruited using depth data provided by the Kinect, which was placed 

2m in front of the subjects. 

Many studies have attempted to exploit the MS Kinect in gait analysis, particularly in 

clinical tests. For example, Pfister, West, Bronner & Noah (2014) positioned a Kinect sensor 

on the left of the participants at  45° to the treadmill. This was carried out on twenty 

participants, to measure the peak angular displacement for hip and flexion / extension of knee 

and stride time, using skeletal data. The measurements of the Kinect for the knee were more 

accurate than for the hip. Although this study recorded outcomes that were insufficiently in 

agreement with the clinical tests, recent research has recorded acceptable results in comparison 

with clinical timed walking tests.  

2.5 Summary  

The ageing population is increasing more than ever before, and it is expected to rise in 

the future, therefore the demand for elderly housing care will be higher. One significant 
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challenge is whether existing housing facilities will still meet the changing needs of the 

residents. Moreover, studies have reported that many of the residents who live in residential 

care suffer from dementia diseases. However, support can be reached by increasing the cost of 

healthcare or by improving the quality of life. In other words, there is a trade-off between acute 

care cost and the quality of life. The latter can be adopted and improved by enabling the elderly 

to live in their own homes independently and safely for as long as possible, this could 

dramatically decrease the cost of healthcare.  

AAL is defined as a solution for improved quality of life, it involves technologies, smart 

systems and automated approaches being incorporated into assisted living environments. In 

this context, the use of a gait analysis system is highly recommended as a tool for walk 

assessment, especially based on the evidence that supports a correlation between walking 

speeds and changes in gait parameters. This means that a gait analysis system can contribute 

to the improvement of the elderly’s quality of life. In addition, an MS Kinect camera can be an 

efficient tool in assisted living environments, as it provides various benefits such as being 

marker-less, low-cost, quick to install even in an unequipped environment and can be used as 

a privacy aware system. 
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3. LITERATURE REVIEW 

___________________________________________________________________________ 

This chapter reviews one of the most state-of-the-art devices available for exploration into gait 

analysis – a Kinect camera, which focuses on skeletal data for gait spatiotemporal analysis. In 

addition, it identifies and describes the approaches and algorithms used for the extraction and 

classification of gait features.     

___________________________________________________________________________ 

3.1 Introduction 

A vision-based tracking system without markers plays a crucial role in gait analysis. 

This low-cost system provides vital and rich information. Moreover, the tracking of system-

based 3D skeletal data can be achieved without the attachment of any kind of devices to the 

body, and it is quick to install even in a non-equipped place. Hence, its overall contribution is 

a reduction in the cost and complicity of the measurements and analysis. The processing of 

skeletal data for gait analysis is applied in several stages to build a complete system that can 

collect, smooth, extract and classify gait features. The purpose of this system is to distinguish 

among the gait pattern changes due to walking speeds. 

Gait feature extraction plays a major role in the next stages of the system, as the quality 

of the extracted features can affect performance at the data classification stage. Several 

techniques are conducted for gait feature extraction, with the challenge being how to address 

the extracted features that can enhance classification accuracy. For this purpose, the extraction 

approaches can be defined as efficient, robust and reliable if they can improve the performance 

of the classification stage. In addition, the dimension of the gait features matrix can be reduced 

to improve gait feature quality. Using the data reduction technique, the vector features that 

have a high percentage of variance will be selected. For example, a Principal Component 

Analysis (PCA) is commonly used in feature reduction solutions, based on eigenvalues and 

eigenvectors, to determine the high representative feature vectors. During the classification 

stage, several techniques are employed in gait pattern classification. To test the unseen data, a 

Cross-Validation (CV) approach is commonly used with supervised classifiers, where a k-fold 

CV is highly recommended as it guarantees that each point of data can be used as a training 

and testing set without overlapping.    
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This chapter is organised into several sections to describe the main stages of the gait 

analysis system. First, skeletal data collection is presented in section 3.2. Then, section 3.3 

provides a brief overview of the pre-processing techniques for smoothing and filtering noisy 

data from skeletal data. After that, section 3.4 gives an overview of human gait cycle 

determination including the main sub-phases that form one complete gait cycle. While, gait 

feature extraction and reduction are shown in sections 3.5 and 3.6 respectively. Then, data 

classification of the gait pattern changes is detailed in section 3.7, and section 3.8 details the 

most suitable evaluation metrics for classifier performance, while cross validation techniques 

are provided in section 3.9. Finally, this chapter is summarised in section 3.10. 

3.2  Skeletal Data Collection  

MS Kinect provides several data types that can be employed in a gait analysis system 

by tracking human movement in a 3D space. The RGB-D information and 3D skeleton data 

are broad categorizations of the Kinect’s sensor data (Han, Reily, Hoff, & Zhang, 2017). In 

this section, 3D skeleton data will mainly be reviewed, because the proposed system is built to 

investigate changes in walk speed that can affect gait parameters using this data. Specifically, 

for spatiotemporal and kinematics gait parameters.  

Significantly, 3D skeleton data can be collected using a Kinect camera, to extract gait 

features for classification of gait pattern changes based on walking speeds. For example, one 

study recruited twenty healthy participants to walk on the treadmill, while both systems (Kinect 

sensor and motion capture system) tracked the kinematics data of body joints. The aim was to 

extract knee and hip joint angles, where the frame error rate of the heel strike estimation was 

0.18 and 0.3 for the right and left leg, respectively. Whilst, the average toe off frame errors 

estimation was 2.25 and 2.61 across three different walking speeds of 0.85, 1.07, and 1.30 m/s 

(Xu, McGorry, Chou, Lin & Chang, 2015). In a similar context, 21 healthy subjects were 

instructed to walk at maximum speed as much as possible and safe, then the spatiotemporal 

gait parameters were extracted from collected data using both a Kinect and gold standard 

device. The results showed that there was a high correlation of (ICC ≥ 0.888) in the case of one 

Kinect, however the correlation rate improved when multi-Kinects were used (Geerse, Coolen 

& Roerdink, 2015). 

 Furthermore, an accuracy evaluation of 3D Kinect data in spatiotemporal gait analysis 

was investigated by (Dolatabadi, Taati & Mihailidis, 2016), where the GAITRite system was 

included as a comparable tool and gold standard, under three walking conditions, including the 
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usual, dual task and fast walk. The results of the agreement showed at 95% Bland-Altman 

limits for the Kinect as a valid tool in spatiotemporal gait analysis during three conditions. An 

excellent correlation (ICC2,1 = 0.98), and strong reliability were exhibited among the walking 

types (ICC3,1 > 0.73).  

3.3  Smoothing and Filtering Data Techniques  

The skeletal positional data, that is tracked and collected by a Kinect camera during a 

human walk, is known as a dynamic problem. The captured information is always described as 

noisy data due to numerous conditions including obstruction by other objects; people or 

furniture, other body parts known as self-occlusion, and the movement of a joint outside the 

captured area. In most of these cases, the marker-less skeleton tracking system is still able to 

track the position of the joints’ movements. However, even though the corrupted data might be 

improved with higher quality sensors, it is not possible to eliminate all noise. Hence, in practice, 

an error rate reduction or a smoothing data approach is often desirable. In this section, a list of 

the different filter techniques, that are commonly used for smoothing skeleton data and 

reducing noise and errors from the original data, will be included.  

3.3.1 Moving Average Filter   

This filter is the most popular smoothing data technique, it is a simple low pass 

structure, that acts to meet the engineers’ requirements for solving unwanted components of 

collected data. This technique uses a certain sized window width that is shifted instantaneously 

over the data from one instant point to the next. The average value of points in that window is 

instead of each data point. In addition, this technique can be applied as multi-filters to run all 

at once and increase the smoothness rate. For instance, Cai, Wu, Xiang, Zhong, He, Shi & Xu 

(2012) used a cascaded average moving filter to remove the baseline wander from knee joint 

vibration signals. The desired signal was sampled at 2 kHz, and then it was converted into 

digital form. The experiment demonstrated an efficient smoothness of data at the output of the 

cascaded moving average filter when compared to the original data. Whilst, Meanwhile, Putz-

Leszczynska & Granacki (2014) showed a smoothed signal of the right foot compared to the 

original signal, using a moving average filter that was tuned to a window length equal to 5 with 

all weights equal. In the context of noise and latency, a moving average filter suffers from 

latency at its output due to the filtering data process. One case study by Casiez & Vogel (2012) 

compared a moving average filter and a proposed algorithm called “one-euro filter” for filtering 
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efficiency with less delay. The result showed that the effectiveness in lag reduction was 25% 

more than with the proposed filter.  

3.3.2 Exponential Moving Average Filters  

An EMA filter is a kind of moving average approach that acts based on the exponential 

weighted moving average of the most current data elements. However, the equal weighted 

moving average is applied by a simple moving average filter.  Hence, this filter is known as an 

exponentially weighted moving filter. In other words, an exponential window is designed to 

exponentially decrease weights over time. Whereas, the weight values in a simple moving 

average filter are designed to be equal. There are many studies that have used this technique 

for smoothing 3D skeleton data, collected using a Kinect camera. One study by Adjeisah, Yang 

& Li (2015) applied an exponential filter to smooth skeleton joint position data. This research 

produced a graph with the tracking results being smoothed with less latency. However, the 

response of a smoothed curve still had slow tracking especially when the curve was turned up.  

3.3.3 Median Filter 

This filter is also known as a moving Median filter; where the output is calculated from 

the median of the points inside the window, with the window size equal to 2𝑁 + 1 (Qiu, 1994). 

A Median filter is commonly used for the elimination of running spike noises (Harres, 2013). 

In the context of a latency problem, it suffers from a time delay regarding its response to input 

data, where the lag is proportional to the length of 𝑁. However, the filter effectiveness in 

eliminating spike noise depends on the length of 𝑁, which should exceed the spike noise peaks 

(Liu & Shibata, 2008). In other words, the latency of the Median filter is correlated directly to 

the size of 𝑁. Another limitation was reported by Feuerstein, Parker  & Boutelle (2009), who 

established that the Median filter has slow computation due to the process of ascending or 

descending order. While, for image processing, Verma, Singh & Thoke (2015) examined the 

effectiveness of maintaining edge, and a signal to noise ratio, among a set of filters, with the 

results confirming an efficient performance with a Median filter in SNR improvement but less 

performance in preserving edge.       

3.3.4 Savitzky–Golay Filter 

This filter is also called a smoothing polynomial filter or a least square smoothing filter 

(Duong & Choi, 2013). It fits a polynomial to neighbour data point 𝑗 for each input 𝑥𝑗 in a 
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least-squares sense and uses the value of the polynomial at time 𝑛 as the filter output. A 

polynomial of order K is defined to be less than the window size (Isnanto, 2011). Several 

studies have applied this technique for filtering the noisy data of body joints that have been 

collected from different sensors. That is to say, the GS filter works within the window size 

similarly to the function of a moving average filter. In addition, the high order of the polynomial 

set is involved for the least squares fitting (Romo-Cárdenas, Avilés-Rodríguez, Sánchez-

López, Cosío-León, Luque, Gómez-Gutiérrez & Navarro-Cota, 2018).  For each data point 𝑗, 

the least squares fit a polynomial within the size of the window (2L+1) points.  

The effectiveness of the SG filter in data smoothness for different collected data was 

studied by Ojaniemi (2016) who used a SG filter for processing noisy data collected from both 

an inertial and visible sensor. The research compared knee angle data that had been computed 

from different sensors, and the results showed the filtered data in almost similar shapes. 

Meanwhile, in the context of data classification, Ťupa, Procházka, Vyšata, Schätz, Mareš, Vališ 

& Mařík (2015) employed an SG filter for smoothing joint position data to detect the gait 

pattern changes for patients with PD, with the results revealing an achievement accuracy of 

97.2%.  

In addition, the efficiency of an SG filter in the improvement of action recognition, was 

demonstrated by Mendez et al., (2017) who proved that the accuracy of action recognition was 

enhanced by more than 15% when filtering approaches such as the Savitzky-Galoy and Kalman 

were included with feature reduction techniques as part of their proposed system. The 

effectiveness of the SG filter in the smoothing performance, while maintaining the shape of an 

original signal, was examined through a comparison with the other filters; including the moving 

average and local regression. Notably, the results showed that the SG filter was the best, 

especially when the polynomial degree was nine (Bassey, Whalley & Sallis, 2014).     

3.3.5 Local Regression Filter   

This method is based on linear least squares for fitting curves to the original data, it is 

also known as a locally weighted scatter plot smoothing technique. A local regression filter can 

be divided into two kinds: (LOWESS) which is a linear polynomial, whilst (LOESS) is a 

quadratic polynomial. In addition, this technique can be active and resistant in fitting to the 

outlier’s values due to the robust LOWESS and LOESS techniques (Bassey, Whalley & Sallis, 

2014). 
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In this smoothing technique, the smoothed point is processed within a certain span 

known as neighbour data (Cleveland & Grosse, 1996). For this, it is also called weighted due 

to the regression surface that is determined for the data points that represent the span 

(Nurunnabi, West, & Belton, 2013). Consequently, a low degree polynomial is commonly 

chosen for fitting data points locally in the neighbourhood. Thus, the weight is non-zero when 

the data point is inside the local neighbourhood, while it is zero when the data point is far from 

the current data (Garimella, 2017). In addition, a robust local regression approach can be used 

for solving the outlier’s data (Helmreich, 2016). A robust weight local regression (RLOWESS 

and RLOESS procedures) is assigned a low weight value to resist outlier data problems. 

3.3.6 Kalman Filter 

This technique has a different principle rule, which is the most popular approach for 

optimal estimation algorithms. The Kalman filter follows two procedures to perform the 

estimation process; the first is a prediction process, where the current state variables produced 

within the process noises are considered (uncertainties). The second is called a correlation 

process, where the weighted average is used to update the estimation, when measurement noise 

has been observed.  

For the state estimation model in a dynamic system, the Kalman filter uses measured 

data to estimate the states and covariance matrix over time progress. Notably, many studies 

have tried to use the Kalman filter to reduce the level of error from collected data using a 

dynamic system. For example, one study by Loumponias, Vretos, Daras & Tsaklidis (2016) 

documented the ability of a Kalman filter to obviously reduce noise from skeletal tracking 

signals for hand positions in vertical displacement. In addition, a Tobit Kalman filter was used, 

which showed as smoother in the comparison result. Also, Berti, Salmerón & Benimeli (2012) 

exploited the Kalman filter for tracking robotic arms with Kinect sensors, with the figures’ 

results illustrating de-noised data and in-depth coordinates. Furthermore, one study employed 

a Kalman filter for the data fusion of joint positions, that were collected using a multi-Kinect 

approach (Moon, Park, Ko & Suh, 2016). 

 

Generally, smoothing data approaches are often required to increase the signal to noise 

ratio. Particularly for 3D skeleton data that is collected from a Kinect camera, as it suffers from 

inaccurate capture data due to the low data rate, compared to other motion capture systems. 

However, there are several filtering data methods that can reduce the error rate in collected 
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data. For this, differentiation among the smoothing algorithms can be based on a set of 

requirements, including low latency and a fast response between the input and output data of a 

filter. In addition, the smoothing process could guarantee the shape of the original data because 

the most vital information is located in the amplitude of the signal.  

3.4 Gait Cycle Determination 

A walking pattern is a gait, which is a repeated event with several consecutive phases 

(Papageorgiou, Chalvatzaki, Tzafestas & Maragos, 2014). A gait cycle can be defined as the 

distance between two consecutive strike heels of the same leg. One cycle involves two main 

phases; a stance phase that is limited to between the strike heel and toe-off. In addition to a 

swing phase, which is started from a toe-off to the next strike heel of the same leg. 

The determination of a gait cycle is the first task for most researchers interested in 

human gait analysis (Ahmed, Polash Paul & Gavrilova, 2015), human gait recognition, human 

gait modelling, and gait image representation (Wang, Kurillo, Ofli & Bajcsy, 2015). Where, 

the most important features, with a strong relevance to gait pattern, can be extracted within a 

complete gait cycle, during the human walk process (Jiang, Wang, Zhang & Sun, 2014). 

Therefore, extracted gait features from one gait cycle duration can define the walk assessment. 

One complete gait cycle is also called a gait stride, which is composed of a set number of sub-

phases including; Initial Contact (IC), Loading Response (LR), Mid-Stance (MS), Terminal 

Stance (TS), Pre-Swing (PSW), Initial Swing (ISW), Mid Swing (MSW) and Terminal Swing 

(TSW), as can be seen in Figure 3.1 below.  

Various studies have focused on gait cycles such as the one carried out by Ahmed, 

Polash, Paul & Gavrilova (2015) who detected a gait cycle by calculating the changes of 

distance between the left and right feet during a walk trial, where participants were instructed 

to walk in front of a Kinect camera. The results showed the state of the feet when they were 

farthest apart (maximum horizontal distance), when the IC sub-phase happened, while the 

minimum horizontal distance corresponded to the feet when they were closest to each other.  

Another study that used a similar approach to determine a complete gait cycle was by Dikovski, 

Madjarov & Gjorgjevikj (2014) who applied a Euclidean distance equation to calculate the 

distances between the skeleton joints in 3D. For this purpose, the gait cycle was defined as a 

period between three consecutive local minima, which ensured the period between the two 

strike heels of the same foot. This study started with gait cycle detection, which is considered 

as a repetitive action, and then some features were extracted within a gait cycle period  
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Figure 3.1: One Complete Gait Cycle that is Determined between 2 Strike Heels for the Same Foot, and Generally a 

Composite of 2 Phases; the Stance Phase and Swing Phase 60/ 40% of a Gait Cycle Period, Respectively. 

However, other researchers have used different approaches, for instance Wang (2015) used a 

zero-velocity crossing approach using signal analysis on a frequency spectrum to detect the 

segmentation of a human gait cycle. A gait cycle can be detected from the vertical displacement 

of the spine-base (in y-axis) during a walk (Kale, 2015), where the maximum points represent 

the single-support and the minimum points represent double-support of gait events, as 

illustrated in Figure 3.2. 

 

Figure 3.2: The Vertical Displacement of the Spine-Base during a Walk Process. [Source:  Kinesiology Scientific 

Basis of Human Motion, 12th Edition by Hamilton, Luttgens & Weimar (1991)] 

3.5 Gait Features Extraction  

The feature extraction process can be described as “the extraction of significant features 

from a background of irrelevant detail” (Selfridge, 1955). It can be considered as a powerful 
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case for dimensionality reduction (Kumar & Bhatia, 2014).  In gait analysis systems, feature 

extraction is involved as one of the most important stages, where the dataset is transformed 

into a set of features to describe the interest values and create a desired pattern. Usually, not all 

features are valuable for showing a significant change in the general pattern. For this reason, a 

principal component analysis is chosen to calculate the eigenvalues and select the feature 

vectors that can be highly representative in data classification (Guyon & Elisseeff, 2003).    

A Kinect camera is exploited in a gait analysis system by collecting joint movement 

data to extract the feature interests and understand the changes in general gait pattern. Notably, 

recent studies have suggested that Microsoft Kinect can be used to estimate spatiotemporal gait 

parameters (Clark et al., 2013), and gait kinematics (Gabel, Gilad-Bachrach, Renshaw & 

Schuster, 2012).    

3.5.1 Spatiotemporal Gait Analysis 

Spatiotemporal gait features explore gait speed, rhythm, stride length, step length, and 

step width (Bonnyaud, Jansen, Salvia, Bouzahouene, Omelina, Moiseev & Jan, 2015), as well 

as single and double limb support time (Kim & Son, 2014), and gait cycle time (Clark, Bower, 

Mentiplay, Paterson & Pua, 2013). These features can be addressed from lower body limb data 

during the walk process, where both the stance and swing stages are detected. 

 In the context of spatiotemporal data, a study by (Auvinet, Multon & Meunier, 2015) 

calculated some gait features using a spatiotemporal gait analysis, that included gait step length, 

stride length and speed by dividing the gait stride length over the number of Kinect frames. 

These attributes were applied to three different classifiers to investigate the biometric 

recognition. Significantly, the results’ accuracy increased when spatiotemporal gait 

information was combined with static attributes, obtained from a Euclidean distance. 

Furthermore, Babak & Sallis (2014) determined both gait cycle stages (stance and swing) 

automatically by tracking the ankle joint displacement over the z-axis. Consequently, some 

spatiotemporal gait attributes were determined, including the step length, stance phase time, 

and gait rhythm within a full gait cycle. Additionally, a Kinect camera can be used as multiple 

cameras to increase the area of view, which provides richer information. For instance, Geerse 

& Roerdink (2015) used multiple Kinect cameras to increase measured volume data. As a 

result, more accurate assessment was achieved in the measurements of spatiotemporal gait 

parameters compared to other studies that only used one sensor. For the purpose of this study 
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four sensors are used, one of which is positioned 4m from the interesting scene, while the others 

are within 2.5m. 

3.5.2 Kinematic Gait Parameters  

Kinematics is the branch of study for describing the motion of objects. This branch of 

study is based on describing the quantities of the position, velocity, and acceleration of several 

parts of the object or human skeleton (Teodorescu, 2007). In addition, these quantities can be 

extracted from the angle data of a body’s joints, which is called angular kinematic parameters.  

For example, Pfister, West, Bronner & Noah (2014) used skeleton data for measuring 

the angular kinematics of hip and knee flexion and extension. Similarly, Nguyen, Huynh & 

Meunier (2016) employed skeleton data to extract several joint angles; namely left/ right hip 

angles, left/ right knee angles, left/ right ankle angles, and two feet angles, these features were 

then used to distinguish between normal and abnormal gait. While, Jiang, Wang, Zhang & Sun 

(2014) calculated four joint angles (left/ right hips and left/ right knees) as a dynamic feature. 

In addition, the static features were measured from some lengths and heights of body parts 

(length of right thigh, length of right calf, length of right arm, body height, and ratio of thigh 

length to body height). These features were used for gait recognition based on Kinect skeleton 

data, with the correct classification rate (CCR) as 82% after both kinds of features were applied 

together. Meanwhile, another study conducted a comparison between using a Kinect camera 

and a Vicon system, where the maximum deviation for the angles of the elbow, shoulder, and 

hip in both systems were measured. The results were 12.6, 10, and 14.2, respectively. However, 

the minimum deviation between the two systems for the elbow, shoulder and hip were 7.1, 8, 

and 2.7, respectively (Phommahavong, Haas, Krüger-Ziolek, Möller & Kretschmer, 2015).  

Additionally, Mentiplay, Perraton, Bower, Pua, McGaw, Heywood & Clark (2015) 

used skeletal data to test the walk velocity, variability of speed, length/width of gait step, swing 

duration, and the displacement of the pelvis. Also, the flexion of the ankle/hip, and the 

flexion/adduction of the ankle were recorded. Another study was carried out by Xu, McGorry, 

Chou, Lin & Chang (2015) to assess gait cycle parameters such as stride, step, swing, stance 

and double limb support time. The joint angles of the hip and knee during a gait cycle were 

also measured. Notably, the measurements of step time, stride time, and step width were more 

accurate compared to the measurements of kinematic parameters. Moreover, Auvinet, Multon 

& Meunier (2015) computed the largest distance between the knees to estimate heel strike 

events, utilizing depth data collected by a Kinect camera. However, the feature extraction stage 
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is very important because the performance of the next stages depend on the quality of the data 

that is extracted. 

3.6 Gait Features Reduction  

Exploration into gait feature extraction usually leads to the creation of a large matrix 

dimensionality. Therefore, a reduction technique is required for a dimensional decrease of the 

feature matrix to minimise the processing cost of redundancy data. In the context of data 

reduction, both linear and nonlinear techniques are explored to decrease data dimensionality.   

In supervised learning, the jeopardy of an overfitting problem can occur frequently, 

when the number of vectors (features) have exceeded the number of samples in a dataset matrix 

(Kung, 2014). Therefore, feature reduction techniques play a major role in the improvement of 

data classification accuracy. As they reduce the number of feature vectors by considering only 

the most representative ones, which can increase the performance of a learning algorithm (Law, 

2006).  In more detail, not all features can positively contribute to the training phase, because 

part of them may just be 'noise' and this may degrade the learning process. Consequently, data 

dimensionality becomes an additional cost, due to processing, computation and complexity 

during data analysis (Raudys & Jain, 1991). However, the main disadvantage of a data 

reduction technique is that some relevant information might be discarded during the feature 

reduction process (Law, 2006).   

A data reduction solution includes the use of linear and nonlinear data reduction 

techniques. One example of the former technique is a Principle Component Analysis (PCA), 

which can rotate the variable data from its original axis into a principle component axis by 

calculating the maximum variation among data vectors (Maaten, Postma & Herik, 2009), 

(Campbell & Atchley, 1981).     

3.6.1 Principal Component Analysis 

A Principal Component Analysis (PCA) is commonly used in data reduction to decrease 

the number of feature vectors. This technique can be helpful among raw data that have a strong 

correlation, which means higher redundancy. Generally, a PCA can be considered as a method 

that transforms several initial input features into non-correlated features (i.e. Principal 

Components PCs). For instance, Milovanović & Popović (2012) carried out a study where the 

PCs were calculated as 58% and 30% of total variance for the first PC1 and the second PC2, 

respectively. Where, both PC1 & PC2 were used in data classification among healthy people 
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and chronic stroke patients. Pearson’s correlations were conducted for hip, knee and ankle 

movement data. The results showed that the hip and knee had a low degree of correlation (r = 

0.09–0.22), while a moderate degree of correlation was present in the case of the ankle. 

In the same context of using PCA for data reduction, Phinyomark, Petri, Ibáñez-

Marcelo, Osis & Ferber (2018) identified a significant correlation in the first few PCs, when 

they were used in an investigation into the effects of three conditions of shoe midsole hardness 

(soft, medium and hard) using kinematic data analysis during the running test. A further 

example by Nigg, Baltich, Maurer & Federolf (2012) showed that the first 35 Principal 

Components (PCs) reached a variance in the dataset by 95.6%. However, the classification 

accuracies among the three conditions were explained as 99.5, 95.6 and 86.0% in the following 

groups of hard/soft, hard/medium and medium/soft shoe midsole hardness.  

As a classification solution, the studies show the accuracies as between 80% to 100% 

regarding classification of gait pattern changes into different classes (Eskofier, Federolf, 

Kugler & Nigg, 2013) (Maurer, Federolf, von Tscharner, Stirling & Nigg, 2012), (Nigg, 

Baltich, Maurer & Federolf, 2012). In these analyses, the high and medium order of the PCs 

are eliminated, while the low order of the PCs (i.e. the first few PCs) are retained. The PCA 

approach is also used in data dimensionality reduction for gait disorder discrimination. For 

instance, Slijepcevic, Zeppelzauer, Gorgas, Schwab, Schüller, Baca & Horsak (2017) recorded 

the best trade-off among data reduction and improvement of the classification performance, 

with the results reaching 98% of the variance in data. In a similar context, kinematic angles 

and kinetic features were analysed over the stance phase of a gait cycle. In this study, Foch & 

Milner (2014), considered the first three PCs that represented a variance from 93.3 to 99.4% in 

five-biomechanical waveforms including frontal plane trunk, frontal plane pelvis, frontal plane 

hip, transverse plane knee angles and frontal plane knee movement.  

3.7  Data Classification Techniques 

Machine learning plays a major role in data classification, it is divided into two broad 

categories based on how to learn from data to distinguish data pattern; they are known as 

supervised and unsupervised classifiers. The former is trained from the labelled input data 

(treating set) to predict unlabelled data (testing set), this is known as supervised learning. While 

the latter discovers hidden patterns in unlabelled data and is known as an unsupervised learning 

approach. This section will include only the supervised learning approaches, that are used for 

classifying gait pattern changes based on walking speeds.  
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The data classification stage is the last block of the proposed system, which aims to 

distinguish among 3-classes by using a subset of gait feature data. This set is split into training 

and testing data groups, based on k-fold cross validation, where k is equal to 5 and 10 as the 

most common denominators used in classification solutions. However, supervised learning 

approaches contain many different methods, the most common of which are the; Decision Tree 

(DT), linear / nonlinear Support Vector Machine (SVM), k-Nearest Neighbour (k-NN) and 

Discriminant classifiers which will be examined in more detail in the following sections.  

3.7.1 Decision Tree  

The Decision Tree (DT) approach is widely used in data mining analysis for interpreting 

and visualizing useful information. The principle work of DT is based on multiple covariates 

to predict the target features in classification solutions. This task is performed by using a subset 

of data as a training set to initiate a decision tree model, while the rest of the data is used to 

decide on a suitable tree path. The algorithm of DT reaches a decision by following the path 

that consists of branches (rules) and leaves (outcomes), while the decision nodes represent the 

relevant features (attributes). The classification procedure starts from the base of the tree (roots) 

and processes the features at the nodes for testing and reaching the outcomes. Figure 3.3 below 

illustrates the main components of a DT, which consists of a logic map between parent and 

child nodes.    

 

Figure 3.3: Decision tree construction 

In gait phases detection, the classification is based on walking speeds, while the DT 

technique is successfully developed to identify and detect the gait cycle phases (Guo & Jiang, 

2015). A C4.5 Decision Tree algorithm has been implemented by (Thongsook, 
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Nunthawarasilp, Kraypet, Lim & Ruangpayoongsak, 2019) which is trained from a collected 

dataset for testing data at different walking speeds, then the results are verified by being 

compared to neural network approaches. Moreover, in a similar context focused on walking 

conditions, (Farah, Baddour & Lemaire, 2019) have developed a logistic model decision tree 

algorithm to train and test a dataset that includes knee angle, thigh velocity and acceleration, 

which was collected using different surfaces (flat, down & up-slopes, right & left cross-slopes) 

and various walking speeds (1.33, 0.8, 0.6, 0.4 m/s). The results showed that the implemented 

algorithm had a high accuracy in gait phase detection. 

3.7.2 Support Vector Machine Approach  

This approach is also known as a support vector network in machine learning and it is 

categorised as a supervised learning algorithm (Cortes & Vapnik, 1995). The Support Vector 

Machine (SVM) is efficient in non-linear classification, in addition it performs the 

classification of linear data domains. In the case of the destruction of the data, linear 

segregation is inefficient, so the Kernel SVM will convert data from input space into feature 

space (Berwick, 2003), which provides n-dimensional space with a higher value of n.  The 

SVM algorithm is developed to determine an efficient hyperplane that can identify, as possible 

as data points that belong to relevant classes (Tong & Koller, 2001). Moreover, the choice of a 

possible hyperplane that maximizes the distance between data points (maximum margin) will 

improve the classification accuracy, as can be seen in Figure 3.4 below. 

 

 

Figure 3.4: Possible Hyperplane in SVM Algorithm 
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In data classification based on walking speeds, the SVM approach is involved to 

identify the changes in gait pattern. For instance, (Begg, Palaniswami & Owen, 2005) applied 

SVM automatically to distinguish between young and old gait by extracting features from a 

dataset collected from participants, who were instructed to walk on a treadmill at a self-selected 

walking speed, the results showed that a better classification performance was obtained by 

SVM over the NN in young/old gait pattern recognition. However, for different walking 

conditions the SVM was employed by (Lau, Tong & Zhu, 2008) to distinguish among the 

kinematic data that was collected from five different walk styles including: stair ascent/descent, 

level ground, and down/up slopes. The SVM performance in gait data classification surpassed 

the other approaches when compared, including those of the Artificial Neural Network (ANN), 

Radial Basis Function network (RBF) and the Bayesian Belief Network (BBN).  

In gait data analysis, Andersson & de Araújo (2015) exploited the SVM approach in 

person identification. In this study, a model based on gait analysis used a Kinect camera for 

full body recognition, which resulted in the effectiveness of the SVM being better than the 

MLP. While, in human motion detection, computer vision using a Kinect camera is widely 

explored for clinical assessment. For instance, Leightley, Yap, Coulson, Barnouin & McPhee 

(2015) exhibited the effectiveness of the SVM in standardized tests that included; jumping, a 

timed up and go test and a symmetrical assessment. The results were recorded as 85.53, 62.89, 

82.42, 79.64 and 71.11% for the Support Vector Machines (SVM), Random Forests (RF), 

Artificial Neural Networks (ANN) and the Gaussian Restricted Boltzmann Machines (GRBM), 

respectively.  

3.7.3 k-Nearest Neighbour Approach   

This approach is a supervised learning algorithm, which employs the whole training 

dataset for prediction purposes, based on the similarity between a new sample and the training 

dataset. However, a proposed method introduced by Dramé, Mougin, & Diallo (2014) for 

clustering a training set based on the value of k and the weight of each cluster, can be performed 

without the need to use all the points in a training set. 

The k-NN approach involves the decision of which class can be assigned to a new 

sample, with the value of k directly determining the number of data points responsible for 

voting in a class’s assignment. For example, the new sample is ‘C’, and k is three, which means 

that the three nearest neighbours can vote to find a class for the new element ‘C’ as can be seen 

in Figure 3.5 below. In the region of k=3, there are three nearest neighbours, which are near to 
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‘C’, this means two votes for ‘B’ and one vote for ‘A’.  In this case, the class of element ‘C’ is 

going to be ‘B’, this is very simply how the algorithm k-nearest neighbour works. 

 

 

 

Figure 3.5: The Principle Work of k-NN Approach 

 

In a special case when k=1, the feature space representation requires the need to find 

the nearest neighbour of the element that will define the class, with each training vector 

defining a region in this feature space. However, if k is chosen as a large value, then the results 

may be affected by noisy or error data. Research into the improvement of classification 

accuracy has been widely explored for k-NN classification. For example, Suguna & 

Thanushkodi (2010) proposed a new approach to increase the effectiveness of k-NN by 

involving a genetic algorithm to reduce the cost of complexity. In gait pattern classification, 

the k-NN has been exploited to solve data classification problems. For example, Nieto-Hidalgo 

et al., (2018) proposed a method that was based on gait spatiotemporal parameters for 

distinguishing between normal and abnormal gait. They used a smart device for collecting data, 

while the k-NN approach was used to classify the obtained data, with the results showing that 

the best accuracy of classification is 95%. In another study, a gait analysis for person 

identification was used along with the k-NN approach to address the aim of the study. The 

results showed that both the KNN and SVM approaches yielded the same performance, while 

the MLP had less accuracy (Andersson & de Araujo, 2015). Similarly, an automatic gait 

analysis was proposed using a Kinect camera. The study aimed to determine a gait cycle and 

detect the differences in gait activities. Several machine-learning algorithms were used; k-NN, 
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Decision Tree, Random Forest, SVM, MLP, and MLPEP approaches, the accuracy 

performance was recorded as 98.6%, 95.1%, 98.6%, 98.3%, 98.3% and 98.4 %, respectively.  

3.7.4 Discriminant Analysis Classification 

This technique was introduced in 1963 by Ronald Fisher. The main task of discriminant 

analysis is to separate two or more groups 𝑔𝑖 of observations or events, and then it is used for 

the classification of new data. In Linear Discriminant Analysis (LDA), the assumption is that 

the covariance matrix is equal for all classes, but the mean is variable. While the mean and 

covariance matrix vary for each class, in the case of a Quadratic Discriminant Analysis QDA. 

LDA calculates the discriminant scores for the observations, to decide which classes belong to 

them (i.e. Yes or No). The classifier estimates the prediction of a single variable (𝑋 = 𝑥) as:  

                                              𝛿𝑘(𝑥) = 𝑥
𝜇̂𝑘

𝜎̂2
−

𝜇̂𝑘
2
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Where 𝛿𝑘(𝑥) is the estimated discriminant score, 𝜎̂2 is the weighted average of the 

sample variances, 𝜇̂𝑘 is the average of all the training observations for each kth class, and 𝜋̂𝑘 

is the prior probability of observations that belong to the kth class.  The alternative approach 

of LDA is a Quadratic Discriminant Analysis QDA, which assumes that each class has a 

different covariance matrix, in mathematical terms, the observation from the kth class is of the 

distribution 𝑋 ∼ 𝑁(𝜇𝑘, 𝛴𝑘), where 𝛴𝑘 is a covariance matrix for the kth class. Consequently, 

the observation is assigned to the class based on the largest of 𝛿𝑘(𝑥) see (3.11). 
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Machine learning algorithms are used widely for solving data classification problems. 

With the different methods of data classification providing an opportunity to choose the best 

approach that can be efficient for gait pattern classification. The choice can be addressed 

through the evaluation of both system performance and cost. For example, important factors 

include complicity, computational time, availability (versatility) and classification accuracy, 

which are usually dependent on the application and dataset itself.  On the one hand, the DT 

approach is easy to generate and understand, since it is based on logical rule and non-parametric 

training data, with less computing time and the capacity problem is avoided. However, one 

significant limitation of the DT approach is the large amount of time required for training the 

large data set, as well as the overfitting problem and the fact that the accuracy can be affected 
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by the selected feature. While, the SVM approach has high accuracy in classification and 

prediction solutions, and it is good at dealing with high dimensional data. However, the 

limitations of this approach due to performance improvement, result in the computational cost 

being intensive, with the parameter tuning also becoming time-consuming (e.g. the kernel 

parameters and the hyperplane adjustment). On the other hand, the k-NN approach is a simple 

algorithm for nonlinear data, with no assumptions for data processing and it is useful for 

classification or regression (versatility). However, this approach suffers from some limitations 

including the computational cost as it becomes expensive because of the storage of all the 

training data. Therefore, enough memory is required, and the processing time is consumed with 

big data for the prediction stages. 

3.8 Cross validation technique  

The purpose of the CV technique is to assess the effectiveness of the model that is built 

for machine learning, particularly for understanding the overfitting problem. This leads to the 

determination of model parameters (hyper-parameters) that can reduce error, when the model 

is used for testing unseen data. In other words, it emphasises that the model pattern is based on 

the correct data, and not on the noise. 

3.8.1 Holdout Method 

This method is the simplest in cross validation techniques, it separates the data set into 

two parts randomly, which are called either a training or testing subset. The former is used to 

fit the function of a model (learner), while the latter is used to predict the output for unseen 

data, they are also known as single training and testing sets, see Figure 3.6 below. The 

evaluation of a Holdout method cannot be stable if the data division was made randomly, and 

this significant difference can be related to the points of data that either belong to the training 

or the testing subset. Although a Holdout method saves computational cost, its single train-

and-test trial may lead to an error rate estimation due to the unfortunate split.  

 

Figure 3.6: Holdout Method for Single-Training/Testing Sets 
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3.8.2 Leave-P-Out Cross Validation 

This method excludes a part of the original data called ‘P’, and the rest of the data is 

training data. For example, if the original data has data size ‘N’, then the N-P is called a training 

data set, while the P points of data are called the validation data set. This process is repeated 

by shifting ‘P’ points over all the original data without an overlap occurring between the P set 

and N-P set, and then the average of errors is calculated for all trials. The special case of this 

method is when ‘P’ is equal to one, which is called Leave One-Out Cross Validation LOO CV, 

as can be seen in Figure 3.7. 

 

 

Figure 3.7: Leave One Out Cross Validation 

In the LOO CV method, the dataset size N is silted into the training subset as N-1, and the rest 

of the data as a testing subset. In each trial, the procedure will be repeated by shifting the testing 

set until it reaches the last data point of the test dataset.  

3.8.3 K-Fold Cross Validation 

In the k-fold Cross Validation (k-fold CV), the original dataset is randomly categorised 

into k parts (folds) that are equal sizes of the data points. A single part is used for testing the 

model, and the rest of the k-1 parts are used for training data to fit the model. As shown in 

Figure 3.8, each data point can be used in a testing set one time, with k-1times for the same 

data point represented in a training set without overlapping occurrence. This leads to an 

interchange of the data points between the training and testing processes, which increases the 

effectiveness of this method.  The CV process is then repeated in k trials. In each trial, exactly 

one-fold is used as the validation data, and then the k results are obtained. For a single 
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estimation, the average (or otherwise combination) can be conducted for the k results to achieve 

total model effectiveness. 

In machine learning, the main task of a Cross Validation (CV) technique is to assess 

the skill of the learner model on unseen data for prediction. This is carried out by partitioning 

the original dataset into a training subset to fit the model, and a test subset for model 

evaluation. There are several methods for this task; including the holdout method, leave one-

out and k-fold cross validation.    

 

Figure 3.8: k-Fold Cross Validation 

However, the k-fold CV provides some features that do not exist with the other methods, as it 

provides ample data for training processes and leaves ample data for model testing with less 

computational cost compared to the LOO CV. The main advantages of the k-fold CV are that 

all the data points are exploited in both the training and testing processes, with each data point 

represented in the model testing only once. This can significantly reduce bias as most of the 

data is used for fitting, which decreases the variance because most of the data can be 

represented in a testing set. In practical terms, this method showed acceptable results for K = 

5 or 10, but nothing is fixed, and it may take any value.  

3.9  System performance evaluation   

The evaluation and comparison of system performance methods is paramount to 

understanding the effectiveness of a model. For data classification problems, the evaluation 

metrics can highlight effort, accuracy and difficulties, as well as analysing pitfalls among the 

different models. Furthermore, the results of the classification evaluation can assist in the 
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improvement of the system performance, by adjusting and modifying the main parameters of 

the classifier (back adjustment). 

The most commonly used evaluative metrics for the performance of data classification 

are; Sensitivity or True Positive Rate (TPR), Specificity or True Negative Rate (TNR), 

Precision or Positive Predictive Value (PPV), Accuracy, Receiver Operating Characteristics 

(ROC) curve and the F-measure. In more detail, the True Positive (TP) represents that the 

abnormal is predicted correctly, while if the normal is correctly predicted this is called the True 

Negative (TN).  Meanwhile, the False Positive (FP) represents that the abnormal is predicted 

incorrectly and the False Negative (FN) is when the normal is predicted incorrectly.     

3.9.1 Receiver Operating Characteristics  

Receiver Operating Characteristic (ROC) curves play a major role in the evaluation of 

unseen data prediction, by detecting the true state from a dataset and comparing the different 

test results for the same case (Kumar & Indrayan, 2011). The evaluation of system performance 

is a matter that concerns both researchers and clinicians. For this purpose, the target is not only 

to confirm that the positive/negative data are defined, but also to rule this out for the 

negative/positive data to be measurable if they are incorrectly predicted.  The demand of the 

ROC curve is represented by its ability to illustrate the relationship between the sensitivity and 

specificity for the predictor. In more detail, the ROC curve refers to the plot of True Positive 

TP rate (sensitivity) on the Y-axis, and the False Positive FP rate (1 − specificity) on the X-

axis (Schwartz, 2012). 

 The area under the curve (AUC) is made from a combination of sensitivity and 

specificity measures, to assess the performance of a prediction result. Significantly, when the 

AUC equals one this means the test performance is perfect in differentiation between the 

positive and negative cases (Hajian-Tilaki, 2013). In other words, both the sensitivity and 

specificity scales can reach one, if both the FP and FN rates are zero. This arises only when the 

distribution of positive and negative are not in overlap (Swets, 1979), which only happens in 

an ideal case, as can be seen in Figure 3.9. The effectiveness of the AUC was investigated by 

Morrison (2005), where data was efficiently discriminated when the AUC gave approximately 

one, while there was less ability in discrimination when the AUC was around 0.5. In the same 

context, Morrison, Coughlin, Shine, Coull & Rex (2003) used the ROC curves to distinguish 

amongst healthy and unhealthy people.   



43 
 

 

Figure 3.9: Three ROC Curves that Correspond (Right Side) to Overlapping Distributions (Left Side) (Source: 

Schwartz, 2012) 

 

3.9.2 Confusion Matrix  

The confusion matrix is exploited in machine learning to describe the performance of 

the classification model. This evaluation metric is also called an error matrix, which can 

illustrate whether the classified data has predicted correctly or incorrectly. It provides 

visualisation for two or more classes of predicted data, to assess the classifier’s effectiveness 

in discrimination among classes. Although several evolution metrics can be used through the 

confusion matrix, the chosen measures depend on the needs. However, for model performance 

comparison, the accuracy, F-measure, sensitivity and specificity measures are most commonly 

adopted in the evaluation of a classification model. 

The confusion matrix consists of rows and columns in classes, the former is for actual 

classes while the latter is for predicted classes, as shown in Figure 3.10 below. The model can 
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be considered as perfect if the matrix contents show only the values of a true positive and true 

negative (diagonal values). Although, this score is not likely to exist, an alternative is when the 

matrix shows the lowest error values, for instance false positive (type I error), false negative 

(type II error) or error overall. 

 

Figure 3.10: Confusion Matrix for Two Classes with Some Measures 

In the above figure, the confusion matrix shows a set of measures that play a major role 

in the evaluation of a classification model, based on the elements of the matrix; Positive True 

(PT), Negative True (NT), False Positive (FP) and False Negative (FN). The most important 

elements that represent the diagonal of the matrix and the high accuracy of a classifier depend 

directly on the diagonal values. The evaluation metrics are illustrated in Table 3.2 below. 

 

Table 3-1: The Main Measures that are Commonly Used in Model Evaluation using the Confusion Matrix.  

True Positive Rate (Sensitivity or recall)   𝑻𝑷/(𝑻𝑷 + 𝑭𝑵) 

True Negative Rate (Specificity or selectivity)  𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) 

Positive Predicted Value (Precision)  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

False Positive Rate (Fall-out)  𝐹𝑃/(𝑇𝑁 + 𝐹𝑃) 

False Negative Rate (Miss Rate)  𝐹𝑁/(𝑇𝑃 + 𝐹𝑁) 

Accuracy  (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) 

F-measure  2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

The confusion matrix and the ROC curve are effective approaches in observing the 

required properties of several classifiers. These evaluative metrics can be used in the 

determination of the gains and limitations of the classification performance. The capability of 

these metrics is not only in the rate evaluation of the ability of the classifier to predict correctly, 

but also in the evaluation of the incorrect prediction rate, which is very important criteria for 
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distinguishing among the data classification approaches by calculating their sensitivity, 

specificity, precision and other. 

3.10  Summary    

A gait analysis system can be implemented using a Kinect camera, by including several 

stages; collection, smoothing, extraction, reduction and classification of the relevant data to 

detect and rank gait pattern changes. For this purpose, efficient approaches will be involved to 

contribute in the improvement of measurement accuracy. This research explores how to 

enhance the quality of data during its processing, via the three stages of a gait analysis system 

(smoothing, extraction and classification of 3D skeleton data) to improve the performance of 

the whole system.  

In the literature review, the main limitation can be identified is the inaccurate 

measurement in data collection, when a Kinect camera was used comparing to other motion 

capture systems, due to noisy and low data rates. However, the noise and error rate can be 

reduced by using a smoothing and filtering technique. For this purpose, the filter will be chosen 

using criteria which retains the original shape of the data, because most of the gait information 

is located in the amplitude of the gait signal. The first criterion is time delay, where the timing 

of the filtering process (i.e. the time between the input and output data of the filter) needs to be 

as short as possible. The second criterion is the fast response of the output filter to its input 

data, as the information is located in the amplitude of a gait signal, especially in the concave-

up and concave-down, which corresponds to the gait stride length. A filtering approach will be 

considered if the filtered data contains gait information fast enough so that it can retain the 

original shape of the data.  

In the gait feature extraction stage, the low data rate of a Kinect camera can directly 

affect the measurement accuracy, subsequently the quality of the extracted data will become 

affected. For these reasons, the mapping of the collected data into an AM domain is proposed 

to extract a new gait feature. An AM domain can improve the quality of extracted feature data 

by increasing the sampling frequency rate of the modulated gait length signal. 

In the gait data classification stage, most of the classifier techniques work based on 

boundary decisions that can classify data points into relevant classes. Therefore, the 

classification accuracy will increase if there is enough separation between classes (i.e. clear cut 

or discontinued data). An efficient classifier can predict classes correctly for data points that 
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are located on the boundaries of classes (i.e. gradual data), where the boundary decision is 

difficult to be defined. For this purpose, the CE technique is proposed as a data classification 

solution, as it uses a different approach to calculate the similarity rate among data points by 

measuring the Hamming Distance (HD) between the codewords. Where the codewords mean 

the gait features have been converted into binary format rather than a decimal format. This 

increases the accuracy of the similarity rate among the codewords because the measuring is 

based on each bit within a codeword length. In addition, the position of the bit that differs from 

the threshold (i.e. HD = 1), will be considered and weighted based on the order of the bits’ 

position within HD length. Subsequently, the error rate can be calculated by summation of the 

elements of the HD (i.e. numbers of 1’s with its weight). If the error rate is low this means the 

similarity is high and the possibility of the data point belonging to the corresponding class will 

be high.               
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4. RESEARCH METHODS AND PROPOSED 

TECHNIQUES 

__________________________________________________________________________________ 

This chapter focuses on the methods that have been used in the acquisition and pre-processing 

of 3D skeleton data, followed by a gait cycle detection. In addition, it explains the proposed 

mathematical approaches that have been used in the gait feature extraction and classification. 

Finally, it describes the evaluative metrics that are used to assess the system performance.   

__________________________________________________________________________________ 

4.1 Introduction 

The main goal of this research is to effectively extract gait features during walking tests 

using a Kinect camera. The obtained data is usually considered as noisy. Consequently, the 

pre-processing stage is required to decrease the level of error and smooth the dataset without 

affecting the features’ information. In the feature extraction stage, an Amplitude Modulation 

(AM) technique is proposed to modify the gait step signal for extracting new gait features 

which would be more clearly represented. For this purpose, the seven gait features can be 

extracted using a modified gait signal, while the Principle Component Analysis (PCA) 

algorithm is chosen to reduce data dimensionality in order to produce the most representative 

gait features.  

In the data classification stage, a Convolutional Encoder (CE) technique is proposed to 

classify the extracted gait features. Consequently, the performance of the CE can be evaluated 

by comparing its classification accuracy to various commonly used classifiers. For this 

purpose, a set number of supervised classifiers, including the SVM, k-NN, DT and discriminant 

classifiers are employed to classify the obtained data, based on walking speeds. In addition, a 

set number of evaluative metrics, including sensitivity, specificity, precision, accuracy, F-

measure and AOR curve approaches are applied to evaluate the performance of each approach.   

4.2 Instruments and Data Acquisition  

Microsoft Kinect is a camera that combines several sensors for providing information, 

such as RGB colour and Depth information (Raposo, Barreto & Nunes, 2013), with with a data 

rate that is equal to 30 frames per second (Otte et al, 2016). Its depth sensor consists of two 



48 
 

infrared (IR) sensors - a projector that emits a dot pattern into the scene and a detector for 

detecting the dots from the scene. 3D skeletal positional data is used in this study, as it can 

guarantee the participants are not subject to a breach of privacy, which is a concern that has 

priority for many researchers (Henry, Krainin, Herbst, Ren & Fox, 2012). 

To obtain the 3D skeletal joint information, the participants are directed to walk 

forwards towards the Kinect camera. Then, the Microsoft Kinect and the Software 

Development Kit (SDK) are used to track the skeletal joints movement in real time (Shingade 

& Ghotkar, 2014). The Microsoft SDK is a middleware framework supported by the Kinect 

camera - twenty-five joint positions can be tracked using MS Kinect SDK. The depth 

information corresponds with the estimation of the distance between the Kinect camera and 

each pixel located in the scene (Nguyen, Izadi & Lovell, 2012). Since this research is concerned 

with human gait analysis, which is directly conducted from the lower body joints data, the 

Kinect camera is used to track the movement of several body joints in three dimensions (3D) 

provided as a data rate of 30 fps. For this purpose, the seven lower joints are mentored and 

tracked, including spine-base, left/right hips, left/right knees, and left/right ankle joints.  

The skeletal positional data of lower body joints were collected to generate the gait step 

length signal for a total of 40 participants. The collected data was processed under three 

conditions of walking speeds (low, normal and fast). A MATLAB code was developed to 

process a dataset for gait feature extraction and classification (see Appendix D).   

4.2.1 Kinect Camera View 

The location of the camera during a walk test is important in order to maintain the object 

in the camera view. The angle view of the Kinect v2 is specified as 60° and 70°for vertical and 

horizontal views, respectively (as shown in Figure 4.1 below). This leads to a calculation of 

the height position of the Kinect from the ground, and its location from the scene, which can 

guarantee that at least two gait cycles will be captured during the walk trial.  

 

Figure 4.1: Kinect v2 camera view (a) horizontal view (b) vertical view 
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The camera accuracy for tracking the object’s position will be increased whenever the object 

is closer to the camera. However, the number of gait cycles that can be captured will increase 

whenever the subject walks further away from the camera. These calculations are used to 

guarantee a closer walk to the camera and allow several gait cycles to be captured per 

individual, without distortions that might be caused by subjects moving in or out of the sensor’s 

field of vision. The height distance of the camera from the ground is chosen according to the 

placement of the individual as close to the camera as is possible. Equations from (4.1) to (4.3) 

are used to calculate the skeletal captured area of the camera by using the angled views of the 

Kinect.  

                           𝑆𝑖𝑛 (𝜃)  =  𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒/ ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒                                                        (4.1) 

                           𝐶𝑜𝑠 (𝜃)  =  𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡/ ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒                                                       (4.2) 

                            𝑡𝑎𝑛 (𝜃)  =  𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒/  𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡                                                           (4.3) 

In the horizontal view of the Kinect, the distance of the camera view is denoted as ‘v’ (as shown 

in Figure 4.2 below). This distance can be calculated by halving the horizontal angle of the 

camera view to 35°, which produces the right-angled triangle. 

 

Figure 4.2: Horizontal Angle View of Kinect Camera v2  

By substituting the values of the triangle lengths in (4.3), the distance of the camera’s view (v) 

is calculated as: tan (35) =0.5v/d, where (v) can be written as 1.4(d), and (d) can be chosen as 

any value that guarantees at least one gait cycle is captured. For example, if (d) equals 2 meters, 

then the captured skeletal distance (v) will be equal to 2.8 meters.    

In case the walk line is in front of the camera, the vertical view of the Kinect v2 (60°) can be 

halved to obtain a right-angled triangle, as can be seen in Figure 4.3 below. The camera’s field 

of vision (v) is calculated from the Equation (4.3) which yields (1.15 × 𝑑). For the different 
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values of (𝑑) as 1, 2, 3 & 4 m, then (v) will be equal to 1.15, 2.30, 3.45 & 4.6 m. This shows 

that the best position of the camera height from the ground is around one meter, which 

guarantees that the whole body is in the area captured by the camera.   

 

Figure 4.3: Vertical Angle View of Kinect Camera v2  

For this experiment, the participants were recruited from a university campus. All subjects were 

students aged between 22 and 48 years. Each of the subjects who agreed to participate in the 

experiment provided gender, height and weight information. Everyone generated about 70 to 

350 frames and completed between 2 and 7 gait cycles per walk, dependent on the walk speed.    

4.3 Framework and Proposed Approaches  

The purpose of the proposed method is to develop an automated gait analysis, using 

skeletal positional data of leg joints, for the extraction and classification of gait pattern changes. 

The six stages are involved, namely: skeletal data collection, pre-processing, data conversion, 

extraction of gait features & reduction, gait data classification, and system evaluation (see 

Figure 4.4 below).  

Figure 4.4: General Block Diagram of a Human Gait Analysis with Six Stages 
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In the first stage, 3D skeleton data is collected for the lower body joints using a Kinect camera 

v2. Skeleton data is usually considered as inaccurate due to its noise and error rate. For this 

purpose, six different filter techniques are involved for the pre-processing of data, which is 

applied in the second stage. An efficient filter is used that can perform data smoothing and 

filtering without information distortion of the original data - the filtering process is evaluated 

based on time delay and fast response between input/output data of filter. In the third stage, 

gait cycle determination is calculated using the maximum distance between ankles, which 

represents the gait step length. The fourth stage is feature extraction using spatiotemporal 

analysis. Moreover, an AM technique is proposed for the extraction of gait features that can 

detect the changes in gait parameters more efficiently, followed by feature reduction (using a 

PCA algorithm). The gait data classification solution is performed in the fifth stage using 

various supervised classifiers.  

In addition, a CE technique is proposed to classify the changes in gait pattern. Finally, 

several approaches of evaluative metrics are used in the system evaluation stage. In this 

research, MATLAB v2018a (MathWorks Inc., Natick, Massachusetts, United States) is used 

for the process, extraction and classification of the skeleton data collected by an MS Kinect v2.  

4.3.1 Skeletal Data Smoothing and Filtering 

Skeleton data that is provided by a Kinect camera typically contains noise during the 

tracking process (Wang, Kurillo, Ofli & Bajcsy, 2015). This can be related to different causes 

such as the disparity of the camera’s data rate to object speed, occlusion of body parts, and 

light conditions (Edwards & Green, 2014). To reduce as much noise as possible from the 

skeletal data, a set number of filter techniques were used for filtering and smoothing the 

collected data of skeletal positional joints. However, the filtering process causes latency, and 

this may be increased when the data is aggressively smoothed. For this reason, the study 

considers that the discrimination between filters will be based on time delay, the fast response 

between input & output data, the data smoothness degree, and the fact that the maintenance of 

the shape of original data is not distorted in order to guarantee the gait information. 

In terms of the concept of a trade-off between latency and smoothness, the parameters 

of filters are tuned to meet the requirements, where the tuning process of the filters’ parameters 

is continued until the noise (spikes) is removed or reduced as much as possible, while the delay 

between the input and output of the filter is observed. This task can be achieved without causing 
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distortion in the original data. Then, a filtering method is carefully chosen that best matches 

the specific needs, such as the lowest delay, highest smoothness, or the fastest response that 

can track the original data, especially when the curve is turned up or down (concave up and 

concave down). For example, the ankle joint position data represents the most important 

information that indicates the beginning and ending of a gait cycle. This information 

corresponds to the edges on the curve when it is turned up or down and depends on the direction 

of the joint movement. The application of a different kind of filter that has different degrees of 

smoothness and latency will be considered in the discrimination between them. In this research, 

several filters are used for the smoothing and reduction of noise, including the Average 

Moving, Savitzky-Golay, RLOESS, Median filter, Kalman filter and Exponential Average 

Moving filters.   

• Moving Average Filtering 

This technique is a simple Low Pass FIR (Finite Impulse Response) filter commonly 

used for smoothing a row of sampled data. The input samples will be divided by N-samples 

and averaged to produce a single output point. The first N-sample is processed and then shifted 

forward by excluding the first element of the array and including the next element - over all 

elements of an array, the moving average filter can be mathematically expressed as (4.4) 

(Koswatta & Karmakar, 2010):  

                                                  𝑦(𝑖) =
1

𝑁
∑ 𝑥(𝑖 + 𝑗)𝑁−1

𝑗=0                                                (4.4) 

 

Where 𝑦(𝑖) is the smoothed signal, 𝑥(𝑖) is the input signal, 𝑖 is order of data point, and N is all 

neighbouring data in the average within the window.  

• Savitzky-Golay Filter 

The principle work of an SG filter is to fit a polynomial order to the subset of data. The 

data points are replaced by an unweighted average value that is calculated from its 

neighbouring points (Shajeesh, Kumar, Pravena & Soman, 2012). Then, the window will be 

shifted from one sample to fit a polynomial and evaluate the central location (Schafer, 2011). 

This will be repeated over all samples of data. The coefficients of a polynomial for a sequence 

of samples are calculated as (4.5) (Savitzky & Golay, 1964):  

                                                               𝑃(𝑛) =  ∑ 𝐶𝑘𝑛𝑘𝑁
𝑘=0                                                (4.5) 
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Where 𝑝(𝑛) is the approximate value that corresponds to the 𝑛𝑡ℎdata sample in the 

window  ( −𝑀   𝑛  𝑀), 𝑀  is the points number of data (i.e. 2M+1 is window size including 

smoothing sample), 𝑁 is the polynomial order, and 𝐶𝑘 is the coefficient of the polynomial. For 

example, the output (smoothed data) when the interval centre is at (𝑛 = 0), then the output is 

𝑦(0) = 𝑃(0) = 𝐶0. The value of the output at the next sample is obtained by shifting the window 

to be located at the new centre of the window (𝑛 + 1) and finding a new polynomial every 

time.   

• Local regression filtering 

This approach determines a regression surface to fit locally with the parametric 

functions for the independent variable space based on the weighted least-squares (Cleveland & 

Grosse 1991). Suppose 𝑦𝑖 and 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … … . . 𝑥𝑖𝑝), 𝑖 = 1,2, … , 𝑛 are the dependent and 

independent variable measurements, respectively; consequently, the regression functions 

model can be written as (4.6): 

                                                             𝑦𝑖 = 𝑔(𝑥𝑖) + 𝜀𝑖                                                      (4.6) 

 

Where 𝜀𝑖 is the normal distribution, and 𝑔(𝑥𝑖) is a smooth function of 𝑥𝑖, the local 

regression uses a local neighbourhood 𝑁(𝑥) to estimate 𝑥𝑖 in the 𝑥 space, where the smoothness 

is increased whenever the local neighbourhood is larger. Generally, locally quadratic (non-

linear) fitting performs better in a regression surface compared to a linear fitting (Cleveland & 

Devlin, 1988). However, the tri-cube weight function is commonly used and defined as (4.7) 

(Wettayaprasit, Laosen & Chevakidagarn, 2007).   

𝑤𝑖(𝑥) = (1 − |
𝑥−𝑥𝑖

𝑑(𝑥)
|

3
)

3

                                                 (4.7) 

 

Where 𝑤𝑖 is the regression weight for data point 𝑖, 𝑥𝑖 is the nearest neighbours of 𝑥 as 

predictor value, and the 𝑑(𝑥) is the maximum distance of 𝑥𝑖 to 𝑥 within the selected window. 

Points that are calculated with 0 weights will be ignored because they are classified as outlier’s 

points. Finally, the estimates of the parameters in (4.6) are the values of the parameters that 

minimize the coefficients from each local neighbourhood and are used to estimate the fitted 

values at xi. Then the ordered pairs give the fitted regression line for the whole dataset 

(Nurunnabi, West & Belton, 2013). 

                                         ∑ 𝑤𝑖
𝑛
𝑖=1 (𝑥)(𝑦𝑖 − 𝑔(𝑥𝑖))2                                                          (4.8) 
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• Exponential smoothing filter 

This technique uses the exponential window function for the smoothing time series 

data, while the moving average filter acts like it is weighted equally of observation. In the 

exponential moving average, the weighting factor of the previous inputs decreases 

exponentially (Hansun, 2016). This technique is used commonly as a low-pass filter to suppress 

high frequency components (Casiez, Roussel & Vogel, 2012). The input sequence is often 

represented by 𝑥𝑛 , and the output of the filter is commonly written as 𝑦𝑛, where the simplest 

form of exponential smoothing is given by the formula (4.9) (Casiez, G et al., 2012). 

                               𝑦[𝑛] =  𝛼𝑥[𝑛] + (1 − 𝛼)𝑦[𝑛 − 1]                                                     (4.9) 

Where y[n] is the filter output, 𝑦 [𝑛 − 1] is the previous filter output, and 𝑥[𝑛] is the 

input sequence, and 𝛼 is ranged between 0 and 1; where α=1 means no filtering takes place. 

The previous output can be repeated and in use will yield the general formula as (4.10) (Goot, 

Mahalab & Cohen, 2005):   

                            𝑦[𝑛] = 𝛼 ∑ (1 − 𝛼)𝑛−𝑘𝑛
𝑘=0 𝑥[𝑘] + (1 − 𝛼)𝑛𝑦0                                       (4.10) 

Where the weighted sum of all sequence data is decreased exponentially.  

 

• Median filter 

In this case, a set number of reading points is processed as a discrete time for a certain 

size of window as (2𝑁 + 1) where 𝑁 is any positive integer (Coyle, Gabbouj & Lin, 1991). 

The window points are sorted by its values and then the median value is calculated as the filter 

output for each position of window. The output of the median filter is given as (Qiu, 1994):  

                              𝑦(𝑛)  =  𝑚𝑒𝑑𝑖𝑎𝑛 [𝑥(𝑛 −  𝑁), 𝑥(𝑛 − 𝑁 + 1), . . . , 𝑥(𝑛 +  𝑁)]            (4.11) 

Where 𝑥(𝑛) and 𝑦(𝑛) are the input and the output data of the filter, respectively and 

considering that the window is centered on the 𝑛𝑡ℎ point. 

 

• Kalman filter 

The standard algorithm of this filter is described as a dynamical system that contains 

two main equations: the former is a state equation and the latter is a measurement equation, see 

(4.12) & (4.13) (Moon, Park, Ko & Suh, 2016).  

                           𝑋𝑡 = 𝐹𝑡  𝑥𝑡−1 + 𝐵𝑡  𝑢𝑡 + 𝑊𝑡        𝑊𝑡 = 𝑁(0, 𝑄𝑡)                                 (4.12) 
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Where 𝑋𝑡 is the state vector, 𝑢𝑡 is the control vector, 𝐹𝑡  is the state transition matrix, 𝑥𝑡−1 is 

the prior state, 𝐵𝑡 is the control input matrix, and 𝑊𝑡 is the state noise, which is assumed as a 

normal distribution that is given as a zero mean and the covariance matrix 𝑄𝑡.   

                                           𝑧𝑡 = 𝐻𝑡 𝑥𝑡 + 𝑉𝑡         𝑉𝑡 = 𝑁(0, 𝑅𝑡)                                         (4.13) 

Where 𝑧𝑡 is the measurement vector, 𝐻𝑡 is the transformation matrix, and 𝑉𝑡 is the measurement 

noise, which is assumed as a normal distribution, that is given as a zero mean and the 

covariance matrix 𝑅𝑡.  

4.3.2 Gait Cycle Determination   

A gait cycle is defined as the duration that occurs between two consecutive strike heels 

of the same foot. Generally, it involves two main phases: the stance stage which takes 60% of 

the gait cycle period, whilst 40% is taken by the swing stage (Peterkova & Stremy, 2015). The 

gait cycle can be determined by calculating the horizontal distance between ankles (in z-

direction) during a walk (Ahmed et al., 2015), where one gait cycle involves three maximal 

values, and the maximum distance represents the gait step length, see (4.14). 

                     𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒 (𝑘) =  ∑ |𝑅𝑎𝑛𝑘𝑙𝑒(𝑘) − 𝑂𝑎𝑛𝑘𝑙𝑒(𝑘)|𝑁
𝑘=1                                           (4.14) 

 

Where N is the size of the ankles’ data in the z-axis and k is the moment frame that was 

provided by the Kinect camera in 30 frames per second as data rate,  𝑅𝑎𝑛𝑘𝑙𝑒 and 𝑂𝑎𝑛𝑘𝑙𝑒 are the 

positional data movement of the reference ankle and opposite ankle, respectively. The 

determination of gait cycle is important for the extraction of gait features within one cycle of 

gait (see Figure B.1 in Appendix B).  

4.3.3 Features Extraction 

A gait assessment can be performed by extracting some features that can be 

representative in gait pattern changes, which might indicate a gait disorder that is related to 

some diseases. The extracted gait features are conducted using several methods, such as 

spatiotemporal gait analysis and kinematic gait features. 

4.3.3.1 Spatiotemporal Gait Analysis  

A gait assessment can be evaluated by using a spatiotemporal gait analysis which 

involves three parts: spatial gait parameters (step length, step width, and stride length), 

temporal gait parameters (gait cycle time, stance and swing stage time), and spatiotemporal 
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gait parameters (gait cadence and speed) (Tunca, Pehlivan, Ak, Arnrich, Salur & Ersoy, 2017), 

(Andersson & de Araújo, 2015). These gait parameters can be calculated as:  

 

• Gait step length  

Gait step is defined as the maximum distance between two different consecutive strike 

heels, where the walk process is based on these steps (see 4.15). 

                                𝑆𝑡𝑒𝑝 𝐿𝑒𝑛𝑔𝑡ℎ = max ∆𝑥  (𝑅𝑒𝑓ℎ𝑒𝑒𝑙𝑖 − 𝑜𝑡ℎ𝑒𝑟ℎ𝑒𝑒𝑙𝑖)                               (4.15) 

• Gait stride length  

The stride length of a gait is also known as a gait cycle length, which involves two 

consecutive steps of gait. In other words, it is the distance that is limited between two strike 

heels of the same leg (see 4.16). 

                                              𝑆𝑡𝑟𝑖𝑑𝑒 𝐿𝑒𝑛𝑔𝑡ℎ = 2 × 𝑠𝑡𝑒𝑝 𝑙𝑒𝑛𝑔𝑡ℎ)                                     (4.16) 

• Gait cycle time 

The time that is taken to cover one complete gait cycle is called gait cycle time. This 

can be calculated by subtracting the time at the strike heel from the time of the next strike heel 

of the same leg (see 4.17), where the Kinect provides 30 frames per second.   

                                                      𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 = 𝑇𝑆𝐻𝑖+1 −  𝑇𝑆𝐻𝑖                                        (4.17) 

Where 𝑇𝑆𝐻𝑖+1, 𝑇𝑆𝐻𝑖 represent the time at next strike heel and time at current strike heel, 

respectively.  

• Stance stage time 

This is the time that is taken for the stance stage of a gait cycle. It can be calculated by 

subtracting the time at the toe-off from the time at the strike heel of the same leg (Mariani, 

Rouhani, Crevoisier & Aminian, 2013) (see 4.18).  

                                                        𝑆𝑡𝑎𝑛𝑐𝑒 𝑇𝑖𝑚𝑒 = 𝑇𝑇𝑂𝑖 − 𝑇𝑆𝐻𝑖                                                 (4.18) 

Where, 𝑇𝑇𝑂𝑖  𝑎𝑛𝑑   𝑇𝑆𝐻𝑖 are the time at the toe-off and the time at the strike heel of the same 

leg. 

• Swing stage time  

The time that is taken for the swing stage of a gait cycle can be calculated by subtracting 

the time at the next strike heel from the time at the toe-off of the same leg (Moon, McGinnis, 

Seagers, Motl, Sheth, Wright, ... & Sosnoff, 2017), (see 4.19).  

                                                 𝑆𝑤𝑖𝑛𝑔 𝑇𝑖𝑚𝑒= 𝑇𝑆𝐻𝑖+1 − 𝑇𝑇𝑂𝑖                                                     (4.19) 
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• Double support time 

A gait cycle involves two double support phases (as can be seen Figure B.1 in Appendix 

B). This double support time can be calculated by accounting for the time that is taken from 

the strike heel of one leg (R-leg) till the toe-off of the other leg (L-leg); this is added to the time 

that is taken from the strike heel of the (L-leg) till the toe-off of the (R-leg) (see 4.20).    

         𝐷𝑜𝑢𝑏𝑙𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑡𝑖𝑚𝑒 = (𝑇𝑇𝑂𝑖|𝑅 −   𝑇𝑆𝐻𝑖|𝐿) + (𝑇𝑇𝑂𝑖|𝐿 − 𝑇𝑆𝐻𝑖|𝑅)                         (4.20) 

Where 𝑇𝑆𝐻𝑖|𝑅 is the time at the strike heel of the right leg, while 𝑇𝑇𝑂𝑖|𝑅 is the time at the toe-

off of the right leg.  𝑇𝑆𝐻𝑖|𝐿  means the time of the strike heel of the left foot. 𝑇𝑇𝑂𝑖|𝐿 represents 

the time at the toe-off of the left leg.  

• Gait cadence 

This quantity could be calculated as the number of gait steps that are accounted for per 

minute, (see 4.21).  

                                       𝐶𝑎𝑑𝑒𝑛𝑐𝑒 = ∑ 𝑔𝑎𝑖𝑡 𝑠𝑡𝑒𝑝𝑠  |𝑡𝑖𝑚𝑒(𝑜𝑛𝑒 𝑚𝑖𝑛)                                                     (4.21) 

• Gait speed  

This is calculated by dividing the stride length over the time of the gait cycle, (see 4.22). 

                                                               𝑔𝑎𝑖𝑡 𝑠𝑝𝑒𝑒𝑑 =  
𝑆𝑡𝑟𝑖𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒
                                              (4.22) 

Where the gait cycle time (Yoo, Hwang & Nixon, 2005) is defined as (4.23): 

𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒(𝑠𝑒𝑐)  =  𝑔𝑎𝑖𝑡 𝑝𝑒𝑟𝑖𝑜𝑑(𝑓𝑟𝑎𝑚𝑒𝑠)/ 𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒(𝑓𝑟𝑎𝑚𝑒𝑠 / 𝑠𝑒𝑐)         (2.23)  

4.3.3.2 Linear Kinematic Gait Features    

In linear gait kinematics, the position, velocity and acceleration of the lower body joints 

are calculated by using the relations between them as vector quantities, as can be seen in Figure 

4.5 below. The changes in these quantities (final value from initial value) with respect to the 

time change (∆t) can be defined as the line slope (s) of joint movement over the time. 

 

                                                                  𝑠 =
𝑦2−𝑦1

𝑥2−𝑥1
                                                                     (4.24) 

Where 𝑆 means the slope of the displacement curve. While, 𝑦2, & 𝑥2 are final values, and 

𝑦1, & 𝑥1 are the initial values. 
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Figure 4.5: The Relationship between Distance, Velocity and Acceleration 

 

In this part, the swing stage is analyzed by using the gait features of displacement, 

velocity and acceleration, because the foot movement data can be richer than at the stance 

stage. The time graph of displacement illustrates the relation between velocity and acceleration 

particularly in the curve line pattern, as can be seen in Figure 4.6. The change of the location 

is shown as a curve line, which is related to change in velocity. However, the straight-line 

movement means the velocity is constant over time. 

 
Figure 4.6: Displacement-Time Graph 

The velocity sign shows the direction movement - whenever the subject moves to the 

right, the velocity sign will be positive and vice versa.  The slope S is positive when the final 

value is greater than the initial value and vice versa. The sines of the slope can specify the sign 

of acceleration - when the direction of movement goes from the small slope into the high value, 

then the acceleration will be positive and vice versa.  

4.3.3.3 AM-modified Gait Signal Features 

The Amplitude Modulation (AM) technique maps the baseband signal into the 

passband domain to generate an AM-modified signal on the higher frequency spectrum 

(Freeman, 2005). The AM technique modulates the amplitude of a reference signal 

xr(t) according to the variation of the amplitude of a gait length signal 𝑔(𝑡). The produced 
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signal is called an AM-modified signal 𝑀𝐴𝑀(𝑡) as can be seen in Figure 4.7. The  𝑀𝐴𝑀(𝑡) is 

obtained by multiplying the 𝑔(𝑡) to the reference signal xr(t), see (4.25). 

 

Figure 4.7: AM-Modified Gait Length Signal Generation  

 

                                                  𝑀𝐴𝑀(𝑡) =  𝐴𝑟 cos(1 + 𝐷. 𝑔(𝑡))𝑡                                     (4.25) 

Where 𝑀𝐴𝑀(𝑡) is a modified signal for 𝑔(𝑡) which is the gait walk signal, 𝐴𝑟and 𝐴𝑔 are 

amplitudes of the reference and gait signal, respectively. The relation between these amplitudes 

can be formed as the modification depth and it is expressed as: 

                                                                     𝐷 =
𝐴𝑔

𝐴𝑟
                                                         (4.26) 

 

Figure 4.8: Amplitude Modulation Signal in Time Domain  

Figure 4.8 illustrates that 𝐴𝑔 =  
1

4
(max𝑝−𝑝 − 𝑚𝑖𝑛𝑝−𝑝), and 𝐴𝑟 =  𝐴𝑔 +

1

2
min(𝑃_𝑃). Finally, 

modification depth in (4.26) can be rewritten as: 
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                                      𝐷 =  
(max 𝑝_𝑝)−(min 𝑃_𝑃)

(max 𝑃_𝑃)+(min 𝑝_𝑝)
 × 100   (%)                                        (4.27) 

The spectrum of the modification signal equation can be extracted from the general equation 

(4.25). This leads to a representation of the modification signal in three signals components as:  

                       𝑀𝐴𝑀(𝑡) =  𝐴𝑟 cos 𝑤𝑟𝑡 + 𝐴𝑟 cos 𝑤𝑟 𝑡(𝐷. 𝑔(𝑡))                                                           (4.28) 

Where the g(t) is the gait signal and can be written as g(t) = Ag cos wg t for substituting in the 

equation (4.28) to obtain the following equation: 

                                  𝑀𝐴𝑀(𝑡) =  𝐴𝑟 cos 𝑤𝑟𝑡 + 𝐴𝑟 𝑐𝑜𝑠𝑤𝑟𝑡 ×  𝐷. 𝑐𝑜𝑠𝑤𝑔𝑡                                       (4.29) 

The second term of the above equation can be analyzed geometrically to extract the 

fundamental components of the AM-signal:  

                             cos(A)cos (B) =
1

2
cos(𝐴 + 𝐵) +

1

2
cos (𝐴 − 𝐵)                                (4.30) 

               𝑀𝐴𝑀(𝑡) = 𝐴𝑟𝑐𝑜𝑠𝑤𝑟𝑡 +
𝐴𝑟.𝐷

2
cos (𝑤𝑟 + 𝑤𝑔) 𝑡 +

𝐴𝑟.𝐷

2
cos  (𝑤𝑟 − 𝑤𝑔) 𝑡              (4.31) 

Finally, the spectrum of the AM-signal is in the simplest form represented by three 

terms, each one contains a sinusoidal signal with the maximum value of amplitude and is 

located at a different frequency on the spectrum range. Where, the angular frequencies 

wr and  wg can be simplified into fc and fg respectively, as can be seen in Figure 4.9 below. 

 

Figure 4.9: AM-Signal Spectrum Contains Three Components  
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The first term of the equation (4.31) is called a reference signal  xr(t) = Ar cos wr t. 

The parameters of this signal (i.e. Ar and fr) are chosen as fixed values (𝑖. 𝑒.  Ar = 1 and fr =

25 Hz) for all the gait walk tests. However, fr  is chosen as the fourth sampling frequency, and 

consequently the Nyquist frequency is (
fs 

2
 ).  

The seven gait features are extracted from the spectrum of the AM-modified gait 

signal  𝑀𝐴𝑀(𝑓). These features are listed as: upper side band frequency (𝑓𝑈𝑆𝐵), lower side band 

frequency (𝑓𝐿𝑆𝐵), bandwidth (𝐵𝑊), modulation index (𝐷), modulation efficiency (𝑒𝑓𝑓), side-

lobes level (𝑠𝑙𝑙), and total amplitude level (𝑇𝑎) which are calculated as the following:  

                                                           𝑓𝑈𝑆𝐵 = 𝑓𝑟 + 𝑓𝑔                                                       (4.32) 

Where, 𝑓𝑈𝑆𝐵 is the frequency of the upper side band spectrum, 𝑓r, 𝑓𝑔 are the frequencies of 

reference signal and gait signal, respectively. 

                                                          𝑓𝐿𝑆𝐵 = 𝑓𝑟 − 𝑓𝑔                                                          (4.33) 

Where, 𝑓𝐿𝑆𝐵is the frequency of the lower side band component.  

                                              𝐵𝑊 = (𝑓𝑟 + 𝑓𝑔) − (𝑓𝑟 − 𝑓𝑔)                                              (4.34) 

Where, 𝐵𝑊 is the bandwidth of the AM-modified gait signal.  

                                                              𝐷 =
𝐴𝑔

𝐴𝑟
                                                             (4.35) 

Where, D is the modulation index of the AM-modified gait signal. 

                                                          𝑒𝑓𝑓 =
𝐷2

2+𝐷2                                                            (4.36) 

Where, 𝑒𝑓𝑓 is the modulation efficiency of the AM-modified gait signal.                                                                                           

                                                         𝑠𝑙𝑙 =
𝐴𝑟 × 𝐷

√2
                                                          (4.37) 

Where, 𝑠𝑙𝑙 is the side-lobes level of upper side band and lower side band components.  

                                                           𝑇𝑎 =
𝐴𝑟

√2
(1 + 𝐷)                                                  (4.38) 

Where, 𝑇𝑎 is the total amplitude level of AM-modified gait signal. 
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4.3.3.4 FM-modified Gait Signal Features  

The FM-modified signal 𝑀𝐹𝑀(t) is generated by using a Frequency Modulation 

technique that changes the frequency of the reference signal 𝑓𝑐 according to the variation of the 

amplitude of a gait walk signal 𝑔(𝑡);  then mathematically, the instantaneous frequency 𝑓𝑖 of  

𝑀𝐹𝑀(𝑡) (Maini, 2011) is represented as: 

                                 𝑓𝑖 = 𝑓𝑟(1 + 𝑘𝑓𝐴𝑔 cos 𝑤𝑔 𝑡)                                                     (4.39) 

Where 𝑘𝑓 is the constant proportionality, 𝑓𝑟 is the reference signal frequency, and 𝐴𝑔/ 𝑤𝑔 are 

the amplitude and angular frequency of the gait signal, respectively. From the above equation, 

the  𝑓𝑖 can reach the maximum value when cos 𝑤𝑔 𝑡 equals positive one, and its minimum value 

when cos 𝑤𝑔 𝑡 equals negative one. These yield 𝑓𝑚𝑎𝑥 = 𝑓𝑟(1 + 𝑘𝑓𝐴𝑔) ,𝑓𝑚𝑖𝑛 = 𝑓𝑟(1 − 𝑘𝑓𝐴𝑔), 

respectively. Consequently, the frequency deviation ∆𝑓 can be calculated from these changes 

of instantaneous frequency and compared to the original frequency of the reference signal as 

(𝑓𝑚𝑎𝑥 − 𝑓𝑟) or (𝑓𝑟 − 𝑓𝑚𝑖𝑛). 

                                                ∆𝑓 = 𝑘𝑓 𝐴𝑔             , 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛  (
𝐻𝑧

𝑣
×  𝑣)                     (4.40) 

Where ∆𝑓  is the frequency deviation which is defined as the quantity of frequency that 

has changed from the frequency of the reference signal as can be seen in Figure 4.10 below. 

 

Figure 4.10: Frequency Modulation Signal in Time Domain   

In general, the Frequency Modulation expression explains the relation of the information signal 

amplitude to the reference signal frequency (Neustein, 2011), (see 4.41). 

                                                𝑀𝐹𝑀(𝑡) = 𝐴𝑟𝑐𝑜𝑠(𝑤𝑟𝑡+B 𝑔(𝑡))                                          (4.41) 
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Where, 𝑔(𝑡) is the gait signal and  𝐴𝑟,𝑤𝑟 are the amplitude and angular frequency of the 

reference signal, respectively. B is the modulation index (Faruque, 2017) and can be 

represented as (4.42). 

                                                              𝐵 =
∆𝑓

𝑓𝑔
                                                               (4.42) 

If the modulation index is 𝐵 < 1, then the modulation is called the Frequency 

Modulation Narrow Band (FM-NB), and when 𝐵 ≥ 1, the modulation is called the Frequency 

Modulation Wide Band (FM-WB). In this research, the FM-NB technique will be chosen 

because it is similar to the AM technique and they have the same number of spectral 

components; this increases the measurement accuracy when they are in compression for the 

data gait analysis, especially in the frequency domain representation.   

In the frequency domain, the spectrum of the FM-modified signal 𝑀𝐹𝑀(𝑓) contents 

more than one side of the spectral components in the case of FM_WB. However, the 

modulation index B is less than one with (FM-NB).  For this, assume that B≈ 0, and then the 

Equation (4.41) can be rewritten as: 

                             cos(𝑎 + 𝑏) = cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏                                     (4.43) 

          𝑀𝐹𝑀(𝑡) = 𝐴𝑟[ cos  (𝑤𝑟𝑡) cos  (𝐵 𝑔(𝑡)) − sin(𝑤𝑟𝑡) sin(𝐵 𝑔(𝑡))]               (4.44) 

As B≈ 0, then sin  (𝐵 𝑔(𝑡)) ≈ 𝐵 𝑔(𝑡), and cos(𝐵𝑔(𝑡)) = 1.  Therefore, the above equation 

will be simplified as: 

                              𝑀𝐹𝑀(𝑡) =  𝐴𝑟 [cos 𝑤𝑟 𝑡 − (sin 𝑤𝑟 𝑡 × 𝐵 𝑔(𝑡))]                                 (4.45) 

If the gait length signal is  𝑔(𝑡) = sin 𝑤𝑔𝑡, then the above equation can be rewritten as: 

                           𝑀𝐹𝑀(𝑡) = 𝐴𝑟 cos 𝑤𝑟𝑡 − 𝐴𝑟(sin 𝑤𝑟𝑡 × 𝐵 sin 𝑤𝑔𝑡)                                  (4.46) 

                 𝑀𝐹𝑀(𝑡) = 𝐴𝑟 cos 𝑤𝑟 𝑡 +
𝐴𝑟𝐵

2
cos(𝑤𝑟 − 𝑤𝑔)𝑡 −

𝐴𝑟𝐵

2
cos (𝑤𝑟 + 𝑤𝑔)t                (4.47) 

The above equation is the simplest form of the FM-NB signal which contains three sinusoidal 

signals and each one can be represented as a spectral component with peak amplitude and 

frequency location on the spectrum range as illustrated in Figure 4.11 below.  
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Figure 4.11: Spectrum Range in FM-NB Modulated Signal  

The bandwidth 𝐵𝑊of the FM-modulated gait signal can be calculated by subtracting the 

frequency of the LSB from the frequency of the USB component as (4.49).  

                                                    𝐵𝑊 = (𝑓𝑟 + 𝑓𝑔) − (𝑓𝑟 − 𝑓𝑔)                                            (4.48) 

                                                              𝐵𝑊 = 2𝑓𝑔                                                                (4.49) 

4.3.4 Gait Features Reduction 

In this section, principal component analysis (PCA) technique is used to reduce the 

dimension of the dataset matrix. Before using the PCA approach it is common to use the 

features scaling method (normalization). 

4.3.4.1 Features scaling methods 

The features can be rescaled using several methods and the scaling may alter 

distribution of the original data to improve the quality of the results. This is required when the 

dataset has variation between the features in magnitudes and ranges. To reduce this impact, the 

scaling can present several features to be at the same level as the magnitudes.  

• Standardization 
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The data points are replaced by the z-score (Gamble, Ravela & McGarigal, 2008) using 

the standardization, (as seen in 4.50). This is called the features redistribution, with the mean 

equal to zero and the standard deviation equal to one.   

                                                              𝑥′ =
𝑥−𝑥̅

𝜎
                                                                (4.50) 

  

Where 𝑥′𝑖𝑠 the z-score, 𝑥 is the original data point. While,  𝑥̅, 𝜎  are the mean and standard 

deviation, respectively.   

• Mean Normalization 

In this scale, the values are distributed from -1 to +1 (as seen in 4.51), with the mean equal to 

zero.  

                                                         𝑥′ =
𝑥−𝑥̅

max(𝑥)−min (𝑥)
                                                            (4.51) 

The algorithms that re-centre the features vectors at zero coordinate such as the PCA approach, 

the standardisation and mean normalization can be efficient in rescaling several features on the 

same range of the magnitude. 

4.3.4.2 Principal Components Analysis  

The Principal Components Analysis (PCA) is commonly used in the dimensionality 

reduction of dataset to extract the main representative features (Yuan, 2016). The PCA can be 

considered as an efficient solution when the correlation between data vectors is strong, which 

means high redundancy. The main task in this section is to calculate the PCs that can be used 

instead of the initial features - the following steps illustrate the calculation of the PCs 

• Dataset re-centre 

By subtracting the mean from the corresponding data vector to re-centre the data set, 

the new mean will be at zero for the adjusted data 𝑋 (Milovanovic & Popovic, 2012) as: 

                                 𝑋 = (

𝑘1 … . . 𝑘𝑀

… … … … … .
… … … … … .
𝑘𝑁 … . . 𝑘𝑁𝑀

)

𝑁×𝑀

                      𝑋 ̅=(𝑧𝑒𝑟𝑜)𝑀×1                    (4.52) 

Where N is the total number of point’s data, 𝑀 is the number of variables (features). The mean 

of adjusted data 𝑋̅ is centred at zero. 

 

• Covariance matrix  
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The variance-covariance matrix C (Konstorum, 2018) can be calculated as: 

                                                    𝐶 =
1

𝑁−1
(𝑋 − 𝑋̅′)′(𝑋 − 𝑋̅′)                                           (4.53) 

Where, the 𝑋̅ is equal to zero, then the matrix 𝐶 can be simplified into: 

                                                                 𝐶 =
1

𝑁−1
𝑋′𝑋                                                      (4.54) 

The diagonal elements of the matrix 𝐶 represent the variance of the attributes, and the off-

diagonal elements of the covariance.  

• Eigenvalue and eigenvector  

Eigenvalue 𝜆𝑖 determines the radius of the ellipse, so the peak of the eigenvalue 

represents the longer radius of the ellipse that is formed from the data distribution.  

                                                                      det (𝐶 − 𝜆 𝐼) =  0  

                                                           𝑑𝑒𝑡 (
𝑐1 − 𝜆             𝑐𝑚

      𝑐2            𝑐𝑚𝑚 − 𝜆
) = 0                            (4.55) 

Where, 𝐼 is the identity matrix, 𝜆 represents the eigenvalues, which can be solved as a quadratic 

equation. 

The eigenvector 𝑒𝑖 can be calculated by multiplying the covariance matrix 𝐶 to each 

eigenvector 𝑖 as: 

                                                                                  𝐶 𝑒𝑖 =  𝜆𝑖  𝑒𝑖 

                     𝐼𝑓 𝑖 = 1                                   (
𝑐1             𝑐𝑚

  𝑐2            𝑐𝑚𝑚
) (

𝑒11

𝑒12
) =  𝜆1 (

𝑒11

𝑒12
)              (4.56) 

                  𝑤ℎ𝑒𝑛 𝑖 = 2                                (
𝑐1             𝑐𝑚

  𝑐2            𝑐𝑚𝑚
) (

𝑒21

𝑒22
) =  𝜆2 (

𝑒21

𝑒22
)             (4.57) 

 

The first principal component 𝑃𝐶1 comprises the most variance of data that can be 

captured by a linear combination of the attributes; while the second principal 𝑃𝐶2 component 

comprises the most variance of data that can be captured by a linear combination of the 

attributes after the first principal component. 

                                   𝑃𝐶1 = [
𝑒11

𝑒12
]          𝑃𝐶2 = [

𝑒21

𝑒22
]          𝑃𝐶𝑖 = [

𝑒𝑖1

𝑒𝑖𝑖
]                        (4.58) 
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4.3.5 Gait Data Classification 

The terminology of classification in machine learning is supervised learning 

implementation using a training set to learn the system with labelled observations available; 

whilst unsupervised learning acts are based on the measurements of distance similarity or 

dissimilarity between the observations to calculate the relevant group, which is also called a 

clustering method (Duda et al., 2001) (Guerra et al., 2011). However, this research focusses 

only on supervised learning algorithms.  

4.3.5.1 Supervised classification   

Different supervised classification algorithms are used in this study. In addition, the 

performance of these algorithms is compared to a proposed classification method known as a 

Convolutional Encoder (CE). The purpose of the assessment is to determine which algorithms 

are most effective for data classification of changes in gait pattern. 

In this technique, the data vector will be predicted at each instance of (𝑖) as a vector is 

denoted by ( 𝑥(𝑖), 𝑙(𝑖)), with 𝑖 𝜖 (1 … . 𝑁), where 𝑥(𝑖) is represented as the value of the variable 

or feature and 𝑙(𝑖) represents the order of the labels, where labels 𝜖 (1, … , 𝑅𝑜) are of the 

classes 𝑙. The main task of the classifier is to create a model automatically for the training data 

stage that is based on a data subset. Throughout the testing data stage, the model must 

understand the new instances that are unknown labels using only the variable values. Assuming 

that 𝑥 is a new instance, then supervised classification will build a deduced function of 

𝛾 (Guerra et al., 2011) as:  

                                                            𝛾: 𝑥 → {1, … . , 𝑅𝑜}                                                (4.59) 

Consequently, the deduced function predicts where the unseen data belongs to and the 

appropriate membership class in the testing stage. Cortes & Vapnik (1995) confirm that the 

training data stage learns the algorithm to estimate unobserved sample classes in a suitable 

pattern. Therefore, several kinds of supervised classifiers are used in this research to classify 

and detect the changes in gait pattern. Specifically, SVM, k-NN, DT and discriminant 

classifiers are all involved in the data classification stag. 
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4.3.5.2 Convolutional Encoder  

This CE technique acts based on a binary format (i.e. logic 0 & logic 1) as input to 

encode data at the output as a codeword. For this purpose, all features will be converted into a 

binary system first. 

• Decimal to Binary Conversion  

To achieve a decimal feature to binary conversion, let assume the decimal feature is 

XX.YY where XX is an integer part and YY is a fraction part, the equivalent binary number 

will be computed in two steps.  

For the integer part of a decimal number, the binary number will be obtained by dividing the 

XX by 2 and this process will be repeated for the quotients tile, where one quotient equals zero 

as follows: 

𝑋𝑋

2
∶ 𝑖𝑓 𝑡ℎ𝑒 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 = 𝑋, 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 1 

𝑋

2
∶ 𝑖𝑓 𝑡ℎ𝑒 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 = 2 , 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 1 

2

2
∶ 𝑡ℎ𝑒 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝑤𝑖𝑙𝑙 = 1, 𝑎𝑛𝑑 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 0 

1

2
∶ 𝑡ℎ𝑒 𝑞𝑜𝑢𝑡𝑖𝑒𝑛𝑡 𝑤𝑖𝑙𝑙 = 0, 𝑎𝑛𝑑 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 1  

Therefore, (𝑋𝑋)10 = (1011)2 is generated from the remainders’ results.  

For the fraction part of a decimal number, the binary number will be obtained by multiplying 

the 0.YY by 2 and this process will be repeated, so that the tile one result equals “1” as follows: 

0. 𝑌𝑌 × 2 ∶ 𝑖𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 = 0. 𝑌𝑋,   𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡 𝑖𝑠 0 

 0. 𝑌𝑋 × 2 ∶ 𝑖𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 = 0. 𝑋𝑌,   𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡 𝑖𝑠 0 

0. 𝑋𝑌 × 2 ∶ 𝑖𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 = 1. 𝑌𝑋,   𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡 𝑖𝑠 1 

0. 𝑌𝑋 × 2 ∶ 𝑖𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 = 1.00,   𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡 𝑖𝑠 1 

Therefore, (0. 𝑌𝑌)10 = (0011)2 is generated from the remainders’ results.  

Finally, both parts are combined (𝑋𝑋. 𝑌𝑌)10 = (1011.0011)2. 
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The Convolutional Encoder is commonly used with a Viterbi decoder in communication links 

to detect and correct the bits that are received in error. The maximum likelihood decoding is 

used as a metric to calculate the survival path (Liu, 2004). This technique is proposed to be 

used for gait pattern classification that is based on Hamming Distance. 

A Convolutional Encoder (CE) is specified by three parameters (𝑛 𝑘 𝐿), where 𝑘 and 𝑛 are the 

numbers of input and output bits, respectively. 𝐿 is the number of the memory registers (𝑠𝑖), 

which is initially set to zero (Liu, 2004). The encoder includes two of the modulo-2 adders 

which produce two bits at the output of the CE for each bit at the input, which means the code 

rate (
𝑛

𝑘
) equals (½), as can be shown in Figure 4.12 below.  

 

Figure 4.12: The (2 1 3) Convolutional Encoder with Code Rate 1/2 

• Polynomial vector generation 

The polynomial vector is generated for each branch of the encoder, one vector for each 

modulo-2 adder. The 𝑖𝑡ℎ element in each vector is “1” if the 𝑖𝑡ℎ  stage in the shift register is 

connected to the corresponding modulo-2 adder, and otherwise “0” as in this case; 𝐺1= (1,1,1), 

𝐺2= (1,0,1) for the upper and lower branches, respectively. Consequently, the polynomial 

vectors are generated as (4.60) and (4.61). 

                                                            𝐺1 = 1 + 𝑥 + 𝑥2                                                (4-60) 

                                                              𝐺2 = 1 + 𝑥2                                                      (4-61) 

An input bit 𝑚𝑖 is applied into the leftmost register. The generator polynomials and the 

existing values in the remaining registers will form the encoder outputs. All register values 

shift to the right (𝑚1 moves to  𝑚0, 𝑚0 moves to  𝑚−1), the encoder continues shifting until all 
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registers have returned to zero. Therefore, the output sequences are calculated as: 

𝑢1, 𝑢2 symbol. 

                                                             𝑢1
𝑖 = 𝑚𝑖. 𝐺1                                                          (4.62) 

                                                             𝑢2
𝑖+1 = 𝑚𝑖. 𝐺2                                                       (4.63) 

Where 𝑖 is the order of the input and output bits. Finally, the output codewords of the encoder 

are formed as: 

                                             𝑈 =  𝑢1
1𝑢2

2, 𝑢1
3𝑢2

4, … … . . 𝑢1
𝑁−1𝑢2

𝑁                                           (4.64) 

Where N is the length of the output codeword. This means that each bit at the encoder input 

will generate two bits at the encoder output. 

The extracted gait features are converted into binary format to agree that the encoder is 

based on “0”, “1” bits. The CE produces four possible outputs (00, 10, 01 and 11 states) 

dependent on the input bit. Figure 4.13 illustrates that each state (i.e. square box) has just two 

possible outputs: dashed line when input bit is “1” and sold line if the input bit is “0”. 

Meanwhile, the output of the CE is represented on the path of the transition as symbol (two 

bits together) (Liu, 2004). To understand the principle work of the CE, a Trellis diagram is 

included in the next step. 

 

Figure 4.13: The State Diagram of the ½ Rate Convolutional Encoder 

• Trellis Diagram Representation  

The Trellis diagram represents the principal work of the CE technique, with the 

following example demonstrating the encoded data process for input bits as [1 0 0 1]. The 
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transition between states has just two possible paths which depend on the input bit - if it is “0” 

the transition will be via a solid line, otherwise it is “1”, which makes the transition via a dashed 

line; the same structures are repeated for all input of data bits. The path of the transitions 

represents the encoded bits at the output of the CE; while the labelled bits on the branches of 

the complete path forms are the output codewords (as illustrated in Figure.4.14 below) 

highlighted in red. 

 

Figure 4.14: Trellis Diagram Example to Encode Input Bits [1001] 

All extracted gait features are encoded by generating the codewords of the path as explained in 

the previous Trellis diagram example. The classification decision is dependent on the threshold 

of the CE encoder, which is also built using the same procedures as the Trellis diagram. 

Moreover, the classification decision is calculated using the Hamming Distance (HD) for the 

codewords of the gait features and threshold. For instance - if HD equals “1” this means that 

the bits differ, so in this instance the position of the bits will be considered (see 4.65); otherwise 

“0” means the bits are similar which yields the formulae of Error equals zero.    

                                              𝐸𝑟𝑟𝑜𝑟 =  ∑ 𝐻𝐷𝑝 × 10−𝑝𝑁
𝑝=1                                                (4.65) 

Where 𝐻𝐷 is the Hamming distance, and 𝑝 means the order of the sequence bits of the 

codewords. The HD method is used to calculate the 𝐸𝑟𝑟𝑜𝑟 𝑙𝑒𝑣𝑒𝑙 for each feature from the 

threshold. The smallest error means a high similarity to that class of walk speed, otherwise the 

high error means low similarity and then low probability of belonging to that class.  

• Similarity Metric  

In this section, the Hamming Distance (HD) and the position (𝑝) of the bit that differs 

from the threshold are combined as (𝐻𝐷𝑝) to calculate the error rate using the Equation (4.65). 



72 
 

The low rate of error means the decision is highly likely to be a similarity decision (i.e. it 

belongs to a class), while the high rate of error means the decision is highly likely to not be a 

similarity decision (i.e. it does not belong to a class). 

To understand how the similarity metric works, the obtained codeword C1 from the 

previous section (i.e. C1: 11 10 11 11) could be known as the tested feature C1, with the 

similarity decision dependent on the principal work of the Viterbi Decoder (VD). The C1 is 

evaluated from three thresholds known as T1: 11 10 11 00, T2: 11 10 00 10 and T3: 11 01 01 

00 instantaneously, (as can be seen in Figures 4.15, 4.16 and 4.17). First, the Hamming 

Distance is calculated for C1 from each threshold (see below HD1, HD2 and HD3), whilst 

considering that the order of the bit’s position has a HD equal to one. Finally, the error equation 

(4.66) for a class decision is used, where the lowest error rate for the tested feature C1 means 

that the C1 belongs to the that class. 

HD1:00 00 00 11, HD2:00 00 11 01, HD3: 00 11 10 11. 

 

Figure 4.15: Path Metric using Threshold T1 

 

                                 𝐸𝑟𝑟𝑜𝑟1 =  ∑ 𝐻𝐷1𝑝 × 10−𝑝𝑁
𝑝=1      , N=8.                                        (4.66) 

 

𝐸𝑟𝑟𝑜𝑟1 =  (0 × 10−1) + (0 × 10−2) + (0 × 10−3) + (0 × 10−4) + (0 × 10−5)

+ (0 × 10−6) + (1 × 10−7) + (1 × 10−8) 

𝐸𝑟𝑟𝑜𝑟1 = 1.1 × 10−7 
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Figure 4.16: Path Metric using Threshold T2 

  

𝐸𝑟𝑟𝑜𝑟2 =  (0 × 10−1) + (0 × 10−2) + (0 × 10−3) + (0 × 10−4) + (1 × 10−5)

+ (1 × 10−6) + (0 × 10−7) + (1 × 10−8) 

𝐸𝑟𝑟𝑜𝑟2 = 1.1 × 10−5 

 

 

Figure 4.17: Path Metric using Threshold T3 

𝐸𝑟𝑟𝑜𝑟3 =  (0 × 10−1) + (0 × 10−2) + (1 × 10−3) + (1 × 10−4) + (1 × 10−5)

+ (0 × 10−6) + (1 × 10−7) + (1 × 10−8) 

𝐸𝑟𝑟𝑜𝑟3 = 1.1 × 10−3 

The Error1 is the lowest value when compared to Error2 and Error3, which means the sample 

C1 is high likely to belong to class one.  
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4.3.6 K-Fold Cross Validation 

the available data D is partitioned into k parts, which are called folds as 𝑑=1, 2, . . . . . 

𝑘, where all folds have the same size. This makes the k-folds involved in all samples equal to 

the original dataset D. The learning algorithm is trained by using (𝐷 − 𝑑𝑖) which is known as 

a training set, while one-fold (𝑑𝑖) is expected to be the testing set and this process is repeated 

k times for t ∈ (1, 2, …, k) as shown in Figure 4.18. 

In other words, the dataset D is managed as training and testing methods. Meanwhile, 

in each fold 𝑑= 1, 2, . . . k, the model is fitted with the training set to be used in the prediction 

of the observation’s responses for the testing set. The estimation prediction error is calculated 

from 𝑀𝑆𝐸𝑖  for each fold 𝑑𝑖 (Hastie et al., 2013):    

                                                           𝑀𝑆𝐸𝑖 = (𝑦𝑖 − 𝑦̂𝑖)
2                                                 (4.67) 

 

Figure 4.18: K-Fold Cross-Validation Method  

Where MSE is the mean square error and 𝑦 and 𝑦̂ are the training observation and prediction 

estimation, respectively. This gives the cross-validation error as an average of the estimation 

prediction errors for all folds (Kohavi, 1995): 

 

                                                           𝐶𝑉𝑘  =
1

𝑘
∑ 𝑀𝑆𝐸𝑖

𝑘
𝑖=1                                                     (4.68) 

The main advantage of the k-fold CV is that it avoids the randomness of splitting the 

training/testing sets, where all the datasets can be used in the training/testing sets with no 

overlapping (Hastie et al., 2013). Typically, the use of k = 5 or 10 is commonly performed as 
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a rule and used as empirical evidence. Hence, the trade-off is alternated between the 

computational costs and the bias-corrections of the k-fold CV (Fushiki, 2011). 

4.3.7 System Evaluation  

4.3.7.1 Goodness-of-Fit Statistics 

• Sum of Squares Due to Error 

The SSE is a statistic measurement for total deviation from the fit to the response 

values. It is also known as the summed square of residuals and it can be defined as: 

                                          𝑆𝑆𝐸 = ∑ {𝑤𝑖(𝑦𝑖 − 𝑓𝑖)2}𝑛
𝑖=1                                                   (4.69) 

Where  𝑦𝑖 and 𝑓𝑖  are the observed data and the predicted value from the fit, respectively; 

while 𝑤𝑖 is the data point weight, usually 𝑤𝑖 = 1. The closest value of the SSE to zero, indicates 

that the model behaves in a small random error, and the fit model is efficient in prediction. 

• R-Square 

The R-square is a statistic measurement that evaluates the fitting performance by 

showing the data variation. In other words, the R-square is the square of the correlation between 

the response values and the predicted response values. This measurement uses the values of 

between zero and one, and a greater rate of variation can be obtained when the R-square 

indicates as closer to one - this can be defined as:  

                                       𝑅𝑠𝑞𝑢𝑎𝑟𝑒 = 1 −
[∑ {𝑤𝑖(𝑦𝑖−𝑓𝑖)2}𝑛

𝑖=1 ]

∑ {𝑤𝑖(𝑦𝑖−𝑦𝑎𝑣)2}𝑛
𝑖=1

= 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
                              (4.70) 

Where 𝑓𝑖 and  𝑦𝑎𝑣  are the predicted values from the fit, and the average value of the observed 

data; while SSE and SST are the sum of squares due to error and the total sum of squares, 

respectively. 

• Root Mean Squared Error 

The RMSE is a statistical measurement for the fit standard error and the standard error 

of regression. It is an estimate of the standard deviation of the random components in the data, 

and is defined as: 

                                                          𝑀𝑆𝐸𝑅 = √𝑀𝑆𝐸                                                         (4.71) 
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Actual 

Where MSE is the mean square error or the residual mean square. The prediction can be useful 

when the MSE value indicates closer to zero. The MSE can be calculated as: 

                                                             𝑀𝑆𝐸 = 𝑆𝑆𝐸/𝑣                                                      (4.72) 

Where v is the residual degree of freedom, which is calculated by subtracting the fitted 

coefficients 𝑚 from the response values 𝑛 numbers as (𝑣 =  𝑛 − 𝑚).  

4.3.7.2 Classification Evaluation 

The performance of the classifier can be evaluated in many ways. In supervised learning 

with three possible classes, the first task is to calculate four ratios including: True Positives TP, 

False Positives FP, True Negatives TN and False Negatives FN. These quantities are essential 

for evaluating the classifiers’ performance. A Positive True PT can be extracted from the 

diagonal of the confusion matrix (as can be seen in Table 4-2). However, the rest of the ratios 

are calculated for each class as the following: 

FN for a class is the sum of values in the corresponding row except for the (TP).  

FP for a class is the sum of values in the corresponding column except for the (TP).  

TN for a class is the sum of values from the confusion matrix except for a column and row of 

a class. 

Table 4-1: The Confusion Matrix for Three Classes 

Predicted 

A B C 
 

A TPa Eab Eac 

B Eba TPb Ebc 

C Eca Ecb TPc 

 

The elements of confusion matrix constitute vital information to compute the most 

metrics that are effective in the understanding of classification performance (see Table B.1 in 

Appendix B. for more details). Some of the evaluative metrics of data classification can be 

calculated as the following:    

• Classification Accuracy  
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The accuracy of classification is an important scale to evaluate the ability of the 

classifier for predicting the class correctly. This can be calculated directly from the confusion 

matrix by dividing the summation of the values of the diagonal matrix over the summation of 

the values of all elements. 

                     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃𝑎+𝑇𝑃𝑏+𝑇𝑃𝑐)

(𝑇𝑃𝑎+𝐸𝑎𝑏+𝐸𝑎𝑐+𝑇𝑃𝑏+𝐸𝑏𝑎+𝐸𝑏𝑐+𝑇𝑃𝑐+𝐸𝑐𝑎+𝐸𝑐𝑏)
                        (4.73) 

• Precision 

This measure indicates the level of a model’s exactness, where a high level of a 

classifier’s precision means a perfect classifier. This scale can be calculated for each class as: 

                                                      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐴 =
𝑇𝑃𝑎

(𝑇𝑃𝑎+𝐸𝑏𝑎+𝐸𝑐𝑎)
    

                                                        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐵 =
𝑇𝑃𝑏

(𝑇𝑃𝑏+𝐸𝑎𝑏+𝐸𝑐𝑏)
                                      (4.74) 

                                                         𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐶 =
𝑇𝑃𝑐

(𝑇𝑃𝑐+𝐸𝑎𝑐+𝐸𝑏𝑐)
    

• Sensitivity 

A sensitivity measurement is the rate of true positive or the recall. It is used to measure 

the rate of actual positives that are predicted correctly. The following equations are used for 

the sensitivity measurement of each class:   

                                              𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐴 =  
𝑇𝑃𝑎 

(𝑇𝑃𝑎+𝐸𝑎𝑏+𝐸𝑎𝑐)
   

                                              𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐵 =  
𝑇𝑃𝑏 

(𝑇𝑃𝑏+𝐸𝑏𝑎+𝐸𝑏𝑐)
                                          (4.75)  

                                              𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐶 =  
𝑇𝑃𝑐 

(𝑇𝑃𝑐+𝐸𝑐𝑎+𝐸𝑐𝑏)
   

• Specificity 

A specificity measurement is the rate of true negative. It is used to measure the rate of 

actual negatives that are predicted correctly. The following equations are the specificity 

measures for each class: 

                                   𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝐴 =  
(𝑇𝑃𝑏+𝐸𝑏𝑐+𝐸𝑐𝑏+𝑇𝑃𝑐)

(𝑇𝑃𝑏+𝐸𝑏𝑐+𝐸𝑏𝑎+𝐸𝑐𝑏+𝑇𝑃𝑐+𝐸𝑐𝑎)
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                                  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝐵 =  
(𝑇𝑃𝑎+𝐸𝑎𝑐+𝐸𝑐𝑎+𝑇𝑃𝑐)

(𝑇𝑃𝑎+𝐸𝑎𝑐+𝐸𝑎𝑏+𝐸𝑐𝑎+𝑇𝑃𝑐+𝐸𝑐𝑏)
                                   (4.76) 

                                  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝐶 =  
(𝑇𝑃𝑎+𝐸𝑎𝑏+𝐸𝑏𝑎+𝑇𝑃𝑏)

(𝑇𝑃𝑎+𝐸𝑎𝑏+𝐸𝑎𝑐+𝐸𝑏𝑎+𝑇𝑃𝑏+𝐸𝑏𝑐)
    

• F-measure  

This measurement balances between precision and sensitivity rates; when either rate is 

zero quantity then the measure will equal zero. However, high performance is when the data 

balances this measure.  

                                         𝐹_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦×𝑝𝑟𝑒𝑐𝑖𝑜𝑛 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                     (4.77) 

• ROC Curve 

The ROC curve and the AUC are used to assess the data classification approaches, 

where the ROC plot is based on a True Positive Rate (sensitivity) and a False Positive Rate (1- 

specificity), in which a large area under the curve indicates that the classifier is more efficient. 

4.4 Summary  

Gait pattern changes can be addressed using several algorithms when dealing with gait 

data collected during a walk test using a Kinect camera. Both algorithms and machine learning 

are involved to estimate and understand the behaviour of the gait features and define some 

conditions.  

The Microsoft Kinect v2 is adopted to track and collect the relevant data because it can 

meet some needs of elderly people who prefer to live independently, including markers-less, 

quick installation and no video data. However, such a device has a low data rate which leads 

to a decrease in the accuracy of the measurements - thus the quality of the extracted features 

could be affected. Furthermore, in the data classification stage, the classification performance 

is greatly affected by the boundary between different classes, which is called a ‘decision 

boundary’. This raises other questions, such as ‘how to weigh the features from the class labels’ 

and ‘which kind of similarity metric is suitable for the dataset’.   

Subsequently, although the skeleton data is collected using a low data rate device in 

this research, the collected data is mapped into a higher frequency spectrum using an AM 

technique. This increases the sampling frequency rate of an AM-modified gait signal. 
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Consequently, the extracted gait features from the AM-modified signal become more 

representative of the gait pattern changes. In addition, a CE technique is proposed to be used 

as a classifier for gait pattern changes. The principal work of the CE is based on the Hamming 

Distance HD to calculate a similarity rate among gait features from the class threshold. 

However, the similarity decision does not only consider the number of bits that differ (i.e. 

HD=1), but also the positions of the bits that differ from the threshold, as this can increase the 

classification accuracy.  
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5. EXPERIMENTAL RESULTS OF IMPLEMENTED 

SYSTEM AND DISCUSSION 

__________________________________________________________________________________ 

The focus of this chapter is on a comparison between the six smoothing data approaches, the 

gait feature extraction approaches, and the classification solutions for gait pattern changes. The 

experimental results are provided and followed by a relevant discussion of the findings. 

__________________________________________________________________________________ 

5.1 Introduction  

The main task is to use the 3D skeleton data of lower body joints that was collected 

during a walk test, by using a Kinect camera for the extraction of the most representative gait 

features, which were then classified based on gait speed. To achieve these requirements, the 

methods and algorithms previously discussed in chapter four, will be involved. In addition, a 

set number of walk trials were conducted to address the main objectives of the research. 

MATLAB programming language was used to analyse the collected skeleton data and run the 

gait analysis system through methods and algorithms that can yield the results, thus enabling 

an understanding of the gait pattern changes via some representative features and machine 

learner approaches.   

A definition of the proposed system AM/CE is introduced in section 5.2, while the rest 

of the sections are presented according to the experiments that have been conducted. Section 

5.3 explains the selection of smoothing data techniques to smooth and reduce the level of error 

from the collected skeleton data, while the Kinect validation to gold standard system is 

explained in section 5.4. The use of Kinect for timed walk tests in real time is shown in section 

5.5. Whilst gait feature extraction using AM/Spatiotemporal analysis and AM/FM techniques 

were explained in sections 5.6 and 5.7 respectively. In section 5.8 and 5.9, the implementation 

and performance of AM/CE system were introduced, respectively. Finally, a summary of this 

chapter is given in section 5.10.   

5.2 The Proposed System AM/CE  

The implementation of an AM/CE system plays a significant part in fulfilling the 

research objectives, where six stage are involved (see Figure 1. In appendix C) for addressing 
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the performance improvement in gait speed classification. The proposed system combines two 

main parts; the former, AM technique and is used to extract new gait features that can be 

efficient and representative in gait pattern changes. While, the latter, CE technique, which uses 

the extracted gait features for gait speed classification. This system can perform tasks without 

the need to determine the gait cycle phases, thus reducing the computational cost. Moreover, 

the limitation of low data rate of Kinect data is solved by transforming the gait length signals 

into a higher frequency spectrum. This has been achieved by using Amplitude Modulation 

(AM) which modifies the gait signal to be in the AM domain.  

The research aim has been addressed through the improvement of the classification 

accuracy for gait pattern changes, where the low data rate of collected data was the main 

challenge. This improvement was investigated by comparing the classification performance of 

several supervised classifiers to the AM/CE system. The obtained results show that the 

proposed method is more efficient than a set number of supervised classifiers in gait speed 

classification. 

5.3 Experiment 1- Skeleton Data Smoothing Techniques 

The objective of this experiment was to determine a smoothing approach that would be 

efficient in reducing the level of noise from 3D skeleton data, whilst guaranteeing that the 

original data was preserved.  

To achieve this task, a set number of smoothing approaches were evaluated based on 

two conditions; the time delay and fast response between the input and output data of the filter.  

Commonly used filters in skeleton data smoothing such as the Moving Average (MA), 

Exponential Moving (EMA), Savitzky-Golay (GS), Local Regression (LR), Median (M), and 

Kalman filters were used to filter and smooth the collected data. However, although an increase 

in smoothing performance can be obtained by the adjustment of the filters’ parameters, this 

could also lead to latency. 

5.3.1 Original data 

The positional data movement of the right ankle was selected to be smoothed using 

several filter techniques. The raw data of the right ankle was considered as noisy because the 

right ankle was occluded by the left leg of the body during the walk process. Figure 5.1 below 

illustrates the original data signal of the right ankle that contains some noise (spikes). The task 
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was to reduce the spikes (noise) where possible without distortion of the gait information, that 

is contented on the displacement curve of the original data, with the main information being 

the movement measured between the two strike heels known as the gait cycle period or gait 

stride length. 

 

    

 

Figure 5.1: Right Ankle Movement Signal, which is Affected by Noise (Spikes), the Signal Shows Strike Heel and Toe-

Off on the Curve that Corresponds with the Concave Down and Concave Up, Respectively 

5.3.2 Filtered data 

Several kinds of filters were applied to reduce the noise and smooth the collected data 

as can be seen in Figure 5.2. When comparing the smoothness performance among the output 

of the smoothing techniques, a trade-off between the smoothness and latency was considered. 

Moreover, the curve’s parts that represented the displacement changes, which indicate the 

starting and ending of gait cycle, could be smoothed where possible without distortion of the 

original data. This is particularly true for the filtered data curve, where the concave up and 

concave down represent the toe-off and strike heel information, respectively. Firstly, all filters 

were tuned to remove or reduce the spike noise from the original signal of joint movement, 

then all the adjusted filters’ parameters were kept at the same values to be used in the second 

step of the assessment. Notably, the processes of spike elimination for each filter affects the 

latency at different levels according to the type of filtering approach used, as can be seen in 

Figures 5.3-5.8.   
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Figure 5.2: Filtering and Smoothing of Right Ankle Movement Signal using Six Different Filter Techniques; Original 

Data (black line), SG Filter (pink line), RLOESS Filter (blue line), MA Filter (green line), Median Filter (purple line), 

Kalman Filter (blue line) and Exponential MA (red dot line) 

 

 

Figure 5.3: The Output Curve of the Savitsky-Golay Filter, Input Curve is a Black Line, Output Curve is a Red Line. 

 

Figure 5.4: The Output Curve of Local Regression Filter (RLOESS), Input Curve is a Black Line, Output Curve is a 

Red Line. 



84 
 

 

Figure 5.5: The Output Curve of Moving Average Filter (MA) for Right Ankle Movement, Input Curve is a Black Line, 

Output Curve is a Red Line. 

 

Figure 5.6: The Output Curve of Median Filter for Right Ankle Movement, Input Curve is a Black Line, Output Curve 

is a Red Line. 

 

Figure 5.7: The Output Curve of Kalman Filter for Right Ankle Movement, Input Curve is a Black Line, Output Curve 

is a Red Line.  
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Figure 5.8: The Output Curve of Exponential MA Filter for Right Ankle Movement, Input Curve is a Black Line, 

Output Curve is a Red Line.  

The simple correlation coefficient (𝑟) was calculated for the original data (input signal) and 

filtered data (output signal). The obtained results show different measurements according to 

the filtering process used. Table 5.1 lists the values of correlation (𝑟) for each filter.  

Table 5-1: The Simple Correlation Coefficient for Filtered Data to Original Data 

The Simple Correlation Coefficient (𝒓) between Original Data and Filtered Data   

Savitsky-Golay 

Filter 

Local Regression 

Filter 

Moving 

Average Filter 

Median 

Filter 

Kalman 

Filter 

Exponential 

MA Filter 

    0.9993      0.9995     0.9803 0.9989     0.9988     0.9988 

 

From the above table, it is possible to see that there are three filtering techniques 

(RLOESS, SG and Median filters) which have a lower latency compared to the other filtering 

approaches. Secondly, the fast rate of the filter’s response was considered when evaluating the 

three filters, which have a low latency from the original data curve. To discriminate between 

the performance of the Savitzky-Golay, Median and RLOESS filters in the fast response of the 

output to the input of the filter, a curve fitting was used by applying a polynomial with 1 & 9 

degrees that was built-in MATLAB. Figures 5.9, 5.10 and 5.11 illustrate the relation between 

the filtered data to the original data for the SG, M and LR filters, when the relation was fitted 

by a first order polynomial model, respectively. While, Figures 5.12, 5.13 and 5.14 illustrate 

the relation of the filtered data to the original data for the SG, M and LR filters, when the 

relation was fitted by a ninth order polynomial model, respectively. 
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Figure 5.9: The Non-Linear Regression (a) Original Data - Filtered Data Relation in Savitzky-Golay Filter (black dots). 

While, the Curve of the 𝟏𝒕𝒉 Degree Polynomial Model is Plotted (blue line) (b) is the Residuals between Two Curves. 

 

Figure 5.10: The Non-Linear Regression (a) Original Data - Filtered Data Relation in Median Filter (black dots). While, 

(blue line) is a 𝟏𝒕𝒉  Degree Polynomial Model, (b) is the Residuals between Two Curves.  

 

Figure 5.11: The Non-Linear Regression (a) Original Data- Filtered Data Relation in RLOESS Filter (black dots). 

While, (blue line) is a 𝟏𝒕𝒉  Degree Polynomial Model, (b) is the Residuals between Two Curves.   
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Figure 5.12: The Non-Linear Regression (a) Original Data - Filtered Data Relation in Savitzky-Golay Filter (black 

dots). While, the Curve of the 𝟗𝒕𝒉 Degree Polynomial Model is Plotted (blue line) (b) is the Residuals between Two 

Curves. 

 

Figure 5.13: The Non-Linear Regression (a) Original Data - Filtered Data Relation in Median Filter (black dots). 

While, (blue line) is a 𝟗𝒕𝒉  Degree Polynomial Model, (b) is the Residuals between Two Curves. 

 

Figure 5.14: The Non-Linear Regression (a) Original Data - Filtered Data Relation in RLOESS Filter (black dots). 

While, (blue line) is a 𝟗𝒕𝒉  Degree Polynomial Model, (b) is the Residuals between Two Curves.   
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In these tests, the filtered data versus the original data curves were fitted to several degrees in 

a polynomial model to calculate the SSE, R-square and residual measures (see Table 5.2). 

These metrics could be efficient for assessing which filter can smooth data in fast response to 

the input data, without destroying the original data.  

Table 5-2: Polynomial (9) Curve Fitting to Three Types of Filtered Data; Savitzky-Golay, Local Regression and 

Median Filters 

Approach  SSE R-square  Max Residual  Min Residual  

LR  Poly 1 0.1844 0.999 0.0673 -0.234 

Poly 9 0.1553 0.9992 0.0570 -0.1797 

SG Poly 1 0.2745 0.9985 0.1078 -0.1764 

Poly 9 0.2367 0.9987 0.0891 -0.1478 

M Poly 1 6.527 0.9611 1.353 -0.2902 

Poly 9 1.601 0.9905 0.2238 -0.2506 

 

• Differentiation of the best smoothing approach among a set of filtering techniques for 

3D skeletal positional data, based on less time delay and fast response 

The above experiment was performed to reduce spike noise as possible as. Noisy data 

was smoothed using different kinds of filters separately. This joint data was selected because 

of its occlusion noise caused by other body’s parts during a walk in parallel with the camera’s 

x-axis. The filters were tuned to be able to reduce the noise and smooth the data. During the 

filtering process, a time delay issue was emerged between the filter input and its response on 

the output. In Table 5.1 above, the largest latency was observed with the AM filter where the 

correlation was 𝑟 = 0.9803, followed by both the EAM and Kalman filter with 𝑟 = 0.9988. 

In addition, the moving average filter cannot track data at the beginning of a curve, due to its 

principle work based on the averaging of data within the window. Although other filters 

showed an acceptable delay on the output, some of them still suffered from different issues 

such as poor smoothness on the curve turn up (slow response) as was the case for the median 

filter. Moreover, the output of the median filter showed very poor tracking data at the beginning 

and end of the curve.  

Generally, the RLOESS and SG filters showed the best smoothness degree at the output 

with acceptable latency in processing. However, although the SG filter showed acceptable 

smoothness, its response was a little slow at the beginning and end of the curve. While, the 

RLOESS filter showed faster tracking than the curve response of the SG filter especially at the 

beginning of the curve, which might result in information distortion. 
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In the curve fitting approach, the relation of the filtered data  to original data was fitted 

to a polynomial model with different degrees to assess the performance of the RLOESS, SG 

and Median filters for their fast response effectiveness to the input data. As outlined in Table 

5.2, the lowest value of the SSE metric (0.1553) and the highest value of the R-square (0.9992) 

were obtained with the RLOESS filter in both cases of the polynomial model degrees. 

However, the Median filter showed the worst result for the SSE (6.527) and R-square (0.9611) 

metrics in fast response to input data when compared with the LR & SG filters. Moreover, the 

lowest range of residual metric was recorded with the LR filter (0.2367) then (0.2369) with the 

SG filter, while the highest was (0.4744) with the Median filter when the degree of the 

polynomial was 9. The overall results showed that the RLOESS filter was the most efficient 

approach in smoothing data for skeletal position data.     

5.4 Experiment 2- Kinect camera validation  

The objective of this experiment was to validate a Kinect camera’s accuracy in spatial 

gait parameters (step length and step width of gait). An ART motion analysis system was used 

as a gold standard system which provided 60 frames per second using eight cameras. This test 

had two parts according to the direction of the walk line.   

5.4.1 Forward walk to the Kinect camera view 

A participant was instructed to walk three times on the walk line, which was partitioned 

and labelled by 0.45 m (actual step length) and step width by 0.17 m (actual step width). The 

direction of the walk line was forward to the Kinect camera. The subject was instructed to 

repeat the same instructions in a previous trial except for a difference in the actual gait step 

length and gait step width which were replaced by (0.55 m) and (0.20 m), respectively. The 

line walk direction was in the same direction as the (x) coordinate system for the ART motion 

analysis system. Both systems (ART and Kinect) were run to track and record the joint 

movements of the left and right legs during the walking test. Tables 5.3 & 5.4 below illustrate 

the error level from the actual values of the step length and width in both systems. 

 

 

 



90 
 

Table 5-3: The Length and Width of Gait Step Data are Provided from Kinect and ART in Forward Walk to Kinect 

View, when Partitions are Labelled by 0.45 m and 0.17 m. 

 

Gait Features 

Actual Values (0.45m for step length and 0.17m for step width) 

Kinect v2 data ART data 

Measurement 

Values (m) 

Error from Actual 

Value (m) 

Measurement 

Values (m) 

Error from Actual 

 Value (m) 

Step Length 

Average (m) 

0.4360 0.014 0.4395505 0.0104 

Step Width 

Average (m) 

0.2082 0.0382 0.2065008 0.0365 

 

Table 5-4: The Length and Width of Gait Step Data are Provided from Kinect and ART in Forward Walk to Kinect 

View, when the Partitions are Labelled by 0.55 m and 0.20 m.  

 

Gait Features 

Actual Values (0.55m for step length and 0.20m for step width) 

Kinect v2 data ART data 

Measurement 

Values (m) 

Error from Actual Value 

(m) 

Measurement 

Values (m) 

Error from Actual Value 

(m) 

Step Length 

Average (m) 

0.5336 0.0164 0.54003795 0.0099 

Step Width 

Average (m) 

0.1862 0.0138 0.18890878 0.0111 

 

5.4.2 Parallel walk to the Kinect camera view 

In this trial, the same instructions from the test in the previous section were followed, 

but the direction of the walk line changed. The Kinect camera was positioned 2 m from the 

walk line, where the walk direction was set up to be parallel with the Kinect’s x-axis. This walk 

direction made the y-axis of the ART system the same direction as the walk line. Tables 5.5 & 

5.6 illustrate the error level from the actual values of step length and width in both systems, 

when the walk line direction is parallel with the Kinect camera. 

Table 5-5: The Length and Width of the Gait Step Data are Provided from Kinect and ART in Parallel Walk to Kinect 

View, when Partitions are Labelled by 0.45 m and 0.17 m. 

Gait Features Actual Values (0.45m for step length and 0.17m for step width) 

Kinect v2 data ART data 

Measurement 

Values (m) 

Error from Actual 

Value (m) 

Measurement 

Values (m) 

Error from Actual 

Value (m) 

Step Length 

Average (m) 

0.4348 0.0152 0.4393106 0.0107 

Step Width 

Average (m) 

0.1876 

 

0.0176  

 

0.178000 0.008 
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Table 5-6: The Length and Width of Step Data are Provided from Kinect and ART in Parallel Walk to Kinect View, 

when Partitions are Labelled by 0.55 m and 0.20 m. 

Gait 

Features 

Actual Values (0.55m for step length and 0.20m for step width) 

Kinect v2 data ART data 

Measurement 

Values (m) 

Error from 

Actual Value (m) 

Measurement 

Values (m) 

Error from Actual Value 

(m) 

Step Length 

Average (m) 

0.5292 0.0208 0.5428283 0.007 

Step Width 

Average (m) 

0.1857 0.0143 0.206381 0.006 

 

• Validation of the Kinect camera compared to a high data rate camera system in 

measurements of gait step length and gait step width. 

The Kinect camera has been validated with the motion capture system (ART) for 

tracking left and right ankles during the walk process. This test was conducted by four trials. 

In the first trial, the walk line direction was towards the Kinect camera, which was divided into 

0.45 m and 0.17 m as step length, step width, respectively. Both systems tracked the ankles 

displacement at the same time. The errors from the actual values were as 0.014 m, 0.0104 m, 

0.0382 m and 0.0365 m for step length by Kinect, step length by ART, step width by Kinect 

and step width by ART, respectively. The ART’s result was better than the Kinect’s result by 

0.36 cm and 0.17 cm for step length and step width measurements, respectively. 

In the second test, the same procedure as the previous experiment was used, although 

the actual value changed to 0.55 m, 0.20 m as step length, step width, respectively. The results 

of the step length and step width by Kinect were less accuracy than the ART measurements by 

0.65 cm and 0.27 cm, respectively.  

In the third test, the results of both step length and step width by the ART were better 

by 0.45 cm and 0.96 cm, respectively. Moreover, the last trial records that the results of Kinect 

measurement are inaccurate when compared to the results of ART system by 1.38 cm and 0.83 

cm for gait step length and gait step width, respectively.  

5.5 Experiment 3- Kinect for timed walk test 

The objective of this test was to investigate the effectiveness of the Kinect camera for 

a timed walk test in real time. For this purpose, the participant was instructed to walk in front 

of the Kinect at a random speed. Figure 5.15 below illustrates the timed walk test for 3 meters. 

This trial was repeated many times to obtain different walk speeds. In each trial, the 
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participant’s speed and the number of gait steps were calculated using two methods at the same 

time.  

 

Figure 5.15: Timed Walk Test in Real Time using Kinect Camera for 3 meters; Skeleton Data collection During Walk 

Test.   

Firstly, a stop watch was used to measure the time that was required to cross the distance 

of 3 meters. Secondly, a JAVA library was introduced by (Barmpoutis, 2013) for Human Body 

Reconstruction in Real-time. This library has been developed to calculate the participant’s 

speed and the number of gait steps over the same distance. Table 5.7 below shows the error 

percentage of the Kinect estimation from the actual measurements for both the gait speed and 

the number of gait steps.  

Table 5-7: Timed Walk Test for Five Trials using Two Methods; Stop Watch and Kinect Camera 

Manual Measurement (Stop Watch) Automated Measurement (Kinect) Error (%) 

Walk Speed (𝒎/𝒔) Gait Steps (⋕) Walk Speed (𝒎/𝒔) Gait Steps (⋕) Speed Steps 

0.495 7 0.402 6 18.8 14.3 

0.613 6 0.377 4 38.5 33.3 

0.465 7 0.411 7 11.6 0 

0.520 6 0.575 6 10.6 0 

0.722 6 0.640 5 11.4 16.7 

 

The percentage error (%) was calculated from [100 × (𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 –  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒) /

 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒], where the Kinect’s measurements represented the estimated value. 

The results of this test demonstrated that the average error between the two approaches was 

18.2 and 12.9 % in measurements of gait speed and steps, respectively  

5.6 Experiment 4- Gait features extraction  

The objective of this test was to investigate an improvement in the quality of the 

extracted gait features by using an AM technique to modify the gait length signal. To address 
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this aim, the gait features were extracted from two methods; a spatiotemporal gait analysis and 

the proposed Amplitude Modulation (AM) technique.  

The experiment involved 35 subjects who were directed to walk forward towards the 

Kinect camera. The subjects performed different walk speeds randomly. By using MATLAB, 

the three groups of walk speeds were categorised as: Group One when the walk speed was less 

than or equal to 0.55, Group Two when the walk speed was more than 0.55 and less than 1 and 

Group Three when the walk speed was more than or equal to 1 meter/sec. The walk speed was 

calculated from the displacement of the spine-base joint in the z-axis (as shown in Figure 5.16).  

  

Figure 5.16: Three Walk Speeds Categorisation (a) Group One ( S ≤ 0.55), (b) Group Two  (0.55  < S>  1), and (c) 

Group Three (S ≥ 1 𝒎𝒆𝒕𝒆𝒓/𝒔𝒆𝒄). 

5.6.1 Spatiotemporal gait analysis 

In this method, the gait features were extracted from the gait step length signal, that 

was calculated from the distance difference between ankles during the walk test. For this 

purpose, the displacement of both the left and right ankles was measured in the z-axis towards 

the Kinect camera. Figure 5.17 illustrates the generation of gait length signal, where the peak 

values represent the gait step lengths, when the ankles are farthest from each other. While, the 

minimum values of gait length signal occurred when the ankles were closest to each other. 
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Figure 5.17: Gait Length Signal Generation from the Distance between (a) Right Ankle (dashed line) and Left Ankle 

(solid line) During Walk, (b) Generated Gait Signal in Absolute Value and (c) Without Absolute Value.   

An algorithm was developed to measure the spatiotemporal gait parameters of step length, 

stride length, stance stages of right and left feet, swing stages of right and left feet, gait cycle, 

double support stage and gait cadence (as can be seen in Figure 5.18). 

 

Figure 5.18: The Determination of a Complete Gait Cycle for Extracting Step Length (SL), Stride Length (STL), 

Double Support Time (DS), Swing Time (SW), Stance Time (ST) and Gait Cycle Time (SW+ST). 

The spatiotemporal gait features were applied to a set number of classifiers to categorise 

the gait data into three classes, according to the walk speed changes. Table 5.8 lists the 

evaluation of each classifier using several metrics, including sensitivity, specificity, precision, 

accuracy, F-measure and area under curve (AUC). The available data was formed as a matrix 

of 105×8 where the rows represented the samples and the features were located on the columns 

of the dataset matrix. This dataset is grouped into three classes based on the walk speed and 

each class contains 35 samples. 
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 Table 5-8: The Evolution of Data Gait Classification using Spatiotemporal Analysis for Gait Feature Extraction 

Approach Sensitivity Specificity  Precision Accuracy (%) F-Measure (%) AUC 

Decision Tree 0.886 0.943 0.885 88.6 88.5 0.887 

k-NN 0.857 0.929 0.860 85.7 85.9 0.893 

L-SVM 0.895 0.947 0.903 89.5 89.9 0.953 

Q-SVM 0.905 0.952 0.910 90.5 90.7 0.980 

L-Discriminant 0.895 0.948 0.909 89.5 90.2 0.977 

Q-Discriminant 0.910 0.955 0.911 91.0 90.8 0.980 

 

5.6.2 Proposed method (Amplitude Modulation) 

In this experiment, the Amplitude Modulation (AM) technique was used to extract new 

gait features. First, the gait length signal was transformed into the AM domain. Figure 5.19 

below shows the use of the AM technique to obtain the modified gait length signal  𝑥𝐴𝑀(𝑡) by 

multiplying the gait length signal 𝑥𝑔(𝑡) to the reference signal 𝑥𝑐(𝑡). 

 

Figure 5.19: Gait Length Signal Conversion into AM Domain 

The parameters of the reference signal were chosen with the amplitude of 𝐴𝑐 = 1 as a 

normalized value and the frequency as 𝑓𝑐 = 25 𝐻𝑧,  which is a quarter of the sampling 

frequency (100 𝐻𝑧). This sampling frequency value was adjusted until the spectrum graph of 

the reference signal showed the amplitude as equal to one. As can be seen in Figure 5.20, where 

several values of sampling frequencies (fs=90, 100, 120 Hz) were adjusted to represent the 

reference signal in the frequency domain with an amplitude equal to one. The below figure 

demonstrates that when the sampling frequency is at 100 Hz this makes the amplitude of the 

reference signal equal to one, without destroying the shape of the spectral signal. 
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Figure 5.20: Sampling Frequency Adjustment for Reference Signal as: fs = (a) 90 Hz, (b) 100 Hz and (c) 110 Hz. 

 

Figure 5.21: The AM-Modified Gait Signal in the Time Domain Changes its Features According to the Walk Speed. 

This modified signal can be represented in the time domain as shown in Figure 5.21, and in the 

frequency domain, as shown in Figure 5.22, for three groups of walk speeds. The parameters 

of the modified gait signal were extracted to follow the gait pattern changes due to the walk 

speed changes. To assess the quality of the extracted gait features from the modified gait length 

signal using the AM technique, a set number of classifiers were applied to classify the gait data 

into three classes, according to the walk speed changes. Table 5.9 lists the evaluation of each 

classifier using several metrics including; sensitivity, specificity, precision, accuracy, F-

measure and the area under curve (AUC). These evaluative metrics were used for both cases 

(gait length signal before modification and after modification using the AM technique), to 

investigate which method could improve the accuracy of gait data classification.  
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Figure 5.22: AM-Modified Gait Signal in the Frequency Domain Changes its Features According to the Walk Speed. 

 

Table 5-9: The Evolution of Data Gait Classification using the AM Technique for Gait Feature Extraction 

Approach Sensitivity Specificity Precision Accuracy (%) F-Measure 

(%) 

AUC 

Decision Tree 0.810 0.905 0.809 81.0 80.9 0.890 

k-NN 0.895 0.948 0.897 89.5 89.6 0.920 

L-SVM 0.933 0.967 0.934 93.3 93.4 0.953 

Q-SVM 0.933 0.967 0.934 93.3 93.4 0.980 

L-Discriminant 0.838 0.919 0.845 83.8 84.2 0.910 

Q-Discriminant 0.857 0.929 0.868 85.7 86.3 0.923 

 

• Compression of AM and Spatiotemporal Approaches in Gait features Extraction  

The sensitivity, specificity, precision, accuracy, F-measure, and AUC evaluative 

metrics were all investigated for various classifiers used in this test. It is noticeable that the 

Quadric Discriminant (QD) classifier achieved the best results in gait speed classification for 

spatiotemporal gait approaches with an accuracy rate of 91% compared to the other classifiers. 

In addition, the sensitivity and specificity metrics have demonstrated the effectiveness of the 

QD at a high rate of true positive detection (0.91), and true negative detection (0.955), 

respectively. Notably, the highest classification accuracy reached (93.3%) with the Quadric 

SVM and Linear SVM approaches when the AM technique was used for gait feature extraction. 

In this case, the sensitivity, specificity and precision reached (0.933), (0.967) and (0.934), 

respectively. In the case of spatiotemporal gait approach, the highest measure of the AUC 

(0.980) obtained for the Quadric SVM and Quadric Discriminant classifiers. However, that 



98 
 

level of AUC measure was only reached in the case of the AM technique with the Quadric 

SVM, while the F-measure attained a value of 93.4%, which was the best amongst all classifiers 

for both. In summary, this was achieved with the Linear and Quadric SVMs, when the AM 

technique was used for gait feature. 

5.7 Experiment 5- AM&FM Gait Features Extraction 

• AM-Modified Gait Length Signal  

First, the gait length signal 𝑔(𝑡) was generated by calculating the distance between the 

ankles during the walk test, and then 𝑔(𝑡) was converted into the AM domain. The AM-

modified gait length signal 𝑀𝐴𝑀(𝑡) was used to extract three gait features, including the 

bandwidth (in Hz), modulation index (ratio) and the amplitude level of both the upper and 

lower side bands (in meter). These AM modified gait signal parameters were extracted for all 

walking speed groups. A set of supervised classifiers were applied for these features to classify 

three classes based on walk speed. Table 5.10 below illustrates an evaluation of the 

performance of each classifier.   

Table 5-10: The Evolution of Data Classification using AM Tech for Gait Feature Extraction  

Approach    Sensitivity  Specificity  Precision  Accuracy (%) F-Measure (%) AUC 

Decision Tree 0.848 0.924 0.846 84.8 84.69 0.910 

k-NN 0.838 0.919 0.838 83.81 83.82 0.840 

L-SVM 0.810 0.905 0.825 81.0 81.73 0.930 

Q-SVM 0.914 0.957 0.921 91.4 91.75 0.970 

L-Discriminant 0.829 0.914 0.839 82.9 83.35 0.897 

Q-Discriminant 0.924 0.962 0.924 92.4 92.38 0.950 

 

• FM-Modified Gait Length Signal 

In this part, the gait length signal was converted into the FM-NB domain to extract three 

gait features including the Bandwidth (in Hz), frequency deviation (in Hz) and the amplitude 

level of both side bands (in meters) from the FM-modified gait length signal 𝑀𝐹𝑀(𝑡). Table 

5.11 illustrates the performance of a set number of the classifiers for walk speed classification. 
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Table 5-11: The Evolution of Data Classification using FM Tech for Gait Feature Extraction 

Approach Sensitivity Specificity Precision Accuracy (%) F-Measure (%) AUC 

Decision Tree 0.8000 0.9000 0.7954 80.0 79.77 0.877 

k-NN 0.8762 0.9381 0.8765 87.62 87.64 0.910 

L-SVM 0.8476 0.9238 0.8453 84.80 84.65 0.953 

Q-SVM 0.8190 0.9095 0.8184 81.90 81.87 0.953 

L-Discriminant 0.8095 0.9048 0.8071 81.00 80.83 0.920 

Q-Discriminant 0.8667 0.9333 0.8678 86.70 86.73 0.950 

 

• Compression of AM and FM Techniques in Gait Features Extraction  

The results show that the AM technique was more efficient than the FM technique for 

improving the quality of extracted gait feature, when the classification data based on walking 

speeds was evaluated using several evaluation metrics. The highest classification accuracy and 

F-measure reached 92.4% and 0.9238, respectively. This was obtained from the Q-discriminant 

classifier when the AM-modified gait signal was used for gait feature extraction. In addition, 

the second highest accuracy in data classification was also achieved when the AM technique 

was used, which reached 91.4% with the Q-SVM classifier. In the FM case, the highest 

classification accuracy and F-measure were 87.6% and 87.64% with the k-NN approach, 

respectively. While the AUC results were approximately between 0.91 and 0.95. However, the 

best value of the AUC was 0.97, when performed with the Q-SVM classifier with the AM used 

for modifying the gait length signal to be in the AM domain. The precision metric records were 

just 0.8765 as the highest value in the FM case, whilst it reached 0.924 with the AM technique. 

All supervised learning approaches showed more improvement in the sensitivity and specificity 

results that when the AM was used rather than the FM, but with one exception, when using (k-

NN) that showed better results in both the sensitivity and specificity with the FM. 

5.8 Experiment 6- Gait Features Classification   

The objective of this test was to investigate the effectiveness of the AM/EC system for 

classification of gait pattern changes. To address this aim, the experiment involved 40 subjects 

who were instructed to walk forwards towards the Kinect camera at random walk speeds, this 

was repeated many times to increase the walk speed range. Three groups of walk speeds were 

specified as less than or equal to 0.6, greater than 0.6 and less than 1.1, and greater than 1.1 

meters per second. Each group contained 40 samples, overall three classes of 120 samples. 
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5.8.1 AM/CE System Implementation  

The AM/CE system was implemented to process the collected data in six stages. The 

first two stages were the collection and smoothing of gait data, as demonstrated in the previous 

experiments. The rest of the stages included gait feature extraction using the AM technique, 

gait feature reduction using the PCA approach, gait feature classification using the CE 

technique and finally the evaluation of the system performance, as follows: 

• Gait Feature Extraction using the AM Technique    

A gait length signal was generated for each sample by calculating the distance between 

the ankles during the walking test. The AM technique was used to convert the gait length signal 

from the baseband into the passband (AM domain), consequently an AM-modified gait length 

signal was obtained for 120 samples to extract the new gait features. Seven gait features were 

extracted for each sample including the upper side band frequency, lower side band frequency, 

bandwidth, modulation index, modulation efficiency, amplitude level of side bands, and the 

total amplitude level of the AM-modified gait signals. The dataset was formed as a matrix with 

120 samples (rows) and 7 features (columns).  

• Gait Feature Reduction using the PCA Approach 

A rescale approach known as mean normalisation was used to normalize the seven 

vectors features. The PCA technique was then applied to reduce the dimension of dataset 

matrix, where the eigenvalues were calculated to indicate the eigenvectors that could capture 

the highest percentage of data variation. Consequently, the first and second principle 

components of PC1 & PC2 were selected, as they explained 90.57 % of total data variance, as 

detailed in Table 5.12 below.   

As shown in Table 5.13 below, seven gait features were reduced into two vectors using 

the PCA approach for a subset of the data, (the full dataset can be seen in Appendix C table 2). 
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Table 5-12: Dataset Reduction Based on Eigenvalues and Captured Variance of Total Data 

Variable  PC1 PC2 PC3 PC4 PC5 PC6 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

-0.187 

-0.187 

-0.472 

-0.465 

-0.472 

-0.088 

-0.511 

0.672 

0.672 

-0.068 

-0.078 

-0.100 

-0.039 

-0.272 

0.074 

0.074 

-0.187 

0.0949 

-0.106 

-0.922 

0.2898 

-0.083 

-0.083 

0.1038 

0.6898 

0.0528 

-0.1833 

-0.6807 

-0.0299 

-0.0299 

0.5698 

-0.5392 

0.4062 

-0.3273 

-0.3326 

 

-0.0048 

-0.0048 

0.6343 

0.0453 

-0.7668 

-0.0039 

0.0868 

 

Eigenvalues  

 

ʎ1=0.1835 

 

ʎ2=0.0216 

 

ʎ3=0.0172 

 

𝜆4=0.0024  

 

ʎ5=0.0014 

 

ʎ6=0.00034 

Total variance 

(
𝝀𝒊

∑ 𝝀
)  % 

81.036 9.539 7.59 1.06 0.618 0.0015 

 

   Table 5-13: The Seven Gait Features from the AM-Modified Gait Signal are Reduced into Two Vectors using PCA 

Seven columns of gait features from AM-Modified gait signal PCA 

Lower-fre Upper-fre Bandwidth  Mod index Mod efficiency  Sides level Total level PC1 PC2 

21.6667 28.3333 6.6667 0.0703 0.0025 0.0747 0.9777 -1.0462 0.0237 

21.6667 28.3333 6.6667 0.1009 0.0051 0.1151 1.0648 -0.9600 0.0630 

20.0000 300000 10.0000 0.0969 0.0047 0.1012 0.9729 -0.9599 0.0629 

15.0000 35.0000 20.0000 0.0056 0.0000 0.0064 1.0213 -0.9586 0.0626 

15.0000 35.0000 20.0000 0.0056 0.0000 0.0064 1.0213 -0.9274 0.0518 

15.0000 35.0000 20.0000 0.0056 0.0000 0.0064 1.0213 -0.8954 0.0242 

21.6667 28.3333 6.6667 0.1258 0.0079 0.1420 1.0654 -0.8941 0.0241 

21.6667 28.3333 6.6667 0.0958 0.0046 0.0973 0.9455 -0.6306 0.0195 

21.6667 28.3333 6.6667 0.0825 0.0034 0.0816 0.9157 -0.6100 0.0165 

21.6667 28.3333 6.6667 0.0958 0.0046 0.0973 0.9455 -0.5752 0.0125 

13.3333 36.6667 23.3333 0.0055 0.0000 0.0059 0.9538 -0.5438 0.0115 

 

• k-Fold Cross Validation  

The k-fold Cross Validation approach was used to assess the system performance in 

unseen data classification. First, the data was divided into five folds (k=5), and each fold was 

used once as a testing set, while the rest were used as training sets, (as shown in Figure 5.23). 

Secondly, the data was divided into ten folds (k=10), and each fold was used once as a testing 

set, while the rest were used as training sets, (see Figure 5.24).  
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Figure 5.23: A 5-Fold Cross Validation for Dataset Containing 120 Samples. 

 

Figure 5.24: A 10-Fold Cross Validation for Dataset Containing 120 Samples. 

• Unseen Data Classification using the CE Technique 

In the unseen gait data classification, the CE technique was applied for the first and 

second principal components (PC1 & PC2) that represented 90.57 % of data variation (as 

shown in Table 5.12). The classification was made by using the CV approach in both cases of 

k=5 and k=10 to assess the performance of CE in the unseen data classification. The similarity 

metric for the classes was made based on the HD measure and the order of the bit’s position, 

where a low value of HD between the codeword and threshold meant a low error rate, which 

led to the similarity decision being highly considered for that class. Figures 5.25 & 5.26 
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illustrate the error rate calculation of the CE for three classes of gait speed classification with 

both cases; k=5 & k=10, respectively.     

 

Figure 5.25: Error Rate Calculation of CE in 3-Classes of Gait Speed Classification when 5-Fold CV; (a) to (e) 

Represent Folds from1 to 5. 

In the case of the 5-fold CV, the dataset contained 120 samples (codewords) which were 

divided into five-folds, and each fold contained 24 samples (codewords). For the 10-fold case, 

12 samples (codewords) were included. The similarity metric was considered as one minus 

error rate, where the error rate was calculated from the Equation (4.61).  

The error rate was defined using the HD measure between each codeword within the 

fold and thresholds of class one, class two and class three. Hence, the lowest value of the HD 

among the three calculations (i.e. HD1, HD2 or HD3) would be highly similar to that class. For 

instance, the lowest error rate in Figure 5.25 (a), (c) and (e) were correlated to classes 3, 2 and 

1, respectively. Whilst, in case of the 10-fold CV, Figure 5.26 shows that the lowest value of 

error rate can be obtained when [(a),(b) & (c)], [(d), (e), (f) & (g)] and [(h), (i) & (j)] correlated 

to classes 3, 2 and 1, respectively.  

For the system evaluation, the ability of the CE technique for classification of the gait 

speed data are listed in Tables 5.14 and 5.15, for both 5-fold and 10-fold CVs, respectively. 

These Tables illustrate the number of classes that were correctly and incorrectly predicted over 

three classes of walk speeds.  
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Figure 5.26: Error Rate Calculation of CE in 3-Classes of Gait Speed Classification when 10-Fold CV; (a) to (j) 

Represent Folds from1 to 10. 

 

Table 5-14: Confusion Matrix for Three Classes in Case of 5-Fold CV 

Predicted Classes 

 

 

Actual  

Classes  

 a b c  

a 40 0 0  

b 2 37 1  

c 0 1 39  

 

Table 5-15: Confusion Matrix for Three Classes in Case of 10-Fold CV 

Predicted Classes 

 

 

Actual  

Classes  

 a b c  

a 38     2    0  

b 0 40 0  

c 0 0 40  
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Evaluation of the CE technique for gait speed classification was assessed using several 

evaluation metrics, including sensitivity, specificity, precision, accuracy and the F-measure. 

Tables 5.16 and 5.17 show the results of CE system evolution in unseen gait data classification 

for the 5-fold and 10-fold CVs respectively. 

Table 5-16: CE Classifier Performance in Case of 5-Fold Cross Validation (k equals 5) 

Approach  Sensitivity  Specificity  Precision  Accuracy (%) F-Measure (%) 

CE 

k-fold = 5 

0.9667 0.9833 0.9670 96.67 96.68 

 

Table 5-17: CE Classifier Performance in 10-Fold Cross Validation (k equals 10) 

Approach  Sensitivity  Specificity  Precision  Accuracy (%) F-Measure (%) 

CE 

k-fold = 10 

0.9833 0.9917 0.9841 98.33 98.37 

 

Table 5-18: Supervised Classifiers Performance in both Cases of 5-Fold & 10-Fold Cross Validation 

Approach Sensitivity Specificity  Precision  Accuracy (%) F-Measure (%) 

Decision Tree k = 5 

k=10 

0.9167 

0.9167 

0.9583 

0.9583 

0.9166 

0.9175 

91.7 

91.7 

91.66 

91.71 

k-NN k = 5 

k=10 

0.9667 

0.9667 

0.9833 

0.9833 

0.9667 

0.9667 

96.7 

96.7 

96.67 

96.67 

L-SVM k = 5 

k=10 

0.9250 

0.9417 

0.9625 

0.9708 

0.9345 

0.9472 

92.5 

94.2 

92.97 

94.44 

Q-SVM k = 5 

k=10 

0.9222 

0.9333 

0.9589 

0.9667 

0.9233 

0.9380 

91.8 

93.3 

92.28 

93.57 

L-discriminant k = 5 

k=10 

0.9417 

0.9500 

0.9708 

0.9750 

0.9504 

0.9565 

94.2 

95.0 

94.60 

95.32 

Q-discriminant k = 5 

k=10 

0.8167 

0.8167 

  0.9083 

0.9083 

0.8234 

0.8234 

81.67 

81.67 

82.00 

82.00 

 

Moreover, the performance of the CE technique for classification of the gait pattern changes 

was compared to a set of supervised classifiers. These classifiers were applied to the same 

dataset (seven vectors of gait features) to classify the data into three classes according to the 
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type of walk speed. Table 5.18 illustrates the performance of a set number of supervised 

classifiers including DT, k-NN, L-SVM, Q-SVM, L-discriminant and Q-discriminant. For this 

purpose, the same metrics were used to assess the performance of the classifiers in both cases 

of k-fold (k=5 and k=10), as it shown in Figures C.2 & C.3 in Appendix C.  

  

• Performance of the Convolutional Encoder in Gait Data Classification Compared to 

Set Number of Supervised Classifiers in Case of 10-Fold Cross Validation   

The performance of the CE technique for the classification of gait pattern changes was 

conducted using several evaluation metrics and then compared to the performance of a set 

number of classifiers. In this comparison, the k-fold CV approach was used to assess the unseen 

data in both cases of the 5-fold and 10-fold. The highest accuracy of classification and F-

measure were obtained with the CE of 10-fold CV as 98.33% and 98.37%, respectively. For 5-

fold CV however the highest classification accuracy for supervised classifications was 96.7% 

due to the k-NN, while the F-measure still showed the highest achievement with the CE 

technique (96.68 %). Generally, the classification accuracy was improved when the 10-fold 

was applied. The three highest improvements were 1.7%, 1.66% and 1.5% for the L-SVM, CE 

and Q-SVM, respectively. At the same time, sensitivity, specificity and precision all reached 

their peak values with the CE technique as 0.9833, 0.9917 and 0.9841, respectively. Whilst, 

their worst rates were obtained with the Q-Discriminant supervised classifier as 0.8167, 0.9083 

and 0.8234, respectively.   

5.9 AM/CE System Performance   

The performance of the AM/CE system was assessed using several evaluation metrics 

as described in the previous sections. The results showed an acceptable rate of classification 

accuracy in gait pattern changes. For further explanation, the outcomes of the AM/CE system 

were compared to the other studies, as outlined in Table 3.1. The comparison involved the 

studies that explored spatiotemporal gait analysis for classification of gait pattern changes 

using 3D skeleton data from a Kinect camera. Table 5.19 below shows the AM/CE 

performance in gait data classification compared to a set of previous studies. The compression 

is based on three conditions; 1) gait cycle determination which means that the gait features 

extraction was obtained within the period of gait cycle, 2) data used which is related to one of 
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three kinds of gait features analysis including Spatiotemporal gait features, Kinematic gait 

features or Kinetic gait features, 3) accuracy of gait data classification. 

Table 5-19: AM/CE System Performance in Classification of Gait Pattern Changes 

Approaches Gait Cycle Detection Data Used Classification Accuracy 

(%) 

(Bei et al., 2018) Needed Skeletal positional & 

angular data 

94.2 

(Ťupa et al., 2015) Needed  Static segment length + 

Skeletal positional data  

97.2  

(Vektor, P., 2018) Needed  Skeletal positional data  98.33  

Proposed approach Not needed Skeletal positional data 98.33 

   

In the above table, it is noticeable that, the proposed approach achieved the highest rate 

of the classification accuracy compared to the other methods. Vektor, 2018 reached the same 

achievement, but its method still needed the gait cycle determination for extracting the relevant 

gait features. Gait cycle detection is a difficult task to be defined correctly (Zeni, Richards & 

Higginson, 2008), where the error level in gait cycle detection will be cumulative quantity in 

gait features exaction (Khan & Badii, 2019). In addition, gait cycle requires extra approaches 

to detect it, which might lead to an increased cost of the computational process. The rest of the 

methods demonstrated high level of classification but are still less than the achievement of the 

AM/CE system. What makes the proposed approach unique and robust is that it was based on 

one kind of data, and the gait features have been extracted without the need to detect the gait 

cycle period. This approach achieves the same or better results with less computational cost.   

5.10  Summary   

The gait analysis system was implemented based on 3D skeletal data of lower body 

joints using a Kinect camera. This analysis system is called the AM/CE approach, which aims 

to improve the classification accuracy of gait pattern changes, where the dataset was collected 

from a low data rate device.  To address the aim of the AM/CE system, six-stages were 

involved, and a set of algorithms and machine learning approaches were proposed and 

developed to increase the quality of the extracted gait features to be more efficient and 

representative parameters in gait analysis system. 
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This chapter has involved several experiments to explain the purpose of the main stages 

of the proposed system practically. Moreover, the performance of the AM/CE system has been 

assessed by comparing its outcomes to the results of the other approaches.  

In experiment one, the discriminations among six filters were highlighted based on 

two criterions; time delay and the fast response of the output to the input of data. The results 

showed that the RLOESS filter was the most efficient tool in the filtering process, where the 

correlation of the coefficient and R-square between its input and output of data was the highest. 

In addition, the SSE and residual metrics were the lowest with the RLOESS filter. This 

guaranteed that the original data was still preserved after the filtering process.   

In experiment two, a comparison between the Kinect and ART cameras for the 

effectiveness of the spatial gait measurements was conducted and compared to actual values. 

The outcomes showed that the Kinect was less accurate than the Marker-ART system, due to 

the low data rate of the Kinect.  

In experiment three, an investigation into the effectiveness of the Kinect in a Timed 

Walk Test at home was performed. However, the results showed a level of error in the Kinect 

estimation from the actual values for both the gait speed and the number of gait steps.  

In experiment four, the quality of the gait feature improvement was investigated by 

using the AM technique. For this purpose, a gait signal was mapped into the AM domain to 

extract new gait features. The results showed an improvement in the accuracy of gait data 

classification when the AM-modified gait signal was used for gait feature extraction. This 

improvement was investigated by comparing the traditional approach of spatiotemporal gait 

analysis and applying a set number of supervised learner approaches, where the highest 

improvement reached (2.5%) over the traditional method.  

In experiment five, the effectiveness of the AM technique in gait feature extraction 

was investigated by comparing it to the FM-NB technique. The extracted gait features from 

both techniques were evaluated based on the gait pattern changes. For this purpose, a set 

number of classifiers were used to classify the gait pattern changes based on gait speed, with 

the results demonstrating that 3.78% higher classification accuracy was achieved in the case of 

the AM in comparison with the FM.  

In experiment six, the performance of the AM/CE system was evaluated for the 

classification of gait pattern changes based on the gait speed. The result showed that the 
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proposed method achieved the correct classes prediction and higher by 1.63% over a set 

number of supervised learning approaches. 
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6. CONCLUSIONS AND FUTURE WORK 

___________________________________________________________________________ 

This chapter describes the research aim by showing the relevant objectives for each stage of 

the implemented system, as well as the research contribution, limitations and finally 

recommendations for future work which could prove beneficial for readers. 

 __________________________________________________________________________ 

To conclude, I recall from earlier the research question of this thesis. Specifically: 

“Can the automated gait analysis technique be used to improve the effectiveness of 

distinguishing gait pattern changes and ranking them based on walk speed, in particular when 

a low-cost, low data rate sensing device is used to collect the data?” 

Amplitude Modulation and Convolutional Encoder approaches can play a major role in 

improving the performance of gait speed analysis, especially when the data collection is 

performed using a Kinect camera, which shows usually low measurement accuracy compared 

to other motion capture systems due to its low data rate. The proposed method is called an 

AM/CE system which has been developed to smooth the collected data of 3D positional lower 

body joints during movement and to extract/reduce the relevant gait features to be used in the 

classification of gait pattern changes based on walk speed.  

The enhancement of extracted features quality was performed using the AM technique 

to map the original data into an AM domain. The main advantage of the modified gait signal 

is that it can be represented by sampling frequency more than an unmodified gait signal. This 

leads to an increase in the accuracy of measurements when the gait analysis is performed for 

gait feature extraction. Moreover, the combination of AM & CE techniques into one proposed 

system has been investigated as to its effectiveness in gait data classification based on the 

changes of walk speed.   

6.1 Research Aim and Scope 

The main aim is to develop a reliable model that can enhance the quality of extracted 

gait features in order to be efficiently analysed and effectively classified, based on the changes 

in walk speed. To address this aim, a gait analysis system was constructed and implemented, 

in six stages, in order to collect the 3D skeleton data using a Kinect camera. The implemented 
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system might be used to contribute to an improvement in the quality of life for elderly people, 

who prefer to live independently, by detecting abnormality in gait speed.  

6.2 Research Objectives Definition 

The proposed system is consisted of several stages to achieve the aim of this research. 

Therefore, at each stage, the data was processed to investigate a set of objectives. As follows:  

• To differentiate the best smoothing approach among a set of filtering techniques for 

3D skeletal positional data, based on less time delay and fast response. 

A set number of filters were assessed based on two criterions. Firstly, less time delay and 

secondly the fast response of the output to the input data of the filter. These criterions seek the 

time cost of processing that can improve the measurement accuracy. Moreover, the fast 

response of the filter output that can retain the original data, especially at the concave up and 

down of the data curve.  

The correlation coefficient between the original and filtered data was calculated to determine 

the efficient filters for smoothing the data with less time delay, whereas the curve fitting was 

used to evaluate the filters that showed a high level of agreement between their input and output 

data. In the curve fitting approach, several metrics were used, including SSE, R-square and 

residual. The fast response of the filter showed a small value in residual and SSE measures and 

a high value for R-square metric. The measurements are performed for original and filtered 

data to fit the polynomial curve with several degrees.  

• To validate the effectiveness of a Kinect camera compared to a high data rate camera 

system. 

The RTA system is used as a gold standard system to validate the Kinect camera v2, this system 

involves eight cameras that collect data from the markers in the 3D space with a data rate of 60 

frames per second. The participant was instructed to walk in front of the Kinect, with the walk 

line placed in an area that could be captured by both systems; ART and Kinect. This line of 

walk was apportioned into five sections that represented the actual length of gait steps on the 

ground. Then a comparison between both systems was performed by calculating the error 

values from the actual lengths of gait steps which were labelled on the ground.    



112 
 

• To develop an autonomous system that can perform a timed walk test for investigating 

that the changes in walk speed might be detected efficiently by increasing the quality 

of extracted gait feature. 

A timed walk test is commonly used for gait assessment, which basically aims to measure the 

gait speed. In this test, the participants were directed to walk about 3 meters with a random 

speed, and the time is recorded using stop watch, when the participants started to walk till the 

end line is reached. During the test time, the Kinect was prepared to track the participant’s 

movements in z-axis, and Java for Kinect library is developed to calculate the gait speed and 

number of gait steps in real time. Finally, the Kinect’s estimation has been compared to the 

actual measure for gait speed and number of gait steps over 3 meters.  

•   To introduce a new technique for extracting new gait features without the 

requirement of gait cycle determination.  

The Amplitude Modulation (AM) technique is used for mapping gait length signals from its 

baseband into the passband spectrum. The AM domain modifies the gait signal to be more 

efficient for representative features in gait pattern changes. Consequently, a comparison was 

performed between the modified and unmodified gait signals to investigate the extracted 

features that could be efficiently representative in gait speed classification. The investigation 

was carried out by using three types of data; including spatiotemporal gait data and the linear 

velocity of ankle data during a walk test.       

•   To use data reduction technique for reducing the matrix dimension of extracted 

features.  

The Principal Component Analysis (PCA) was used to reduce the dimensionality of the gait 

feature matrix. The most representative features were adopted whilst the other feature vectors 

were ignored. The eigenvalues were calculated to determine which eigenvector PCs would be 

considered. Subsequently, the feature matrix was reduced to include just two vectors 

representing the largest axis width of the variance data.    

•  To improve the accuracy of gait data classification in different walk speeds using 

Convolutional Encoder (CE) technique.  

The CE technique is proposed to classify the changes in gait pattern based on walking speeds, 

with the collected data provided by a Kinect camera during a walk test. In Cross Validation, 

the dataset was divided into 10 folds for testing unseen data to predict the appropriate class 
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among three possible classes. Then the performance of (CE) technique in gait data 

classification was evaluated and compared to the set number of supervisor classifiers, where 

the accuracy of data classification reached the highest in case of CE technique.  

6.3 Contributions of the Research 

In short, the significant contributions of this thesis can be summarised based on the stages of 

the implemented system as follows: 

• In smoothing and filtering data stage 

The 3D skeleton data of the lower body’s joints has been smoothed using six different 

approaches. The best smoothing technique is identified by using correlation coefficients to 

calculate the time delay and by fitting curve approaches to a defined level of response for 

filtered data to the input data of each filter. 

• In gait features extraction stage 

Investigation of the effectiveness of Amplitude Modulation technique in quality improvement 

of extracted gait features compared to spatiotemporal gait analysis in the case of a low-data 

rate of sensing device; where the gait cycle determination was avoided during the features 

extraction process in case of the Amplitude Modulation.  

• In gait data classification stage 

Combining AM and CE in a full system of gait analysis called (AM/CE) to detect and rank the 

gait pattern changes based on gait speed; where the convolutional encoder is used as a classifier, 

by developing its similarity decision to be based on weighting the bits’ position of Hamming 

Distance length.  

6.4 Research Limitations 

• The adjustment of sampling frequency rate 

The proposed system (AM/CE) needs the adjustment or tuning to define the value of sampling 

frequency that satisfies the symmetrical shape of the reference signal spectrum. 

• Number of participants 
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The large size of samples data can improve the level of measurements accuracy. This study 

recruited 40 participants which can be considered a relatively small rate compared to other 

studies.  

• Differences in the heights and weights of the participants  

the dataset is analysed based on gait speed without taking into consideration differences in the 

height and weight of the participants, which could result in variation, as tall legs can be faster 

than those that are shorter.  

• Numbers of classes 

the numbers of classes in the classification stage can be considered as another limitation - a 

wider range of ranking could be more valuable in the explanation of gait pattern changes. 

• Collecting data in long term 

A lack of long term collected data monitoring limits investigation into the changes of walk 

patterns in the system. 

6.5 Future work  

• Using the AM/CE system for patient data 

The results presented the effectiveness of the AM/CE system in the extraction and classification 

of the gait features, with the AM/CE system demonstrating promising use for the ranking of 

disease progress such as Multiple Sclerosis (MS). This can be achieved through the 

investigation of the clinical scale known as the EDSS scale. This scale has ten levels of walking 

ability starting from zero, which is normal walk, and ending with ten, which is death due to 

MS (see Table 1 in Appendix A). However, the focus will be on the ranges from zero to 4.5 of 

the EDSS scale, where the person can walk without any aids. 

• Kinematic angles of joint data 

Angular skeleton data of the lower body plays a vital role in gait analysis for discrimination 

between normal and abnormal gait. This kind of data can be used for the extraction of gait 

features which may prove valuable information when responding to the changes in gait pattern.  

• Using feature selection approach  
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Feature selection algorithms can be used for reducing the dimensionality of extracted gait 

features. This can be performed by replacing the use of feature reduction algorithms. A 

comparison between both techniques can be obtained by changing the classification accuracy.  

• Using unsupervised classifiers  

A data classification solution that splits the dataset into both a training and testing subset of 

data to predict the classes by labelling the samples, is called supervised. However, an 

unsupervised classifier clusters data into groups based on distance measurements without the 

need to label the samples. Algorithms include the k-mean cluster. 

• Non-Kinect camera 

A vision system with a higher data rate might be used for the proposed system, as a Kinect 

camera does suffer from some limitations that affect the measurement accuracy, due to the low 

data rate and noisy data generated during the tracking of gait movement. Consequently, the 

noise filtering process increases the cost of computation and processing time.  

6.6 Summary 

This chapter has discussed the main body of the research that has been carried out, as well as 

work that could be done in the future, in the following sections: objectives, contributions, 

limitations and future work. It has also reviewed the main achievements by describing the 

approaches that have been analysed to obtain data to address the research aim.  
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APPENDICES 
 

Appendix-A  
 

 
Figure A.1: Extension Disability Status Scale (EDSS) illustrates the Progression to Disability 

due to Multiple Sclerosis (MS) disease.   

 

Table A.1: A 12-item Multiple Sclerosis MS Walking Scale (MSWS-12).   
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Table A.2: Outcomes Measures OMs for Patients with MS 
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Continues Table A.2. 
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Appendix -B 
 

Figure B.1: Gait cycle description for left and right legs (Tunca, Pehlivan, Ak, Arnrich, Salur 

& Ersoy, 2017) 
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Table B.1: Confusion Matrix for the Evaluative Metrics of Classification Performance 

(https://en.wikipedia.org/wiki/Confusion_matrix) 
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Appendix C 
 

Figure C.1: The Main Stages of the Proposed System AM/CE for Classification of Gait Pattern 

Changes 

 

 

 

 

Table C.1: The Seven Gait Features from the AM-Modified Gait Signal are Reduced into Two 

Vectors using PCA 

Seven columns of gait features from AM-Modified gait signal PCA 

Lower fre Upper fre Bandwidth  Mod index Mod eff Sides level Total level PC1 PC2 

21.6667 28.3333 6.6667 0.0703 0.0025 0.0747 0.9777 -1.0462 0.0237 

21.6667 28.3333 6.6667     0.1009     0.0051     0.1151     1.0648    -0.9600     0.0630 

20.0000 300000 10.0000     0.0969     0.0047     0.1012     0.9729    -0.9599     0.0629 

15.0000 35.0000 20.0000     0.0056     0.0000     0.0064     1.0213    -0.9586     0.0626 

15.0000 35.0000 20.0000     0.0056     0.0000     0.0064     1.0213    -0.9274     0.0518 

15.0000 35.0000 20.0000     0.0056     0.0000     0.0064     1.0213    -0.8954     0.0242 

21.6667 28.3333 6.6667     0.1258     0.0079     0.1420     1.0654    -0.8941     0.0241 

21.6667 28.3333 6.6667     0.0958     0.0046     0.0973     0.9455    -0.6306     0.0195 

21.6667 28.3333 6.6667     0.0825     0.0034     0.0816     0.9157    -0.6100     0.0165 

21.6667 28.3333 6.6667     0.0958     0.0046     0.0973     0.9455    -0.5752     0.0125 

13.3333 36.6667 23.3333     0.0055   0.0000     0.0059     0.9538    -0.5438     0.0115 
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3.3333 46.6667 43.3333     0.0006     0.0000     0.0007     0.9920    -0.5372     0.0058 

13.3333 36.6667 23.3333     0.0055     0.0000     0.0059     0.9538    -0.5147     0.0003 

21.6667 28.3333 6.6667     0.1559     0.0120     0.1738     1.0681    -0.4648    -0.0060 

21.6667 28.3333 6.6667     0.1197     0.0071     0.1271     0.9998    -0.4378    -0.0095 

21.6667 28.3333 6.6667     0.0920     0.0042     0.0986     0.9954    -0.4332    -0.0116 

20.0000 30.0000 10.0000     0.0524     0.0014     0.0555     0.9651    -0.4114    -0.0129 

21.6667 28.3333 6.6667     0.0847     0.0036     0.0935     1.0228    -0.3787    -0.0212 

21.6667 28.3333 6.6667     0.1022     0.0052     0.1072     0.9796    -0.3604    -0.0287 

21.6667 28.3333 6.6667     0.0783     0.0031     0.0845     0.9965    -0.3418    -0.0333 

21.6667 28.3333 6.6667     0.0827     0.0034     0.0905     1.0119    -0.3406    -0.0343 

21.6667 28.3333 6.6667     0.0744     0.0028     0.0797     0.9866    -0.3382    -0.0364 

21.6667 28.3333 6.6667     0.1181     0.0069     0.1275     1.0160    -0.2933    -0.0399 

21.6667 28.3333 6.6667     0.1283     0.0082     0.1392     1.0260    -0.2788    -0.0512 

21.6667 28.3333 6.6667     0.1358     0.0091     0.1515     1.0587    -0.2542    -0.0559 

20.0000 30.0000 10.0000     0.0743     0.0028     0.0787     0.9762    -0.2529    -0.0567 

21.6667 28.3333 6.6667     0.0963     0.0046     0.0989     0.9563    -0.2451    -0.0610 

21.6667 28.3333 6.6667     0.0592     0.0017     0.0579     0.8950    -0.2379    -0.0621 

21.6667 28.3333 6.6667     0.1533     0.0116     0.1698     1.0596    -0.2059    -0.0651 

21.6667 28.3333 6.6667     0.1177     0.0069     0.1271     1.0167    -0.1989    -0.0653 

21.6667 28.3333 6.6667     0.1533     0.0116     0.1698     1.0596    -0.1477     0.0462 

21.6667 28.3333 6.6667     0.0614     0.0019     0.0600     0.8951    -0.0394     0.0390 

21.6667 28.3333 6.6667     0.0503     0.0013     0.0490     0.8865    -0.0365     0.0389 

21.6667 28.3333 6.6667     0.0614     0.0019     0.0600     0.8951     0.0806     0.3840 

13.3333 36.6667 23.3333     0.0060     0.0000     0.0066     0.9713     0.1739     0.3479 

21.6667 28.3333 6.6667     0.0847     0.0036     0.0935     1.0228     0.1947     0.3455 

21.6667 28.3333 6.6667     0.1022     0.0052     0.1072     0.9796     0.2937     0.4565 

21.6667 28.3333 6.6667     0.0923     0.0042     0.0992     0.9988     0.4464     0.4413 

21.6667 28.3333 6.6667     0.0847     0.0036     0.0935     1.0228     0.4470     0.4408 

21.6667 28.3333 6.6667     0.0621     0.0019     0.0692     1.0211     0.6825     1.1329 

21.6667 28.3333 6.6667 0.0960  0.0046 0.1063 1.0313    -0.3816    -0.0564 

21.6667 28.3333 6.6667     0.0960     0.0046     0.1063     1.0313    -0.3053    -0.0682 

20.0000 30.0000 10.0000     0.0799     0.0032     0.0884     1.0217    -0.2424     0.0465 

20.0000 30.0000 10.0000     0.0941     0.0044     0.1017     1.0054    -0.2330     0.0449 

20.0000 30.0000 10.0000     0.1018     0.0052     0.1146     1.0514    -0.2081     0.0358 

20.0000 30.0000 10.0000     0.1203     0.0072     0.1316     1.0304    -0.1984     0.0345 

20.0000 30.0000 10.0000     0.0900     0.0040     0.0990     1.0212    -0.1967     0.0345 

20.0000 30.0000 10.0000     0.0957     0.0046     0.1040     1.0120    -0.1749     0.0201 

20.0000 30.0000 10.0000     0.1215     0.0073     0.1394     1.0820    -0.1548     0.0173 

20.0000 30.0000 10.0000     0.0985     0.0048     0.1131     1.0710    -0.1466     0.0125 

20.0000 30.0000 10.0000     0.1191     0.0070     0.1358     1.0735    -0.1298     0.0025 

20.0000 30.0000 10.0000     0.1394     0.0096     0.1584     1.0799    -0.1154    -0.0037 

20.0000 30.0000 10.0000     0.1379     0.0094     0.1626     1.1207    -0.1034    -0.0077 

20.0000 30.0000 10.0000     0.1320     0.0086     0.1512     1.0857    -0.0977    -0.0089 

18.3333 31.6667 13.3333     0.0988     0.0049     0.1135     1.0711    -0.0862    -0.0101 

20.0000 30.0000 10.0000     0.1037     0.0053     0.1201     1.0823    -0.0211    -0.0166 

20.0000 30.0000 10.0000     0.1221     0.0074     0.1353     1.0453     0.0268    -0.0216 

20.0000 30.0000 10.0000     0.1317     0.0086     0.1542     1.1091     0.0341    -0.0233 

20.0000 30.0000 10.0000     0.1376     0.0094     0.1603     1.1059     0.0418    -0.0237 

20.0000 30.0000    10.0000     0.1371     0.0093     0.1651     1.1440     0.0484    -0.0266 

20.0000 30.0000    10.0000     0.1422     0.0100     0.1649     1.1032     0.0570    -0.0290 

20.0000 30.0000    10.0000     0.1317     0.0086     0.1498     1.0771     0.0633    -0.0299 

20.0000 30.0000    10.0000     0.1017     0.0051     0.1173     1.0770     0.0643    -0.0302 

20.0000 30.0000    10.0000     0.1317     0.0086     0.1498     1.0771     0.0813    -0.0340 

20.0000 30.0000    10.0000     0.1334     0.0088     0.1590     1.1300     0.0835    -0.0349 

20.0000 30.0000    10.0000     0.1219     0.0074     0.1428     1.1042     0.0929    -0.0373 

20.0000 30.0000    10.0000     0.1334     0.0088     0.1590     1.1300     0.1072    -0.0417 

20.0000 30.0000    10.0000     0.0996     0.0049     0.1165     1.0916     0.1620    -0.0535 

20.0000 30.0000    10.0000     0.1191     0.0070     0.1393     1.1012     0.1642    -0.0553 

20.0000 30.0000    10.0000     0.1207     0.0072     0.1367     1.0673     0.1681    -0.0569 

20.0000 30.0000    10.0000     0.0909     0.0041     0.1058     1.0820     0.1770    -0.0598 

20.0000 30.0000    10.0000     0.1004     0.0050     0.1199     1.1135     0.1971    -0.0646 

18.3333 31.6667    13.3333     0.0918     0.0042     0.1099     1.1126     0.2021    -0.0681 

20.0000 30.0000    10.0000     0.1486     0.0109     0.1735     1.1146     0.2259    -0.0696 

20.0000 30.0000    10.0000     0.1248     0.0077     0.1403     1.0615     0.2330    -0.0712 

20.0000 30.0000    10.0000     0.1240     0.0076     0.1409     1.0721     0.2453    -0.0778 

20.0000 30.0000    10.0000     0.1119     0.0062     0.1298     1.0880     0.2692    -0.0876 

20.0000 30.0000    10.0000     0.1241     0.0076     0.1376     1.0464     0.2877    -0.0882 
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20.0000 30.0000    10.0000     0.1259     0.0079     0.1448     1.0864     0.4037     0.0188 

20.0000 30.0000    10.0000     0.1498     0.0111     0.1827     1.1655     0.4517    -0.0052 

20.0000 30.0000 10.0000 0.1293 0.0083 0.1558 1.1404    -0.4858    -0.1336 

18.3333 31.6667    13.3333     0.1019     0.0052     0.1216     1.1145    -0.4858    -0.1336 

18.3333 31.6667    13.3333     0.1474     0.0107     0.1813     1.1739    -0.1158    -0.0479 

21.6667 28.3333     6.6667     0.0445     0.0010     0.0545     1.1115    -0.1051    -0.0519 

21.6667 28.3333     6.6667     0.0445     0.0010     0.0545     1.1115    -0.0793    -0.0541 

18.3333 31.6667    13.3333     0.0954     0.0045     0.1155     1.1275    -0.0577    -0.0568 

18.3333 31.6667    13.3333     0.1109     0.0061     0.1344     1.1369    -0.0112    -0.0630 

20.0000 30.0000    10.0000     0.1213     0.0073     0.1476     1.1470     0.0267    -0.0744 

18.3333 31.6667    13.3333     0.1595     0.0126     0.1965     1.1821     0.0322    -0.0771 

18.3333 31.6667    13.3333     0.1412     0.0099     0.1686     1.1358     0.0966     0.0372 

18.3333 31.6667    13.3333     0.1412     0.0099     0.1686     1.1358     0.1046     0.0303 

18.3333 31.6667    13.3333     0.1628     0.0131     0.2100     1.2398     0.1046     0.0303 

18.3333 31.6667    13.3333     0.1727     0.0147     0.2204     1.2319     0.1596     0.0238 

18.3333 31.6667    13.3333     0.1525     0.0115     0.1922     1.2060     0.1827     0.0172 

18.3333 31.6667    13.3333     0.1157     0.0066     0.1363     1.1082     0.1895     0.0113 

18.3333 31.6667    13.3333     0.1157     0.0066     0.1363     1.1082     0.1911     0.0108 

18.3333 31.6667    13.3333     0.1157     0.0066     0.1363     1.1082     0.2135     0.0015 

18.3333 31.6667    13.3333     0.1221     0.0074     0.1693     1.3069     0.2337    -0.0160 

18.3333 31.6667    13.3333     0.1221     0.0074     0.1693     1.3069     0.2570    -0.0204 

18.3333 31.6667    13.3333     0.1221     0.0074     0.1693     1.3069     0.2746    -0.0215 

18.3333 31.6667    13.3333     0.1231     0.0075     0.1552     1.1889     0.2908    -0.0280 

18.3333 31.6667    13.3333     0.1261     0.0079     0.1608     1.2043     0.3026    -0.0344 

18.3333 31.6667    13.3333     0.1231     0.0075     0.1552     1.1889     0.3523    -0.0358 

18.3333 31.6667    13.3333     0.0989     0.0049     0.1196     1.1283     0.3902    -0.0471 

18.3333 31.6667    13.3333     0.1645     0.0134     0.2079     1.2154     0.3902    -0.0471 

18.3333 31.6667    13.3333     0.1645     0.0134     0.2079     1.2154     0.4343    -0.0527 

18.3333 31.6667    13.3333     0.1445     0.0103     0.1882     1.2406     0.4700    -0.0597 

18.3333 31.6667    13.3333     0.1900     0.0177     0.2520     1.2906     0.5037    -0.0628 

18.3333 31.6667    13.3333     0.1900     0.0177     0.2520     1.2906     0.5089    -0.0673 

20.0000 30.0000    10.0000     0.1107     0.0061     0.1353     1.1468     0.5138    -0.0715 

20.0000 30.0000    10.0000     0.1067     0.0057     0.1317     1.1551     0.5229    -0.0724 

20.0000 30.0000    10.0000     0.0948     0.0045     0.1134     1.1131     0.5798    -0.0818 

18.3333 31.6667    13.3333     0.1516     0.0114     0.1904     1.2004     0.6266    -0.0925 

18.3333 31.6667    13.3333     0.1516     0.0114     0.1904     1.2004     0.6485    -0.0955 

18.3333 31.6667    13.3333     0.1516     0.0114     0.1904     1.2004     0.7125    -0.1421 

18.3333 31.6667    13.3333     0.1285     0.0082     0.1600     1.1779     0.7286    -0.1433 

18.3333 31.6667    13.3333     0.1371     0.0093     0.1625     1.1251     0.7561    -0.1605 

18.3333 31.6667    13.3333     0.1285     0.0082     0.1600     1.1779     0.8233    -0.1641 

20.0000 30.0000    10.0000     0.1557     0.0120     0.2153     1.3241     1.0199    -0.1720 

20.0000 30.0000    10.0000     0.1613     0.0128     0.2034     1.2108     1.0383    -0.1880 
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Figure C.2: Confusion Matrix for Several Supervised Classifiers at 5-Fold Cross Validation, 

(a) DT, (b) k-NN, (c) L-SVM, (d) Q-SVM, (e) L-D, (f) Q-D classifiers.  

  

(a)                                           (b)                                            (c) 

  

                   (d)                                          (e)                                                  (f) 
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Figure C.3: Confusion Matrix for Several Supervised Classifiers at 10-Fold Cross Validation, 

(a) DT, (b) k-NN, (c) L-SVM, (d) Q-SVM, (e) L-D, (f) Q-D classifiers.  

 

(a)                                                (b)                                                 (c) 

 

   

                    (d)                                                     (e)                                              (f) 
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Appendix D 
 

D-1 MATLAB code for gait features extraction using spatiotemporal gait analysis to calculate 

gait step length, stride gait length and gait cadence. 

clc; clear all;close all; 

%%%%%%%%%%%% Data Import %%%%%%%%%%%%% 

TP1S1=load('p1_slow1_towards.txt');TP1S2=load('p1_slow2_towards.txt');  

TP1S3=load('p1_slow3_towards.txt');TP1F1=load('p1_fast1_towards.txt');TP1F2=load('p1_fast2_towards.txt'); 

TP1F3=load('p1_fast3_towards.txt');TP1N1=load('p1_normal1_towards.txt'); TP1N2=load('p1_normal2_towards.txt'); 

TP1N3=load('p1_normal3_towards.txt'); TP2S1=load('p2_slow1_towards.txt'); TP2S2=load('p2_slow2_towards.txt'); 

TP2S3=load('p2_slow3_towards.txt');TP2S4=load('p2_slow4_towards.txt');TP2F1=load('p2_fast1_towards.txt');TP2F2=load

('p2_fast2_towards.txt'); TP2F3=load('p2_fast3_towards.txt');TP2N1=load('p2_normal1_towards.txt'); 

TP2N2=load('p2_normal2_towards.txt'); TP2N3 =load('p2_normal3_towards.txt');  TP3S1=load('p3_slow1_towards.txt'); 

TP3S2=load('p3_slow2_towards.txt'); TP3S3=load('p3_slow3_towards.txt'); TP3S4=load('p3_slow4_towards.txt'); 

TP3F1=load('p3_fast1_towards.txt'); TP3F2=load('p3_fast2_towards.txt'); TP3F3=load('p3_fast3_towards.txt'); 

TP3N1=load('p3_normal1_towards.txt'); TP3N2=load('p3_normal2_towards.txt');  TP3N3 =load('p3_normal3_towards.txt'); 

TP4S1=load('p4_slow1_towards.txt'); TP4S2=load('p4_slow2_towards.txt'); 

TP4S3=load('p4_slow3_towards.txt');TP4F1=load('p4_fast1_towards.txt'); TP4F2=load('p4_fast2_towards.txt'); 

TP4F3=load('p4_fast3_towards.txt');TP4N1=load('p4_normal1_towards.txt'); TP4N2=load('p4_normal2_towards.txt'); 

TP4N3=load('p4_normal3_towards.txt');TP5S1=load('p5_slow1_towards80h.txt');TP5S2=load('p5_slow2_towards80h.txt'); 

TP5S3=load('p5_slow3_towards80h.txt');TP5S4=load('p5_slow4_towards80h.txt');TP5F1=load('p5_fast1_towards80h.txt');

TP5F2=load('p5_fast2_towards80h.txt');TP5F3=load('p5_fast3_towards80h.txt');TP5N1=load('p5_normal1_towards80h.txt')

;TP5N2=load('p5_normal2_towards80h.txt');TP5N3=load('p5_normal3_towards80h.txt'); 

TP6S1=load('p6_slow1_towards.txt');TP6S2=load('p6_slow2_towards.txt'); 

TP6S3=load('p6_slow3_towards.txt');TP6F1=load('p6_fast1_towards.txt'); TP6F2=load('p6_fast2_towards.txt'); 

TP6N2=load('p6_normal2_towards.txt'); TP6N1=load('p6_normal1_towards.txt');TP7S1=load('p7_slow1_towards.txt'); 

TP7S2=load('p7_slow2_towards.txt'); TP7S3=load('p7_slow3_towards.txt');TP7F1=load('p7_fast1_towards.txt'); 

TP7F2=load('p7_fast2_towards.txt'); TP7F3=load('p7_fast3_towards.txt');TP7N1=load('p7_normal1_towards.txt'); 

TP7N2=load('p7_normal2_towards.txt');TP7N3=load('p7_normal3_towards.txt');TP8S1=load('P8_slow1.txt');TP8S2=load('

P8_slow2.txt');TP8S3=load('P8_slow3.txt');TP8N1=load('P8_normal1.txt');TP8N2=load('P8_normal2.txt');TP8N3=load('P8

_normal3.txt');TP8F1=load('P8_fast1.txt');TP8F2=load('P8_fast2.txt');TP8F3=load('P8_fast3.txt');TP9S1=load('P9_slow1.txt

');TP9S2=load('P9_slow2.txt');TP9S3=load('P9_slow3.txt');TP9N1=load('P9_slow1.txt');TP9N2=load('P9_slow2.txt');TP9N

3=load('P9_slow3.txt');TP9F1=load('P9_slow1.txt');TP9F2=load('P9_slow2.txt');TP9F3=load('P9_slow3.txt');TP10S1=load('

P10_slow1.txt');TP10S2=load('P10_slow2.txt');TP10S3=load('P10_slow3.txt');TP10N1=load('P10_normal1.txt');TP10N2=lo

ad('P10_normal2.txt');TP10N3=load('P10_normal3.txt');TP10F1=load('P10_fast1.txt');TP10F2=load('P10_fast2.txt');TP10F3

=load('P10_fast3.txt');TP11S1=load('P11_slow1.txt');TP11S2=load('P11_slow2.txt');TP11S3=load('P11_slow3.txt');TP11N1

=load('P11_normal1.txt');TP11N2=load('P11_normal2.txt');TP11N3=load('P11_normal3.txt');TP11F1=load('P11_fast1.txt');

TP11F2=load('P11_fast2.txt');TP11F3=load('P11_fast3.txt');TP12S1=load('P12_slow1.txt');TP12S2=load('P12_slow2.txt');T

P12S3=load('P12_slow3.txt');TP12N1=load('P12_normal1.txt');TP12N2=load('P12_normal2.txt');TP12N3=load('P12_norma

l3.txt');TP12F1=load('P12_fast1.txt');TP12F2=load('P12_fast2.txt');TP12F3=load('P12_fast3.txt');TP13S1=load('P13_slow1.

txt');TP13S2=load('P13_slow2.txt');TP13S3=load('P13_slow3.txt');TP13N1=load('P13_normal1.txt');TP13N2=load('P13_no

rmal2.txt');TP13N3=load('P13_normal3.txt');TP13F1=load('P13_fast1.txt');TP13F2=load('P13_fast2.txt');TP13F3=load('P13

_fast3.txt');TP14S1=load('P14_slow1.txt');TP14S2=load('P14_slow2.txt');TP14S3=load('P14_slow3.txt');TP14N1=load('P14

_normal1.txt');TP14N2=load('P14_normal2.txt');TP14N3=load('P14_normal3.txt');TP14F1=load('P14_fast1.txt');TP14F2=lo

ad('P14_fast2.txt');TP14F3=load('P14_fast3.txt'); 

%%%%%%%%%%%%% 3 different walking SPEEDs ON FRONT VIEW %%%%%%%%%%%  

                                             % Spine base tracking in z-axis 

T1S1 = TP1S1(40:99,3); T1S2 = TP1S2(40:99,3);  T1S3 = TP1S3(40:99,3); 
T2S1= TP2S1(40:99,3);  T2S2 = TP2S2(40:99,3);  T2S3 = TP2S3(40:99,3);  
T3S1= TP3S1(40:99,3);  T3S2 = TP3S2(40:99,3);T3S3 = TP3S3(40:99,3);    
T4S1 = TP4S1(40:99,3);  T4S2 = TP4S2(40:99,3);  T4S3 = TP4S3(40:99,3); 
T5S1 =TP5S1(40:99,3);  T5S2 = TP5S2(40:99,3);  T5S3 = TP5S3(40:99,3);  
T6S1 = TP6S1(40:99,3);  T6S2 = TP6S2(40:99,3);  T6S3 = TP6S1(40:99,3); 
T7S1 = TP7S1(40:99,3);  T7S2 = TP7S2(40:99,3);  T7S3 = TP7S1(40:99,3); 
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T8S1 = TP8S1(40:99,3); T8S2 = TP8S2(40:99,3);  T8S3 = TP8S3(40:99,3);   
T9S1= TP9S1(40:99,3);  T9S2 = TP9S2(40:99,3);  T9S3 = TP9S3(40:99,3);    
T10S1= TP10S1(40:99,3);  T10S2 = TP10S2(40:99,3);  T10S3 = TP10S3(40:99,3; 
T11S1 = TP11S1(40:99,3);  T11S2 = TP11S2(40:99,3);  T11S3 = TP11S3(40:99,3);    
T12S1 =TP12S1(40:99,3);  T12S2 = TP12S2(40:99,3);  T12S3 = TP12S3(40:99,3);     
T13S1 = TP13S1(40:99,3);  T13S2 = TP13S2(40:99,3);  T13S3 = TP13S1(40:99,3);    
T14S1 = TP14S1(80:139,3);  T14S2 = TP14S2(40:99,3);  T14S3 = TP14S1(80:139,3); 
T15S1 = TP1N1(40:99,3); T15S2 = TP1N2(40:99,3);  T15S3 = TP1N3(40:99,3); 
T16S1= TP2N1(40:99,3);  T16S2 = TP2N2(40:99,3);  T16S3 = TP2N3(40:99,3);  
T17S1= TP3N1(35:94,3);  T17S2 = TP3N2(40:99,3);  T17S3 = TP3N3(40:99,3);    
T18S1 = TP4N1(40:99,3);  T18S2 = TP4N2(40:99,3);  T18S3 = TP4N3(40:99,3); 
T19S1 =TP5N1(30:89,3);  T19S2 = TP5N2(9:68,3);  T19S3 = TP5N3(12:71,3);  
T20S1 = TP6N1(40:99,3);  T20S2 = TP6N2(29:88,3);  T20S3 = TP6N1(40:99,3); 
T21S1 = TP7N1(40:99,3);  T21S2 = TP7N2(40:99,3);  T21S3 = TP7N1(40:99,3); 
T22S1 = TP8N1(40:99,3); T22S2 = TP8N2(40:99,3);  T22S3 = TP8N3(40:99,3);   
T23S1= TP9N1(40:99,3);  T23S2 = TP9N2(40:99,3);  T23S3 = TP9N3(40:99,3);    
T24S1= TP10N1(40:99,3);  T24S2 = TP10N2(40:99,3);  T24S3 = TP10N3(40:99,3 
T25S1 = TP11N1(40:99,3);  T25S2 = TP11N2(40:99,3);  T25S3 = TP11N3(40:99,3);    
T26S1 =TP12N1(40:99,3);  T26S2 = TP12N2(40:99,3);  T26S3 = TP12N3(40:99,3);     
T27S1 = TP13N1(40:99,3);  T27S2 = TP13N2(50:109,3);  T27S3 = TP13N1(40:99,3 
T28S1 = TP14N1(65:124,3);  T28S2 = TP14N1(65:124,3);  T28S3 = TP14N1(65:124,3); 
T29S1 = TP1F1(1:60,3);          T29S2 = TP1F2(1:60,3);     T29S3 = TP1F2(1:60,3);  
T30S1= TP2F1(1:60,3);           T30S2 = TP2F2(1:60,3);     T30S3 = TP2F3(1:60,3);  
T31S1= TP3F1(1:60,3);           T31S2 = TP3F2(1:60,3);      T31S3= TP3F2(1:60,3);    
T32S1 = TP4F1(1:60,3);         T32S2 = TP4F2(1:60,3);      T32S3 = TP4F3(1:60,3); 
T33S1 =TP5F1(1:60,3);         T33S2 = TP5F1(1:60,3);      T33S3 = TP5F1(1:60,3);  
T34S1 = TP6F1(1:60,3);        T34S2 = TP6F1(1:60,3);      T34S3 = TP6F1(1:60,3); 
T35S1 = TP7F1(1:60,3);       T35S2 = TP7F2(1:60,3);       T35S3 = TP7F1(1:60,3); 
T36S1 = TP8F1(1:60,3);       T36S2 = TP8F2(1:60,3);      T36S3 = TP8F2(1:60,3);  
T37S1= TP9F1(11:70,3);      T37S2 = TP9F2(1:60,3);   T37S3 = TP9F3(1:60,3);  
T38S1= TP10F1(1:60,3);      T38S2 = TP10F2(1:60,3);    T38S3= TP10F2(1:60,3);    
T39S1 = TP11F1(1:60,3);      T39S2 = TP11F2(1:60,3);    T39S3 = TP11F3(1:60,3); 
T40S1 =TP12F1(1:60,3);       T40S2 = TP12F1(1:60,3);    T40S3 = TP12F1(1:60,3);  
T41S1 = TP13F3(40:99,3);    T41S2 = TP13F2(13:72,3);     T41S3 = TP13F3(40:99,3); 
T42S1 = TP14F1(1:60,3);       T42S2 = TP14F2(20:79,3);     T42S3 = TP14F1(1:60,3); 
 
  %%%%%%%%%%%%Smoothing Data using LR filter %%%%%%%%%%%%%%%%% 
 
window=11; 

TSS(:,1)=smooth(T1S1,window/length(T1S1),'rloess');TSS(:,2)=smooth(T1S2,window/length(T1S2),'rloess'); 
TSS(:,3)=smooth(T1S3,window/length(T1S3),'rloess');TSS(:,4)=smooth(T2S1,window/length(T2S1),'rloess'); 
TSS(:,5)=smooth(T2S2,window/length(T2S2),'rloess');TSS(:,6)=smooth(T2S3,window/length(T2S3),'rloess'); 
TSS(:,7)=smooth(T3S1,window/length(T3S1),'rloess');TSS(:,8)=smooth(T3S2,window/length(T3S2),'rloess'); 
TSS(:,9)=smooth(T3S3,window/length(T3S3),'rloess');TSS(:,10)=smooth(T4S1,window/length(T4S1),'rloess'); 
TSS(:,11)=smooth(T4S2,window/length(T4S2),'rloess');TSS(:,12)=smooth(T4S3,window/length(T4S3),'rloess'); 
TSS(:,13)=smooth(T5S1,window/length(T5S1),'rloess');TSS(:,14)=smooth(T5S2,window/length(T5S2),'rloess'); 
TSS(:,15)=smooth(T5S3,window/length(T5S3),'rloess');TSS(:,16)=smooth(T6S1,window/length(T6S1),'rloess'); 
TSS(:,17)=smooth(T6S2,window/length(T6S2),'rloess');TSS(:,18)=smooth(T6S3,window/length(T6S3),'rloess'); 
TSS(:,19)=smooth(T7S1,window/length(T7S1),'rloess');TSS(:,20)=smooth(T7S2,window/length(T7S2),'rloess'); 
TSS(:,21)=smooth(T7S3,window/length(T7S3),'rloess');TSS(:,22)=smooth(T8S1,window/length(T8S1),'rloess'); 
TSS(:,23)=smooth(T8S2,window/length(T8S2),'rloess');TSS(:,24)=smooth(T8S3,window/length(T8S3),'rloess'); 
TSS(:,25)=smooth(T9S1,window/length(T9S1),'rloess');TSS(:,26)=smooth(T9S2,window/length(T9S2),'rloess'); 
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TSS(:,27)=smooth(T9S3,window/length(T9S3),'rloess');TSS(:,28)=smooth(T10S1,window/length(T10S1),'rloess'); 
TSS(:,29)=smooth(T10S2,window/length(T10S2),'rloess');TSS(:,30)=smooth(T10S3,window/length(T10S3),'rloess'); 
TSS(:,31)=smooth(T11S1,window/length(T11S1),'rloess');TSS(:,32)=smooth(T11S2,window/length(T11S2),'rloess'); 
TSS(:,33)=smooth(T11S3,window/length(T11S3),'rloess');TSS(:,34)=smooth(T12S1,window/length(T12S1),'rloess'); 
TSS(:,35)=smooth(T12S2,window/length(T12S2),'rloess');TSS(:,36)=smooth(T12S3,window/length(T12S3),'rloess'); 
TSS(:,37)=smooth(T13S1,window/length(T13S1),'rloess');TSS(:,38)=smooth(T13S2,window/length(T13S2),'rloess'); 
TSS(:,39)=smooth(T13S3,window/length(T13S3),'rloess');TSS(:,40)=smooth(T14S1,window/length(T14S1),'rloess'); 
TSS(:,41)=smooth(T14S2,window/length(T14S2),'rloess');TSS(:,42)=smooth(T14S3,window/length(T14S3),'rloess'); 
                                    
TSS(:,43)=smooth(T15S1,window/length(T15S1),'rloess');TSS(:,44)=smooth(T15S2,window/length(T15S2),'rloess'); 
TSS(:,45)=smooth(T15S3,window/length(T15S3),'rloess');TSS(:,46)=smooth(T16S1,window/length(T16S1),'rloess'); 
TSS(:,47)=smooth(T16S2,window/length(T16S2),'rloess');TSS(:,48)=smooth(T16S3,window/length(T16S3),'rloess'); 
TSS(:,49)=smooth(T17S1,window/length(T17S1),'rloess');TSS(:,50)=smooth(T17S2,window/length(T17S2),'rloess'); 
TSS(:,51)=smooth(T17S3,window/length(T17S3),'rloess');TSS(:,52)=smooth(T18S1,window/length(T18S1),'rloess'); 
TSS(:,53)=smooth(T18S2,window/length(T18S2),'rloess');TSS(:,54)=smooth(T18S3,window/length(T18S3),'rloess'); 
TSS(:,55)=smooth(T19S1,window/length(T19S1),'rloess');TSS(:,56)=smooth(T19S2,window/length(T19S2),'rloess'); 
TSS(:,57)=smooth(T19S3,window/length(T19S3),'rloess');TSS(:,58)=smooth(T20S1,window/length(T20S1),'rloess'); 
TSS(:,59)=smooth(T20S2,window/length(T20S2),'rloess');TSS(:,60)=smooth(T20S3,window/length(T20S3),'rloess'); 
TSS(:,61)=smooth(T21S1,window/length(T21S1),'rloess');TSS(:,62)=smooth(T21S2,window/length(T21S2),'rloess'); 
TSS(:,63)=smooth(T21S3,window/length(T21S3),'rloess');TSS(:,64)=smooth(T22S1,window/length(T22S1),'rloess'); 
TSS(:,65)=smooth(T22S2,window/length(T22S2),'rloess');TSS(:,66)=smooth(T22S3,window/length(T22S3),'rloess'); 
TSS(:,67)=smooth(T23S1,window/length(T23S1),'rloess');TSS(:,68)=smooth(T23S2,window/length(T23S2),'rloess'); 
TSS(:,69)=smooth(T23S3,window/length(T23S3),'rloess');TSS(:,70)=smooth(T24S1,window/length(T24S1),'rloess'); 
TSS(:,71)=smooth(T24S2,window/length(T24S2),'rloess');TSS(:,72)=smooth(T24S3,window/length(T24S3),'rloess'); 
TSS(:,73)=smooth(T25S1,window/length(T25S1),'rloess');TSS(:,74)=smooth(T25S2,window/length(T25S2),'rloess'); 
TSS(:,75)=smooth(T25S3,window/length(T25S3),'rloess');TSS(:,76)=smooth(T26S1,window/length(T26S1),'rloess'); 
TSS(:,77)=smooth(T26S2,window/length(T26S2),'rloess');TSS(:,78)=smooth(T26S3,window/length(T26S3),'rloess'); 
TSS(:,79)=smooth(T27S1,window/length(T27S1),'rloess');TSS(:,80)=smooth(T27S2,window/length(T27S2),'rloess'); 
TSS(:,81)=smooth(T27S3,window/length(T27S3),'rloess');TSS(:,82)=smooth(T28S1,window/length(T28S1),'rloess'); 
TSS(:,83)=smooth(T28S2,window/length(T28S2),'rloess');TSS(:,84)=smooth(T28S3,window/length(T28S3),'rloess'); 
 TSS(:,85)=smooth(T29S1,window/length(T29S1),'rloess');TSS(:,86)=smooth(T29S2,window/length(T29S2),'rloess'); 
TSS(:,87)=smooth(T29S3,window/length(T29S3),'rloess');TSS(:,88)=smooth(T30S1,window/length(T30S1),'rloess');T 
SS(:,89)=smooth(T30S2,window/length(T30S2),'rloess');TSS(:,90)=smooth(T30S3,window/length(T30S3),'rloess'); 
TSS(:,91)=smooth(T31S1,window/length(T31S1),'rloess');TSS(:,92)=smooth(T31S2,window/length(T31S2),'rloess'); 
TSS(:,93)=smooth(T31S3,window/length(T31S3),'rloess');TSS(:,94)=smooth(T32S1,window/length(T32S1),'rloess'); 
TSS(:,95)=smooth(T32S2,window/length(T32S2),'rloess');TSS(:,96)=smooth(T32S3,window/length(T32S3),'rloess'); 
TSS(:,97)=smooth(T33S1,window/length(T33S1),'rloess');TSS(:,98)=smooth(T33S2,window/length(T33S2),'rloess'); 
TSS(:,99)=smooth(T33S3,window/length(T33S3),'rloess');TSS(:,100)=smooth(T34S1,window/length(T34S1),'rloess'); 
TSS(:,101)=smooth(T34S2,window/length(T34S2),'rloess');TSS(:,102)=smooth(T34S3,window/length(T34S3),'rloess'); 
TSS(:,103)=smooth(T35S1,window/length(T35S1),'rloess');TSS(:,104)=smooth(T35S2,window/length(T35S2),'rloess'); 
TSS(:,105)=smooth(T35S3,window/length(T35S3),'rloess');TSS(:,106)=smooth(T36S1,window/length(T36S1),'rloess'); 
TSS(:,107)=smooth(T36S2,window/length(T36S2),'rloess');TSS(:,108)=smooth(T36S3,window/length(T36S3),'rloess'); 
TSS(:,109)=smooth(T37S1,window/length(T37S1),'rloess');TSS(:,110)=smooth(T37S2,window/length(T37S2),'rloess'); 
TSS(:,111)=smooth(T37S3,window/length(T37S3),'rloess');TSS(:,112)=smooth(T38S1,window/length(T38S1),'rloess'); 
TSS(:,113)=smooth(T38S2,window/length(T38S2),'rloess');TSS(:,114)=smooth(T38S3,window/length(T38S3),'rloess'); 
TSS(:,115)=smooth(T39S1,window/length(T39S1),'rloess');TSS(:,116)=smooth(T39S2,window/length(T39S2),'rloess'); 
TSS(:,117)=smooth(T39S3,window/length(T39S3),'rloess');TSS(:,118)=smooth(T40S1,window/length(T40S1),'rloess'); 
TSS(:,119)=smooth(T40S2,window/length(T40S2),'rloess');TSS(:,120)=smooth(T40S3,window/length(T40S3),'rloess'); 
TSS(:,121)=smooth(T41S1,window/length(T41S1),'rloess');TSS(:,122)=smooth(T41S2,window/length(T41S2),'rloess'); 
TSS(:,123)=smooth(T41S3,window/length(T41S3),'rloess');TSS(:,124)=smooth(T42S1,window/length(T42S1),'rloess'); 
TSS(:,125)=smooth(T42S2,window/length(T42S2),'rloess');TSS(:,126)=smooth(T42S3,window/length(T42S3),'rloess'); 
 

  %%%%%%%%%%%%%%%%% Left Ankle tracking 
L1S1 = TP1S1(40:99,12);     L1S2 = TP1S2(40:99,12);  L1S3 = TP1S3(40:99,12); 
L2S1= TP2S1(40:99,12);        L2S2 = TP2S2(40:99,12);  L2S3 = TP2S3(40:99,12);  
L3S1= TP3S1(40:99,12);        L3S2 = TP3S2(40:99,12);  L3S3 = TP3S3(40:99,12);    
L4S1 = TP4S3(40:99,12);    L4S2 = TP4S3(40:99,12);  L4S3 = TP4S3(40:99,12); 
L5S1 =TP5S1(40:99,12);        L5S2 = TP5S2(40:99,12);  L5S3 = TP5S3(25:84,12);  
L6S1 = TP6S1(40:99,12);       L6S2 =  TP6S2(40:99,12);  L6S3 = TP6S1(40:99,12); 
L7S1 = TP7S1(20:79,12);       L7S2 =  TP7S2(40:99,12);  L7S3 = TP7S1(20:79,12); 
L8S1 = TP8S1(35:94,12);       L8S2 =  TP8S2(40:99,12);  L8S3 = TP8S3(40:99,12);   
L9S1= TP9S1(40:99,12);        L9S2 =   TP9S2(40:99,12);  L9S3 = TP9S3(40:99,12);    
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L10S1= TP10S1(40:99,12);   L10S2 = TP10S2(40:99,12);  L10S3 = TP10S3(40:99,12);     
L11S1 = TP11S1(40:99,12);  L11S2 = TP11S2(40:99,12);  L11S3 = TP11S3(40:99,12);    
L12S1 =TP12S1(40:99,12);   L12S2 = TP12S2(40:99,12);  L12S3 = TP12S3(40:99,12);     
L13S1 = TP13S1(40:99,12);  L13S2 = TP13S2(30:89,12); L13S3 = TP13S1(40:99,12);    
L14S1 = TP14S1(100:159,12);  L14S2 = TP14S2(40:99,12);  L14S3 = TP14S1(100:159,12); 
 L15S1 = TP1N1(30:89,12); L15S2 = TP1N2(40:99,12);  L15S3 = TP1N3(40:99,12); 
L16S1= TP2N1(40:99,12);  L16S2 = TP2N2(40:99,12);  L16S3 = TP2N3(40:99,12);  
L17S1= TP3N1(25:84,12);  L17S2 = TP3N2(40:99,12);  L17S3 = TP3N3(40:99,12);    
L18S1 = TP4N1(40:99,12);  L18S2 = TP4N2(40:99,12);  L18S3 = TP4N3(40:99,12); 
L19S1 =TP5N1(40:99,12);  L19S2 = TP5N2(9:68,12);  L19S3 = TP5N3(12:71,12);  
L20S1 = TP6N1(40:99,12);  L20S2 = TP6N2(29:88,12);  L20S3 = TP6N1(40:99,12); 
L21S1 = TP7N1(40:99,12);  L21S2 = TP7N2(30:89,12);  L21S3 = TP7N1(40:99,12); 
L22S1 = TP8N1(40:99,12); L22S2 = TP8N2(40:99,12);  L22S3 = TP8N3(40:99,12);   
L23S1= TP9N1(180:239,12);  L23S2 = TP9N2(40:99,12);  L23S3 = TP9N3(40:99,12);    
L24S1= TP10N1(40:99,12);  L24S2 = TP10N2(40:99,12);  L24S3 = TP10N3(40:99,12);     
L25S1 = TP11N1(40:99,12);  L25S2 = TP11N2(10:69,12);  L25S3 = TP11N3(40:99,12);    
L26S1 =TP12N1(40:99,12);  L26S2 = TP12N2(40:99,12);  L26S3 = TP12N3(40:99,12);     
L27S1 = TP13N1(40:99,12);  L27S2 = TP13N2(40:99,12);  L27S3 = TP13N1(40:99,12);    
L28S1 = TP14N1(60:119,12);  L28S2 = TP14N2(100:159,12);  L28S3 = TP14N1(60:119,12); 
 L29S1 = TP1F1(1:60,12);     L29S2 = TP1F2(1:60,12);     L29S3 = TP1F2(1:60,12); %87 
L30S1= TP2F1(1:60,12);       L30S2 = TP2F2(1:60,12);     L30S3 = TP2F3(1:60,12); %90 
L31S1= TP3F1(1:60,12);       L31S2 = TP3F2(1:60,12);      L31S3= TP3F2(1:60,12);   %93 
L32S1 = TP4F1(1:60,12);      L32S2 = TP4F2(1:60,12);      L32S3 = TP4F3(1:60,12);   %96 
L33S1 =TP5F1(1:60,12);      L33S2 = TP5F1(1:60,12);      L33S3 = TP5F1(1:60,12);    %99 
L34S1 = TP6F1(1:60,12);      L34S2 = TP6F1(1:60,12);      L34S3 = TP6F1(1:60,12);   %102 
L35S1 = TP7F1(1:60,12);      L35S2 = TP7F2(1:60,12);       L35S3 = TP7F1(1:60,12);   %105 
L36S1 = TP8F1(1:60,12);       L36S2 = TP8F2(1:60,12);      L36S3 = TP8F2(1:60,12);   %108 
L37S1= TP9F3(188:247,12);       L37S2 = TP9F2(40:99,12);        L37S3 = TP9F3(20:79,12); %111 
L38S1= TP10F1(1:60,12);    L38S2 = TP10F2(1:60,12);    L38S3= TP10F2(1:60,12);    %114 
L39S1 = TP11F1(1:60,12);   L39S2 = TP11F2(1:60,12);    L39S3 = TP11F3(1:60,12);   %117 
L40S1 =TP12F1(1:60,12);    L40S2 = TP12F1(1:60,12);    L40S3 = TP12F1(1:60,12);    %120 
L41S1 = TP13F3(45:104,12);  L41S2 = TP13F2(1:60,12);     L41S3 = TP13F3(45:104,12);  %123 
L42S1 = TP14F1(1:60,12);  L42S2 = TP14F2(1:60,12);     L42S3 = TP14F1(1:60,12);     %126 
 
 
  %%%%%%%%%%%%%%%%% Smoothing Data of Left Ankle movement  
 
window=11; 
LSS(:,1)=smooth(L1S1,window/length(L1S1),'rloess');LSS(:,2)=smooth(L1S2,window/length(L1S2),'rloess'); 
LSS(:,3)=smooth(L1S3,window/length(L1S3),'rloess');LSS(:,4)=smooth(L2S1,window/length(L2S1),'rloess'); 
LSS(:,5)=smooth(L2S2,window/length(L2S2),'rloess');LSS(:,6)=smooth(L2S3,window/length(L2S3),'rloess'); 
LSS(:,7)=smooth(L3S1,window/length(L3S1),'rloess');LSS(:,8)=smooth(L3S2,window/length(L3S2),'rloess'); 
LSS(:,9)=smooth(L3S3,window/length(L3S3),'rloess');LSS(:,10)=smooth(L4S1,window/length(L4S1),'rloess'); 
LSS(:,11)=smooth(L4S2,window/length(L4S2),'rloess');LSS(:,12)=smooth(L4S3,window/length(L4S3),'rloess'); 
LSS(:,13)=smooth(L5S1,window/length(L5S1),'rloess');LSS(:,14)=smooth(L5S2,window/length(L5S2),'rloess'); 
LSS(:,15)=smooth(L5S3,window/length(L5S3),'rloess');LSS(:,16)=smooth(L6S1,window/length(L6S1),'rloess'); 
LSS(:,17)=smooth(L6S2,window/length(L6S2),'rloess');LSS(:,18)=smooth(L6S3,window/length(L6S3),'rloess'); 
LSS(:,19)=smooth(L7S1,window/length(L7S1),'rloess');LSS(:,20)=smooth(L7S2,window/length(L7S2),'rloess'); 
LSS(:,21)=smooth(L7S3,window/length(L7S3),'rloess');LSS(:,22)=smooth(L8S1,window/length(L8S1),'rloess'); 
LSS(:,23)=smooth(L8S2,window/length(L8S2),'rloess');LSS(:,24)=smooth(L8S3,window/length(L8S3),'rloess'); 
LSS(:,25)=smooth(L9S1,window/length(L9S1),'rloess');LSS(:,26)=smooth(L9S2,window/length(L9S2),'rloess'); 
LSS(:,27)=smooth(L9S3,window/length(L9S3),'rloess');LSS(:,28)=smooth(L10S1,window/length(L10S1),'rloess'); 
LSS(:,29)=smooth(L10S2,window/length(L10S2),'rloess');LSS(:,30)=smooth(L10S3,window/length(L10S3),'rloess'); 
LSS(:,31)=smooth(L11S1,window/length(L11S1),'rloess');LSS(:,32)=smooth(L11S2,window/length(L11S2),'rloess'); 
LSS(:,33)=smooth(L11S3,window/length(L11S3),'rloess');LSS(:,34)=smooth(L12S1,window/length(L12S1),'rloess'); 
LSS(:,35)=smooth(L12S2,window/length(L12S2),'rloess');LSS(:,36)=smooth(L12S3,window/length(L12S3),'rloess'); 
LSS(:,37)=smooth(L13S1,window/length(L13S1),'rloess');LSS(:,38)=smooth(L13S2,window/length(L13S2),'rloess'); 
LSS(:,39)=smooth(L13S3,window/length(L13S3),'rloess');LSS(:,40)=smooth(L14S1,window/length(L14S1),'rloess'); 
LSS(:,41)=smooth(L14S2,window/length(L14S2),'rloess');LSS(:,42)=smooth(L14S3,window/length(L14S3),'rloess');                                  
LSS(:,43)=smooth(L15S1,window/length(L15S1),'rloess');LSS(:,44)=smooth(L15S2,window/length(L15S2),'rloess'); 
LSS(:,45)=smooth(L15S3,window/length(L15S3),'rloess');LSS(:,46)=smooth(L16S1,window/length(L16S1),'rloess'); 
LSS(:,47)=smooth(L16S2,window/length(L16S2),'rloess');LSS(:,48)=smooth(L16S3,window/length(L16S3),'rloess'); 
LSS(:,49)=smooth(L17S1,window/length(L17S1),'rloess');LSS(:,50)=smooth(L17S2,window/length(L17S2),'rloess'); 
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LSS(:,51)=smooth(L17S3,window/length(L17S3),'rloess');LSS(:,52)=smooth(L18S1,window/length(L18S1),'rloess'); 
LSS(:,53)=smooth(L18S2,window/length(L18S2),'rloess');LSS(:,54)=smooth(L18S3,window/length(L18S3),'rloess'); 
LSS(:,55)=smooth(L19S1,window/length(L19S1),'rloess');LSS(:,56)=smooth(L19S2,window/length(L19S2),'rloess'); 
LSS(:,57)=smooth(L19S3,window/length(L19S3),'rloess');LSS(:,58)=smooth(L20S1,window/length(L20S1),'rloess'); 
LSS(:,59)=smooth(L20S2,window/length(L20S2),'rloess');LSS(:,60)=smooth(L20S3,window/length(L20S3),'rloess'); 
LSS(:,61)=smooth(L21S1,window/length(L21S1),'rloess');LSS(:,62)=smooth(L21S2,window/length(L21S2),'rloess'); 
LSS(:,63)=smooth(L21S3,window/length(L21S3),'rloess');LSS(:,64)=smooth(L22S1,window/length(L22S1),'rloess'); 
LSS(:,65)=smooth(L22S2,window/length(L22S2),'rloess');LSS(:,66)=smooth(L22S3,window/length(L22S3),'rloess'); 
LSS(:,67)=smooth(L23S1,window/length(L23S1),'rloess');LSS(:,68)=smooth(L23S2,window/length(L23S2),'rloess'); 
LSS(:,69)=smooth(L23S3,window/length(L23S3),'rloess');LSS(:,70)=smooth(L24S1,window/length(L24S1),'rloess'); 
LSS(:,71)=smooth(L24S2,window/length(L24S2),'rloess');LSS(:,72)=smooth(L24S3,window/length(L24S3),'rloess'); 
LSS(:,73)=smooth(L25S1,window/length(L25S1),'rloess');LSS(:,74)=smooth(L25S2,window/length(L25S2),'rloess'); 
LSS(:,75)=smooth(L25S3,window/length(L25S3),'rloess');LSS(:,76)=smooth(L26S1,window/length(L26S1),'rloess'); 
LSS(:,77)=smooth(L26S2,window/length(L26S2),'rloess');LSS(:,78)=smooth(L26S3,window/length(L26S3),'rloess'); 
LSS(:,79)=smooth(L27S1,window/length(L27S1),'rloess');LSS(:,80)=smooth(L27S2,window/length(L27S2),'rloess'); 
LSS(:,81)=smooth(L27S3,window/length(L27S3),'rloess');LSS(:,82)=smooth(L28S1,window/length(L28S1),'rloess'); 
LSS(:,83)=smooth(L28S2,window/length(L28S2),'rloess');LSS(:,84)=smooth(L28S3,window/length(L28S3),'rloess'); 
 LSS(:,85)=smooth(L29S1,window/length(L29S1),'rloess');LSS(:,86)=smooth(L29S2,window/length(L29S2),'rloess'); 
LSS(:,87)=smooth(L29S3,window/length(L29S3),'rloess');LSS(:,88)=smooth(L30S1,window/length(L30S1),'rloess'); 
LSS(:,89)=smooth(L30S2,window/length(L30S2),'rloess');LSS(:,90)=smooth(L30S3,window/length(L30S3),'rloess'); 
LSS(:,91)=smooth(L31S1,window/length(L31S1),'rloess');LSS(:,92)=smooth(L31S2,window/length(L31S2),'rloess'); 
LSS(:,93)=smooth(L31S3,window/length(L31S3),'rloess');LSS(:,94)=smooth(L32S1,window/length(L32S1),'rloess'); 
LSS(:,95)=smooth(L32S2,window/length(L32S2),'rloess');LSS(:,96)=smooth(L32S3,window/length(L32S3),'rloess'); 
LSS(:,97)=smooth(L33S1,window/length(L33S1),'rloess');LSS(:,98)=smooth(L33S2,window/length(L33S2),'rloess'); 
LSS(:,99)=smooth(L33S3,window/length(L33S3),'rloess');LSS(:,100)=smooth(L34S1,window/length(L34S1),'rloess'); 
LSS(:,101)=smooth(L34S2,window/length(L34S2),'rloess');LSS(:,102)=smooth(L34S3,window/length(L34S3),'rloess'); 
LSS(:,103)=smooth(L35S1,window/length(L35S1),'rloess');LSS(:,104)=smooth(L35S2,window/length(L35S2),'rloess'); 
LSS(:,105)=smooth(L35S3,window/length(L35S3),'rloess');LSS(:,106)=smooth(L36S1,window/length(L36S1),'rloess'); 
LSS(:,107)=smooth(L36S2,window/length(L36S2),'rloess');LSS(:,108)=smooth(L36S3,window/length(L36S3),'rloess'); 
LSS(:,109)=smooth(L37S1,window/length(L37S1),'rloess');LSS(:,110)=smooth(L37S2,window/length(L37S2),'rloess'); 
LSS(:,111)=smooth(L37S3,window/length(L37S3),'rloess');LSS(:,112)=smooth(L38S1,window/length(L38S1),'rloess'); 
LSS(:,113)=smooth(L38S2,window/length(L38S2),'rloess');LSS(:,114)=smooth(L38S3,window/length(L38S3),'rloess'); 
LSS(:,115)=smooth(L39S1,window/length(L39S1),'rloess');LSS(:,116)=smooth(L39S2,window/length(L39S2),'rloess'); 
LSS(:,117)=smooth(L39S3,window/length(L39S3),'rloess');LSS(:,118)=smooth(L40S1,window/length(L40S1),'rloess'); 
LSS(:,119)=smooth(L40S2,window/length(L40S2),'rloess');LSS(:,120)=smooth(L40S3,window/length(L40S3),'rloess'); 
LSS(:,121)=smooth(L41S1,window/length(L41S1),'rloess');LSS(:,122)=smooth(L41S2,window/length(L41S2),'rloess'); 
LSS(:,123)=smooth(L41S3,window/length(L41S3),'rloess');LSS(:,124)=smooth(L42S1,window/length(L42S1),'rloess'); 
LSS(:,125)=smooth(L42S2,window/length(L42S2),'rloess');LSS(:,126)=smooth(L42S3,window/length(L42S3),'rloess'); 
   
  %%%%%%%%%%%%%% Right Ankle tracking on z-axis  
R1S1 = TP1S1(40:99,21);       R1S2 = TP1S2(40:99,21);  R1S3 = TP1S3(40:99,21);    
R2S1= TP2S1(40:99,21);        R2S2 = TP2S2(40:99,21);  R2S3 = TP2S3(40:99,21);     
R3S1= TP3S1(40:99,21);        R3S2 = TP3S2(40:99,21);  R3S3 = TP3S3(40:99,21);      
R4S1 = TP4S3(40:99,21);     R4S2 = TP4S3(40:99,21);  R4S3 = TP4S3(40:99,21);     
R5S1 =TP5S1(40:99,21);        R5S2 = TP5S2(40:99,21);  R5S3 = TP5S3(25:84,21);       
R6S1 = TP6S1(40:99,21);       R6S2 =  TP6S2(40:99,21);  R6S3 = TP6S1(40:99,21);      
R7S1 = TP7S1(20:79,21);       R7S2 =  TP7S2(40:99,21);  R7S3 = TP7S1(20:79,21);      
R8S1 = TP8S1(35:94,21);       R8S2 =  TP8S2(40:99,21);  R8S3 = TP8S3(40:99,21);      
R9S1= TP9S1(40:99,21);        R9S2 =   TP9S2(40:99,21);  R9S3 = TP9S3(40:99,21);      
R10S1= TP10S1(40:99,21);   R10S2 = TP10S2(40:99,21);  R10S3 = TP10S3(40:99,21);      
R11S1 = TP11S1(40:99,21);  R11S2 = TP11S2(40:99,21);  R11S3 = TP11S3(40:99,21);        
R12S1 =TP12S1(40:99,21);   R12S2 = TP12S2(40:99,21);  R12S3 = TP12S3(40:99,21);     
R13S1 = TP13S1(40:99,21);  R13S2 = TP13S2(30:89,21); R13S3 = TP13S1(40:99,21);        
R14S1 = TP14S1(100:159,21);  R14S2 = TP14S2(40:99,21);  R14S3 = TP14S1(100:159,21);       
R15S1 = TP1N1(30:89,21); R15S2 = TP1N2(40:99,21);  R15S3 = TP1N3(40:99,21);     
R16S1= TP2N1(40:99,21);  R16S2 = TP2N2(40:99,21);  R16S3 = TP2N3(40:99,21);      
R17S1= TP3N1(25:84,21);  R17S2 = TP3N2(40:99,21);  R17S3 = TP3N3(40:99,21);       
R18S1 = TP4N1(40:99,21);  R18S2 = TP4N2(40:99,21);  R18S3 = TP4N3(40:99,21);      
R19S1 =TP5N1(40:99,21);  R19S2 = TP5N2(9:68,21);  R19S3 = TP5N3(12:71,21);        
R20S1 = TP6N1(40:99,21);  R20S2 = TP6N2(29:88,21);  R20S3 = TP6N1(40:99,21);      
R21S1 = TP7N1(40:99,21);  R21S2 = TP7N2(30:89,21);  R21S3 = TP7N1(40:99,21);      
R22S1 = TP8N1(40:99,21); R22S2 = TP8N2(40:99,21);  R22S3 = TP8N3(40:99,21);      
R23S1= TP9N1(180:239,21);  R23S2 = TP9N2(40:99,21);  R23S3 = TP9N3(40:99,21);      
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R24S1= TP10N1(40:99,21);  R24S2 = TP10N2(40:99,21);  R24S3 = TP10N3(40:99,21);     
R25S1 = TP11N1(40:99,21);  R25S2 = TP11N2(10:69,21);  R25S3 = TP11N3(40:99,21);    
R26S1 =TP12N1(40:99,21);  R26S2 = TP12N2(40:99,21);  R26S3 = TP12N3(40:99,21);     
R27S1 = TP13N1(40:99,21);  R27S2 = TP13N2(40:99,21);  R27S3 = TP13N1(40:99,21);    
R28S1 = TP14N1(60:119,21); R28S2 = TP14N2(100:159,21);  R28S3 = TP14N1(60:119,21);   
R29S1 = TP1F1(1:60,21);    R29S2 = TP1F2(1:60,21);     R29S3 = TP1F2(1:60,21);   
R30S1= TP2F1(1:60,21);      R30S2 = TP2F2(1:60,21);     R30S3 = TP2F3(1:60,21);    
R31S1= TP3F1(1:60,21);       R31S2 = TP3F2(1:60,21);      R31S3= TP3F2(1:60,21);    
R32S1 = TP4F1(1:60,21);      R32S2 = TP4F2(1:60,21);      R32S3 = TP4F3(1:60,21);    
R33S1 =TP5F1(1:60,21);      R33S2 = TP5F1(1:60,21);      R33S3 = TP5F1(1:60,21);     
R34S1 = TP6F1(1:60,21);      R34S2 = TP6F1(1:60,21);      R34S3 = TP6F1(1:60,21);     
R35S1 = TP7F1(1:60,21);      R35S2 = TP7F2(1:60,21);       R35S3 = TP7F1(1:60,21);     
R36S1 = TP8F1(1:60,21);     R36S2 = TP8F2(1:60,21);      R36S3 = TP8F2(1:60,21);       
R37S1= TP9F3(188:247,21);   R37S2 = TP9F2(40:99,21);        R37S3 = TP9F3(20:79,21);    
R38S1= TP10F1(1:60,21);    R38S2 = TP10F2(1:60,21);    R38S3= TP10F2(1:60,21);         
R39S1 = TP11F1(1:60,21);   R39S2 = TP11F2(1:60,21);    R39S3 = TP11F3(1:60,21);       
R40S1 =TP12F1(1:60,21);    R40S2 = TP12F1(1:60,21);    R40S3 = TP12F1(1:60,21);       
R41S1 = TP13F3(45:104,21);  R41S2 = TP13F2(1:60,21);     R41S3 = TP13F3(45:104,21);       
R42S1 = TP14F1(1:60,21); R42S2 = TP14F2(1:60,21);     R42S3 = TP14F1(1:60,21);       
 
%%%%%%%%%%%%%%%%% Smoothing Data of Rightt Ankle movement  
window=11; 
RSS(:,1)=smooth(R1S1,window/length(R1S1),'rloess');RSS(:,2)=smooth(R1S2,window/length(R1S2),'rloess'); 
RSS(:,3)=smooth(R1S3,window/length(R1S3),'rloess');RSS(:,4)=smooth(R2S1,window/length(R2S1),'rloess'); 
RSS(:,5)=smooth(R2S2,window/length(R2S2),'rloess');RSS(:,6)=smooth(R2S3,window/length(R2S3),'rloess'); 
RSS(:,7)=smooth(R3S1,window/length(R3S1),'rloess');RSS(:,8)=smooth(R3S2,window/length(R3S2),'rloess'); 
RSS(:,9)=smooth(R3S3,window/length(R3S3),'rloess');RSS(:,10)=smooth(R4S1,window/length(R4S1),'rloess'); 
RSS(:,11)=smooth(R4S2,window/length(R4S2),'rloess');RSS(:,12)=smooth(R4S3,window/length(R4S3),'rloess'); 
RSS(:,13)=smooth(R5S1,window/length(R5S1),'rloess');RSS(:,14)=smooth(R5S2,window/length(R5S2),'rloess'); 
RSS(:,15)=smooth(R5S3,window/length(R5S3),'rloess');RSS(:,16)=smooth(R6S1,window/length(R6S1),'rloess'); 
RSS(:,17)=smooth(R6S2,window/length(R6S2),'rloess');RSS(:,18)=smooth(R6S3,window/length(R6S3),'rloess'); 
RSS(:,19)=smooth(R7S1,window/length(R7S1),'rloess');RSS(:,20)=smooth(R7S2,window/length(R7S2),'rloess'); 
RSS(:,21)=smooth(R7S3,window/length(R7S3),'rloess');RSS(:,22)=smooth(R8S1,window/length(R8S1),'rloess'); 
RSS(:,23)=smooth(R8S2,window/length(R8S2),'rloess');RSS(:,24)=smooth(R8S3,window/length(R8S3),'rloess'); 
RSS(:,25)=smooth(R9S1,window/length(R9S1),'rloess');RSS(:,26)=smooth(R9S2,window/length(R9S2),'rloess'); 
RSS(:,27)=smooth(R9S3,window/length(R9S3),'rloess');RSS(:,28)=smooth(R10S1,window/length(R10S1),'rloess'); 
RSS(:,29)=smooth(R10S2,window/length(R10S2),'rloess');RSS(:,30)=smooth(R10S3,window/length(R10S3),'rloess'); 
RSS(:,31)=smooth(R11S1,window/length(R11S1),'rloess');RSS(:,32)=smooth(R11S2,window/length(R11S2),'rloess'); 
RSS(:,33)=smooth(R11S3,window/length(R11S3),'rloess');RSS(:,34)=smooth(R12S1,window/length(R12S1),'rloess'); 
RSS(:,35)=smooth(R12S2,window/length(R12S2),'rloess');RSS(:,36)=smooth(R12S3,window/length(R12S3),'rloess'); 
RSS(:,37)=smooth(R13S1,window/length(R13S1),'rloess');RSS(:,38)=smooth(R13S2,window/length(R13S2),'rloess'); 
RSS(:,39)=smooth(R13S3,window/length(R13S3),'rloess');RSS(:,40)=smooth(R14S1,window/length(R14S1),'rloess'); 
RSS(:,41)=smooth(R14S2,window/length(R14S2),'rloess');RSS(:,42)=smooth(R14S3,window/length(R14S3),'rloess');                                         
RSS(:,43)=smooth(R15S1,window/length(R15S1),'rloess');RSS(:,44)=smooth(R15S2,window/length(R15S2),'rloess'); 
RSS(:,45)=smooth(R15S3,window/length(R15S3),'rloess');RSS(:,46)=smooth(R16S1,window/length(R16S1),'rloess'); 
RSS(:,47)=smooth(R16S2,window/length(R16S2),'rloess');RSS(:,48)=smooth(R16S3,window/length(R16S3),'rloess'); 
RSS(:,49)=smooth(R17S1,window/length(R17S1),'rloess');RSS(:,50)=smooth(R17S2,window/length(R17S2),'rloess'); 
RSS(:,51)=smooth(R17S3,window/length(R17S3),'rloess');RSS(:,52)=smooth(R18S1,window/length(R18S1),'rloess'); 
RSS(:,53)=smooth(R18S2,window/length(R18S2),'rloess');RSS(:,54)=smooth(R18S3,window/length(R18S3),'rloess'); 
RSS(:,55)=smooth(R19S1,window/length(R19S1),'rloess');RSS(:,56)=smooth(R19S2,window/length(R19S2),'rloess'); 
RSS(:,57)=smooth(R19S3,window/length(R19S3),'rloess');RSS(:,58)=smooth(R20S1,window/length(R20S1),'rloess'); 
RSS(:,59)=smooth(R20S2,window/length(R20S2),'rloess');RSS(:,60)=smooth(R20S3,window/length(R20S3),'rloess'); 
RSS(:,61)=smooth(R21S1,window/length(R21S1),'rloess');RSS(:,62)=smooth(R21S2,window/length(R21S2),'rloess'); 
RSS(:,63)=smooth(R21S3,window/length(R21S3),'rloess');RSS(:,64)=smooth(R22S1,window/length(R22S1),'rloess'); 
RSS(:,65)=smooth(R22S2,window/length(R22S2),'rloess');RSS(:,66)=smooth(R22S3,window/length(R22S3),'rloess'); 
RSS(:,67)=smooth(R23S1,window/length(R23S1),'rloess');RSS(:,68)=smooth(R23S2,window/length(R23S2),'rloess'); 
RSS(:,69)=smooth(R23S3,window/length(R23S3),'rloess');RSS(:,70)=smooth(R24S1,window/length(R24S1),'rloess'); 
RSS(:,71)=smooth(R24S2,window/length(R24S2),'rloess');RSS(:,72)=smooth(R24S3,window/length(R24S3),'rloess'); 
RSS(:,73)=smooth(R25S1,window/length(R25S1),'rloess');RSS(:,74)=smooth(R25S2,window/length(R25S2),'rloess'); 
RSS(:,75)=smooth(R25S3,window/length(R25S3),'rloess');RSS(:,76)=smooth(R26S1,window/length(R26S1),'rloess'); 
RSS(:,77)=smooth(R26S2,window/length(R26S2),'rloess');RSS(:,78)=smooth(R26S3,window/length(R26S3),'rloess'); 
RSS(:,79)=smooth(R27S1,window/length(R27S1),'rloess');RSS(:,80)=smooth(R27S2,window/length(R27S2),'rloess'); 
RSS(:,81)=smooth(R27S3,window/length(R27S3),'rloess');RSS(:,82)=smooth(R28S1,window/length(R28S1),'rloess'); 
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RSS(:,83)=smooth(R28S2,window/length(R28S2),'rloess');RSS(:,84)=smooth(R28S3,window/length(R28S3),'rloess'); 
  
RSS(:,85)=smooth(R29S1,window/length(R29S1),'rloess');RSS(:,86)=smooth(R29S2,window/length(R29S2),'rloess'); 
RSS(:,87)=smooth(R29S3,window/length(R29S3),'rloess');RSS(:,88)=smooth(R30S1,window/length(R30S1),'rloess'); 
RSS(:,89)=smooth(R30S2,window/length(R30S2),'rloess');RSS(:,90)=smooth(R30S3,window/length(R30S3),'rloess'); 
RSS(:,91)=smooth(R31S1,window/length(R31S1),'rloess');RSS(:,92)=smooth(R31S2,window/length(R31S2),'rloess'); 
RSS(:,93)=smooth(R31S3,window/length(R31S3),'rloess');RSS(:,94)=smooth(R32S1,window/length(R32S1),'rloess'); 
RSS(:,95)=smooth(R32S2,window/length(R32S2),'rloess');RSS(:,96)=smooth(R32S3,window/length(R32S3),'rloess'); 
RSS(:,97)=smooth(R33S1,window/length(R33S1),'rloess');RSS(:,98)=smooth(R33S2,window/length(R33S2),'rloess'); 
RSS(:,99)=smooth(R33S3,window/length(R33S3),'rloess');RSS(:,100)=smooth(R34S1,window/length(R34S1),'rloess'); 
RSS(:,101)=smooth(R34S2,window/length(R34S2),'rloess');RSS(:,102)=smooth(R34S3,window/length(R34S3),'rloess'); 
RSS(:,103)=smooth(R35S1,window/length(R35S1),'rloess');RSS(:,104)=smooth(R35S2,window/length(R35S2),'rloess'); 
RSS(:,105)=smooth(R35S3,window/length(R35S3),'rloess');RSS(:,106)=smooth(R36S1,window/length(R36S1),'rloess'); 
RSS(:,107)=smooth(R36S2,window/length(R36S2),'rloess');RSS(:,108)=smooth(R36S3,window/length(R36S3),'rloess'); 
RSS(:,109)=smooth(R37S1,window/length(R37S1),'rloess');RSS(:,110)=smooth(R37S2,window/length(R37S2),'rloess'); 
RSS(:,111)=smooth(R37S3,window/length(R37S3),'rloess');RSS(:,112)=smooth(R38S1,window/length(R38S1),'rloess'); 
RSS(:,113)=smooth(R38S2,window/length(R38S2),'rloess');RSS(:,114)=smooth(R38S3,window/length(R38S3),'rloess'); 
RSS(:,115)=smooth(R39S1,window/length(R39S1),'rloess');RSS(:,116)=smooth(R39S2,window/length(R39S2),'rloess'); 
RSS(:,117)=smooth(R39S3,window/length(R39S3),'rloess');RSS(:,118)=smooth(R40S1,window/length(R40S1),'rloess'); 
RSS(:,119)=smooth(R40S2,window/length(R40S2),'rloess');RSS(:,120)=smooth(R40S3,window/length(R40S3),'rloess'); 
RSS(:,121)=smooth(R41S1,window/length(R41S1),'rloess');RSS(:,122)=smooth(R41S2,window/length(R41S2),'rloess'); 
RSS(:,123)=smooth(R41S3,window/length(R41S3),'rloess');RSS(:,124)=smooth(R42S1,window/length(R42S1),'rloess'); 
RSS(:,125)=smooth(R42S2,window/length(R42S2),'rloess');RSS(:,126)=smooth(R42S3,window/length(R42S3),'rloess'); 
 
%%%%%%%%%%%%%%%% GAIT LENGTH GENERATION  
for i=1:length(LSS)                                        % No of participants  (columbs) 
    for k=1:length(LSS(:,1))                             % No of data points       (Rows) 
  
        gait(k,i)=abs(RSS(k,i)-LSS(k,i));              % gait step length signal in positive values 
        gaitleng(k,i)=RSS(k,i)-LSS(k,i);              % gait length signal in posiive & negative values     
    end 
    step(i)=max(gait(:,i)); 
end 
  
 
% %%%%%%%%    grouping of the gait signals g(t) according to speed (slow mid fast) 
  
 lo=0;mi=0;hi=0; 
 for i=1:length(TSS);     % No of samples (trials [3]* participants[42]) 
              
             Dis(i)= abs(TSS(10,i)-TSS(end-5,i));  
             speed(i)=Dis(i)/(length(TSS(10:end-5,i))/30);                            %(length(TSS(:,i)) 
             if (speed(i) <= 0.55) 
                 lo=lo+1; 
                 low(lo)=i;   
                 spelo(lo)=speed(i); 
                 gaitlo(:,lo)=gait(:,i); 
                 gaitlenglo(:,lo)=gaitleng(:,i); 
                 LSS1(:,lo)=LSS(:,i); 
                 RSS1(:,lo)=RSS(:,i); 
             elseif (speed(i) > 0.55 && speed(i) < 1) 
                   mi=mi+1; 
                   mid(mi)=i; 
                  spemi(mi)=speed(i); 
                  gaitmi(:,mi)=gait(:,i); 
                  gaitlengmi(:,mi)=gaitleng(:,i); 
                  LSS2(:,mi)=LSS(:,i); 
                  RSS2(:,mi)=RSS(:,i); 
             elseif (speed(i) >= 1) 
                  hi=hi+1; 
                  high(hi)=i; 
                  spehi(hi)=speed(i); 
                  gaithi(:,hi)=gait(:,i); 
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                  gaitlenghi(:,hi)=gaitleng(:,i); 
                  LSS3(:,hi)=LSS(:,i); 
                  RSS3(:,hi)=RSS(:,i); 
             end 
 end 
 Dia=[lo mi hi]; Di=min(Dia);     % Di  means the minimum size among [slow,normal,fast] speeds 
          
  
%%%%%%%%% calculation of gait step length & cadence 
for i=1:length(gaitlo(1,:)) 
    a1=0;a2=0;a3=0; 
     
   for k=2:length(gaitlo(:,1))-1 
        
      if(gaitlo(k,i)>gaitlo(k+1,i)&&gaitlo(k,i)>gaitlo(k-1,i)) 
          a1=a1+1;                                         %%% number of steps for low speed 
          apeakL1(a1,i)=gaitlo(k,i);                        %%% peak values for low speed group 
          numL(a1,i)=k;                                     %%% value of frames (K)for low speed  
      end 
       if(gaitmi(k,i)>gaitmi(k+1,i)&& gaitmi(k,i)>gaitmi(k-1,i)) 
          a2=a2+1;                                               %%% number of steps for meddil speed 
          apeakM1(a2,i)=gaitmi(k,i); 
          numM(a2,i)=k;                                %%% value of frames (K)for meddil speed 
      end 
        if(gaithi(k,i)>gaithi(k+1,i)&& gaithi(k,i)>gaithi(k-1,i)) 
          a3=a3+1;                                          %%% number of steps for high speed 
          apeakH1(a3,i)=gaithi(k,i); 
          numH(a3,i)=k;                                              %%% value of frames (K)for high speed 
      end 
   end 
  
end 
apeakL=sum(apeakL1); 
apeakM=sum(apeakM1); 
apeakH=sum(apeakH1); 
 
%%%%%%%%%%%%%%% To Eliminate Zeros from the data matrix  
for i=1:length(gaitlo(1,:)) 
    a11=0;a22=0;a33=0; 
   for k=1:length(apeakL1(:,1)) 
        
       if(apeakL1(k,i)>0) 
           a11=a11+1; 
       end 
   end 
       for k=1:length(apeakM1(:,1)) 
       if(apeakM1(k,i)>0) 
           a22=a22+1; 
       end 
       end 
       for k=1:length(apeakL1(:,1)) 
       if(apeakH1(k,i)>0) 
           a33=a33+1; 
       end 
       end 
   NL(i)=a11; 
   NM(i)=a22; 
   NH(i)=a33; 
end 
    
% ape(ape == 0) = NaN; 
for i=1:Di 
a_stepL(i)=apeakL(i)/NL(i); 
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a_stepM(i)=apeakM(i)/NM(i); 
a_stepH(i)=apeakH(i)/NH(i); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gait Stride length calculation 
a_stridL=a_stepL*2; 
a_stridM=a_stepM*2; 
a_stridH=a_stepH*2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%% Gait cadence calculation 
fsm=30; 
for i=1:Di 
     
   if(NL(i)==1) 
      secL(i)=1;%/(35/fsm); 
   elseif (NL(i)==2) 
       secL(i)=2;%/((numL(2,i)-numL(1,i))/fsm); 
   elseif (NL(i)==3) 
       secL(i)=3;%/((numL(3,i)-numL(1,i))/fsm); 
   end    
    
   if(NM(i)==1) 
      secM(i)=1;%/(35/fsm); 
   elseif (NM(i)==2) 
       secM(i)=2;%/((numM(2,i)-numM(1,i))/fsm); 
   elseif (NM(i)==3) 
       secM(i)=3;%/((numM(3,i)-numM(1,i))/fsm); 
   elseif (NM(i)==4) 
       secM(i)=4;%/((numM(4,i)-numM(1,i))/fsm); 
   end    
    
   if(NH(i)==1) 
      secH(i)=1;%/(35/fsm); 
   elseif (NH(i)==2) 
       secH(i)=2;%/((numH(2,i)-numH(1,i))/fsm); 
   elseif (NH(i)==3) 
       secH(i)=3;%/((numH(3,i)-numH(1,i))/fsm); 
   elseif (NH(i)==4) 
       secH(i)=4;%/((numH(4,i)-numH(1,i))/fsm); 
   end    
    
   a_cadecL(i)=secL(i)*(60/2);  % divission by 2 becasue the number of frames is 60 which means 2 sec 
   a_cadecM(i)=secM(i)*(60/2);  
   a_cadecH(i)=secH(i)*(60/2); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

D-2 MATLAB code for gait features extraction using spatiotemporal gait analysis to calculate 

time of stance and swing stages, and time of double support legs. 

%%%% to avoid the repetition, the import data, filtering data, gait signal generation are shown in D-1, so will start from 

%%%grouping data into 3 categories based on type of walk speed  

 %%%%%%%%    grouping of the gait signals g(t) according to speed (slow mid fast) 
  
 lo=0;mi=0;hi=0; 
 for i=1:length(TSS);     % No of samples (trials [3]* participants[42]) 
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             Dis(i)= abs (TSS(10,i)-TSS(end-5,i));  
             speed(i)=Dis(i)/(length (TSS(10:end-5,i))/30);                            %(length(TSS(:,i)) 
             if (speed(i) <= 0.55) 
                 lo=lo+1; 
                 low(lo)=i;   
                 spelo(lo)=speed(i); 
                 gaitlo(:,lo)=gait(:,i); 
                 gaitlenglo(:,lo)=gaitleng(:,i); 
                 LSS1(:,lo)=LSS(:,i); 
                 RSS1(:,lo)=RSS(:,i); 
             elseif (speed(i) > 0.55 && speed(i) < 1) 
                   mi=mi+1; 
                   mid(mi)=i; 
                  spemi(mi)=speed(i); 
                  gaitmi(:,mi)=gait(:,i); 
                  gaitlengmi(:,mi)=gaitleng(:,i); 
                  LSS2(:,mi)=LSS(:,i); 
                  RSS2(:,mi)=RSS(:,i); 
             elseif (speed(i) >= 1) 
                  hi=hi+1; 
                  high(hi)=i; 
                  spehi(hi)=speed(i); 
                  gaithi(:,hi)=gait(:,i); 
                  gaitlenghi(:,hi)=gaitleng(:,i); 
                  LSS3(:,hi)=LSS(:,i); 
                  RSS3(:,hi)=RSS(:,i); 
             end 
 end 
 Dia=[lo mi hi]; Di=min(Dia);     % Di  means the minimum size among [slow, normal, fast] speeds 
  
  
 %%%%%%%%To calculate the value of frame (k) @ peak value of gait signal  
  
for i=1:Di 
    sd1=0;sd2=0;sd3=0; 
    for k=2:length(gaitlenglo(:,1))-1 
        if(gaitlenglo(k,i)>gaitlenglo(k+1,i)&& gaitlenglo(k,i)>gaitlenglo(k-1,i)) 
            sd1=sd1+1; 
             s1(sd1,i)=k; 
        end  
    end 
     
    for k=1:length(gaitlengmi(:,1))-1 
        if(gaitlengmi(k,i)>gaitlengmi(k+1,i)&& gaitlengmi(k,i)>gaitlengmi(k-1,i)) 
            sd2=sd2+1; 
             s2(sd2,i)=k; 
        end  
    end 
    for k=2:length(gaitlenghi(:,1))-1 
        if(gaitlenghi(k,i)>gaitlenghi(k+1,i)&& gaitlenghi(k,i)>gaitlenghi(k-1,i)) 
            sd3=sd3+1; 
             s3(sd3,i)=k; 
        end  
    end 
     
end 
%%%%%% determine the Two values of peak points of gait length (case of Pos & Neg signal) 
for i=1:Di 
   if(s1(1,i)==0 && s1(2,i)==0) 
       s1(1,i)=2; 
       s1(2,i)=(length(gaitlenglo(:,i)))-1; 
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   elseif(s1(1,i)> (length(gaitlenglo(:,i)))/2 && s1(2,i)== 0) 
       s1(2,i)=s1(1,i); 
       s1(1,i)=2; 
        
        elseif(s1(1,i)<(length(gaitlenglo(:,i)))/2 && s1(1,i)> 0 && s1(2,i)== 0) 
       s1(2,i)=(length(gaitlenglo(:,i)))-1; 
        
       elseif(s1(2,i)<(length(gaitlenglo(:,i)))/3 && s1(1,i)> 0 ) 
       s1(2,i)=(length(gaitlenglo(:,i)))-1; 
        
   end 
     
     
end 
  
%%%%%%%%% stance stage time calculation  
  
for i=1:Di 
    cycLR(:,i)=abs(diff(RSS1(:,i))); 
    cycLL(:,i)=abs(diff(LSS1(:,i))); 
    cycMR(:,i)=abs(diff(RSS2(:,i))); 
    cycML(:,i)=abs(diff(LSS2(:,i))); 
    cycHR(:,i)=abs(diff(RSS3(:,i))); 
    cycHL(:,i)=abs(diff(LSS3(:,i)));   
     
    DsupL(:,i)=abs(diff(gaitlenglo(:,i))); 
    DsupM(:,i)=abs(diff(gaitlengmi(:,i))); 
    DsupH(:,i)=abs(diff(gaitlenghi(:,i))); 
end 
  
for i=1:Di 
  LR=0;LL=0;MR=0;ML=0;HR=0;HL=0;LR1=0;LL1=0;MR1=0;ML1=0;HR1=0;HL1=0; 
  for k=1:length(cycLR(:,1)) 
      %%%%%%%%%%%%%%%%% Swing & Stance in low speed  
        if(cycLR(k,i)<=0.0099 && k>=s1(1,i) && k<=s1(2,i)) 
    LR=LR+1; 
    stancLR(LR,i)=k; 
        elseif (cycLR(k,i)>0.0099 && k>=s1(1,i) && k<=s1(2,i)) 
    LR1=LR1+1; 
    swingLR(LR1,i)=k; 
        end 
         
     if(cycLL(k,i)<=0.0099 && k>=s1(1,i) && k<=s1(2,i)) 
    LL=LL+1; 
    stancLL(LL,i)=k; 
        elseif (cycLL(k,i)>0.0099 && k>=s1(1,i) && k<=s1(2,i)) 
    LL1=LL1+1; 
    swingLL(LL1,i)=k; 
     end     
     %%%%%%%%%%%%%%%%% Swing & Stance in mid speed    
      if(cycMR(k,i)<=0.0099 && k >=s2(1,i) && k <=s2(2,i))   
       MR=MR+1; 
    stancMR(MR,i)=k; 
        elseif (cycMR(k,i)>0.0099 && k>=s2(1,i) && k<=s2(2,i)) 
    MR1=MR1+1; 
    swingMR(MR1,i)=k; 
        end 
         
     if(cycML(k,i)<=0.0099 && k>=s2(1,i) && k<=s2(2,i)) 
    ML=ML+1; 
    stancML(ML,i)=k; 
        elseif (cycML(k,i)>0.0099 && k>=s2(1,i) && k<=s2(2,i)) 
    ML1=ML1+1; 
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    swingML(ML1,i)=k; 
        end      
       %%%%%%%%%%%%%%%%% Swing & Stance in high speed   
       if(cycHR(k,i)<=0.0099 && k >=s3(1,i) && k<=s3(2,i))   
       HR=HR+1; 
    stancHR(HR,i)=k; 
        elseif (cycHR(k,i)>0.0099 && k >=s3(1,i) && k<=s3(2,i)) 
    HR1=HR1+1; 
    swingHR(HR1,i)=k; 
        end 
         
     if(cycHL(k,i)<=0.0099 && k >=s3(1,i) && k<=s3(2,i)) 
    HL=HL+1; 
    stancHL(HL,i)=k; 
        elseif (cycHL(k,i)>0.0099 && k >=s3(1,i) && k<=s3(2,i)) 
    HL1=HL1+1; 
    swingHL(HL1,i)=k; 
        end       
  end 
 nustLR(i)=LR; 
 nuswLR(i)=LR1; 
 nustLL(i)=LL; 
 nuswLL(i)=LL1; 
 nustMR(i)=MR; 
 nuswMR(i)=MR1; 
 nustML(i)=ML; 
 nuswML(i)=ML1; 
 nustHR(i)=HR; 
 nuswHR(i)=HR1; 
 nustHL(i)=HL; 
 nuswHL(i)=HL1; 
  
end 
  
%%%%%%%% Double support time calculation 
  
for i=1:Di 
    ll=0;mm=0;hh=0; 
    for k=1:length(DsupL(:,1)) 
    if(DsupL(k,i)<=0.009 && k>=s1(1,i) && k<=s1(2,i) && gaitlenglo(k,i)<0) 
        ll=ll+1; 
       DsL(ll,i)=k;  
    end 
     
     if(DsupM(k,i)<=0.0097 && k>=s2(1,i) && k<=s2(2,i)&& gaitlengmi(k,i)<0) 
        mm=mm+1; 
       DsM(mm,i)=k;  
     end 
     
     if(DsupH(k,i)<=0.0097 && k>=s3(1,i) && k<=s3(2,i)&& gaitlenghi(k,i)<0) 
        hh=hh+1; 
       DsH(hh,i)=k;  
     end 
    end  
    DS1(i)=ll; 
    DS2(i)=mm; 
    DS3(i)=hh; 
end   
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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D-3 MATLAB code for extracting gait features using AM tech and classifying the features 

using CE tech. 

 

 
%%% the importing data, smoothing data are shown in D-1, so will start with %% grouping data into 3 categories including 

slow, normal and fast walk %%speed 

 

 

%%%specify 3 groups of gait signal g(t) according to speed %%%(s<=0.6),(0.6<s<1.1),(s>1.1) 

  

 lo=0;mi=0;hi=0; 

 for i=1:length(TSS);     % No of samples (trials [3]* participants[42]) 

  

             Dis(i)= abs(TSS(10,i)-TSS(end-5,i));  

             speed(i)=Dis(i)/(length(TSS(10:end-5,i))/30);                            %(length(TSS(:,i)) 

             if (speed(i) <= 0.60) 

                 lo=lo+1; 

               low(lo)=i;   

               spelo(lo)=speed(i); 

               gaitlo(:,lo)=gait(:,i); 

             elseif (speed(i) > 0.60 && speed(i) < 1.1) 

                 mi=mi+1; 

                 mid(mi)=i; 

                  spemi(mi)=speed(i); 

                  gaitmi(:,mi)=gait(:,i); 

             elseif (speed(i) >= 1.1) 

                 hi=hi+1; 

                 high(hi)=i; 

                  spehi(hi)=speed(i); 

                  gaithi(:,hi)=gait(:,i); 

             end 

 end 

 

 Dia=[lo mi hi]; Di=min(Dia); % Di  means the minimum size among %%%[slow,normal,fast] speeds 

  

          

%%%%%%%%%%%%%%%%%%%% Modified gait signal using AM modulation  

Ac=1 ;ka=.17;fc=25;  

N= length(gaitlo(:,1));        %N11 = ceil1(N/2);    

fs=100;  ts=1/fs;           

f = [0 : N-1] *fs/N;           % frequency in Hz 

t=[0 : N-1]/ fs;                                                 

xc=Ac*sin(2*pi*fc*t);          % reference signal                                   

ftxc=abs(fft(xc)/(N/2));       % spectrum of reference signal 

         for i=1:Di;                      

            am1(:,i)=xc.*(1+ka.*gaitlo(:,i)');      

            am2 (:,i)=xc.*(1+ka.*gaitmi(:,i)'); 

            am3 (:,i)=xc.*(1+ka.*gaithi(:,i)'); 

            ft1(:,i)=abs(fft(am1(:,i))/(N/2));  

            ft2(:,i)=abs(fft(am2(:,i))/(N/2));  

            ft3(:,i)=abs(fft(am3(:,i))/(N/2)); 

             

         end 

 %%%%%%%%%%%% To calculate the frequency @ maximum amplitude (carrier freq) 

         for i=1 : N/2;                    % the size of carrier signal  

           if (ftxc(i)==max(ftxc(1:N/2))) 

FCm=i*(fs/(N))-(fs/N); % the minus means to make one point shift back %%%%%because the f&t started from 0 rather 1 

          end 

         end 

  

%%%%%%%%%%%%%  To plot gait features of AM-mdified gait in time/frequency domain for 3 all samples 

%%%%%%%%%%% 

% figure (5); plot (f(1:N/2), ftxc (1:N/2)) 

%   for v=1:40; 

% ft11=ft1(:,v);ft22=ft2(:,v);ft33=ft3(:,v); 
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% figure (v); 

% plot(f(1:N/2),ft11(1:N/2)); 

% title('fre_modulation in slow  walk'); 

% axis tight 

% figure (v+Di); 

% plot(f(1:N/2),ft22(1:N/2)); 

% title('fre_modulation in normal walk'); 

% axis tight 

% figure (v+Di+Di); 

% plot(f(1:N/2),ft33(1:N/2)); 

% title('fre_modulation in fast walk'); 

% axis tight 

%  end 

% figure (3); 

% v=7; ft11=ft1(:,v);ft22=ft2(:,v);ft33=ft3(:,v); 

%  plot(f(1:N/2),ft33(1:N/2)); 

%%%%% determining the frequencies and peaks amplitude on the spectrum %%%range.  

  

di=length(ft1)/2;    % Half frequencies axis which equals to (fs/2) 

for k= 1 : Di  % Di means the smallest size among three groups (slow, %%normal fast speed) 

    fl=0; fm=0; fh=0;ll=1; 

    for i=2 : di 

    if (ft1(i,k)>ft1(i-1,k) && ft1(i,k)>ft1(i+1,k)) 

     fl=fl+1; 

     FL(fl,k)=i*(fs/N)-(fs/N); % to convert the bins into the frequencies 

     Aml(fl,k)=ft1(i,k); % to find the magnitude @ above frequencies  

    end 

    if (ft2(i,k)>ft2(i-1,k) && ft2(i,k)>ft2(i+1,k)) 

        fm=fm+1; 

        FM(fm,k)=i*(fs/N)-(fs/N); 

        Amm(fm,k)=ft2(i,k); 

    end 

      if (ft3(i,k)>ft3(i-1,k) && ft3(i,k)>ft3(i+1,k)) 

        fh=fh+1; 

        FH(fh,k)=i*(fs/N)-(fs/N); 

        Amh(fh,k)=ft3(i,k); 

    end 

    end 

end 

% % %%%%%%%%%%%% (2)Reorder the frequencies that be centred on fc= 8Hz 

%%%%%%%%%%%%%%% (3) Reorder the amplitude that be centred on maximum value 

%  

Mn=min([length(Aml(:,1)) length(Amm(:,1)) length(Amh(:,1))]);     

 % the minimum size among three arraies of spectral   

for i=1:Di  % Di  means the minimum size of data [slow,normal,fast] speeds 

    for k=1:Mn 

        if (FL(k,i) ==FCm) 

     Lcf(i)=FL(k,i);          % Freq @ centre spectral for low speed 

     Llf(i)=FL(k-1,i);        % Freq @ lower spectral for low speed 

     Luf(i)=FL(k+1,i);        % Freq @ upper spectral for low speed 

     Lca(i)=Aml(k,i);    % Amplitude of centre spectral for low speed 

     Lla(i)=Aml(k-1,i)*(2/ka); % Amplitude level of spectral for low  

     Lua(i)=Aml(k+1,i)*(2/ka); % Amplitude of upper spectral for low speed  

     BWL(i)=Luf(i)-Llf(i);    % BW of modifed gait signal for low speed 

     ModL(i)=((Lla(i)+Lua(i))/2)/Lca(i);   % Modification index 

     EffL(i)=(ModL(i))^2/(2+(ModL(i))^2);  % modification Efficieny  

     PsL(i)= (Lla(i)+Lua(i)/2)*ka/(2.828); % Amplitude level of side loops 

%    RatioL(i)= (PsL(i))/(( Lca(i)));    % Amplitude level ratio of side loops to main loop  

     PtL(i)=(Lca(i)*0.707)*(1+(ModL(i)/2)); % Total Amplitude level of %modified signal 

      

 end     

  if (FM(k,i) ==FCm) 

     Mcf(i)=FM(k,i);   % Freq @ centre spectral for normal speed 

     Mlf(i)=FM(k-1,i); % Freq @ lower spectral for normal speed 

    Muf(i)=FM(k+1,i); % Freq @ upper spectral for normal speed 

    Mca(i)=Amm(k,i); %Amplitude of centre spectral for normal speed 

   Mla(i)=Amm(k-1,i)*(2/ka); %Amplitude of lower spectral for normal speed 
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  Mua(i)=Amm(k+1,i)*(2/ka); % Amplitude of upper spectral for normal speed  

 BWM(i)=Muf(i)-Mlf(i);  % Bandwidth of modifed gait signal for normal speed 

 ModM(i)=((Mla(i)+Mua(i))/2)/Mca(i);  % Modification index 

 EffM(i)=(ModM(i))^2/(2+(ModM(i))^2); % Efficiency of modulat 

 PsM(i)= (Mla(i)+Mua(i)/2)*ka/(2.828); %Amplitude level of sides  

%RatioM(i)= (PsM(i))/(( Mca(i))^2/2); % Amplitude level ratio of side-loops %to main loop  

PtM(i)=(Mca(i)*0.707)*(1+(ModM(i)/2));% Total Amplitude level of modified %signal 

    end     

          

 if (FH(k,i) ==FCm) 

      Hcf(i)=FH(k,i);   % Freq @ centre spectral for fast speed 

      Hlf(i)=FH(k-1,i);    % Freq @ lower spectral for fast speed   

      Huf(i)=FH(k+1,i);   % Freq @ upper spectral for fast speed  

      Hca(i)=Amh(k,i);  % Amplitude of centre spectral for fast speed 

   Hla(i)=Amh(k-1,i)*(2/ka);% Amplitude of lower spectral for fast speed    

   Hua(i)=Amh(k+1,i)*(2/ka); % Amplitude of upper spectral for fast speed  

  BWH(i)=Huf(i)-Hlf(i);  % Bandwidth of modifed gait signal for fast speed 

  ModH(i)=((Hla(i)+Hua(i))/2)/Hca(i);     % Modification index 

  EffH(i)=(ModH(i))^2/(2+(ModH(i))^2);   % Efficieny of modification 

 PsH(i)= (Hla(i)+Hua(i)/2)*ka/(2.828);  % Amplitude level of side loops 

 %RatioH(i)= (PsH(i))/(( Hca(i))^2/2); % the ratio of side-loops to main loop  

PtH(i)=(Hca(i)*0.707)*(1+(ModH(i)/2));% Total Amplitude level of modified signal 

        end      

    end 

end 

  

%  

% %%%%%%   The 7 extracted features are converted into binary system 

%%%%%%% (1)  upper side band frequency                                                      %%%%%%% to ensure that all values of fg 

be in fraction  

 D1 = sort( Luf);             % FREQ gait features of class one     

 D2 = sort( Muf);           % FREQ gait features of class two   

 D3 = sort( Huf); 

%%%%%%% (2)  Bandwidth of modi=fied gait signal 

 D4 = sort( BWL);         % Bandwidth features of class one     

 D5 = sort( BWM);         % Bandwidth gait features of class two   

 D6 = sort( BWH); 

%%%%%%% (3)  Modification index of modified gait signal 

 D7 = sort( ModL);        % modulation index features of class one     

 D8 = sort( ModM);      % modulation index gait features of class two   

 D9 = sort( ModH); 

%%%%%%% (4)  Modification efficiency of modified gait signal 

 D10 = sort( EffL);      % modulation efficiency features of class one     

 D11 = sort( EffM);      % modulation efficiency gait features of class two   

 D12 = sort( EffH); 

%%%%%%% (5)  power of sided-loops 

 D13 = sort( PsL);       % power of sided-loops features of class one     

 D14 = sort( PsM);       % power of sided-loops features of class two   

 D15 = sort( PsH);       % power of sided-loops features of class three  

%%%%%%% (6)  power Ratio 

%  D16 = sort( RatioL);   % power Ratio features of class one     

%  D17 = sort( RatioM);  % power Ratio features of class two   

%  D18 = sort( RatioH);  % power Ratio features of class three  

 %%%%%%%%%%%% Lower side band frequency  

 D16 = sort( Llf);       % FREQ gait features of class one     

 D17 = sort( Mlf);       % FREQ gait features of class two   

 D18 = sort( Hlf); 

%%%%%%% (7)  Total power  

 D19 = sort( PtL);       % Total power  features of class one     

 D20 = sort( PtM);       % Total power features of class two   

 D21 = sort( PtH);       % Total power  features of class three  

  

 L1=length(D1);L2=length(D2);L3=length(D3); % the length of each class 

 N0=L1+L2+L3;       % the length of all classes together (120 samples)  

 %%%%%%%%%% Getting the seven features as each columns contains 3 classes 

  

  for i=1:L1 
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  D101(i)=D1(i); D101(i+L1)=D2(i); D101(i+L1+L2)=D3(i); 

  D102(i)=D4(i); D102(i+L1)=D5(i); D102(i+L1+L2)=D6(i); 

  D103(i)=D7(i); D103(i+L1)=D8(i); D103(i+L1+L2)=D9(i); 

  D104(i)=D10(i); D104(i+L1)=D11(i); D104(i+L1+L2)=D12(i); 

  D105(i)=D13(i); D105(i+L1)=D14(i); D105(i+L1+L2)=D15(i); 

  D106(i)=D16(i); D106(i+L1)=D17(i); D106(i+L1+L2)=D18(i); 

  D107(i)=D19(i); D107(i+L1)=D20(i); D107(i+L1+L2)=D21(i); 

    

  end 

% %%%%%%% Getting Princible components analysis(PCA) to reduce the data %diamenssion 

% H1=D101(1,:)' 

% H2=D102(1,:)' 

% H3=D103(1,:)' 

% H4=D104(1,:)' 

% H5=D105(1,:)' 

% H6=D106(1,:)' 

% H7=D107(1,:)' 

 %%%%% Mean Normalisation: the normalization is required in PCA 

 for i=1:N0 

   Df1(i,1)=(D101(i)-mean(D101))/(max(D101)-min(D101)); 

   Df1(i,2)=(D102(i)-mean(D102))/(max(D102)-min(D102)); 

   Df1(i,3)=(D103(i)-mean(D103))/(max(D103)-min(D103)); 

   Df1(i,4)=(D104(i)-mean(D104))/(max(D104)-min(D104)); 

   Df1(i,5)=(D105(i)-mean(D105))/(max(D105)-min(D105)); 

   Df1(i,6)=(D106(i)-mean(D106))/(max(D106)-min(D106)); 

   Df1(i,7)=(D107(i)-mean(D107))/(max(D107)-min(D107)); 

 end    

%%%%%%%%% Min-Max Scaling: for normalization in PCA 

%  for i=1:N0 

%    Df1(i,1)=(D101(i)-mean(D101))/(std(D101)); 

%    Df1(i,2)=(D102(i)-mean(D102))/(std(D102)); 

%    Df1(i,3)=(D103(i)-mean(D103))/(std(D103)); 

%    Df1(i,4)=(D104(i)-mean(D104))/(std(D104)); 

%    Df1(i,5)=(D105(i)-mean(D105))/(std(D105)); 

%    Df1(i,6)=(D106(i)-mean(D106))/(std(D106)); 

%    Df1(i,7)=(D107(i)-mean(D107))/(std(D107)); 

%  end    

  

% % %%%%%%%%%%%% Princible components analysis(PCA)  

  

% find covariance matrix so we can find the best eigenvectors 

Cov=cov(Df1); 

% Eigen vector and value 

[V,Da] = eigs(Cov); 

% choose the eigvector of cov having the largest eigenvalue 

v=zeros(length(V),2); 

v(:,1)=V(:,1);v(:,2)=V(:,2);v(:,3)=V(:,3); 

% use the eigenvectors to find the principle components 

FAC=zeros(length(Df1),3); 

for i=1:length(Df1) 

    FAC(i,:)=(Df1(i,:))*v; 

end 

FAC(:,:)=abs(FAC(:,:)/10); 

FAC(:,:)=sort(FAC(:,:)); 

NL=length (FAC(:,1)); nl=NL/3; 

% fac1= (NL/3-(NL/(3*2))) ; fac2= ((NL/3)+(NL/(3*2))) ; fac3= (2*(NL/3)+(NL/(3*2))); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%  splitting data into Training set & Testing set  

Dset=FAC(:,1)' ;                         % Transpose Matrix of Dataset 

KK=5;f=0;         % KK is k-fold 

window=length(Dset)/KK;       %24 length of testing size 

window1=length(Dset)-window;  %120-24=96  length of trianing size 

TrainT=zeros(KK,window1); 

mc1=(window1/3-0.5*(window1/3));mc3=(2*(window1/3)+0.5*(window1/3));mc2=(window1/3+0.5*(window1/3)); 

%positions of medill data in each parts   

% %%%%%%s %%%%%%%%%%%%%% Training set generation   

for i=1:KK 



159 
 

   if(i~=KK && i~=1) 

   TrainT(i,:)=Dset([1:end-window*i,end-window*(i-1)+1:end]); 

   end 

    if(i==1) 

   TrainT(i,:)=Dset([1:2*window,2*window+1:end-window]); 

  

    elseif(i==KK) 

   TrainT(i,:)=Dset([1+window:3*window,3*window+1:end]); 

   end 

    

end 

%%%%%%%%%%%%%%%%%%%%%%% claculating m1, m2, m3 from Training set. 

  

 o1=1;o2=1;o3=1; 

for i=1:KK 

    for k=1:window1; 

        if (k==mc1) 

        MC1(o1)= TrainT(i,k); 

         o1=o1+1; 

        elseif (k==mc2) 

            MC2(o2)=TrainT(i,k); 

            o2=o2+1; 

            elseif (k==mc3) 

            MC3(o3)=TrainT(i,k); 

            o3=o3+1; 

        end 

    end 

end 

% m1=0.01;m2=0.038;m3=0.08; 

  

%%%%%%%%%%%%  Testing set generating 

for i=1:KK 

  

   TesT(i,:)=Dset(window1+1-f:end-f) ; 

    

f=f+window; 

  

end 

  

TesT01=TesT';                               % Test set data in column form 

% TesT01= sort(TesT0,'descend'); 

%  

for i=1:KK; 

TesT1(:,i)=abs(TesT01(:,i)-MC1(i));       

TesT2(:,i)=abs(TesT01(:,i)-MC2(i));         

TesT3(:,i)=abs(TesT01(:,i)-MC3(i));          

     

end 

  

test1_1(1:window,1)=TesT1(:,1); 

test1_1(1+window:2*window,1)=TesT2(:,1); 

test1_1(1+(2*window):3*window,1)=TesT3(:,1); 

test1_1=test1_1-min(min(test1_1(:,:))); 

    

test1_2(1:window,1)=TesT1(:,2); 

test1_2(1+window:2*window,1)=TesT2(:,2); 

test1_2(1+(2*window):3*window,1)=TesT3(:,2); 

test1_2=test1_2-min(min(test1_2(:,:))); 

  

test1_3(1:window,1)=TesT1(:,3); 

test1_3(1+window:2*window,1)=TesT2(:,3); 

test1_3(1+(2*window):3*window,1)=TesT3(:,3); 

test1_3=test1_3-min(min(test1_3(:,:))); 

  

test1_4(1:window,1)=TesT1(:,4); 

test1_4(1+window:2*window,1)=TesT2(:,4); 

test1_4(1+(2*window):3*window,1)=TesT3(:,4); 



160 
 

test1_4=test1_4-min(min(test1_4(:,:))); 

  

test1_5(1:window,1)=TesT1(:,5); 

test1_5(1+window:2*window,1)=TesT2(:,5); 

test1_5(1+(2*window):3*window,1)=TesT3(:,5); 

test1_5=test1_5-min(min(test1_5(:,:))); 

% % % %%%%%%%%%%  Binary system conversion & convolutioal encoder 

% %  

n = 0;        % number bits for integer part of your number       

num = 16;    % number bits for fraction part of your number   i.e. 0.000000111011011001 

K=3;   %7 

G1=7;   %171 

G2=5;    %133 

trel=poly2trellis(K,[G1 G2]);   % Convolutional encoder output 

%   

%%%%%%%%%%%  Binary system conversion & convolutioal encoder 

%%%%%%%%%%%%%%%  for Traing dataset 

%%DLL=zeros(size(N0/3,1));DMM=zeros(size(N0/3,1));DHH=zeros(size(N0/3,1)); 

%  

for i =1 : length(test1_1(:,1));   

     

d1b1(i,:) = fix(rem(test1_1(i,1)*pow2(-(n-1):num),2)); 

cod1_1(i,:)=convenc(d1b1(i,:),trel);    %   encoded data based on m1 

  

d2b1(i,:) = fix(rem(test1_2(i,1)*pow2(-(n-1):num),2)); 

cod2_1(i,:)=convenc(d2b1(i,:),trel);   %   encoded data based on m2 

  

d3b1(i,:) = fix(rem(test1_3(i,1)*pow2(-(n-1):num),2)); 

cod3_1(i,:)=convenc(d3b1(i,:),trel);  %   encoded data based on m3 

  

d4b1(i,:) = fix(rem(test1_4(i,1)*pow2(-(n-1):num),2)); 

cod4_1(i,:)=convenc(d4b1(i,:),trel);    %   encoded data based on m4 

  

d5b1(i,:) = fix(rem(test1_5(i,1)*pow2(-(n-1):num),2)); 

cod5_1(i,:)=convenc(d5b1(i,:),trel);  %   encoded data based on m5 

end 

% % % %%%%%%%%%%%%%%%%%%%%% Re-level for Testing dataset 

for i=1:length(cod1_1(:,1));                                      

    g=1; g1=1;g2=1;g3=1;g4=1; 

    for h=1:2:2*num; 

         

  if (cod1_1(i,h)==0 && cod1_1(i,h+1) == 0);   

      tes1(i,g)=40; 

  elseif (cod1_1(i,h)==1 && cod1_1(i,h+1) == 0); 

     tes1(i,g)=30;  

  elseif (cod1_1(i,h)==0 && cod1_1(i,h+1) == 1); 

     tes1(i,g)=20; 

  else (cod1_1(i,h)==1 && cod1_1(i,h+1) == 1); 

     tes1(i,g)=10;  

      

  end   

        g=g+1; 

    end 

     

    for h=1:2:2*num; 

         

  if (cod2_1(i,h)==0 && cod2_1(i,h+1) == 0);   

      tes2(i,g1)=40; 

  elseif (cod2_1(i,h)==1 && cod2_1(i,h+1) == 0); 

     tes2(i,g1)=30;  

  elseif (cod2_1(i,h)==0 && cod2_1(i,h+1) == 1); 

     tes2(i,g1)=20; 

  else (cod2_1(i,h)==1 && cod2_1(i,h+1) == 1); 

     tes2(i,g1)=10;  

      

  end   

        g1=g1+1; 
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    end 

     

    for h=1:2:2*num;     

  if (cod3_1(i,h)==0 && cod3_1(i,h+1) == 0);   

      tes3(i,g2)=40; 

  elseif (cod3_1(i,h)==1 && cod3_1(i,h+1) == 0); 

     tes3(i,g2)=30;  

  elseif (cod3_1(i,h)==0 && cod3_1(i,h+1) == 1); 

     tes3(i,g2)=20; 

  else (cod3_1(i,h)==1 && cod3_1(i,h+1) == 1); 

     tes3(i,g2)=10;  

      

  end   

        g2=g2+1; 

    end 

     

     for h=1:2:2*num; 

         

  if (cod4_1(i,h)==0 && cod4_1(i,h+1) == 0);   

      tes4(i,g3)=40; 

  elseif (cod4_1(i,h)==1 && cod4_1(i,h+1) == 0); 

     tes4(i,g3)=30;  

  elseif (cod4_1(i,h)==0 && cod4_1(i,h+1) == 1); 

     tes4(i,g3)=20; 

  else (cod4_1(i,h)==1 && cod4_1(i,h+1) == 1); 

     tes4(i,g3)=10;  

      

  end   

        g3=g3+1; 

     end 

     

  for h=1:2:2*num; 

         

  if (cod5_1(i,h)==0 && cod5_1(i,h+1) == 0);   

      tes5(i,g4)=40; 

  elseif (cod5_1(i,h)==1 && cod5_1(i,h+1) == 0); 

     tes5(i,g4)=30;  

  elseif (cod5_1(i,h)==0 && cod5_1(i,h+1) == 1); 

     tes5(i,g4)=20; 

  else (cod5_1(i,h)==1 && cod5_1(i,h+1) == 1); 

     tes5(i,g4)=10;  

      

  end   

        g4=g4+1; 

   end 

end 

% %%%%%%%%%%%%%%%%%%%% 

% n=0; 

% for nn=1:KK; 

for  i=1:length(tes1(:,1))    %  72 

     

    for k=1 : num     % 16 

         

      if ( tes1(i,k)==40) 

          metr1_1(i,k)=0; 

      elseif ( tes1(i ,k)==30) 

          metr1_1(i,k)=.01; 

      elseif ( tes1(i,k)==20) 

          metr1_1(i,k)=.01; 

      elseif ( tes1(i,k)==10) 

          metr1_1(i,k)=.1; 

  

      end      

         

  

      if ( tes2(i,k)==40) 

          metr1_2(i,k)=0; 
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      elseif ( tes2(i,k)==30) 

          metr1_2(i,k)=.01; 

      elseif ( tes2(i,k)==20) 

          metr1_2(i,k)=.01; 

      elseif ( tes2(i,k)==10) 

          metr1_2(i,k)=.1; 

  

      end          

         

      if (tes3(i,k)==40) 

          metr1_3(i,k)=0; 

      elseif ( tes3(i,k)==30) 

          metr1_3(i,k)=.01; 

      elseif ( tes3(i,k)==20) 

          metr1_3(i,k)=.01; 

      elseif ( tes3(i,k)==10) 

          metr1_3(i,k)=.1; 

  

      end   

       

       if (tes4(i,k)==40) 

          metr1_4(i,k)=0; 

      elseif ( tes4(i,k)==30) 

          metr1_4(i,k)=.01; 

      elseif ( tes4(i,k)==20) 

          metr1_4(i,k)=.01; 

      elseif ( tes4(i,k)==10) 

          metr1_4(i,k)=.1; 

  

       end     

       

       if (tes5(i,k)==40) 

          metr1_5(i,k)=0; 

      elseif ( tes5(i,k)==30) 

          metr1_5(i,k)=.01; 

      elseif ( tes5(i,k)==20) 

          metr1_5(i,k)=.01; 

      elseif ( tes5(i,k)==10) 

          metr1_5(i,k)=.1; 

  

      end     

    end 

  

end 

%  metr1_1(1+n:window+n,:)=metr1_1(:,:); 

%  metr1_2(1+n:window+n,:)=metr1_m(:,:); 

%  metr1_3(1+n:window+n,:)=metr1_h(:,:); 

% n=n+window; 

% end 

% % figure (1),plot(metr1_1(1:21,1));figure (2),plot(metr1_1(22:42,1));figure (3),plot(metr1_1(43:63,1)); 

% % figure (4),plot(metr1_1(64:84,1)); 

% % figure (5),plot(metr1_1(85:105,1:16)); 

% % %  

% %%%%%%%%%%%%%%%%%% Path Metric  M 

% %%%%%%%%%%%%%%%%%%%%  FOR First Prancipal Components (PC1) 

for i=1:length(metr1_1(:,1))  % 72 

  

MER1=0;MER2=0;MER3=0;MER4=0;MER5=0; 

    for k=1:num; 

 ME1(i,k)= metr1_1(i,k)*10^(-k); 

 ME2(i,k)= metr1_2(i,k)*10^(-k); 

 ME3(i,k)= metr1_3(i,k)*10^(-k); 

 ME4(i,k)= metr1_4(i,k)*10^(-k); 

 ME5(i,k)= metr1_5(i,k)*10^(-k); 

  

    end 

    d1(i)=sum(ME1(i,:)); 
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    d2(i)=sum(ME2(i,:)); 

    d3(i)=sum(ME3(i,:)); 

    d4(i)=sum(ME4(i,:)); 

    d5(i)=sum(ME5(i,:));  

  

end 

  

% figure 

%(1);subplot(511);plot(d1);subplot(512);plot(d2);subplot(513);plot(d3);subp%lot(514);plot(d4);subplot(515);plot(d5); 

%figure (1);plot(d1);hold on;plot(d2);hold on;plot(d3);hold %on;plot(d4);hold on;plot(d5); 

j1=0;j2=0;j3=0;j4=0;j5=0;j6=0;j7=0;j8=0;j9=0;j10=0;j11=0; 

j12=0;j13=0;j14=0;j15=0;j16=0;j17=0;j18=0;j19=0;j20=0;j21=0; 

for i=1:window 

 if (d1(2*window+i) < d1(i)&& d1(2*window+i) < d1(i+window)) %TPc=j3; 

 j3=j3+1;                                     %  TPC(j3)=i; 

    end 

 if ( d3(window+i) < d3(i) && d3(window+i) < d3(2*window+i))   %TPb= j2; 

        j2=j2+1;                                                  

%          TPB(j2)=i; 

    end 

   if(d5(i) < d5(window+i) && d5(i) < d5(2*window+i))        %TPa= j1; 

        j1=j1+1;                                                    

%         TPA(j1)=i; 

   end 

  

end 

  

for i=1:window 

   if (d1(2*window+i) > d1(i+window))      %Ecb=j14; 

        j14=j14+1;                                                       

    end  

     

end 

for i=1:num 

 if(d2(2*window+i+8)<d2(i+8)&& d2(2*window+i+8)<d2(window+i+8))% TPc=j6; 

        j6=j6+1; 

    end 

     

    if(d4(i)<d4(window+i)&& d4(i)<d4(2*window+i))  % TPa=j4; 

        j4=j4+1; 

    end 

end 

  

for i=1:num/2 

  if(d2(window+i)<d2(i) && d2(window+i)<d2(2*window+i))    % TPb=j5; 

   j5=j5+1; 

  end 

 if(d4(window+i+16)<d4(i+16) && d4(window+i+16)<d4(2*window+i+16))   

% TPb=j7; 

   j7=j7+1; 

  end   

end 

tpc=j3+j6; 

tpb=j2+j5+j7; 

tpa=j1+j4; 

for i=1:num 

    if(d4(window+i) < d4(i))                %Eab= j8; 

        j8=j8+1;                                                

    end 

   if (d2(window+i+8)< d2(2*window+i+8))    % Ecb=j9; 

       j9=j9+1; 

   end 

end  

eab=j8; 

ecb=j9+j14; 

  

for i=1:num/2 
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    if (d4(i+num) < d4(window+i+num))         % Eba= j10; 

        j10=j10+1;                                                 

    end 

    if(d2(2*window+i) < d2(window+i))         %Ebc= j11; 

        j11=j11+1;                                                 

    end 

end 

eba=j10; 

ebc=j11; 

  

for i=1:num 

    if (d4(i) > d4(2*window+i))         % Eac= j12; 

        j12=j12+1;                                                 

    end 

    if(d2(2*window+i+8) > d2(i+8))         %Eca= j13; 

        j13=j13+1;                                                 

    end 

end 

eac=j12; 

eca=j13; 

% j4 ; %Eba= j5;% Ebc= j6; % Ecb= j9; % Eca= j8; 

% j7; 

% % % tpa=35;tpb=32;tpc=23;eab=0;eac=0;eba=3;ebc=0;eca=0;ecb=12; 

% tpa=j1;eab= j2;eac= j3; eba= j5; tpb= j4;ebc= j6;eca= j8;ecb= j9;tpc= j7; 

% MERTRICF=[tpa eab eac; eba tpb ebc; eca ecb tpc]; 

% % tpa=tpa-j2-j3; tpb=tpb-j5-j6; tpc=tpc-j8-j9; 

%  

accuracyF=(tpa+tpb+tpc)/(tpa+tpb+tpc+eab+eac+eba+ebc+eca+ecb); 

precisiFA=tpa/(tpa+eba+eca); 

precisiFB=tpb/(tpb+eab+ecb); 

precisiFC=tpc/(tpc+eac+ebc); 

Av_pre=(precisiFA+precisiFB+precisiFC)/3; 

sensitiviFA=tpa/(tpa+eab+eac); 

sensitiviFB=tpb/(tpb+eba+ebc); 

sensitiviFC=tpc/(tpc+eca+ecb); 

Av_sen=(sensitiviFA+sensitiviFB+sensitiviFC)/3; 

specificiFA=(tpb+ebc+ecb+tpc)/(tpb+ebc+ecb+tpc+eba+eca); 

specificiFB=(tpa+eac+eca+tpc)/(tpa+eac+eca+tpc+eab+ecb); 

specificiFC=(tpa+eab+eba+tpb)/(tpa+eab+eba+tpb+eac+ebc); 

Av_speci=(specificiFA+specificiFB+specificiFC)/3; 

F_mea=2*(Av_sen*Av_pre/(Av_sen+Av_pre)); 

%   

%    

% precisiFA;  

% precisiFB ; 

% precisiFC ; 

% sensitiviFA ; 

% sensitiviFB ; 

% sensitiviFC ; 

% specificiFA ; 

% specificiFB ; 

% specificiFC ; 

Av_sen 

Av_speci 

Av_pre 

accuracyF 

F_mea 

Z=[tpa eab eac; eba tpb ebc; eca ecb tpc] 

% % %  

% % %  

% % % % % % Errs19(i,:) = bitxor(codes19(1,:), codes19(i,:)); 

% % %  

% % %  

% % %  

% % %  

% % %  
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