

Phylogeographic structure of the pygmy shrew: revisiting the roles of southern and northern refugia in Europe

Journal:	Biological Journal of the Linnean Society
Manuscript ID	BJLS-6106.R1
Manuscript Type:	Original article
Date Submitted by the Author:	20-Dec-2019
Complete List of Authors:	Vega, Rodrigo; Canterbury Christ Church University, School of Human and Life Sciences McDevitt, Allan; University of Salford, School of Environment and Life Sciences Stojak, Joanna; Mammal Research Institute of Polish Academy of Sciences, Mishta, Alina; Schmalhausen Institute of Zoology NASc of Ukraine, Monitoring and Animal Conservation Wójcik, Jan; Mammal Research Institute of Polish Academy of Sciences Krystufek, Boris; Slovenian Museum of Natural History Searle, Jeremy; Cornell University, Department of Ecology and Evolutionary Biology
Keywords:	Cytochrome b, glacial refugia, historical demography, Last Glacial Maximum, mammals, postglacial colonisation

1 2		
2 3 4	1	Word count:
5	2	10403 words (main body of text including references).
7 8	3	
9 10	4	Type of article:
11 12	5	Original Article.
13 14	6	
15 16	7	Title:
17 18	8	Phylogeographic structure of the pygmy shrew: revisiting the roles of southern and
19 20 21	9	northern refugia in Europe.
21 22 23	10	
23 24 25	11	Authors:
26 27	12	RODRIGO VEGA ^{1*} , ALLAN D. MCDEVITT ² , JOANNA STOJAK ³ , ALINA MISHTA ⁴ , JAN M.
28 29	13	WÓJCIK ³ , BORIS KRYŠTUFEK ⁵ and JEREMY B. SEARLE ⁶
30 31	14	
32 33	15	Affiliations:
34 35	16	¹ Ecology Research Group, Section of Natural and Applied Sciences, School of Human and
36 37	17	Life Sciences, Canterbury Christ Church University, Becket Bf23, North Holmes Road,
38 39	18	Canterbury, Kent, CT1 1QU, UK.
40 41 42	19	² Ecosystems and Environment Research Centre, School of Science, Engineering and
42 43 44	20	Environment, University of Salford, Salford, M5 4WT, UK.
45 46	21	³ Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland.
47 48	22	^₄ Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, 01601 Kiev,
49 50	23	Ukraine.
51 52	24	⁵Slovenian Museum of Natural History, Prešernova 20, SI-1000 Ljubljana, Slovenia.
53 54	25	⁶ Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York,
55 56	26	14853-2701, USA.
57 58	27	
60	28	*Corresponding author. E-mail: rodrigo.vega@canterbury.ac.uk

2		
3	1	
4		
5	2	Running title:
7		
8	3	Phylogeography of the pygmy shrew.
0		
10	4	
10		
17		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 45		
45 46		
40 47		
47 79		
40 70		
50		
51		
52		
53		
54		
55		
56		
57		
58		

59 60 for per period

1	ABSTRACT
2	Southern and northern glacial refugia are considered paradigms that explain the complex
3	phylogeographic patterns and processes of European biota. Here, we provide a revisited
4	statistical phylogeographic analysis of the pygmy shrew Sorex minutus Linnaeus, 1766
5	(Eulipotyphla, Soricidae) examining the genetic diversity, genetic differentiation and
6	demographic history in the Mediterranean peninsulas and in Western and Central Europe.
7	The results showed support for genetically distinct and diverse phylogeographic groups
8	consistent with southern and northern glacial refugia, as expected from previous studies, but
9	also identified geographical barriers concordant with glaciated mountain ranges during the
10	Last Glacial Maximum (LGM), early diversification events dated between the Upper
11	Pleistocene and Lower Holocene for the main phylogeographic groups, and recent (post-
12	LGM) patterns of demographic expansions. This study is the most comprehensive
13	investigation of this species to date, and the results have implications for the conservation of
14	intraspecific diversity and the preservation of the evolutionary potential of <i>S. minutus</i> .
15	
16	KEYWORDS: mitochondrially encoded cytochrome <i>b</i> – glacial refugia – historical
17	demography – Last Glacial Maximum – mammals – postglacial colonisation.
18	

1 INTRODUCTION

During the Quaternary glaciations, species in Europe were restricted to glacial refugia at glacial maxima (Bilton et al., 1998; Taberlet et al., 1998; Hewitt, 2000; Stewart & Lister, 2001; Pazonyi, 2004; Sommer & Nadachowski, 2006). As glaciers retreated, a broad range of recolonisation patterns emerged, as evidenced by palaeontological, biogeographic and phylogeographic studies on various taxa, resulting in the complex contemporary patterns of endemism, species richness and biodiversity hotspots observed across Europe. While population contraction and lineage diversification within southern glacial refugia in the Mediterranean peninsulas during the Last Glacial Maximum [LGM; 19-26.5 thousand years ago (KYA) (Clark et al., 2009)], and subsequent northward postglacial recolonisation of Europe have been accepted and recognised since the 1990s (Bilton et al., 1998; Taberlet et al., 1998; Hewitt 2000), the concept of northern glacial refugia also became a paradigm to explain the complex phylogeographic patterns and processes of European biota (Stewart & Lister, 2001; Pazonyi 2004; Sommer & Nadachowski, 2006). Fossil records and phylogenetic analyses revealed that many species of flora and fauna could have survived during the LGM in the Carpathian Basin (Stewart & Lister, 2001; Pazonyi, 2004; Sommer & Nadachowski, 2006; Stojak et al., 2015) and in the Dordogne region (Steward et al., 2010), and glacial refugia could also be located in Crimea (Marková, 2011) or in the Russian Plain (Banaszek et al., 2012). Nowadays, locations of southern and northern glacial refugia during the LGM are hotspots of genetic diversity (Petit et al., 2003; Stojak et al., 2016).

The Eurasian pygmy shrew Sorex minutus Linnaeus, 1766 (Eulipotyphia, Soricidae) (Hutterer, 1990) has been used as a phylogeographic model species for understanding the effects of the glaciations in Europe and the colonisation history during the Pleistocene and postglacial times (Bilton et al., 1998: McDevitt et al., 2010; Vega et al., 2010a, b). However, little is still known about the phylogeographic structure, genetic diversity and structure, and demographic history of this small mammal within these regions due to the limited number of samples from Mediterranean peninsulas. An expanded phylogeographic study of the pygmy shrew is therefore important for the understanding and further development of biogeographic

3	
4	
5	
5	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
50 27	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
10	
47 10	
40 40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 50	
50	
14	

models of glacial refugia and postglacial recolonization, for depicting areas with high
intraspecific genetic diversity, for establishing conservation measures of rear-edge
populations, and for the preservation of the evolutionary potential of species, particularly in
the face of climate and anthropogenic change (Deffontaine *et al.*, 2005; Provan & Bennett,
2008; Stojak *et al.*, 2019; Stojak & Tarnowska, 2019).

6 In this study, we explored the evolutionary history and phylogeographic structure of 7 Sorex minutus using a statistical phylogeography approach (Knowles & Maddison, 2002; 8 Knowles, 2009). Here, we emphasise the genetic diversity and structure within and among 9 refugia, the inference of geographical barriers and the demographic history of *S. minutus*, 10 which are aspects that have not been studied in detail previously. Specifically, we asked the 11 following questions: 1) What are the geographical distribution and genetic diversity patterns of the genealogical lineages of S. minutus? 2) Is there significant population genetic 12 13 structure across the geographic range of S. minutus? 3) What is the historical demography of S. minutus in Europe? Our results showed support for distinct and genetically diverse 14 15 lineages, geographical barriers concordant with glaciated mountain ranges during the LGM, and recent (post-LGM) population expansions with contemporary contact areas. The results 16 17 presented here have implications for the long-term conservation of intraspecific diversity and the preservation of the evolutionary potential of S. minutus in the face of modern climate 18 19 change.

20

60

21 MATERIALS AND METHODS

22 Study species

Sorex minutus is common over most of its distribution but is rarely dominant and it occurs in
a wide range of terrestrial habitats with adequate ground cover and in relatively damp areas,
including swamps, grasslands, heaths, sand dunes, woodland edge, rocky areas, shrubland
and montane forests (Hutterer, 1990, 2016; Churchfield, 1990; Churchfield & Searle, 2008).
It is found from southern and western Europe to much of central and northern Europe,

Ireland and the British Isles, and Siberia to Lake Baikal in the east (Hutterer, 1990, 2016). It

is found from sea level up to 2260 m (in the Alps), but its distribution becomes patchy and
limited to higher altitudes in southern Europe where it occurs with some degree of
geographical isolation and differentiation, while in central and northern parts of Europe and
in Siberia it is more abundant and populations are more connected and widespread
(Hutterer, 1990, 2016).

7 Samples and molecular methods

A total of 671 mitochondrially encoded cytochrome b (MT-CYB) DNA sequences of S. *minutus* from Europe and Siberia were used for this study (Fig. 1B; see Supplementary information Table S1). DNA sequences were obtained from samples collected from the wild following ethical guidelines (Sikes, Gannon & the Animal Care and Use Committee of the American Society of Mammalogists, 2011), or from museums, and from published GenBank data (including AB175132: Ohdachi et al., 2006; AJ535393 – AJ535457: Mascheretti et al., 2003; GQ272492 – GQ272518: Vega et al., 2010a; GQ494305 – GQ494350: Vega et al., 2010b; and JF510376 – JF510321: McDevitt et al., 2011). In addition, four MT-CYB sequences of S. volnuchini, which was used as an outgroup (Fumagalli et al., 1999), were incorporated into the analysis (including AJ535458: Mascheretti et al., 2003). Genomic DNA from wild and museum samples was extracted using a commercial kit (Qiagen). Partial (1110 bp) MT-CYB sequences were obtained by PCR using two primer pairs that amplified approximately 700 bp of overlapping fragments, or using five primer pairs (for museum samples with highly degraded DNA) that amplified approximately 250 bp of

22 overlapping fragments (Vega *et al.*, 2010a). PCR amplification was performed in a 50 μl final

- $_{23}$ volume: 1X Buffer, 1 μM each primer, 1 μM dNTP's, 3 mM MgCl_2 and 0.5 U Platinum Taq
- 24 Polymerase (Invitrogen), with cycling conditions: 94°C for 4 min, 40 cycles at 94°C for 30 s,
- 25 55°C for 30 s and 72°C for 45 s, and a final elongation step at 72°C for 7 min. Purification of
- 26 PCR products was done with a commercial kit (Qiagen) and sequenced (Macrogen and
- 27 Cornell University Core Laboratories Center).

2	
3	
4	
-	
2	
6	
7	
8	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
20	
31	
32	
33	
34	
25	
55	
36	
37	
38	
30	
10	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
40	
49	
50	
51	
52	
52	
54	
55	
56	
57	
50	
20	
50	

60

1 Phylogenetic analysis

DNA sequences were edited by eye in BioEdit version 7.0.9.0 (Hall, 1999), contigs were
made from forward and reverse sequences also in BioEdit, and sequences were aligned
using ClustalX version 2.0 (Larkin *et al.*, 2007). A haplotype data file was obtained using
DnaSP version 5.10.1 (Librado & Rozas, 2009). Newly obtained haplotypes were deposited
in GenBank (Accession Numbers: MN840358 - MN840484, Supplementary information
Table S1).

The model of evolution that best fitted the molecular data (haplotypes) was searched
using jModelTest version 2.1.10 (Darriba *et al.*, 2012) using the Bayesian Information
Criterion value. The substitution model supported was the General Time Reversible (GTR)
with specified substitution types (A–C=0.4250, A–G=23.5124, A–T=1.6091, C–G=1.8671,
C–T=17.2314, G–T=1.0000), proportion of invariable sites (0.6044), gamma shape
parameter (0.2816) and nucleotide frequencies (A=0.2777, C=0.3076, G=0.1416,
T=0.2731).

15 The phylogenetic relationships among MT-CYB haplotypes of S. minutus were inferred by Bayesian analysis and by generating a parsimony phylogenetic network. The 16 17 Bayesian analysis was done using MrBayes version 3.2.7 (Ronguist et al., 2012) with two 18 independent runs (10 million generations and 5 chains each), a sampling frequency every 19 1000 generations and temperature of 0.1 for the heated chain, and checking for convergence in Tracer version 1.7.1 (Rambaut et al., 2018). Trees were summarized after a 20 burn-in value of 2500 to obtain the posterior probabilities of each phylogenetic branch. The 21 main phylogenetic groups (phylogroups) were identified based on monophyly of the 22 23 haplotypes, and were named based on the geographical origin of the samples. The 24 phylogenetic network was done using PopART version 1.7 (http://popart.otago.ac.nz) 25 implementing a median-joining algorithm.

Sequence polymorphism indices and diversity values, including the number of
 haplotypes (*H*), polymorphic (segregating) sites (*S*) and parsimony informative sites (*P*),

haplotype diversity (*Hd*), nucleotide diversity (π), and average number of nucleotide
 differences (*k*), were estimated using DnaSP. This was done for the whole data set
 (ingroup), for the main phylogroups, and also for other relevant geographic groups, including
 island populations and continental samples.

6 Population genetic structure

Pairwise genetic differentiation values (F_{ST}) between all pairs of phylogroups and other relevant geographic groups, and an Analysis of Molecular Variance (AMOVA) were calculated using Arlequin version 3.11 (Excoffier *et al.*, 2005). Ten thousand nonparametric permutations were performed to generate a random distribution to test the significance of the pairwise F_{ST} values and covariance components of the AMOVA, and α = 0.05 was set as the threshold for statistical significance.

With samples assigned to phylogroups and with the samples' geographical
coordinates, the geographic midpoints (i.e. mid-geographic location between two or more
coordinates) of the phylogroups were calculated using the Geographic Midpoint Calculator
(available at http://www.geomidpoint.com/). The geographic midpoints were used to obtain
the pairwise geographic distances among phylogroups with the Geographic Distance Matrix
Calculator version 1.2.3 (by PJ Ersts, available at

19 <u>http://biodiversityinformatics.amnh.org/open_source/gdmg</u>.) A Mantel test was used to

20 evaluate the relationship between matrices of pairwise geographic distances and genetic

21 differentiation values (Slatkin's linearised pairwise F_{ST} as $D = F_{ST}/(1-F_{ST})$; Slatkin, 1995).

22 Despite criticisms, the Mantel test is still a widely used and can be a powerful statistical

23 approach to analyse sequence data to test evolutionary hypotheses (Diniz-Filho et al.,

24 2013). Due to the very low (or absence of) genetic variation in the Orkney islands, DNA

25 sequences originating from there were pooled to avoid issues with pairwise F_{ST} calculations.

26 Geographic barriers were computed using Barrier version 2.2 (Manni *et al.*, 2004).

27 This approach implements Monmonier's maximum difference algorithm to find edges

(boundaries) on a Voronoi tessellation associated with the highest rate of change in genetic
distances among samples interconnected by a geometric network (i.e. Delaunay
triangulation) (Manni *et al.*, 2004). A barrier highlights the geographic areas where a genetic
discontinuity is found, and where samples on each side of the barrier are genetically more
similar than samples taken on different sides of the boundary. Pairwise genetic distances
were estimated using continental samples only, limiting the data set in the geometric network
calculation to one sample per locality, and computing a maximum of 10 barriers.

9 Historical demography

A strict molecular clock was compared to the uncorrelated lognormal relaxed molecular clock (Drummond et al., 2006). Coalescent constant population size and Bayesian skyline demographic models (Drummond et al., 2005) were compared to identify the best-fitting pattern of changes in the pygmy shrew population. For model selection, path sampling and stepping-stone sampling (Baele et al., 2013), based on four independent MCMC chains (1000 steps of 100,000 generations each, following a 10 million generations burn-in period), were used for calculating the log Marginal Likelihoods Estimates (MLEs) for each model. MLEs were used to calculate Bayes Factors (BFs) for each comparison between tested models to determine the best-fitting one (Kass & Raftery, 1995). The best-fitting models were then used to estimate the Time of divergence from the Most Recent Common Ancestor (TMRCA) and Bayesian Skyline Plots (BSP) (see below). The 95% Highest Posterior Density (HPD) was included in the TMRCA and BSP estimations. TMRCAs for the ingroup (all S. minutus samples) and the phylogroups were estimated using BEAST version 2.5.2 (Bouckaert et al., 2014). The following prior assumptions were: random starting tree, monophyletic groups (for the ingroup and the Irish phylogroups) (Drummond et al., 2006) to calculate the evolutionary rate, and the GTR substitution model with four categories, gamma = 0.9680 and proportion of invariable sites = 0.4680 (from jModelTest using the full data set). The oldest record of S. minutus has been found in Podlesice and Mała Cave, Poland dated between 5.3 and 3.6 MYA (Early Pliocene;

Mammal Neogene 14) (Rzebik-Kowalska, 1998). Using this fossil information, a calibration point for the ingroup was set at 4.45 MYA (SD = 0.5 MY; 5.27 – 3.63 MYA) with a normal prior distribution. Due to the absence of dated fossils of pygmy shrews that can be assigned specifically to the main phylogroups, a second calibration was set for the node age of the Irish lineage at 0.006 MYA (SD = 0.0005 MYA; 0.00682 – 0.00518 MYA). This secondary calibration point, derived from a previous analysis and applied to our data set, was based on the inferred colonisation time of Ireland by S. minutus in the Neolithic using multiple genetic markers and fossil data (McDevitt et al., 2009, 2011). The trace files were analysed in Tracer, the tree information from the four runs were combined and resampled at a lower frequency (for a total of 10,000 trees) using LogCombiner, and the information was summarized using TreeAnnotator selecting Maximum clade credibility tree and median heights. The phylogenetic tree showing the TMRCAs was created using FigTree version 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) with median and 95% HPD values based on those 10,000 trees. Genetic evidence of population expansion for the phylogroups, island populations

and continental samples was investigated using the R_2 test of neutrality (Ramos-Onsins & Rozas, 2002), based on the difference of the number of singleton mutations and the average number of nucleotide differences, and Fu's *Fs* (Fu, 1997), a statistic based on the infinite-site model without recombination that shows large negative *Fs* values when there has been a demographic population expansion. Both population expansion tests were carried out in DnaSP using coalescent simulations for testing significance (10,000 replicates).

Mismatch distributions (i.e. the distribution of the number of differences between pairs of haplotypes) were estimated for the phylogroups (and where N \ge 10) to compare the demography of the populations with the expectations of a sudden population expansion model (Rogers & Harpending, 1992). For the phylogroups and continental samples that showed a unimodal mismatch distribution and significant population expansion, the time since the population expansion (*t*) was calculated as t = r/2u, where *r* (tau) is the mode for the unimodal mismatch distribution, and *u* is the cumulative (across the sequence)

probability of substitution (Schenekar & Weiss, 2011). The calculations were done using the MS Excel Mismatch Calculator (Schenekar & Weiss, 2011) with sequence length = 1110 bp, generation time = 1 year (Hutterer et al., 2016), substitutions per site per million years (subst/Site/MY) = 0.551 (based on the average substitution rate across all sites 'clock.rate' results from BEAST) and cumulative substitutions/generation = 0.00062. BSPs were calculated using BEAST based on the posterior distribution of effective population size through time from a sample of gene sequences. This was done for the phylogroups showing a unimodal mismatch distribution and significant signatures of recent population expansion (where $N \ge 10$). The analysis was run for 100 million generations, sampled every 1000, using the best-fitting model. RESULTS Phylogenetic analysis For the complete S. minutus data set (N = 671) (Fig. 1B), there were 424 haplotypes with 390 polymorphic sites of which 277 were parsimony informative (Table 1). We report 160 newly sequenced specimens of *S. minutus* from the Iberian (4) and Balkan (19) peninsulas and from Central and Northern Europe (137) from which 127 were new haplotypes. Also, there were three new sequences and haplotypes of S. volnuchini, from which two were from Turkey and one from the Crimean Peninsula. The Bayesian phylogenetic analysis showed S. minutus as a monophyletic group and revealed six distinct lineages corresponding to their geographical origin (i.e. phylogroups) supported by high posterior probabilities (Fig. 2A). Samples from the Mediterranean peninsulas clustered in three distinct phylogroups, namely the Iberian, Italian and Balkan phylogroups. The Iberian group was represented with few DNA sequences (N = 6). It was geographically restricted to the Iberian Peninsula and included samples from Rascafría, Central Spain (Sierra de Guadarrama) and Picos de Europa, Northern Spain. The Italian phylogroup (N = 26) was mostly restricted to the north-central regions of the Italian

peninsula; it included samples from the Apennines and the Alps in Italy, but also from

 Page 12 of 60

Switzerland, Slovenia, Southern and Eastern France near the border with Italy, Czech Republic and Germany. The Balkan phylogroup (N = 22) included samples mostly from the Balkan Peninsula and a few from further north in Central Europe. This phylogroup showed a weak north/south subdivision, with one clade containing samples from Switzerland, Austria, Slovakia, Czech Republic, Hungary and Montenegro, another clade containing samples from Serbia, Bosnia and Herzegovina and North Macedonia, plus other ungrouped basal samples from Montenegro, North Macedonia, Serbia and Turkey (East Thrace, Southeast Europe). There was also a well-supported and geographically widespread Western phylogroup (N = 283), which included samples from northern Spain (Cantabrian Mountain Range), Southern France and Andorra (i.e. the Pyrenees), western and central France (including Belle-Île), Ireland, the Orkney Islands, and western mainland Britain and offshore islands on the western coast of mainland Britain. Samples from Ireland formed an internal monophyletic lineage (i.e. the Irish phylogroup, N = 94) within the Western phylogroup. Notably, two samples from Navarra in northern Spain (ESNa0861 and ESNa1131; Accession Number JF510331) shared haplotypes with samples from Ireland (Hap 64). A monophyletic South Italian phylogroup (N = 4) was most closely related to the Western phylogroup than to the Italian phylogroup, and was geographically restricted to La Sila, Calabria in Southern Italy. Samples from northern and central Europe and Siberia, namely the Northern phylogroup (N = 330), formed the most geographically widespread lineage and included samples ranging from Central France and Britain (excluding those within the Western phylogroup), across Central and Northern Europe to Lake Baikal in Siberia, but did not include samples from Southern Europe. Samples from mainland Britain belonging to the Northern phylogroup did not form an internal monophyletic cluster. The phylogenetic network had a complex structure (Fig. 2B), but the haplotypes clustered into the same phylogroups detected with Bayesian phylogenetics and were distantly related from each other (> 10 mutational steps). The Western phylogroup had a

star-like pattern and showed three most internal haplotypes; notably, Hap_61 was found in
 the Pyrenees with other Western haplotypes directly connected to it, Hap_94 was found on

islands of the western coast of Scotland (Arran and Mull) with other Scottish and continental Western haplotypes directly connected to it, and Hap 64 included samples from Northern Spain and Ireland with other Irish haplotypes connected to it. The Northern phylogroup showed a star-like pattern with many reticulations and three most internal haplotypes separated from each other by few mutational steps. There was a weak geographical subdivision within the Northern phylogroup, where samples from Siberia, Eastern and Northern Europe were derived or most closely connected to samples from Central Ukraine (Hap_287), samples from Central Europe were derived or most closely connected to samples from The Netherlands (Hap_274), and all samples from Britain were derived or most closely connected to other samples from The Netherlands than to the other central haplotypes (Hap_90); however, the highly reticulated pattern of the inner haplotypes of the Northern phylogroup indicated that this geographical subdivision was weak.

Sequence polymorphism indices and diversity values for the phylogroups and other geographic groups are shown in Table 1. For the phylogroups, the haplotype diversity values were high (>90%), and the nucleotide diversity values were either half or almost half as much as the ingroup. Notably, the Northern phylogroup had the highest haplotype diversity values, followed by the Balkan phylogroup; however, the Balkan phylogroup had the highest nucleotide diversity values. The Irish phylogroup, which clustered within the Western phylogroup, showed slightly lower haplotype diversity than any other phylogroups.

The continental groups (Northern continental and Western continental) showed equivalent DNA polymorphism values as the main phylogroups, but the island groups showed different levels of DNA polymorphism (Table 1). There was low DNA polymorphism in islands of the Orkney Archipelago, with only 11 haplotypes in all Orkney Islands combined (N = 119), but all haplotypes were unique to these islands. There were eight haplotypes in Orkney Mainland (N = 44), from which seven were unique to this island (the largest island of the archipelago), there were two unique haplotypes in Orkney South Ronaldsay (N = 40), and there was only one haplotype in Orkney Westray (N = 33) also present in Orkney Hoy (N = 2) and Orkney Mainland. There were five haplotypes in Belle-Île (N = 5), and only one

1 was present in the continent also belonging to the Western phylogroup. The British group (N

2 = 91) showed high haplotype diversity but moderate nucleotide diversity values and had 80

3 haplotypes from which 77 were unique haplotypes not found elsewhere.

5 Population genetic structure

The highest pairwise differentiation values were found between some southern phylogroups and island groups, while the lowest values were between phylogroups and islands groups that clustered within them (Supplementary information Table S2). There was higher percentage of variation among (73.5 %) than within (26.5 %) groups, and there was a significant population differentiation (F_{ST} = 0.7349, P < 0.0001). The Mantel test showed a nonsignificant relationship between pairwise geographic and genetic distances based on Slatkin's linearised F_{ST} ($R_2 = 0.0095$, P = 0.2935) (Supplementary information Fig. S1). The barriers identified using the computational geometry approach reflected the genetic differentiation between S. minutus and S. volnuchini, and among the phylogroups within S. minutus (Fig. 1C). The first barrier separated S. minutus from S. volunichini. The nine following barriers coincided with the location of mountain ranges, including a barrier

17 located in the north of the Balkan Peninsula, in the Alps and in the Pyrenees, which reflected

18 the genetic subdivisions and lineages in *S. minutus*.

20 Historical demography

Comparison of BFs for each model indicated the Bayesian skyline demographic model as the best-fitting one (BF = 391), and the strict molecular clock was better than the uncorrelated lognormal relaxed molecular clock (BF = 23). The MLEs for the constant population size and Bayesian skyline demographic models using the strict molecular clock were -10960 and -10569, while using the uncorrelated lognormal relaxed molecular clock were -10907 and -10592, respectively. Therefore, the strict clock and Bayesian skyline demographic model were selected as the best-fitting according to BFs. The effective sample size (ESS) for all values was higher than 200.

Page 15 of 60

All branches of the Bayesian genealogy (Fig. 3, Table 2) were well-supported (posterior probabilities $PP \ge 0.97$), except for the clade containing all phylogroups excluding Iberian (PP = 0.05). Molecular dating analysis revealed that the ingroup and outgroup separated approximately 83.4 KYA, with lower and upper 95% HPD limits between 59.7 and 110.2 KYA (Fig. 3, Table 2). The diversification of S. minutus occurred approximately 31.8 KYA (95% HPD: 21.8 - 40.5 KYA) with the formation of the Iberian phylogroup, followed by the formation of the Balkan group 29.6 KYA (95% HPD: 21.8 – 40.5 KYA), while in Western, Central and Northern Europe, S. minutus continued its diversification with the Northern phylogroup forming 24.1 KYA (95% HPD: 16.4 – 33.1 KYA), the Italian phylogroup forming 15.3 KYA (95% HPD: 10.7 – 21.5 KYA), the South Italian phylogroup forming 12.8 KYA (95% HPD: 8.5 – 17.8 KYA), and the Western phylogroup forming 9.3 KYA (95% HPD: 6.7 – 12.6 KYA) (Fig. 3, Table 2). The TMRCA of the Balkan phylogroup was the earliest, dated back to 15.5 KYA (95% HPD: 9.7-22.7 KYA), followed by the Northern phylogroup, dated back to 11.8 KYA (95% HPD = 7.7-16.8 KYA), while the rest of the main phylogroups had TMRCAs dated approximately to about 6 and 9 KYA (Fig. 3, Table 2). Within the Western phylogroup, the TMRCA for the Irish clade dated back to 5.9 KYA (95% HPD: 4.9 - 6.9 KYA). The population expansion tests (R_2 and Fu's Fs) showed significant departures from

18 The population expansion tests (*R*₂ and Fu's *Fs*) showed significant departures from
19 neutrality for the ingroup and several other phylogroups, except for the Balkan, Iberian and
20 South Italian (Table 2). The population expansions were not an effect of the island samples
21 belonging to these phylogroups, and continental samples analysed separately also
22 demonstrated a similar pattern (Table 2). For the island groups, only the Irish and British
23 groups showed signatures of recent population expansions (Table 2).

The mismatch distributions varied significantly among the phylogroups (Fig. 4A; Supplementary information Fig. S2). The ingroup showed a bimodal mismatch distribution, which reflected the pairwise comparisons within and among phylogroups in *S. minutus*. The Northern (and Northern continental), Italian, Western (and Western continental) and Irish phylogroups all had distinctly unimodal distributions with an almost perfect fit between observed and expected pairwise differences of a sudden population expansion model. All
population expansions for the phylogroups were dated to the Holocene; the Italian and
Northern phylogroups had the oldest times of expansion (>8.0 KYA), while the Irish showed
a relatively recent population expansion dated to 1.6 KYA.

5 The BSP obtained for three phylogroups (Northern, Western and Irish) suggested 6 that demographic expansions of these populations started approximately 5.0 KYA (Fig. 4B). 7 BSP calculation for the Italian phylogroup indicated an even earlier demographic expansion 8 (approximately 5.5 KYA) (Fig. 4B).

 10 DISCUSSION

Quaternary refugia represent the geographical regions that species inhabit during periods of glacial or interglacial cycles when there is the maximum contraction in geographical range (Stewart et al., 2009). There is support for both southern (Taberlet et al., 1998; Hewitt, 2000) and northern glacial European refugia (Bilton et al., 1998; Stewart & Lister, 2001; Kotlík et al., 2006; Provan & Bennett 2008; Fløjgaard et al., 2009; Vega et al., 2010a, b). Rather than polarising the biogeographic patterns into southern and northern refugia (Tzedakis et al., 2013), the paradigms of postglacial colonisation in Europe (Hewitt, 2000) can be improved with the acceptance of southern hotspots of diversification without northward colonisation (Bilton et al., 1998) and the concept of refugia-within-refugia (Gómez & Lunt, 2007), as well as with the findings of northern glacial refugia (Stewart & Lister 2001; Provan & Bennett, 2008; Stewart et al., 2009), to reflect the evolutionary processes across varied topographical areas that have shaped genetic diversity. The statistical phylogeographic results obtained here contribute to the understanding of the phylogeographic patterns and processes during the Quaternary glaciations that shaped the European biota, and provide further evidence to the emerging pattern of complex biogeographical histories in Europe (Pedreschi et al., 2019).

2 3	1	
4 5	2	Sorex minutus <i>phylogeography</i>
6 7	3	The significant genetic structure among phylogroups defined in this study illustrate the
o 9 10	4	complex history of European colonisation, isolation and diversification of <i>S. minutus</i> during
10 11 12	5	the Pleistocene and Holocene, and is not a simple case of isolation by distance and
13 14	6	colonisation of Northern and Central Europe from expanding populations from the south.
15 16	7	While the southern phylogroups, including the Iberian, Balkan, Italian and South Italian, were
17 18	8	mostly restricted to the Southern European peninsulas (consistent with the traditional
19 20	9	southern glacial refugia), the Northern and Western phylogroups were widespread
21 22	10	geographically and were found north of the Mediterranean peninsulas, consistent with
23 24 25	11	previous studies with fewer samples (Bilton <i>et al.</i> , 1998; Mascheretti <i>et al.</i> , 2003; Vega <i>et al.</i>
23 26 27	12	2010a, b) and with different molecular markers (McDevitt et al., 2010).
28 29	13	The hypothesis of northern refugia is further supported by palaeontological and
30 31	14	palynological evidence for other temperate and boreal species (Willis et al., 2000; Willis &
32 33	15	van Andel, 2004; Magri et al., 2006; Sommer & Nadachowski, 2006), as well as many
34 35	16	phylogeographic studies in small mammals, including the field vole <i>M. agrestis</i> (Jaarola &
36 37	17	Searle, 2002; Herman et al., 2019), bank vole M. glareolus (Deffontaine et al., 2005; Kotlík et
38 39	18	al., 2006; Wójcik et al., 2010), root vole M. oeconomus (Brunhoff et al., 2003), common vole
40 41 42	19	M. arvalis (Heckel et al., 2005; Stojak et al., 2016), common shrew S. araneus (Bilton et al.,
42 43 44	20	1998; Yannic et al., 2008) and weasels Mustela nivalis (McDevitt et al., 2012). For several
45 46	21	small mammals, including S. minutus, suitable climatic conditions at the LGM could have
47 48	22	been widespread across Central and Eastern Europe (Fløjgaard et al., 2009; Vega et al.,
49 50	23	2010b; McDevitt <i>et al.</i> 2012; Stojak <i>et al.</i> , 2019).
51 52	24	Until recently, it was unclear which species of Sorex inhabit Crimea. According to
53 54	25	Zagorodniuk (1996) it could be S. (minutus) dahli [mentioned in Hutterer (2005) as a
55 56 57	26	synonym of Sorex volnuchini (dahli)], and Zaitsev et al. (2014) and Hutterer et al. (2016)
57 58 59	27	indicated the presence of S. minutus in mainland Ukraine and in Crimea. Hutterer (2005)
60	28	mentioned that S. volnuchini might be present in Crimea, but in Hutterer et al. (2016) S.

Page 18 of 60

volnuchini is only found in southern Russia and Caucasus States, Turkey and northern Iran.
Our research demonstrated that *S. volnuchini* may be present in the southern region of
Crimea (based on one *MT-CYB* sequence), while *S. minutus* is present in mainland Ukraine
and in the northern region of Crimea, but further sampling in this region is needed.

The finding of two phylogroups in the Iberian peninsula (i.e. Iberian and Western phylogroups) and two in the Italian peninsula (i.e. Italian and South Italian phylogroups). support the hypothesis of microevolutionary processes shaping the genetic diversity and structure within the Mediterranean peninsulas. In the Iberian Peninsula, the topography of the region with east-west mountain ranges and other high ground (over 1000 m a.s.l.), large rivers (which could act as barriers to dispersal), and the distinct seasonal precipitation and vegetation types (O'Regan, 2008), must have played an important role in the colonisation of the region and the genetic differentiation of populations. McDevitt et al. (2010) proposed that the Western phylogroup could have originated in the Dordogne region based on a limited number of samples from France, but the presence of this phylogroup in northern Iberia and the central position of Hap 61 (Pyrenees) could mean that an Iberian origin is possible instead. A similar process could explain the presence of the two phylogroups in the Italian peninsula (i.e. Italian and South Italian). The genetic differentiation of the South Italian phylogroup, further supported by morphological data (Vega et al., 2010a, 2016), could be due to the unique geography of Southern Italy consisting of mountain massifs of Pollino, La Sila and Aspromonte separated by lowland areas, which from the Pliocene to the end of the Middle Pleistocene, at times of high sea level, were islands in a chain (Malatesta, 1985; Caloi et al., 1989; Bonardi et al., 2001; Bonfiglio et al., 2002). The patterns of differentiation within refugial areas were concordant with the 'refugia-within-refugia' concept widely recognized for the Iberian Peninsula (Gómez & Lunt, 2007; Abellán & Svenning, 2019) and similar to microrefugia in the Balkans (Kryštufek et al., 2007). For the Italian peninsula, a comparable 'refugia-within-refugia' pattern was found in several species (Amori et al., 2008; Canestrelli et al., 2008; Castiglia et al., 2008; Vega et al., 2010a, 2016; Senczuk et al., 2017; Bisconti et al., 2018).

Page 19 of 60

The genetic similarity between the Western and South Italian phylogroups indicates a common history and it can be hypothesised that their common ancestor was more widespread throughout the Italian peninsula, probably displaced later by the Italian lineage in the Apennines and Western Alps. A similar scenario has been proposed for the water shrew Neomys fodiens (Castiglia et al., 2007), Alpine salamander Salamandra salamandra (Steinfartz et al., 2000), black pine Pinus nigra (Afzal-Rafii & Dodd, 2007) and green lizard Lacerta bilineata bilineata (Böhme et al., 2007), which showed closely related South Italian and Western phylogroups most closely related to each other than to a North-Central Italian lineage. The phylogeographic patterns found here were further supported by the determination of barriers that coincided with mountain ranges located on the north of the Iberian, Italian and Balkan peninsulas. Contact zones among phylogroups (i.e. localities where at least two MT-CYB phylogroups were present) were detected at the northern extremes of the southern peninsulas. During the LGM, glaciers covered most of the Alpine (Buoncristiani & Campy, 2004) and Pyrenean mountain ranges (Calvet, 2004), while glaciers in the Carpathians (Reuther et al., 2007) and in the Balkan Peninsula (Hughes et al., 2006) were found > 1,000 m a.s.l. When climate ameliorated and suitable habitat became available, pygmy shrew populations belonging to different phylogroups on different sides of the mountain ranges could have expanded and colonised previously glaciated areas thus forming the observed contact zones. Moreover, the widespread distribution and absence of phylogeographic structure of the Northern phylogroup could be explained by the apparent absence of major geographical barriers across Central and Northern Europe, and recolonization from northern refugia. Similarly, pygmy shrews belonging to the Western and Northern phylogroups could have quickly colonised mainland Britain across a land connection to continental Europe (i.e. Doggerland; Gaffney et al., 2007), resulting in the genetic similarities observed between the British Isles and continental Europe.

1 Sorex minutus *demography*

The oldest fossils assigned to S. minutus were found in Podlesice and Mała Cave, Poland dated to the Early Pliocene between 4 and 5.3 MYA (Rzebik-Kowalska, 1998). An early widespread colonisation of Europe by S. minutus might have been possible because it was probably one of the first species of the genus Sorex in the continent (Rzebik-Kowalska, 1998, 2008). The Bayesian analysis revealed, however, more recent diversification events, with TMRCAs for the ingroup and the phylogroups in continental Europe between the Upper Pleistocene and Lower Holocene. This is consistent with recent studies on field vole (Microtus agrestis) phylogeography in Europe (Herman & Searle, 2011; Herman et al., 2014) which demonstrated the importance of the Younger Dryas (11.7-12.9 KYA) glacial re-advance for the diversification within this species. Similar colonisation scenarios and divergence before the LGM from Eastern to Western Europe have been proposed for other species, including the common vole Microtus arvalis (Heckel et al., 2005; Stojak et al., 2016), the bank vole Clethrionomys glareolus (Deffontaine et al., 2005; Kotlík et al., 2006; Wójcik et al., 2010), and the root vole M. oeconomus (Brunhoff et al., 2003). The population expansion signatures for the Northern and Western phylogroups, star-like patterns in phylogenetic networks and population expansion times support recent and quick colonisation events of central and northern Europe, and appear to reflect responses to postglacial climate warming. The Western lineage was restricted to Central, Western and South-Eastern France and North-Western Spain in continental Europe, but it was the only lineage found in Ireland and several islands off the west and north coasts of Britain. The region of the Dordogne in South-Western France was situated outside the LGM permafrost area and has temperate mammal fossil records dated to the end of the LGM; therefore, it has been suggested as another likely northern refugium (Sommer & Nadachowski, 2006; McDevitt et al., 2010) where the Western lineage could have persisted and recolonised Western and Central France after the LGM. But as stated above, an Iberian origin for this phylogroup is also possible. However, SDM studies showed that suitable climatic conditions during the LGM for S. minutus and other temperate small mammal

species could have been more continuous and present further north (Fløjgaard et al., 2009; Vega et al., 2010b), which could explain its widespread distribution in Western Europe and its presence in Britain. According to BSP results, it is plausible that Northern and Western phylogroups spread across Europe after the Younger Dryas. The British (island) group, belonging to the Northern phylogroup, showed a significant signature of population expansion. This expansion could have selectively displaced pygmy shrew populations of the Western lineage, which still remain in uplands and islands in the periphery to the north, west and south of Britain forming a 'Celtic fringe' (Searle et al., 2009).

The widespread Italian lineage may be presumed to derive from a glacial refugium located somewhere within the vicinity of the Apennine mountain chain. A significant population expansion signature demonstrates that the Italian phylogroup went through a recent expansion phase, calculated in BSP for about 5.5 KYA. Contrastingly, the lack of a population expansion signature, the high nucleotide and haplotype diversities, and the highly divergent sequences showing a weak north/south subdivision of the Balkan phylogroup warrants further attention. The Balkans is a European hotspot for biodiversity given its environmental stability, topographic and climatic diversity and occasional connectedness with Asia Minor (Kryštufek & Reed, 2004; Kryštufek et al., 2007, 2009; Bužan et al., 2010), and it could be expected that some of these factors shaped the genetic diversity of the Balkan lineage there. Similarly, the lack of significant population expansion values for the Iberian lineage may relate to historical stable population sizes; however, the sample size was low and this result should be taken with caution.

23 Further considerations and implications

The comparison of the results obtained here with those elsewhere shows an emerging
pattern of glacial refugia in Mediterranean peninsulas and further north in Central Europe for
several species.

Although *S. minutus* is considered as a least concern species by the IUCN (Hutterer
 et al., 2016), the distinct phylogroups deserve more attention than this implies. Genetic

diversity is considered an important aspect of global biodiversity (McNeely et al., 1990), and local and/or country-based conservation efforts are highly valued (for example, in Britain and Ireland the pygmy shrew is protected by law). The refugial areas in Southern Europe are often found in mountain ranges at the low-latitude margins of the present-day distribution ranges of species and are most likely to contain rear-edge populations where selection for local adaptations could have resulted in the evolution of distinct ecotypes (Cook, 1961; Hampe & Petit, 2005). Rear-edge populations, including the southern lineages of S. minutus, deserve further investigation and should be regarded for conservation because they are important to determine the responses of species to modern climate change (Petit et al., 2003; Hampe & Petit, 2005). In conclusion, the Eurasian pygmy shrew *Sorex minutus* is a good model for understanding biological diversity, colonisation patterns and the effects of past climate change on biological diversity. There is a mosaic of genetic lineages across continental Europe, characterised by different demographic histories and natural colonisation patterns, while island populations are characterised by recent natural and human-mediated colonisations. This study has notably expanded previous findings on S. minutus, with a more precise statistical phylogeographic analysis of the genetic variability and structure, colonisation routes, geographical barriers and historical demography across Europe. Specifically, we provided new data from the Iberian and Balkan peninsulas, and from Central and Eastern Europe (Poland, Ukraine and Russia), important for understanding postglacial events. Sorex minutus is not an easy species to obtain in large numbers, and the sampling described here represents a very substantial effort. However, it is a species that is unusually widespread and genetically subdivided and therefore can inform better than almost any other about the relative importance of southern and northern glacial refugia. ACKNOWLEDGEMENTS

Specimens and species records of *Sorex minutus* were made available by several museums
and we acknowledge the help of the curators from the following institutions: Département

1	
2	
3	
4	
5	
0 7	
, 8	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
22	
23 24	
25	
26	
27	
28	
29	
30 21	
32	
33	
34	
35	
36	
37	
38	
39 40	
41	
42	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

1	d'écologie et évolution (Université de Lausanne, Switzerland), Univerza na Primorskem and	
2	Research Centre of Koper (Slovenia), Natuurhistorisch Museum (Rotterdam, Netherlands),	
3	Dipartimento di Ecologia (Università della Calabria, Italy), Museo di Anatomia Comparata	
4	and Museo di Zoologia "La Sapienza" (Università di Roma, Italy), Natuurmuseum Brabant	
5	(Tilburg, Netherlands) and Mammal Research Institute PAS (Białowieża, Poland). We are	
6	very grateful for the tissue samples provided by Glenn Yannic, Jacques Hausser, Jan Zima,	
7	Fríða Jóhannesdóttir, Holger Bruns, Peter Borkenhagen, Natália Martínková, Elena	
8	Gladilina, Pavel Goldin and Petr Kotlík. We thank Ricardo Castiglia and two anonymous	
9	reviewers for their helpful comments.	
10		
11	REFERENCES	
12	Abellán P, Svenning J-C. 2014. Refugia within refugia – patterns in endemism and genetic	
13	divergence are linked to Late Quaternary climate stability in the Iberian Peninsula.	
14	Biological Journal of the Linnean Society 113: 13-28.	
15	Afzal-Rafii Z, Dodd RS. 2007. Chloroplast DNA supports a hypothesis of glacial refugia	
16	over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in	
17	Western Europe. <i>Molecular Ecology</i> 16: 723-736.	
18	Baele G, Lemey P, Vansteelandt S. 2013. Make the most of your samples: Bayes factor	
19	estimators for high-dimensional models of sequence evolution. BMC Bioinformatics	
20	14: 85.	
21	Banaszek A, Ziomek J, Jadwiszczak KA, Kaczyńska E, Mirski P. 2012. Identification of	
22	the barrier to gene flow between phylogeographic lineages of the common hamster	
23	Cricetus cricetus. Acta Theriologica 57: 195-204.	
24	Bilton DT, Mirol PM, Mascheretti S, Fredga K, Zima J, Searle JB. 1998. Mediterranean	
25	Europe as an area of endemism for small mammals rather than a source for	
26	northwards postglacial colonization. Proceedings of the Royal Society of London	
27	Series B 265: 1219-1226.	

2	
- २	
1	
-	
ر د	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
50	
59	
60	

1	Bisconti R, Aloise G, Siclari A, Fava V, Provenzano M, Arduino P, Chiocchio A,
2	Nascetti G, Canestrelli D. 2018. Forest dormouse (Dryomys nitedula) populations in
3	southern Italy belong to a deeply divergent evolutionary lineage: implications for
4	taxonomy and conservation. Hystrix 29: 75-79.
5	Böhme MU, Fritz U, Kotenko T, Džukić G, Ljubisavljević K, Tzankov N, Berendonk TU.
6	2007. Phylogeography and cryptic variation within the Lacerta viridis complex
7	(Lacertidae, Reptilia). Zoologica Scripta 36: 119-131.
8	Bonardi G, Cavazza W, Perrone V, Rossi S. 2001. Calabria-Peloritani terrane and
9	Northern Ionian Sea. In: Vai GB, Martini IP, eds. Anatomy of an orogen: The
10	Apennines and adjacent Mediterranean basins. Dordrecht: Kluwer, 287-306.
11	Bonfiglio L, Mangano G, Marra AC, Masini F, Pavia M, Petruso D. 2002. Pleistocene
12	Calabrian and Sicilian bioprovinces. Geobios 35: 29-39.
13	Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A,
14	Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary
15	analysis. PLOS Computational Biology 10: e1003537.
16	Brunhoff C, Galbreath KE, Fedorov VB, Cook JA, Jaarola M. 2003. Holarctic
17	phylogeography of the root vole (Microtus oeconomus): implications for late
18	Quaternary biogeography of high latitudes. <i>Molecular Ecology</i> 12: 957-968.
19	Buoncristiani J-F. Campy M. 2004. Palaeogeography of the last two glacial episodes in
20	France: the Alps and Jura. In: Ehlers J, Gibbard PL, eds. Quaternary glaciations –
21	Extent and chronology Part I: Europe. London: Developments in Quaternary Science
22	2: 101-110.
23	Bužan EV, Förster DW, Searle JB, Kryštufek B. 2010. A new cytochrome b phylogroup of
24	the common vole (Microtus arvalis) endemic to the Balkans and its implications for
25	the evolutionary history of the species. Biological Journal of the Linnean Society 100:
26	788-796.

2		
3 4	1	Caloi L, Malatesta A, Palombo RM. 1989. Biogeografia della Calabria meridionale durante
5 6	2	il Quaternario. Atti Accademia Peloritana dei Pericolanti Classe I, Scienze
7 8	3	Matematiche Fisiche e Naturali 67: 261-278.
9 10	4	Calvet M. 2004. The Quaternary glaciation of the Pyrenees. In: Ehlers J, Gibbard PL, eds.
11 12	5	Quaternary glaciations – Extent and chronology Part I: Europe. London:
13 14	6	Developments in Quaternary Science 2: 119-128.
15 16 17	7	Canestrelli D, Cimmaruta R, Nascetti G. 2008. Population genetic structure and diversity
17 18 19	8	of the Apennine endemic stream frog, Rana italica; insights on the Pleistocene
20 21	9	evolutionary history of the Italian peninsular biota. <i>Molecular Ecology</i> 17: 3856-3872.
22 23	10	Castiglia R, Annesi F, Aloise G, Amori G. 2007. Mitochondrial DNA reveals different
24 25	11	phylogeographic structures in the water shrews Neomys anomalus and N. fodiens
26 27	12	(Insectivora: Soricidae) in Europe. Journal of Zoological Systematics and
28 29	13	Evolutionary Research 45: 255-262.
30 31	14	Churchfield S. 1990. The natural history of shrews. London: Christopher Helm and A&C
32 33	15	Black.
34 35 26	16	Churchfield S, Searle JB. 2008. Pygmy shrew Sorex minutus. In: Harris S, Yalden DW,
30 37 38	17	eds. Mammals of the British Isles: handbook. London: The Mammal Society, 267-
39 40	18	271.
41 42	19	Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX,
43 44	20	Hostetler SW, McCabe AM. 2009. The Last Glacial Maximum. Science 325: 710-
45 46	21	714.
47 48	22	Cook LM. 1961. The edge effect in population genetics. American Naturalist 95: 295-307.
49 50	23	Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new
51 52	24	heuristics and parallel computing. Nature Methods 9: 772.
53 54	25	Deffontaine V, Libois R, Kotlík P, Sommer R, Nieberding C, Paradis E, Searle JB,
55 56 57	26	Michaux JR. 2005. Beyond the Mediterranean peninsulas: evidence of central
57 58 59	27	European glacial refugia for a temperate forest mammal species, the bank vole
60	28	(Clethrionomys glareolus). Molecular Ecology 14: 1727-1739.

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
21	
25	
22	
20	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
50	
22	
00	

1	Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, de Campos Telles
2	MP, Rangel TF, Bini LM. 2013. Mantel test in population genetics. Genetics and
3	Molecular Biology 36: 475-485.
4	Drummond AJ, Rambaut A, Shapiro B, Pybus OG. 2005. Bayesian coalescent inference
5	of past population dynamics from molecular sequences. Molecular Biology and
6	Evolution 22: 1185-1192.
7	Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and
8	dating with confidence. PLOS Biology 4: e88.
9	Excoffier L, Laval G, Schneider S. 2005. Arlequin ver. 3.0: An integrated software package
10	for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47-50.
11	Fløjgaard C, Normand S, Skov F, Svenning J-C. 2009. Ice age distributions of European
12	small mammals: insights from species distribution modelling. Journal of
13	Biogeography 36: 1152-1163.
14	Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking
15	and background selection. Genetics 147: 915-925.
16	Fumagalli L, Taberlet P, Stewart DT, Gielly L, Hausser J, Vogel P. 1999. Molecular
17	phylogeny and evolution of Sorex shrews (Soricidae: Insectivora) inferred from
18	mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution 11: 222-
19	235.
20	Gaffney V, Thomson K, Fitch S. 2007. Mapping Doggerland: the Mesolithic landscapes of
21	the southern North Sea. Oxford: Archaeopress.
22	Gómez A, Lunt DH. 2007. Refugia within refugia: patterns of phylogeographic concordance
23	in the Iberian Peninsula. In: Weiss S, Ferrand N, eds. Phylogeography of southern
24	European refugia. Dordrecht: Springer, 155-188.
25	Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
26	program for Windows 95/98/NT/XP. Nucleic Acids Symposium Series 41: 95-98.
27	Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge
28	matters. Ecology Letters 8: 461-467.

1 2			
3 4	1	Heckel G, Burri R, Fink S, Desmet J-F, Excoffier L. 2005. Genetic structure and	
5 6	2	colonization processes in European populations of the common vole, Microtus	
7 8	3	arvalis. Evolution 59: 2231-2242.	
9 10	4	Herman JS, Searle JB. 2011. Post-glacial partitioning of mitochondrial genetic variation in	
11 12	5	the field vole. Proceedings of the Royal Society. Series B. Biological Sciences 278:	
13 14	6	3601-3607.	
15 16	7	Herman JS, McDevitt AD, Kawałko A, Jaarola M, Wójcik JM, Searle JB. 2014. Land-	
17 18 10	8	bridge calibration of molecular clocks and the post-glacial colonization of Scandinavia	
20 21	9	by the Eurasian field vole <i>Microtus agrestis</i> . PLoS ONE 9 : e103949.	
22 23	10	Herman JS, Stojak J, Paupério J, Jaarola M, Wójcik JM, Searle JB. 2019. Genetic	
24 25	11	variation in field voles Microtus agrestis from the British Isles: selective sweeps or	
26 27	12	population bottlenecks. Biological Journal of the Linnean Society 126 : 852-865.	
28 29	13	Hewitt GM. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907-913.	
30 31	14	Hughes PD, Woodward JC, Gibbard PL. 2006. Quaternary glacial history of the	
32 33	15	Mediterranean mountains. Progress in Physical Geography 30: 334-364.	
34 35 26	16	Hutterer R. 1990. Sorex minutus Linnaeus, 1766. Zwergspitzmaus. In: Niethammer J, Krapp	
36 37 28	17	F, eds. Handbuch der Säugetiere Europas, band 3. Wiesbaden: Aula-Verlag, 183-	
38 39 40	18	206.	
40 41 42	19	Hutterer R. 2005. Order Soricomorpha. In: Wilson DE, Reeder DM, eds. Mammal species of	
43 44	20	the world, 3 rd ed. Baltimore: Johns Hopkins University Press, 220-311.	
45 46	21	Hutterer R, Kryštufek B, Fernandes M, Meinig H. 2016. Sorex minutus (errata version	
47 48	22	published in 2017). The IUCN Red List of Threatened Species 2016:	
49 50	23	e.T29667A115171222.http://dx.doi.org/10.2305/IUCN.UK.2016-	
51 52	24	3.RLTS.T29667A22316362.en. Downloaded on 04 February 2019.	
53 54	25	Jaarola M, Searle JB. 2002. Phylogeography of field voles (Microtus agrestis) in Eurasia	
55 56	26	inferred from mitochondrial DNA sequences. <i>Molecular Ecology</i> 11: 2613-2621.	
57 58	27	Kass RE, Raftery AE. 1995. Bayes factors. Journal of the American Statistical Association	
59 60	28	90: 773-795.	

3	
4	
5	
6	
7	
, Q	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

> 1 Knowles LL. 2009. Statistical phylogeography. Annual Review of Ecology, Evolution, and 2 Systematics 40: 593-612. Knowles LL, Maddison WP. 2002. Statistical phylogeography. Molecular Ecology 11: 2623-3 2635. 4 5 Kotlík P, Deffontaine V, Mascheretti S, Zima J, Michaux JR, Searle JB. 2006. A northern glacial refugium for bank voles (Clethrionomys glareolus). Proceedings of the 6 7 National Academy of Sciences of the United States of America **103**: 14860-14864. 8 Kryštufek B, Bužan EV, Hutchinson WF, Hänfling B. 2007. Phylogeography of the rare 9 Balkan endemic Martino's vole, Dinaromys bogdanovi, reveals strong differentiation 10 within the Western Balkan Peninsula. *Molecular Ecology* **16:** 1221-1232. 11 Kryštufek B, Bryja J, Bužan EV. 2009. Mitochondrial phylogeography of the European 12 ground squirrel, Spermophilus citellus, yields evidence on refugia for steppic taxa in 13 the southern Balkans. *Heredity* **103**: 129-135. 14 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, 15 Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. 16 17 Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 25: 1451-1452. 18 19 Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, Van Der Knaap WO, Petit RJ, De Beaulieu J. 20 **2006.** A new scenario for the Quaternary history of European beech populations: 21 palaeobotanical evidence and genetic consequences. New Phytologist 171: 199-221. 22 Malatesta A. 1985. Geologia e paleobiologia dell'era glaciale. Roma: La Nuova Italia 23 Scientifica. [In Italian] 24 Manni F, Guerard E, Heyer E. 2004. Geographic patterns of (genetic, morphologic, 25 linguistic) variation: how barriers can be detected by using Monmonier's algorithm. 26

27 *Human Biology* **76:** 173-190.

Marková AK. 2011. Small mammals from Palaeolithic sites of the Crimea. Quaternary

International **231:** 22-27.

1 2	
3 4	1
5 6	2
7 8	3
9 10	4
11 12	5
13 14	6
15 16	7
17 18	8
19 20	9
21 22 22	10
23 24 25	11
25 26 27	12
28 29	13
30 31	14
32 33	15
34 35	16
36 37	17
38 39	18
40 41	19
42 43	20
44 45 46	21
40 47 48	22
40 49 50	23
50 51 52	24
53 54	25
55 56	26
57 58	
59 60	

3	McDevitt AD, Rambau RV, O'Brien J, McDevitt CD, Hayden TJ, Searle JB. 2009. Genetic
4	variation in Irish pygmy shrews Sorex minutus (Soricomorpha: Soricidae):
5	implications for colonization history. Biological Journal of the Linnean Society 97:
6	918-927.
7	McDevitt AD, Yannic G, Rambau RV, Hayden TJ, Searle JB. 2010. Postglacial
8	recolonization of continental Europe by the pygmy shrew (Sorex minutus) inferred
9	from mitochondrial and Y chromosomal DNA sequences. In: Habel JC, Assman T,
10	eds. Relict species: phylogeography and conservation biology. Berlin: Springer
11	Verlag, 217-236.
12	McDevitt AD, Vega R, Rambau RV, Yannic G, Herman JS, Hayden TJ, Searle JB. 2011.
13	Colonization of Ireland: revisiting 'the pygmy shrew syndrome' using mitochondrial, Y
14	chromosomal and microsatellite markers. Heredity 107: 548-557.
15	McDevitt AD, Zub K, Kawałko A, Olivier MK, Herman JS, Wójcik JM. 2012. Climate and
16	refugial origin influence mitochondrial lineage distribution of weasels (Mustela nivalis)
17	in a phylogeographic suture zone. Biological Journal of the Linnean Society 106: 57-
18	69.
19	McNeely JA, Miller KR, Reid WV, Mittermeier RA, Werner TB. 1990. Conserving the
20	world's biological diversity. Washington, DC: World Conservation Union, World
21	Resources Institute, Conservation International, World Wildlife Fund–US, and the
22	World Bank.
23	Ohdachi SD, Hasegawa M, Iwasa MA, Vogel P, Oshida T, Lin L-K, Abe H. 2006.
24	Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial
25	cytochrome b gene sequences: with special reference to the Soricinae. Journal of
26	Zoology 270: 199-200.

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
24 25	
36	
30	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
50 57	
ر 20	
50 50	
60	
00	

> 1 O'Regan HJ. 2008. The Iberian Peninsula – corridor or cul-de-sac? Mammalian faunal 2 change and possible routes of dispersal in the last 2 million years. Quaternary 3 Science Reviews 27: 2136-2144. **Pazonyi P. 2004.** Mammalian ecosystem dynamics in the Carpathian Basin during the last 4 5 27,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 212: 295-314. Pedreschi D, García-Rodríguez O, Yannic G, Cantarello E, Diaz A, Golicher D, 6 Korstjens AH, Heckel G, Searle JB, Gillingham P, Hardouin EA, Stewart JR. 7 8 2019. Challenging the European southern refugium hypothesis: species-specific 9 structures versus general patterns of genetic diversity and differentiation among 10 small mammals. Global Ecology and Biogeography 28: 262-274. 11 Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch 12 B, Palmé A, Martín JP, Rendell S, Vendramin GG. 2003. Glacial refugia: hotspots 13 14 but not melting pots of genetic diversity. Science 300: 1563-1565. Provan J, Bennett KD. 2008. Phylogeographic insights into cryptic glacial refugia. Trends in 15 Ecology and Evolution 23: 564-571. 16 Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarisation 17 in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901-904. 18 19 Ramos-Onsins SE, Rozas J. 2002. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19: 2092-2100. 20 Reuther AU, Urdea P, Geiger C, Ivy-Ochs S, Niller H-P, Kubik PW, Heine K. 2007. Late 21 22 Pleistocene glacial chronology of the Pietrele Valley, Retezat Mountains, Southern Carpathians constrained by ¹⁰Be exposure ages and pedological investigations. 23 Quaternary International 164-165: 151-169. 24 Rogers AR, Harpending H. 1992. Population growth makes waves in the distribution of 25 26 pairwise genetic differences. Molecular Biology and Evolution 9: 552-569. 27 Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic 28

1 2				
3	1	inference and model choice across a large model space. Systematic Biology 61: 539-		
4 5	r	542		
6 7	2	J+Z.		
8	3	Rzebik-Kowalska B. 1998. Fossil history of shrews in Europe. In: Wójcik J, Wolsan M, eds.		
9 10	4	Evolution of shrews. Białowieża: Mammal Research Institute, Polish Academy of		
11 12	5	Sciences, 23-71.		
13	6	Schenekar T Weiss S 2011 High rate of calculation errors in mismatch distribution		
14	-			
16 17	7	analysis results in numerous false inferences of biological importance. Heredity 107:		
18 19	8	511-512.		
20 21	9	Searle JB, Kotlík P, Rambau RV, Marková S, Herman JS, McDevitt AD. 2009. The Celtic		
22	10	fringe of Britain: insights from small mammal phylogeography. Proceedings of the		
23 24 25	11	Royal Society Series B 276: 4287-4294.		
25 26	12	Senczuk G. Colangelo P. De Simone E. Aloise G. Castiglia R. 2017. A combination of		
27 28	12	long term fragmentation and glacial persistence drove the evolutionary history of the		
29 30	15	long term magmentation and glacial persistence drove the evolutionary history of the		
31 32	14	Italian wall lizard Podarcis siculus. BMC Evolutionary Biology 17: 6.		
33	15	Sikes RS, Gannon WL; the Animal Care and Use Committee of the American Society		
35	16	of Mammalogists. 2011. Guidelines of the American Society of Mammalogists for		
30 37	17	the use of wild mammals in research. Journal of Mammalogy 92: 235–253.		
38 39	18	Slatkin M. 1995. A measure of population subdivision based on microsatellite allele		
40 41 42	19	frequencies. Genetics 139: 457-462.		
42 43 44	20	Sommer RS, Nadachowski A. 2006. Glacial refugia of mammals in Europe: evidence from		
45 46	21	fossil records. Mammal Review 36: 251-265.		
47 48	22	Steinfartz S, Veith M, Tautz D. 2000. Mitochondrial sequence analysis of Salamandra taxa		
49 50	23	suggests old splits of major lineages and postglacial recolonizations of Central		
51 52	24	Europe from distinct source populations of Salamandra salamandra. Molecular		
53 54	25	<i>Ecology</i> 9: 397-410.		
55 56	26	Stewart JR, Lister AM. 2001. Cryptic northern refugia and the origins of the modern biota.		
57 58 59 60	27	Trends in Ecology and Evolution 16: 608-613.		
00				

3 4	1	Stewart JR, Lister AM, Barnes I, Dalén L. 2009. Refugia revisited: individualistic		
5 6	2	responses of species in space and time. Proceedings of the Royal Society Series B		
7 8	3	277: 661-671.		
9 10	4	Stojak J, McDevitt AD, Herman JS, Searle JB, Wójcik JM. 2015. Post-glacial colonization		
11 12	5	of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA		
13 14	6	of the common vole Microtus arvalis. Biological Journal of the Linnean Society 115:		
15 16	7	927-939.		
17 18 19	8	Stojak J, McDevitt AD, Herman JS, Kryštufek B, Uhlíková J, Purger JJ, Lavrenchenko		
20 21	9	LA, Searle JB, Wójcik JM. 2016. Between the Balkans and the Baltic:		
22 23	10	phylogeography of a common vole mitochondrial DNA lineage limited to Central		
24 25	11	Europe. <i>PLoS ONE</i> 11 : e0168621.		
26 27	12	Stojak J, Borowik T, Górny M, McDevitt AD, Wójcik JM. 2019. Climatic influences on the		
28 29	13	genetic structure and distribution of the common vole and field vole in Europe.		
30 31	14	Mammal Research 64: 19-29.		
32 33	15	Stojak J, Tarnowska E. 2019. Polish suture zone as the goblet of truth in post-glacial		
34 35 26	16	history of mammals in Europe. Mammal Research 64: 463-475.		
30 37 29	17	Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. 1998. Comparative		
30 39 40	18	phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7:		
40 41 42	19	453-464.		
43 44	20	Tzedakis PC, Emerson BC, Hewitt GM. 2013. Cryptic or mystic? Glacial tree refugia in		
45 46	21	northern Europe. Trends in Ecology and Evolution 28: 696-704.		
47 48	22	Vega R, Amori G, Aloise G, Cellini S, Loy A, Searle JB. 2010. Genetic and morphological		
49 50	23	variation in a Mediterranean glacial refugium: evidence from Italian pygmy shrews,		
51 52	24	Sorex minutus (Mammalia: Soricomorpha). Biological Journal of the Linnean Society		
53 54	25	100: 774-787.		
55 56	26	Vega R, Fløjgaard C, Lira-Noriega C, Nakazawa Y, Svenning J-C, Searle JB. 2010.		
57 58	27	Northern glacial refugia for the pygmy shrew Sorex minutus in Europe revealed by		
59 60				

1 2

2		
3 4	1	phylogeographic analyses and species distribution modelling. Ecography 33: 260-
5	2	271.
6 7 8	3	Vega R, McDevitt A, Kryštufek B, Searle JB. 2016. Ecogeographical patterns of
9 10	4	morphological variation in pygmy shrews Sorex minutus (Soricomorpha: Soricinae)
11 12	5	within a phylogeographical and continental-and-island framework. Biological Journal
13 14 15	6	of the Linnean Society 119: 799-815.
15 16 17	7	Willis KJ, van Andel TH. 2004. Trees or no trees? The environments of central and eastern
17 18 19	8	Europe during the Last Glaciation. Quaternary Science Reviews 23: 2369-2387.
20 21	9	Willis KJ, Rudner E, Sümegi P. 2000. The full-glacial forests of central and southeastern
22 23	10	Europe. Quaternary Research 53: 203-213.
24 25	11	Wójcik JM, Kawałko A, Marková S, Searle JB, Kotlík P. 2010. Phylogeographic
26 27	12	signatures of northward post-glacial colonization from high-latitude refugia: a case
28 29	13	study of bank voles using museum specimens. Journal of Zoology 281: 249-262.
30 31	14	Yannic G, Basset P, Hausser J. 2008. A new perspective on the evolutionary history of
32 33 34	15	western European Sorex araneus group revealed by paternal and maternal
35 36	16	molecular markers. Molecular Phylogenetics and Evolution 47: 237-250.
37 38	17	Zagorodniuk I. 1996. Rare shrew species in the territory of Ukraine: legends, facts and
39 40	18	diagnostics. Zoology Bulletin 30: 53-69. [In Russian]
41 42	19	Zaitsev MV, Voyta LL, Sheftel BI. 2014. The mammals of Russia and adjacent territories.
43 44	20	Lipotyphlans. Saint Petersburg: Nauka. [In Russian]
45 46	21	
47 48		
49		
50 51		
52		
53		
54		
55 56		
57		
58		
59		

Biological Journal of the Linnean Society

Additional Supporting Information may be found in the online version of this article at the

Table S2. Pairwise geographic distances (in Km, below diagonal) and genetic differentiation

Figure S1. Correlogram of pairwise geographic and genetic distances among Sorex minutus

ee perez

(Slatkin's F_{ST} , above diagonal) among *Sorex minutus* phylogroups and other geographic

Figure S2. Mismatch distributions of Sorex minutus phylogroups and other geographic

SUPPORTING INFORMATION

 Table S1. Sorex minutus dataset and sample information

phylogroups and other geographic groups.

publisher's website.

groups

groups.

2	
2 3 4	1
5 6	2
7 8	3
9 10	4
11 12	5
13 14	6
15 16	7
17 18	8
19 20	9
21 22 22	10
23 24 25	11
25 26 27	12
27 28 20	13
30 31	
32 33	14
34 35	
36 37	
38 30	
40 41	
42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59	

1 TABLES

6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	

Phylogroups	Ν	S	Р	Н	Hd	Hd (SD)	π	π(SD)	k
Ingroup	671	390	277	424	0.9899	0.0015	0.0143	0.0000	15.8670
Italian	26	51	19	18	0.9600	0.0230	0.0061	0.0004	6.7720
South Italian	4	16	0	4	1.0000	0.1770	0.0072	0.0020	8.0000
Balkan	22	55	28	17	0.9610	0.0290	0.0097	0.0009	10.7970
Iberian	6	15	6	5	0.9330	0.1220	0.0058	0.0013	6.4000
Western	283	147	83	102	0.9458	0.0067	0.0049	0.0002	5.4400
Irish	94	53	21	42	0.8920	0.0270	0.0020	0.0002	2.2180
Northern	330	311	197	278	0.9984	0.0005	0.0065	0.0002	7.1840
Continental groups									
Western (Continental)	15	28	11	13	0.9810	0.0310	0.0050	0.0006	5.5430
Northern (Continental)	226	241	142	188	0.9978	0.0007	0.0062	0.0002	6.9300
Other island groups									
Orkney Islands (All)	119	17	13	11	0.7720	0.0210	0.0027	0.0001	3.0140
Orkney Mainland	44	9	7	8	0.7550	0.0550	0.0013	0.0002	1.4790
Orkney South Ronaldsay	40	1	1	2	0.1420	0.0710	0.0001	0.0001	0.1420
Orkney Westray	33	0	0	1	0.0000	0.0000	0.0000	0.0000	0.0000
Orkney Hoy	2	2	0	2	1.0000	0.5000	0.0018	0.0009	2.0000
Belle Île	5	9	3	5	1.0000	0.1260	0.0038	0.0010	4.2000
British	91	146	61	80	0.9960	0.0030	0.0055	0.0003	6.1210

						t	TMRCA	95% HPD
Phylogroups	R_2	P-value	Fs	<i>P</i> -value	Т	(in years)	(in KYA)	(in KYA)
Ingroup	0.0198	0.0004	-741.2620	***	7.8590	6425	31.8	22.0-43.1
Italian	0.0521	0.0000	-5.8766	0.0152	6.7720	5536	7.2	4.8-10.2
South Italian	0.1822	0.1658	0.0687	0.2975	5.6340	-	7.7	4.2-12.1
Balkan	0.0830	0.0542	-3.6701	0.0768	7.1500	-	15.5	9.7-22.7
Iberian	0.1462	0.0888	0.0731	0.4290	4.0100	-	6.2	3.9-10.0
Western	0.0175	0.0004	-114.6990	***	3.6660	2997	9.3	6.7-12.6
Irish	0.0187	0.0000	-52.5664	***	1.3040	1066	5.9	4.9-6.9
Northern	0.0105	0.0000	-663.4730	***	6.5390	5346	11.8	7.7-16.8
Continental groups								
Western (Continental)	0.0793	0.0045	-6.0342	0.0035	5.5430	4532	-	-
Northern (Continental)	0.0128	0.0000	-386.4520	***	5.8010	4742	-	-
Other island groups								
Orkney Islands (All)	0.0880	0.5209	0.6044	0.6437	1.1740	-	-	-
Orkney Mainland	0.0839	0.2301	-1.6879	0.1892	1.4790	-	-	-
Orkney Hoy	0.5000	1.0000	NC	NC	2.0000)	-	-
Orkney South Ronaldsay	0.0712	0.1770	-0.2182	0.4420	0.1420	1-	-	-
Orkney Westray	NC	NC	NC	NC	NC		-	-
Belle Île	0.1915	0.2467	-1.6330	0.0732	3.5500	-	-	-
British	0.0161	0.0000	-122.8550	***	6.1210	5004	-	-

 R_2 = Ramos-Onsins and Rozas (2002) test of neutrality; *P*-value = *P*-values of expansion tests expected under neutrality (*** = *P* < 0.001); *Fs* = Demographic population expansion test (Fu 1997); *t* = (2*ut*) The mode of a mismatch distribution; *t* = Time of population expansion (for phylogroups with bi- or unimodal mismatch distributions); TMRCA = Time of divergence from the Most Recent Common Ancestor; 95% HPD = 95% Highest Posterior Density; KYA = Thousand Years Ago; NC = Not computable (not enough variation or samples)

For peer Review

1 FIGURE LEGENDS

Figure 1. A) Map of Eurasia showing the geographical distribution of the Eurasian pygmy shrew Sorex minutus (Hutterer et al., 2016). B) Sample localities of S. minutus used for this study and divided into mitochondrially encoded cytochrome b (MT-CYB) phylogroups (symbols with a dot represent samples used for inferring geographic barriers). C) Geographic barriers (red lines) for *S. minutus*; the barriers (up to a maximum of 10) were inferred using Monmonier's maximum difference algorithm which finds edges (boundaries) on the Voronoi tessellation (blue polygons) associated with the highest rate of change in genetic distances among a subset of continental samples (dots) interconnected with a Delaunay triangulation (green lines). Figure 2. Phylogenetic reconstructions of the Eurasian pygmy shrew Sorex minutus using MT-CYB sequences. A) Bayesian phylogenetic tree (with posterior probabilities on branches) showing the phylogroups. B) Haplotype phylogenetic network with haplotypes represented as nodes and their evolutionary relationships represented by edges; relevant haplotypes named at the centre of star-like patterns. Figure 3. Maximum Clade Credibility tree for 671 sequences of Sorex minutus from Europe and Siberia, annotated from 10,000 Bayesian genealogy sampling. Posterior probabilities of basal nodes indicate support for each lineage. Horizontal bars represent 95% HPD intervals for Time to Most Recent Common Ancestor (TMRCA) of each lineage (in thousand years ago, KYA). Figure 4. Historical demography of the Eurasian pygmy shrew Sorex minutus. A) Mismatch distributions of groups with significant signatures of population expansion. B) Bayesian Skyline Plots (BSP) of phylogroups with significant signatures of population expansion. The

1		
2 3 4	1	solid lines in BSP are median estimates and the shaded areas represent 95% Highest
5	2	Probability Densities (confidence intervals).
7 8	3	
9 10	4	
11 12	5	
13 14		
15 16		
17 18		
19 20		
21 22		
23 24 25		
25 26 27		
27 28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47 48		
40 49 50		
51 52		
53 54		
55 56		
57 58		
59 60		

60

209x297mm (300 x 300 DPI)

209x297mm (300 x 300 DPI)

- /

209x297mm (300 x 300 DPI)

Table S1.	Sorex	minutus	dataset	and	sample	inform	ation
10010 011	30107	matas	aataset	unu	Jumpic		acion

2	Table S1. Sorex	minutus dataset and sample	einformation						
2	ID	Country	County/Region	LongDEC	LatDEC	Phylogroup	Phylogroup 2	Source	Haplotype
5	ADAd0001	Andorra	Andorra	1.583333	42.583333	Western	ContinentalWestern	Mascheretti et al., 2003	Hap_1
4	ADAd0002	Andorra	Andorra	1.583333	42.583334	Western	ContinentalWestern	Mascheretti et al., 2003	Hap_2
5	ATDo1611	Austria	Donnerskirchen, Neusiedlersee	16.641250	47.895703	Balkan		This article	Hap_3
6	ATDo1612	Austria	Donnerskirchen, Neusiedlersee	16.641250	47.895704	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_4
7	ATII0001	Austria	Illmitz	16.845403	47.764706	Balkan		This article	Hap_5
,	ATII0003	Austria	Illmitz	16.845403	47.764707	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_6
ð	ATII0004	Austria	Illmitz	16.845403	47.764708	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_7
9	ATII0005	Austria	Illmitz	16.845403	47.764709	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_8
10	BAOs5670	Bosnia Herzegovina	Osjecenica	16.288743	44.239741	Balkan		This article	Hap_9
11	BYLE0026	Belorusia	Lesnojeozero	26.691825	54.830219	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_10
12	CHBa0001	Switzerland	Bassins, Vaud	6.650000	46.533333	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_11
12	CHBa5698	Switzerland	Bassins, Vaud	6.231061	46.462789	Northern	ContinentalNorthern	This article	Hap_12
13	CHBa5712	Switzerland	Bassins, Vaud	6.231061	46.462790	Balkan		This article	Hap_13
14	CHBa5756	Switzerland	Bassins, Vaud	6.231061	46.462791	Northern	ContinentalNorthern	Vega et al., 2010a	Hap_14
15	CHBr5421	Switzerland	Bretolet, Valais	6.865181	46.168864	Italian		Vega et al., 2010a	Hap_15
16	CHCE0889	Switzerland	Chalet des Enfants, Vaud	6.664442	46.574206	Balkan		Vega et al., 2010a	Hap_16
17	CHCG5272	Switzerland	Chalet a Gobet, Vaud	6.692656	46.564611	Northern	ContinentalNorthern	Vega et al., 2010a	Hap_17
17	CHCh7622	Switzerland	Champmartin, Vaud	6.997358	46.932742	Northern	ContinentalNorthern	Vega et al., 2010a	Hap_18
18	CHCu7581	Switzerland	Chablais Cudrefin, Vaud	7.026558	46.959283	Northern	ContinentalNorthern	Vega et al., 2010a	Hap_19
19	CHGI7628	Switzerland	Gletterens, Fribourg	6.936106	46.892650	Northern	ContinentalNorthern	Vega et al., 2010a	Hap_20
20	CHOC7576	Switzerland	Ostende Chevroux, Vaud	6.917847	46.894258	Northern	ContinentalNorthern	This article	Hap_20
21	CHOC7583	Switzerland	Ostende Chevroux, Vaud	6.917847	46.894259	Northern	ContinentalNorthern	Vega et al., 2010a	Hap_21
21	CHPN5442	Switzerland	Pont de Nant, Vaud	7.094307	46.249087	Italian		Vega et al., 2010a	Hap_22
22	CHVI4747	Switzerland	Val d'Illiez, Valais	6.892742	46.204300	Northern	ContinentalNorthern	Vega et al., 2010a	Hap_23
23	CHVI4748	Switzerland	Val d'Illiez, Valais	6.892742	46.204301	Italian		Vega et al., 2010a	Hap_24
24	CZBo0153	Czech Republic	Bohemia	13.569494	49.864183	Balkan		This article	Hap_25
25	CZBo0154	Czech Republic	Bohemia	13.569494	49.864184	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_26
26	CZBo0155	Czech Republic	Bohemia	13.569494	49.864185	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_27
20	CZBo0156	Czech Republic	Bohemia	13.569494	49.864186	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_28
27	CZCJ0001	Czech Republic	Ceske Jiretin	13.566667	50.683333	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_29
28	CZDe0009	Czech Republic	Decin City, bern Bohemia	14.198800	50.805900	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_30
29	CZDe0010	Czech Republic	Decin City, bern Bohemia	14.198800	50.805901	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_31
30	CZMo0794	Czech Republic	Flaje, Most district, bern Bohemia, Krusne Hoy Mountains	13.537700	50.600300	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_32
21	CZOI0039	Czech Republic	Oleska	14.909572	49.948594	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_33
22	CZSS0237	Czech Republic	Srnin Sumava Mountains	13.475481	49.065617	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_34
32	CZSS0238	Czech Republic	Srnin Sumava Mountains	13.475481	49.065618	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_35
33	CZSS4767	Czech Republic	Srnin Sumava Mountains	13.475481	49.065619	Italian		Vega et al., 2010a	Hap_36
34	CZSS4838	Czech Republic	Srnin Sumava Mountains	13.475481	49.065620	Italian		Vega et al., 2010a	Hap_36
35	CZVI0001	Czech Republic	Vltava River West Side, Ceske Budejovice, Southern Bohemia	14.412928	48.911359	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_37
26	CZVI0002	Czech Republic	Vltava River West Side, Ceske Budejovice, Southern Bohemia	14.412928	48.911360	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_37
50	CZVI0003	Czech Republic	Vltava River West Side, Ceske Budejovice, Southern Bohemia	14.412928	48.911361	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_38
3/	CZVI0004	Czech Republic	Vltava River West Side, Ceske Budejovice, Southern Bohemia	14.412928	48.911362	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_39
38	CZVI0005	Czech Republic	Vltava River East Side, Ceske Budejovice, Southern Bohemia	14.419040	48.911533	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_40
39	CZVI0006	Czech Republic	Vltava River East Side, Ceske Budejovice, Southern Bohemia	14.419040	48.911534	Italian		Vega et al., 2010a	Hap_41
40	CZVI0007	Czech Republic	Vltava River East Side, Ceske Budejovice, Southern Bohemia	14.419040	48.911535	Italian		Vega et al., 2010a	Hap_41
-10 //1	CZVI0008	Czech Republic	Vltava River East Side, Ceske Budejovice, Southern Bohemia	14.419040	48.911536	Italian		Vega et al., 2010a	Hap_41
41	DEBK0001	Germany	Beltringserharder Koog/Nordfriesland (BKN)	8.784617	54.675639	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_42
42		-							_

Biological Journal of the Linnean Society

Biological Journal of the Linnean Society

1									
2	DEBK0020	Germany	Beltringserharder Koog/Nordfriesland (BKN)	8.784617	54.675640	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_43
2	DEBK0021	Germany	Beltringserharder Koog/Nordfriesland (BKN)	8.784617	54.675641	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_42
5	DEEb3996	Germany	Eberswalde	13.810889	52.833108	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_44
4	DEEn0005	Germany	Entin	10.603836	54.135908	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_45
5	DEHM0001	Germany	Hartz Mountains	10.666667	51.750000	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_46
6	DENN0002	Germany	Norderoor Nördl Haselund/Nordfriesland	9.175908	54.589636	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_47
7	DENN0003	Germany	Norderoor Nördl Haselund/Nordfriesland	9.175908	54.589637	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_48
, Q	DEOe0001	Germany	Oetisheim	8.791475	48.970792	Italian		Vega et al., 2010a	Hap_49
0	DESa0003	Germany	Saxony Anholt Gardelegen	11.395539	52.477892	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_50
9	DESa0005	Germany	Saxony Anholt Gardelegen	11.395539	52.477893	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_51
10	DKAm0001	Denmark	Amager	12.583333	55.583333	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_52
11	DKB00001	Denmark	Bornholm	15.000000	55.033333	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_53
12	DKB00002	Denmark	Bornholm	15.000000	55.033334	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_54
12	DKFy0001	Denmark	Fyn	10.800000	55.316667	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_55
15	DKLa0001	Denmark	Langeland	10.716667	54.950000	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_56
14	DKMa0005	Denmark	Mandø	8.552122	55.277164	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_57
15	DKMa0006	Denmark	Mandø	8.552122	55.277165	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_58
16	DKMa0007	Denmark	Mandø	8.552122	55.277166	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_59
17	DKRi0003	Denmark	Viking centre - Ribe	8.762797	55.327044	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_60
17	ESBa9709	Spain	Pyrenees	1.113629	42.564995	Western	ContinentalWestern	McDevitt et al., 2011	Hap_61
18	ESEM0069	Spain	Espinosa de los Monteros, Cantabria	-3.450258	43.142322	Western	ContinentalWestern	McDevitt et al., 2011	Hap_62
19	ESNa0047	Spain	Navarra	-1.645500	43.175708	Western	ContinentalWestern	McDevitt et al., 2011	Hap_63
20	ESNa0861	Spain	Navarra	-1.645500	43.175709	Western	ContinentalWestern	McDevitt et al., 2011	Hap_64
21	ESNa1131	Spain	Navarra	-1.645500	43.175710	Western	ContinentalWestern	McDevitt et al., 2011	Hap_64
22	ESNa1286	Spain	Navarra	-1.645500	43.175711	Western	ContinentalWestern	McDevitt et al., 2011	Hap_63
22	ESPE0047	Spain	Picos de Europa, Castilla-Leon	-4.999678	43.104939	Iberian		This article	Hap_65
23	ESPE0057	Spain	Picos de Europa, Castilla-Leon	-4.999678	43.104940	Iberian		This article	Hap_66
24	ESRa0002	Spain	Rascafria	-3.883333	40.900000	Iberian		Mascheretti et al., 2003	Hap_67
25	ESRa0003	Spain	Rascafria	-3.883333	40.900001	Iberian		Mascheretti et al., 2003	Hap_68
26	ESRa0640	Spain	Rascafria	-3.879364	40.903628	Iberian		This article	Hap_69
27	ESRa5939	Spain	Rascafria	-3.879364	40.903629	Iberian		This article	Hap_67
27	FILa0001	Finland	Lammi	25.116667	61.066667	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_70
28	FISa0001	Finland	Saortu	27.250000	61.733333	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_71
29	FRBI0001	France	Brittany	-3.195833	47.337500	Western	Bellelle	McDevitt et al., 2011	Hap_72
30	FRBI0002	France	Brittany	-3.195833	47.337501	Western	Bellelle	McDevitt et al., 2011	Hap_73
31	FRBI0005	France	Brittany	-3.200000	47.370833	Western	Bellelle	McDevitt et al., 2011	Hap_74
32	FRBI0011	France	Brittany	-3.122222	47.308333	Western	Bellelle	McDevitt et al., 2011	Hap_75
22	FRBIOOLP	France	Brittany	-3.150000	47.350000	Western	Bellelle	McDevitt et al., 2011	Hap_76
22	FRBr2McD	France	Brittany	-1.625000	48.466667	Northern	ContinentalNorthern	McDevitt et al., 2011	Hap_//
34	FRCi0003	France	Cistriere Auvergne, Loire	3.540781	45.445856	Western	ContinentalWestern	McDevitt et al., 2011	Hap_78
35	FRDi3003	France	Divonne Les Bains, Ain	6.143175	46.356817	Italian		Vega et al., 2010a	Hap_36
36	FREB0001	France	Etang des Balceres, Des Angles, Pyrenees	2.080242	42.552475	Western	ContinentalWestern	McDevitt et al., 2011	Hap_/9
37	FRFr0139	France	Fressenville, Abbeville, Normandie	0.001231	48.931408	Northern	ContinentalNorthern	McDevitt et al., 2011	Hap_80
20	FRLB0066	France	Lac des Bouillouses, Font-Romeu, Pyrenees	1.992267	42.561417	Western	ContinentalWestern	McDevitt et al., 2011	Hap_81
38	FRLi3McD	France	Limousin	2.133333	45.700000	Western	ContinentalWestern	McDevitt et al., 2011	Hap_82
39	FRLV0002	France	Lans en Vercors	5.589069	45.127964	Italian		Vega et al., 2010a	Hap_83
40	FRM00001	France	Morlaix	-3.833333	48.583333	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_84
41	FRNe0004	France	Nexon	1.250000	45.750000	Western	ContinentalWestern	McDevitt et al., 2011	Hap_76
42	FRPa0001	France	Paimpont, Broceliande forest, SW Renns, etang du pas du haux	-2.279472	48.001333	Western	ContinentalWestern	McDevitt et al., 2011	Hap_85
7 <u>7</u> 10									
45			Biological Jour	nal of the l	innean So	rioty			

Biological Journal of the Linnean Society

1									
2	FRPC0001	France	Pas de Calais	2.302110	50.566000	Western	ContinentalWestern	McDevitt et al., 2011	Hap_86
2	FRPP5540	France	Pont Plancoet, Bretagne	-4.198681	48.651008	Northern	ContinentalNorthern	McDevitt et al., 2011	Hap_84
5	FRSM0001	France	nord, pont saint Marco	-2.040306	48.614361	Northern	ContinentalNorthern	McDevitt et al., 2011	Hap_87
4	GBAn0001	Wales	Anglesey	-4.340278	53.199167	Northern	Britain	McDevitt et al., 2011	Hap_88
5	GBAn0038	Wales	Anglesey	-4.666667	53.302778	Northern	Britain	McDevitt et al., 2011	Hap_89
6	GBAn0042	Wales	Anglesey	-4.382222	53.192778	Northern	Britain	McDevitt et al., 2011	Hap_90
7	GBAn0044	Wales	Anglesey	-4.330000	53.188889	Northern	Britain	McDevitt et al., 2011	Hap_91
,	GBAn0046	Wales	Anglesey	-4.435278	53.361667	Western	CelticFringeUKmain	McDevitt et al., 2011	Hap_92
8	GBAr0001	Scotland	Arran	-5.285556	55.556389	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_93
9	GBAr0002	Scotland	Arran	-5.285556	55.556390	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_94
10	GBAr0003	Scotland	Arran	-5.099167	55.485833	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_95
11	GBAr0004	Scotland	Arran	-5.128056	55.450000	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_96
12	GBAr0006	Scotland	Arran	-5.128056	55.450001	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_97
12	GBAr0007	Scotland	Arran	-5.128056	55.450002	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_98
13	GBAr0008	Scotland	Arran	-5.128056	55.450003	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_97
14	GBBe0740	Scotland	Benbecula	-7.332778	57.427778	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_99
15	GBBF0035	England	Bracknell Forest	-0.743611	51.450278	Northern	Britain	McDevitt et al., 2011	Hap_100
16	GBBF0036	England	Bracknell Forest	-0.743611	51.450279	Northern	Britain	McDevitt et al., 2011	Hap_101
17	GBCa0001	Wales	Carmarthenshire	-4.155278	51.760280	Northern	Britain	McDevitt et al., 2011	Hap_102
10	GBCa0002	Wales	Carmarthenshire	-4.147778	51.752500	Northern	Britain	McDevitt et al., 2011	Hap_103
18	GBCa0003	Wales	Carmarthenshire	-4.147778	51.752501	Northern	Islands	McDevitt et al., 2011	Hap_104
19	GBCa0004	Wales	Carmarthenshire	-4.581667	51.792222	Northern	Islands	McDevitt et al., 2011	Hap_105
20	GBCn0901	Scotland	Canna	-6.511667	57.059444	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_106
21	GBCn0905	Scotland	Canna	-6.511667	57.059445	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_106
22	GBCn0906	Scotland	Canna	-6.511667	57.059446	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_106
22	GBCo00C1	England	Cornwall	-4.728333	50.475278	Northern	Islands	McDevitt et al., 2011	Hap_107
25	GBCo00C2	England	Cornwall	-4.728333	50.475279	Western	CelticFringeUKmain	McDevitt et al., 2011	Hap_108
24	GBCo0139	Wales	Conwy	-3.833333	53.283333	Northern	Britain	McDevitt et al., 2011	Hap_109
25	GBCr1100	Wales	Cardiganshire	-4.061111	52.438056	Northern	Britain	McDevitt et al., 2011	Hap_110
26	GBCu00B1	England	Cumbria	-3.234722	54.867778	Northern	Britain	McDevitt et al., 2011	Hap_111
27	GBCu00B2	England	Cumbria	-3.234/22	54.867779	Northern	Britain	McDevitt et al., 2011	Hap_112
20	GBCu00D1	England	Cumbria	-3.234/22	54.867780	Northern	Britain	McDevitt et al., 2011	Hap_112
20	GBCu0642	England	Cumbria	-3.152222	54.066111	Northern	Britain	McDevitt et al., 2011	Hap_113
29	GBCu0677	England	Cumbria	-2.968611	55.013889	Northern	Britain	McDevitt et al., 2011	Hap_114
30	GBDe0001	England	Derbyshire	-1.636944	52.944167	Northern	Britain	McDevitt et al., 2011	Hap_115
31	GBDe0002	England	Derbysnire	-1.636944	52.944168	Northern	Britain	McDevitt et al., 2011	Hap_116
32	GBDe0953	England	Derbysnire	-1.488889	53.061944	Northern	Britain	McDevitt et al., 2011	Hap_117
22	GBD00458	England	Dorset	-2.363333	50.830556	Northern	Britain	McDevitt et al., 2011	Hap_118
21	GBD00459	England	Dorset	-2.303333	50.830557	Northern	Britain	McDevitt et al., 2011	нар_90
34	GBD00460	England	Dorset	-2.303333		Mostorn	Britain	McDevitt et al., 2011	Hap_119
35	GBD00461	England	Dorset	-2.303555	50.850559	Western	Dritein	McDevitt et al., 2011	Hap_120
36	GBD00462	England	Dorset	-2.303555	50.850500	Northern	Britain		Hap_116
37	GBEC0001	England		-0.910007	53.800007	Northern	Britain	Mascheretti et al., 2003	Hap_121
38			East Hendred	-1.333333	51.50000/	Mostorr	Isidiius ColticEringol IVmain	MaDovitt et al., 2003	Пар_122 Цар 122
20	GBERU1//	Scotland	Easter Ross	-3.91/500	57.753050	Western	CelticEringeUKmain	McDevitt et al., 2011	Hap_123
39		Scotland		-3.91/500	57.753057	Northorn	Pritain	McDevitt et al., 2011	Пар_123 Цар 124
40		Scotland		-3.91/500	51.133038	Northern	Dritain	Monoporatti et al., 2011	Пар_124 Цар 125
41		Scotland	Gask	-3.000007	50.550000	Northorn	Dritain	Mascheretti et al., 2003	Hap 126
42	GDGdUUUZ	Scolland	Gask	-3.000007	100022.00	Northern	DIILdIII	wascherell et al., 2003	1797_170

43

1									
2	GBGi0001	Scotland	Gigha	-5.741033	55.683333	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_127
2	GBGi0002	Scotland	Gigha	-5.741033	55.683334	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_127
5	GBGi0003	Scotland	Gigha	-5.741033	55.683335	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_127
4	GBGi0004	Scotland	Gigha	-5.741033	55.683336	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_127
5	GBGi0005	Scotland	Gigha	-5.741033	55.683337	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_127
6	GBGi0006	Scotland	Gigha	-5.741033	55.683338	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_127
7	GBGI0001	England	Gloucestershire	-2.645000	51.788333	Northern	Islands	McDevitt et al., 2011	Hap_33
,	GBGI0043	England	Gloucestershire	-2.109722	51.651111	Northern	Britain	McDevitt et al., 2011	Hap_128
8	GBGI0047	England	Gloucestershire	-2.103056	51.809167	Northern	Britain	McDevitt et al., 2011	Hap_129
9	GBGr0001	England	Grittenham	-1.966667	51.550000	Northern	Britain	Mascheretti et al., 2003	Hap_130
10	GBHa0039	England	Hampshire	-1.080000	51.187222	Western	CelticFringeUKmain	McDevitt et al., 2011	Hap_131
11	GBHa0040	England	Hampshire	-1.225833	51.358889	Northern	Britain	McDevitt et al., 2011	Hap_132
12	GBHa0041	England	Hampshire	-1.225833	51.358890	Northern	Britain	McDevitt et al., 2011	Hap_133
12	GBHo0001	Scotland	Ноу	-3.333333	58.916667	Western	Orkney	McDevitt et al., 2011	Hap_134
13	GBHo0868	Scotland	Ноу	-3.382778	58.880278	Western	Orkney	McDevitt et al., 2011	Hap_135
14	GBIM0001	Isle of Man	Isle of Man	-4.483333	54.150000	Northern	Britain	Mascheretti et al., 2003	Hap_136
15	GBIM0002	Isle of Man	Isle of Man	-4.483333	54.150001	Northern	Britain	Mascheretti et al., 2003	Hap_137
16	GBIM0600	Isle of Man	Isle of Man	-4.483333	54.150002	Northern	Britain	McDevitt et al., 2011	Hap_138
17	GBIM0601	Isle of Man	Isle of Man	-4.351111	54.291389	Northern	Britain	McDevitt et al., 2011	Hap_139
17	GBIM0602	Isle of Man	Isle of Man	-4.451667	54.172500	Northern	Britain	McDevitt et al., 2011	Hap_138
18	GBIn0180	Scotland	Inverness	-3.485556	57.341111	Northern	Britain	McDevitt et al., 2011	Hap_140
19	GBIn0181	Scotland	Inverness	-4.416944	57.454444	Northern	Britain	McDevitt et al., 2011	Hap_141
20	GBIn0182	Scotland	Inverness	-4.416944	57.454445	Northern	Britain	McDevitt et al., 2011	Hap_142
21	GBIn0407	Scotland	Inverness	-3.960556	57.336389	Northern	Britain	McDevitt et al., 2011	Hap_143
21	GBIs0001	Scotland	Islay	-6.233333	55.750000	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_144
22	GBIs0002	Scotland	Islay	-6.2333 <mark>3</mark> 3	55.750001	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_145
23	GBIs0003	Scotland	Islay	-6.233333	55.750002	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_146
24	GBIs0004	Scotland	Islay	-6.233333	55.750003	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_147
25	GBIW0001	England	Isle of Wight	-1.252778	50.668889	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_148
26	GBIW0002	England	Isle of Wight	-1.252778	50.668890	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_148
20	GBIW0003	England	Isle of Wight	-1.471944	50.688889	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_149
27	GBJu0815	Scotland	Jura	-5.943511	55.852778	Northern	Britain	McDevitt et al., 2011	Hap_150
28	GBJu0816	Scotland	Jura	-5.943511	55.852779	Northern	Britain	McDevitt et al., 2011	Hap_150
29	GBKe0009	England	Kent	1.257778	51.126944	Northern	Britain	McDevitt et al., 2011	Hap_151
30	GBKe0010	England	Kent	0.933889	51.067222	Northern	Britain	McDevitt et al., 2011	Hap_152
21	GBKe0972	England	Kent	0.960278	50.995278	Northern	Britain	McDevitt et al., 2011	Hap_153
51	GBKi0795	Scotland	Kintyre	-5.582778	55.281944	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_154
32	GBKk0099	Scotland	Kirkcudbright	-3.823333	54.866944	Northern	Islands	McDevitt et al., 2011	Hap_114
33	GBKk0100	Scotland	Kirkcudbrightshire	-3.823333	54.866945	Northern	Britain	McDevitt et al., 2011	Hap_90
34	GBKk0589	Scotland	Kirkcudbrightshire	-3.781389	54.975556	Northern	Britain	McDevitt et al., 2011	Hap_155
35	GBLa1071	England	Lancashire	-2.432778	53.812222	Northern	Britain	McDevitt et al., 2011	Hap_156
35	GBLC0001	Wales	Lyn Conwy	-3.833333	53.283334	Northern	Islands	Mascheretti et al., 2003	Hap_157
30	GBLC0002	Wales	Lyn Conwy	-3.833333	53.283335	Northern	Britain	Mascheretti et al., 2003	Hap_158
37	GBLe0497	England	Leicestershire	-1.133333	52.633333	Northern	Britain	McDevitt et al., 2011	Hap_159
38	GBLo0001	England	Longnor	-1.883333	53.166667	Northern	Britain	Mascheretti et al., 2003	Hap_160
39	GBMa0001	England	Macclesfield	-2.033333	53.250000	Northern	Islands	Mascheretti et al., 2003	Hap_161
40	GBMu0858	Scotland	Mull	-5.837778	56.510000	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_94
41	GBMu0859	Scotland	Mull	-5.837778	56.510001	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_162
41	GBMu0860	Scotland	Mull	-5.861111	56.404722	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_163
42							5	,	• –

- 44 45
- 46

1									
2	GBMu0861	Scotland	Mull	-6.200556	56.333611	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_164
2	GBNo0001	England	Norfolk	0.591944	52.748056	Northern	Britain	McDevitt et al., 2011	Hap_165
3	GBNo0002	England	Norfolk	0.591944	52.748057	Northern	Britain	McDevitt et al., 2011	Hap_90
4	GBNo0003	England	Norfolk	0.556111	52.765000	Northern	Britain	McDevitt et al., 2011	Hap_166
5	GBNo0004	England	Norfolk	0.570556	52.762778	Northern	Britain	McDevitt et al., 2011	Hap_167
6	GBNU0319	Scotland	N. Uist	-7.322500	57.518056	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_99
7	GBNU0325	Scotland	N. Uist	-7.322500	57.518057	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_168
/	GBNY00F2	England	North Yorkshire	-1.073611	53.936389	Northern	Britain	McDevitt et al., 2011	Hap_169
8	GBNY00F3	England	North Yorkshire	-1.073611	53.936390	Northern	Britain	McDevitt et al., 2011	Hap_170
9	GBNY00Y1	England	North Yorkshire	-1.073611	53.936391	Northern	Britain	McDevitt et al., 2011	Hap_171
10	GBOM0001	Scotland	Orkney Mainland	-2.913056	58.906667	Western	Orkney	McDevitt et al., 2011	Hap_172
11	GBOM0002	Scotland	Orkney Mainland	-2.913056	58.906668	Western	Orkney	McDevitt et al., 2011	Hap_172
17	GBOM0003	Scotland	Orkney Mainland	-2.913056	58.906669	Western	Orkney	McDevitt et al., 2011	Hap_172
12	GBOM0004	Scotland	Orkney Mainland	-2.913056	58.906670	Western	Orkney	McDevitt et al., 2011	Hap_172
13	GBOM0260	Scotland	Orkney Mainland	-2.925556	58.918611	Western	Orkney	McDevitt et al., 2011	Hap_173
14	GBOM0261	Scotland	Orkney Mainland	-3.293056	59.128333	Western	Orkney	McDevitt et al., 2011	Hap_174
15	GBOM0262	Scotland	Orkney Mainland	-2.878333	58.904444	Western	Orkney	McDevitt et al., 2011	Hap_173
16	GBOM0418	Scotland	Orkney Mainland	-3.051389	58.944444	Western	Orkney	McDevitt et al., 2011	Hap_175
10	GBOM0419	Scotland	Orkney Mainland	-3.224444	58.970000	Western	Orkney	McDevitt et al., 2011	Hap_134
17	GBPe0005	Wales	Pembrokeshire	-4.657500	51.772500	Northern	Islands	McDevitt et al., 2011	Hap_176
18	GBPe0006	Wales	Pembrokeshire	-4.657500	51.772501	Northern	Islands	McDevitt et al., 2011	Hap_177
19	GBPe0026	Wales	Pembrokeshire	-4.953889	51.650833	Northern	Islands	McDevitt et al., 2011	Hap_178
20	GBPe0042	Wales	Pembrokeshire	-4.953889	51.650834	Northern	Islands	McDevitt et al., 2011	Hap_179
21	GBPr0132	Scotland	Perthshire	-4.003333	56.346389	Northern	Britain	McDevitt et al., 2011	Hap_180
21	GBRa0001	Scotland	Raasay	-6.033333	57.400000	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_181
22	GBRa0002	Scotland	Raasay	-6.033333	57.400001	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap 182
23	GBRa0003	Scotland	Raasay	-6.033333	57.400002	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap_181
24	GBRa0004	Scotland	Raasay	-6.033333	57.400003	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap 181
25	GBRu0104	Scotland	Rum	-6.269167	56.987778	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap 106
25	GBRu0105	Scotland	Rum	-6.330000	57.029722	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap 106
26	GBRu0127	Scotland	Rum	-6.280278	57.012500	Western	CelticFringeUKIslands	McDevitt et al., 2011	Hap 183
27	GBSG0044	England	South Gloucestershire	-2.331667	51.561667	Northern	Britain	McDevitt et al., 2011	Hap 184
28	GBSh0006	England	Shropshire	-2.259722	52.574167	Northern	Islands	McDevitt et al., 2011	Hap 185
29	GBSh0007	England	Shropshire	-2.259722	52.574168	Northern	Britain	McDevitt et al., 2011	Hap 186
30	GBSo0002	England	Somerset	-2.659722	51.285556	Northern	Islands	McDevitt et al., 2011	Hap 187
30	GBSR0273	Scotland	S. Ronaldsav	-2.974722	58.780833	Western	Orknev	McDevitt et al., 2011	Hap 188
31	GBSR0274	Scotland	S Ronaldsav	-2.921389	58.758611	Western	Orkney	McDevitt et al 2011	Hap 188
32	GBSR0612	Scotland	S. Ronaldsay	-3.021667	58.820833	Western	Orkney	McDevitt et al., 2011	Hap 188
33	GBSR0613	Scotland	S Ronaldsav	-3.021667	58.820834	Western	Orkney	McDevitt et al 2011	Hap 189
34	GBSt0005	England	Staffordshire	-2.290278	52,723333	Northern	Britain	McDevitt et al. 2011	Hap 190
27 27	GBSt0030	England	Staffordshire	-2.092500	53.098333	Northern	Britain	McDevitt et al. 2011	Hap 191
30	GBSu0005	England	Suffolk	0.518889	52,247778	Northern	Britain	McDevitt et al., 2011	Hap 192
36	GBSu0006	England	Suffolk	0 541111	52 276944	Northern	Britain	McDevitt et al., 2011	Han 193
37	GBSu0007	England	Suffolk	0.541111	52.276945	Northern	Islands	McDevitt et al., 2011	Han 194
38	GBSU0008	England	Suffolk	0.541111	52.276946	Northern	Britain	McDevitt et al. 2011	Hap 195
30	GBSU0227	Scotland	S Llist	-7 370833	57 323611	Western	CelticFringel IKIslands	McDevitt et al., 2011	Han 99
10	GBSU0310	Scotland	S. Uist	-7 370833	57 323311	Western	CelticFringel IKIclands	McDevitt et al., 2011	Han 196
40	GBW20050	England	0. Ulat Wapwickshira	-1 2/13056	57 12722	Northern	Rritain	McDevitt et al., 2011	Han 197
41	GBWa0050	England	Wanwickshire	-1 243056	52 127222	Northern	Britain	McDevitt et al., 2011	Han 197
42	00,000001	Ligidilu	wai wicksini e	1.2-3030	52.12/225	Northern	Diftain		10p_137

- 44 45
- 46

Biological Journal of the Linnean Society

1									
2	GBWi0042	England	Wiltshire	-2.149444	51.397500	Northern	Britain	McDevitt et al., 2011	Hap_198
2	GBWk0037	England	Wokingham	-0.903889	51.366389	Western	CelticFringeUKmain	McDevitt et al., 2011	Hap_199
3	GBWk0038	England	Wokingham	-0.903889	51.366390	Western	CelticFringeUKmain	McDevitt et al., 2011	Hap_200
4	GBWI0669	England	Walney	-3.227500	54.077222	Northern	Britain	McDevitt et al., 2011	Hap_201
5	GBWI0670	England	Walney	-3.227500	54.077223	Northern	Britain	McDevitt et al., 2011	Hap_201
6	GBWI0671	England	Walney	-3.227500	54.077224	Northern	Britain	McDevitt et al., 2011	Hap_201
7	GBWo0009	England	Worcestershire	-2.124722	52.310000	Northern	Britain	McDevitt et al., 2011	Hap_202
,	GBWo0011	England	Worcestershire	-2.029444	52.412500	Northern	Islands	McDevitt et al., 2011	Hap_203
8	GBWo0012	England	Worcestershire	-2.413333	52.266667	Northern	Britain	McDevitt et al., 2011	Hap_204
9	GBWR0176	Scotland	Wester Ross	-5.331667	57.481944	Western	CelticFringeUKmain	McDevitt et al., 2011	Hap_205
10	GBWR0178	Scotland	Wester Ross	-5.331667	57.481945	Western	CelticFringeUKmain	McDevitt et al., 2011	Hap_206
11	GBWS0011	England	West Sussex	0.307500	50.844722	Northern	Islands	McDevitt et al., 2011	Hap_207
12	HUTa3711	Hungary	Táska village, Fehérvíz moorland	17.500000	46.616667	Balkan		This article	Hap_208
12	IEAI0001	Ireland	Aran Island	-8.528647	54.993439	Western	Irish	McDevitt et al., 2011	Hap_64
13	IECa0001	Ireland	Camolin	-6.416667	52.583333	Western	Irish	Mascheretti et al., 2003	Hap_209
14	IECI0001	Ireland	Cloghan	-7.750000	53.250000	Western	Irish	Mascheretti et al., 2003	Hap_210
15	IECo0095	Ireland	Cork	-7.828344	51.949406	Western	Irish	McDevitt et al., 2011	Hap_211
16	IECo0098	Ireland	Cork	-7.828344	51.949407	Western	Irish	McDevitt et al., 2011	Hap_211
17	IECo0099	Ireland	Cork	-7.828344	51.949408	Western	Irish	McDevitt et al., 2011	Hap_211
10	IECo0100	Ireland	Cork	-7.828344	51.949409	Western	Irish	McDevitt et al., 2011	Hap_212
18	IECo0101	Ireland	Cork	-7.828344	51.949410	Western	Irish	McDevitt et al., 2011	Hap_211
19	IECo0102	Ireland	Cork	-7.828344	51.949411	Western	Irish	McDevitt et al., 2011	Hap_213
20	IECo0103	Ireland	Cork	-7.828344	51.949412	Western	Irish	McDevitt et al., 2011	Hap_214
21	IECo0104	Ireland	Cork	-7.828344	51.949413	Western	Irish	McDevitt et al., 2011	Hap_215
22	IECo0105	Ireland	Cork	-7.828344	51.949414	Western	Irish	McDevitt et al., 2011	Hap_216
22	IECo0108	Ireland	Cork	-7.828344	51.949415	Western	Irish	McDevitt et al., 2011	Hap_217
25	IECt0001	Ireland	Castlebridge	-6.500000	52.416667	Western	Irish	Mascheretti et al., 2003	Hap_218
24	IEDN0001	Ireland	Donegal	-8.300000	54.650000	Western	Irish	McDevitt et al., 2011	Hap_219
25	IEDN0009	Ireland	Donegal	-8.300000	54.650001	Western	Irish	McDevitt et al., 2011	Hap_220
26	IEDy0001	Ireland	Derry	-7.250000	55.000000	Western	Irish	McDevitt et al., 2011	Hap_64
27	IEDy0003	Ireland	Derry	-7.250000	55.000001	Western	Irish	McDevitt et al., 2011	Hap_221
2, 20	IEDy0004	Ireland	Derry	-7.250000	55.000002	Western	Irish	McDevitt et al., 2011	Hap_64
20	IEDy0005	Ireland	Derry	-7.250000	55.000003	Western	Irish	McDevitt et al., 2011	Hap_221
29	IEDy0006	Ireland	Derry	-7.250000	55.000004	Western	Irish	McDevitt et al., 2011	Hap_221
30	IEDy0007	Ireland	Derry	-7.250000	55.000005	Western	Irish	McDevitt et al., 2011	нар_221
31	IEDy0008	Ireland	Derry	-7.250000	55.000006	Western	Irish	McDevitt et al., 2011	Hap_221
32	IEDy0009	Ireland	Derry	-7.250000	55.000007	Western	Irish	McDevitt et al., 2011	Нар_221
22	IEDy0010	Ireland	Derry	-7.250000	55.000008	Western	Irish	McDevitt et al., 2011	Нар_221
22	IEDY0011	Ireland	Derry	-7.250000	55.000009	western	Irish	McDevitt et al., 2011	Нар_221
34	IEDy0012	Ireland	Derry	-7.250000	55.000010	Western	Irish	McDevitt et al., 2011	Нар_221
35	IEGa0039	Ireland	Galway	-8.866667	53.150000	Western	Irish	McDevitt et al., 2011	нар_222
36	IEGa0046	Ireland	Galway	-8.866667	53.150001	Western	Irish	McDevitt et al., 2011	нар_223
37	IEGa0047	Ireland	Galway	-8.966667	53.133333	Western	Irish	McDevitt et al., 2011	Hap_64
20	IEGa0050	Ireland	Galway	-8.966667	53.133334	Western	Irish	McDevitt et al., 2011	нар_224
20	IEGaUU57	Ireland	Galway	-8.966667	53.133335	Western	Irish	McDevitt et al., 2011	нар_225 Цар_226
39	IEGW0001	ireland	Donegal	-8.383333	55.050000	western	irish	McDevitt et al., 2011	нар_226
40	IEGW0026	Ireland	Donegal	-8.383333	55.050001	western	Irish	McDevitt et al., 2011	нар_226
41	IEG WOOTH	ireiand		-8.383333		Western	irisn	McDevitt et al., 2011	пар_226 Нар. 226
42	ILGWUUSD	Ireianu	Donegai	-0.303333	33.030003	western	111511	wcDevill et al., 2011	nap_220

Biological Journal of the Linnean Society

- 45
- 46

43

1									
2	IEKe0001	Ireland	Kerry	-9.533333	52.055556	Western	Irish	McDevitt et al., 2011	Hap_64
2	IEKe0002	Ireland	Kerry	-9.533333	52.055557	Western	Irish	McDevitt et al., 2011	Hap_227
3	IEKe0004	Ireland	Kerry	-9.533333	52.055558	Western	Irish	McDevitt et al., 2011	Hap_64
4	IEKe0005	Ireland	Kerry	-9.533333	52.055559	Western	Irish	McDevitt et al., 2011	Hap_64
5	IEKeP3kY	Ireland	Kerry	-9.533333	52.055560	Western	Irish	McDevitt et al., 2011	Hap_228
6	IEKi0084	Ireland	Kildare	-6.97778	53.279722	Western	Irish	McDevitt et al., 2011	Hap_64
7	IEKi0085	Ireland	Kildare	-6.977778	53.279723	Western	Irish	McDevitt et al., 2011	Hap_64
,	IEKi0086	Ireland	Kildare	-6.97778	53.279724	Western	Irish	McDevitt et al., 2011	Hap_229
0	IEKi0087	Ireland	Kildare	-6.97778	53.279725	Western	Irish	McDevitt et al., 2011	Hap_64
9	IEKi0089	Ireland	Kildare	-6.977778	53.279726	Western	Irish	McDevitt et al., 2011	Hap_230
10	IELaOLSa	Ireland	Laois	-7.500000	52.783333	Western	Irish	McDevitt et al., 2011	Hap_231
11	IELaOLSb	Ireland	Laois	-7.500000	52.783334	Western	Irish	McDevitt et al., 2011	Hap_232
12	IELaOLSc	Ireland	Laois	-7.500000	52.783335	Western	Irish	McDevitt et al., 2011	Hap_64
12	IELe0001	Ireland	Leitrim	-7.786111	53.958333	Western	Irish	McDevitt et al., 2011	Hap_233
15	IELe0007	Ireland	Leitrim	-7.786111	53.958334	Western	Irish	McDevitt et al., 2011	Hap_64
14	IELe0008	Ireland	Leitrim	-7.768889	53.991111	Western	Irish	McDevitt et al., 2011	Hap_64
15	IELe0018	Ireland	Leitrim	-7.773333	53.986667	Western	Irish	McDevitt et al., 2011	Hap_64
16	IELe0019	Ireland	Leitrim	-7.773333	53.986668	Western	Irish	McDevitt et al., 2011	Hap_64
17	IELi0058	Ireland	Limerick	-8.834167	52.584167	Western	Irish	McDevitt et al., 2011	Hap_234
10	IELi0059	Ireland	Limerick	-8.834167	52.584168	Western	Irish	McDevitt et al., 2011	Hap_235
10	IELi0060	Ireland	Limerick	-8.834167	52.584169	Western	Irish	McDevitt et al., 2011	Hap_236
19	IELi0068	Ireland	Limerick	-8.834167	52.584170	Western	Irish	McDevitt et al., 2011	Hap_64
20	IELi0069	Ireland	Limerick	-8.769167	52.617500	Western	Irish	McDevitt et al., 2011	Hap_64
21	IELi0080	Ireland	Limerick	-8.769167	52.617501	Western	Irish	McDevitt et al., 2011	Hap_64
22	IELi0082	Ireland	Limerick	-8.769167	52.617502	Western	Irish	McDevitt et al., 2011	Hap_237
22	IELo011a	Ireland	Louth	-6.183333	54.033333	Western	Irish	McDevitt et al., 2011	Hap_238
23	IELO011b	Ireland	Louth	-6.183333	54.033334	Western	Irish	McDevitt et al., 2011	Hap_238
24	IELOU11C	Ireland	Louth	-6.183333	54.033335	Western	Irish	McDevitt et al., 2011	Hap_238
25	IEMIa0020	Ireland	Мауо	-9.250000	54.166667	Western	Irish	McDevitt et al., 2011	Нар_239
26	IEMa0025	Ireland	Mayo	-9.250000	54.166668	Western	Irish	McDevitt et al., 2011	Hap_239
27	IEMa0032	Ireland	Mayo	-9.316667	54.233333	Western	Irish	McDevitt et al., 2011	Нар_240
28	IEMIa0037	Ireland	Mayo	-9.316667	54.233334	Western	Irish	McDevitt et al., 2011	Hap_241
20	IEOf0019	Ireland	Offaly	-7.750000	53.250001	western	Irish	McDevitt et al., 2011	Hap_242
29	IEOI0026		Offaly	-7.750000	53.250002	Western	Irish	McDevitt et al., 2011	нар_64
30	IE010046	Ireland	Offaly	-7.750000	53.250005	Western	Irish	Meesberetti et al., 2011	Hap_242
31	IE310001	Ireland	Siane	-0.00000	53.750000	Western	Irish	MaScherelli et al., 2003	⊓aµ_04 ⊔ap 242
32		Ireland	Waterford	-7.555555	52.175000	Western	Irish	McDevitt et al., 2011	Hap 64
33	IEW/20002	Ireland	Waterford	-7.333333	52.175001	Western	Irish	McDevitt et al., 2011	Hap 229
24	IEW/a0003	Ireland	Waterford	-7.333333	52.175002	Western	Irish	McDevitt et al., 2011	Hap 2/3
34	IEW/a0004	Ireland	Waterford	-7.333333	52.175003	Western	Irish	McDevitt et al., 2011	Hap_245
35	IEW/80003	Ireland	Whiting Bay	-7 833333	51 833333	Western	Irish	Mascheretti et al., 2011	Han 244
36	IEW/B0001	Ireland	Whiting Bay	-7 833333	51 833333	Western	Irish	Mascheretti et al., 2003	Hap 245
37	IEW/B0002	Ireland	Whiting Bay	-7.833333	51 833335	Western	Irish	Mascheretti et al., 2003	Hap_245
38	IEWe0005	Ireland	Weyford	-7.033355 -6 8/1667	57 232323	Western	Irich	McDevitt et al., 2003	Han 246
30	IFWe0008	Ireland	Wexford	-6.841667	52.233333	Western	Irich	McDevitt et al., 2011	Han 64
10	IFWe0018	Ireland	Wexford	-6 841667	52.233334	Western	Irich	McDevitt et al. 2011	Han 246
40	IEWe0031	Ireland	Wexford	-6.841667	52.233336	Western	Irish	McDevitt et al. 2011	Hap 64
41	IEWe0033	Ireland	Wexford	-6.841667	52.233338	Western	Irish	McDevitt et al. 2011	Hap 246
42				0.041007	52.200000			11020111 Of U., 2011	p_=0

- 44 45
- 46

1									
2	IEWe0036	Ireland	Wexford	-6.416667	52.583334	Western	Irish	McDevitt et al., 2011	Hap_247
2	IEWe0054	Ireland	Wexford	-6.416667	52.583335	Western	Irish	McDevitt et al., 2011	Hap_64
5	IEWe0055	Ireland	Wexford	-6.416667	52.583336	Western	Irish	McDevitt et al., 2011	Hap_64
4	IEWe020a	Ireland	Wexford	-6.841667	52.233337	Western	Irish	McDevitt et al., 2011	Hap_64
5	IEWe023a	Ireland	Wexford	-6.841667	52.233339	Western	Irish	McDevitt et al., 2011	Hap_248
6	IEWe023b	Ireland	Wexford	-6.841667	52.233340	Western	Irish	McDevitt et al., 2011	Hap_64
7	IEWi00Qa	Ireland	Wicklow	-6.383333	53.000000	Western	Irish	McDevitt et al., 2011	Hap_64
,	IEWi00Qb	Ireland	Wicklow	-6.383333	53.000001	Western	Irish	McDevitt et al., 2011	Hap_249
0	IEWi00Qc	Ireland	Wicklow	-6.383333	53.000002	Western	Irish	McDevitt et al., 2011	Hap_64
9	ITAb0001	Italy	Abruzzo	14.000000	42.000000	Italian		Mascheretti et al., 2003	Hap_250
10	ITAb0002	Italy	Abruzzo	14.000000	42.000001	Italian		Mascheretti et al., 2003	Hap_251
11	ITCa5342	Italy	Camigliatello, Calabria	16.445953	39.338611	SouthItalian		Vega et al., 2010a	Hap_252
12	ITGe0001	Italy	San Carlo di Cese	8.832010	44.477300	Italian		Vega et al., 2010a	Hap_253
12	ITGe0003	Italy	Molino Vecchio, Valbrevenna	9.064750	44.555300	Italian		Vega et al., 2010a	Hap_254
15	ITMa00NT	Italy	Majella Mountains, Abruzzo	13.928433	42.285431	Italian		Vega et al., 2010a	Hap_251
14	ITMa0175	Italy	Majella Mountains, Abruzzo	14.115697	42.083411	Italian		Vega et al., 2010a	Hap_255
15	ITMa0176	Italy	Majella Mountains, Abruzzo	14.115697	42.083412	Italian		Vega et al., 2010a	Hap_251
16	ITMa0177	Italy	Majella Mountains, Abruzzo	14.115697	42.083413	Italian		Vega et al., 2010a	Hap_256
17	ITMa0178	Italy	Majella Mountains, Abruzzo	14.115697	42.083414	Italian		Vega et al., 2010a	Hap_251
10	ITMa0179	Italy	Majella Mountains, Abruzzo	14.115697	42.083415	Italian		Vega et al., 2010a	Hap_255
10	ITPr0001	Italy	Prasota, Mazzo di Valtellina, Sondrio	10.248014	46.286975	Italian		Vega et al., 2010a	Hap_257
19	ITPr0004	Italy	Prasota, Mazzo di Valtellina, Sondrio	10.248014	46.286976	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_258
20	ITSi0011	Italy	La Sila, Cosenza	16.491144	39.352214	SouthItalian		Vega et al., 2010a	Hap_259
21	ITSi0017	Italy	La Sila, Cosenza	16.491144	39.352215	SouthItalian		Vega et al., 2010a	Hap_260
22	115:0021	Italy	La Sila, Cosenza	16.491144	39.352216	SouthItalian		Vega et al., 2010a	Hap_261
23	111g0049	Italy	Torgnon, Valle d'Aosta, Piemonte	7.571240	45.807200	Northern	ContinentalNorthern	This article	Hap_262
23	11101578	Italy	Toscana, Arezzo, Castelfranco di Sopra	11.550125	43.617606	Italian		Vega et al., 2010a	Нар_263
24	IIIr0001	Italy	l rento	11.833333	46.250000	Italian	Constitution and a literation of	Mascheretti et al., 2003	Hap_264
25	11110002	Italy	Irento	11.833333	46.250001	Northern	ContinentalNorthern	Mascheretti et al., 2003	Нар_265
26		Litnuania	Vilnius	25.316667	54.666667	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_266
27		Litnuania	Vilnius	25.31000/	54.000008	Northern	ContinentaiNorthern	Mascheretti et al., 2003	Hap_267
28		Montenegro	Lovcen	18.818/74	42.405763	Balkan			нар_268
20		Montenegro	Mount Komovi	19.058139	42.694703	Balkan		This article	Hap_269
29		Macedonia	Jakupica Mountains	21.418801	41.689061	Balkan		This article	Hap_270
30		Macedonia	Jakupica Mountains	21.410001	41.089002	Dalkan		This article	Hap_271
31		Macedonia	Mount Galicica	20.650600	41.101494	Dalkan		Maasharatti at al. 2002	⊓aµ_272 ⊔an 272
32		Nacedonia	Pelister Mountains	E 222222	41.000000 51.600000	Northorn	ContinentalNorthern	Mascheretti et al., 2003	Hap_275
33	NLC20001	Netherlands	Collectored h Holland	1 603670	52 830300	Northern	ContinentalNorthern		Hap 274
24	NLC80002	Netherlands		6.091540	52.030500	Northern	ContinentalNorthern	Vega et al., 2010b	$H_{2} = 0$
54	NLD:0062	Netherlands	Dielein, Geldenand	5 175208	51 474775	Northern	ContinentalNorthern	Vega et al., 2010b	Hap 50
35	NI Er0017	Netherlands	Eroisland Amoland Buron	5 796036	53 445303	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_30
36	NI Er0040	Netherlands	Friesland, Ameland, Buren	5 796036	53 445303	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_90
37		Netherlands	Overijssel, National Park de Hoge Velmy	6 4 5 6 9 9 4	52 / 95319	Northern	ContinentalNorthern	Vega et al., 2010b	Han 276
38	NUW/20001	Netherlands	Wagoningon	5 666667	51 966667	Northern	ContinentalNorthern	Mascharotti at al. 2003	Hap_270
30	NI 7V0044	Netherlande	Zeeuws Vlaanderen	5,722117	52,718147	Northern	ContinentalNorthern	Vega et al. 2005	Hap 274
10	NOAs0301	Norway	near Arendal	8,450000	58.600000	Northern	ContinentalNorthern	McDevitt et al 2011	Han 278
40	OMHa0003	Scotland	Orkney Mainland Harray	-3 190167	59,033728	Western	Orkney	McDevitt et al., 2011	Hap 134
41	OMHa0004	Scotland	Orkney Mainland, Harray	-3 190167	59,033728	Western	Orkney	McDevitt et al. 2011	Hap 134
42	2	Coolana	charge maintaina, rianay	3.130107	55.055,EJ		e. wiey		

Biological Journal of the Linnean Society

1									
2	OMHa0006	Scotland	Orkney Mainland, Harray	-3.190167	59.033730	Western	Orkney	McDevitt et al., 2011	Hap_279
2	OMHa0009	Scotland	Orkney Mainland, Harray	-3.190167	59.033731	Western	Orkney	McDevitt et al., 2011	Hap_279
3	OMHa0011	Scotland	Orkney Mainland, Harray	-3.190167	59.033732	Western	Orkney	McDevitt et al., 2011	Hap_279
4	OMHo0014	Scotland	Orkney Mainland, Hobbister	-3.067628	58.946361	Western	Orkney	McDevitt et al., 2011	Hap_175
5	OMHo0015	Scotland	Orkney Mainland, Hobbister	-3.067628	58.946362	Western	Orkney	McDevitt et al., 2011	Hap_175
6	OMKi0013	Scotland	Orkney Mainland, Kirbister	-3.110083	58.949994	Western	Orkney	McDevitt et al., 2011	Hap_175
7	OMSa0001	Scotland	Orkney Mainland, Sandwick	-3.297169	59.048261	Western	Orkney	McDevitt et al., 2011	Hap_172
,	OMSa0002	Scotland	Orkney Mainland, Sandwick	-3.297169	59.048262	Western	Orkney	McDevitt et al., 2011	Hap_134
8	OMSe0001	Scotland	Orkney Mainland, Settiscarth	-3.103428	59.050525	Western	Orkney	McDevitt et al., 2011	Hap_172
9	OMSe0002	Scotland	Orkney Mainland, Settiscarth	-3.103428	59.050526	Western	Orkney	McDevitt et al., 2011	Hap_172
10	OMSO0006	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950019	Western	Orkney	McDevitt et al., 2011	Hap_175
11	OMS00007	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950020	Western	Orkney	McDevitt et al., 2011	Hap_173
12	OMSO0008	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950021	Western	Orkney	McDevitt et al., 2011	Hap_173
12	OMS00009	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950022	Western	Orkney	McDevitt et al., 2011	Hap_173
13	OMS00010	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950023	Western	Orkney	McDevitt et al., 2011	Hap_173
14	OMS00011	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950024	Western	Orkney	McDevitt et al., 2011	Hap_280
15	OMS00013	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950025	Western	Orkney	McDevitt et al., 2011	Hap_173
16	OMS00014	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950026	Western	Orkney	McDevitt et al., 2011	Hap_173
17	OMS00015	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950027	Western	Orkney	McDevitt et al., 2011	Hap_173
10	OMS00017	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950028	Western	Orkney	McDevitt et al., 2011	Hap_280
18	OMS00020	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950029	Western	Orkney	McDevitt et al., 2011	Hap_281
19	OMS00026	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950030	Western	Orkney	McDevitt et al., 2011	Hap_173
20	OMS00029	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950031	Western	Orkney	McDevitt et al., 2011	Hap_173
21	OMSO0036	Scotland	Orkney Mainland, Saint Ola	-2.950003	58.950032	Western	Orkney	McDevitt et al., 2011	Hap_173
22	OMTa0001	Scotland	Orkney Mainland, Tankerness	-2.850033	58.950033	Western	Orkney	McDevitt et al., 2011	Hap_173
22	OMTa0002	Scotland	Orkney Mainland, Tankerness	-2.850033	58.950034	Western	Orkney	McDevitt et al., 2011	Hap_173
23	OMTa0003	Scotland	Orkney Mainland, Tankerness	-2.850033	58.950035	Western	Orkney	McDevitt et al., 2011	Hap_1/3
24	OMTa0004	Scotland	Orkney Mainland, Tankerness	-2.850033	58.950036	Western	Orkney	McDevitt et al., 2011	Hap_173
25		Scotland	Orkney Mainland, Tankerness	-2.850033	58.950037	Western	Orkney	McDevitt et al., 2011	Hap_173
26		Scotland	Orkney Mainland, Tankerness	-2.850033	58.950038	Western	Orkney	McDevitt et al., 2011	Hap_173
27		Scotland		-2.850033	58.950039	western	Orkney	McDevitt et al., 2011	Hap_173
28	0001700008	Scotland	Orkney Mainland, Tankerness	-2.850033	58.950040	Western	Orkney	McDevitt et al., 2011	Hap_281
20	0101130009	Scotland	Orkney Mainland, Tankerness	-2.850033	58.950041	Western	Orkney	McDevitt et al., 2011	Hap_173
29	05010000	Scotland	Orkney South Ronaldsay, Grimness	-2.916700	58.810078	Western	Orkney	McDevitt et al., 2011	Hap_188
30	03010007	Scotland	Orkney South Ronaldsay, Grimness	-2.910700	58.810079	Western	Orkney	McDevitt et al., 2011	Hap 188
31	OSGr0008	Scotland	Orkney South Ronaldsay, Grimness	-2.910700	58 816681	Western	Orkney	McDevitt et al., 2011	Hap 188
32	OSGr0010	Scotland	Orkney South Ronaldsay, Grimness	-2.916700	58 816682	Western	Orkney	McDevitt et al., 2011	Hap 188
33	OSGr0010	Scotland	Orknov South Ronaldsay, Grimnoss	-2.916700	58 816683	Western	Orkney	McDevitt et al., 2011	Han 188
34	OSGr0012	Scotland	Orkney South Ronaldsay, Grimness	-2 916700	58 816684	Western	Orkney	McDevitt et al., 2011	Han 188
24	OSGr0012	Scotland	Orkney South Ronaldsay, Grimness	-2 916700	58 816685	Western	Orkney	McDevitt et al., 2011	Han 188
35	OSGr0014	Scotland	Orkney South Ronaldsay, Grimness	-2 916700	58 816686	Western	Orkney	McDevitt et al., 2011	Han 188
36	OSGr0015	Scotland	Orkney South Ronaldsay, Grimness	-2 916700	58 816687	Western	Orkney	McDevitt et al., 2011	Han 188
37	OSGr0016	Scotland	Orkney South Ronaldsay, Grimness	-2.916700	58.816688	Western	Orkney	McDevitt et al. 2011	Hap 188
38	OSGr0018	Scotland	Orkney South Ronaldsay, Grimness	-2.916700	58.816689	Western	Orkney	McDevitt et al. 2011	Hap 188
30	OSGr0020	Scotland	Orkney South Ronaldsay, Grimness	-2.916700	58.816690	Western	Orkney	McDevitt et al 2011	Hap 188
10	OSGr0023	Scotland	Orkney South Ronaldsay, Grimness	-2,916700	58.816691	Western	Orknev	McDevitt et al 2011	Hap 188
40	OSGr0025	Scotland	Orkney South Ronaldsay, Grimness	-2.916700	58.816692	Western	Orknev	McDevitt et al., 2011	Hap 188
41	OSGr0027	Scotland	Orkney South Ronaldsay, Grimness	-2.916700	58.816693	Western	Orknev	McDevitt et al., 2011	Hap 188
42									

43

1									
2	OSGr0028	Scotland	Orkney South Ronaldsay, Grimness	-2.916700	58.816694	Western	Orkney	McDevitt et al., 2011	Hap_188
2	OSGr0029	Scotland	Orkney South Ronaldsay, Grimness	-2.916700	58.816695	Western	Orkney	McDevitt et al., 2011	Hap_188
5	OSGr0039	Scotland	Orkney South Ronaldsay, Grimness	-2.916700	58.816696	Western	Orkney	McDevitt et al., 2011	Hap_188
4	OSWW0006	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766808	Western	Orkney	McDevitt et al., 2011	Hap_188
5	OSWW0007	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766809	Western	Orkney	McDevitt et al., 2011	Hap_188
6	OSWW0008	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766810	Western	Orkney	McDevitt et al., 2011	Hap_188
7	OSWW0009	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766811	Western	Orkney	McDevitt et al., 2011	Hap_188
, 0	OSWW0010	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766812	Western	Orkney	McDevitt et al., 2011	Hap_188
8	OSWW0011	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766813	Western	Orkney	McDevitt et al., 2011	Hap_188
9	OSWW0012	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766814	Western	Orkney	McDevitt et al., 2011	Hap_188
10	OSWW0013	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766815	Western	Orkney	McDevitt et al., 2011	Hap_188
11	OSWW0014	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766816	Western	Orkney	McDevitt et al., 2011	Hap_188
12	OSWW0015	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766817	Western	Orkney	McDevitt et al., 2011	Hap_188
12	OSWW0017	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766818	Western	Orkney	McDevitt et al., 2011	Hap_188
15	OSWW0018	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766819	Western	Orkney	McDevitt et al., 2011	Hap_189
14	OSWW0019	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766820	Western	Orkney	McDevitt et al., 2011	Hap_188
15	OSWW0020	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766821	Western	Orkney	McDevitt et al., 2011	Hap_188
16	OSWW0021	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766822	Western	Orkney	McDevitt et al., 2011	Hap_188
17	OSWW0024	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766823	Western	Orkney	McDevitt et al., 2011	Hap_188
10	OSWW0025	Scotland	Orkney South Ronaldsay, Wind Wick	-2.940694	58.766824	Western	Orkney	McDevitt et al., 2011	Hap_189
10	OWLS0001	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283347	Western	Orkney	McDevitt et al., 2011	Hap_134
19	OWLS0002	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283348	Western	Orkney	McDevitt et al., 2011	Hap_134
20	OWLS0003	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283349	Western	Orkney	McDevitt et al., 2011	Hap_134
21	OWLS0005	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283350	Western	Orkney	McDevitt et al., 2011	Hap_134
22	OWLS0024	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283351	Western	Orkney	McDevitt et al., 2011	Hap_134
22	OWLS0025	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283352	Western	Orkney	McDevitt et al., 2011	Hap_134
23	OWLS0036	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283353	Western	Orkney	McDevitt et al., 2011	Hap_134
24	OWLS0037	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283354	Western	Orkney	McDevitt et al., 2011	Hap_134
25	OWLS0038	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283355	Western	Orkney	McDevitt et al., 2011	Hap_134
26	OWLS0055	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283356	Western	Orkney	McDevitt et al., 2011	Hap_134
27	OWLS0059	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283357	Western	Orkney	McDevitt et al., 2011	Hap_134
28	OWLS0060	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283358	Western	Orkney	McDevitt et al., 2011	Hap_134
20	OWLS0061	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283359	Western	Orkney	McDevitt et al., 2011	Hap_134
29	OWLS0072	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283360	Western	Orkney	McDevitt et al., 2011	Hap_134
30	OWLS0073	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283301	Western	Orkney	McDevitt et al., 2011	нар_134
31	OWL50082	Scotland	Orkney Westray, Loch of Swartmill	-2.933353	59.283302	Western	Orkney	McDevitt et al., 2011	Hap_134
32	0WLS0084	Scotland	Orkney Westray, Loch of Swartmill	-2.955555	59.205505	Western	Orkney	McDevitt et al., 2011	Пар_134 Цар 124
33	01120084	Scotland	Orkney Westray, Loch of Swartmill	-2.955555	59.205504	Western	Orknov	McDevill et al., 2011	∏aµ_154 ∐ap_124
24	OWL30065	Scotland		-2.955555	59.205505	Western	Orkney	McDevitt et al., 2011	Пар_134 Цар 124
34	OWN20002	Scotland		-2.000/4/	59.255556	Western	Orknov	McDevill et al., 2011	∏aµ_154 ∐ap_124
35	00000	Scotland		2.000747	59.233335	Western	Orknov	McDevill et al., 2011 McDevitt et al., 2011	Hap 124
36	0WNe0004	Scotland		-2.000/4/	59.255500	Western	Orkney	McDevill et al., 2011	Пар_134 Цар 124
37	00000	Scotland		-2.000/4/	59.255501	Western	Orknov	McDevill et al., 2011 McDevitt et al., 2011	∏aµ_154 ∐ap_124
38	00000	Scotland	Orknov Westray, Ness	-2.000/4/	50 722262	Western	Orkney	McDovitt of al., 2011	Han 12/
20		Scotland	Orknov Westray, Ness	-2.000/4/	50 222261	Western	Orkney	McDevitt et al., 2011	Han 124
27		Scotland	Orknov Westray, Ness	-2.000/4/	50 722265	Western	Orkney	McDovitt of al., 2011	Han 12/
40	OW/Ne0026	Scotland	Orkney Westray, Ness	-2.000747	59.233303	Western	Orkney	McDevitt et al., 2011	Han 12/
41		Scotland	Orkney Westray, Ness	-2 8667/7	59.233300	Western	Orkney	McDevitt et al., 2011	Han 12/
42	C WINCOUZO	Colland	Orniey westray, 14055	2.000747	55.255507		CIRICY	wobevill et al., 2011	110P_134

Biological Journal of the Linnean Society

2 OWN0130 Sociard Sociard Own014 Sociard Chemy Wester, Ness -2.867/2 5.32180 Western Ohrey McDott et al., 201 Hag, 14 0 OWN050 Sociard Ohreny Wester, Ness -2.867/2 5.2130 Western Ohreny McDott et al., 201 Hag, 134 5 PL Onion Ohreny Wester, Ness -2.867/2 5.21307 Western Onion the distribution Hag, 201 5 PL Onion Plando Balachia 1.2867/2 5.30100 Northern Coministration the al. 201 Hag, 201 7 PL Distration Plando Balachia 1.2867/2 5.30144 Northern Coministration therm This article Hag, 321 9 PL PL Sociard Outloak 2.187/10 6111333 Northern Coministration therm This article Hag, 321 10 PL Sociard Outloak 2.187/10 6111333 Northern Coministration therm This article Hag, 321	1									
0 OWNERDIAL Southand Outway Westay, Ness -2.86777 9.21379 Westam Othersy McDenti ral, 2011 Hag, 14 4 OWNERDIA Southand Orkny Westay, Ness -2.86773 9.21370 Westam Othersy McDenti ral, 2011 Hag, 14 5 PLIDS, 9000 Poland Biscoin 12.86777 9.1307 McDenti ral, 2011 Hag, 201 6 PLIDS, 90757 Poland Biscoin 16.568622 9.85440 Northern Onthere Northern This arise Hag, 301 7 PLIDS, 90757 Poland Biscoine 16.568622 9.85440 Northern ContineenMonthern This arise Hag, 301 10 PLID_, 90757 Poland Biscoine 2.187701 50.11430 Northern ContineenMonthern This arise Hag, 333 11 PLID_, 90754 Poland Biscoine 2.238000 3.03080 Northern ContineesMonthern This arise Hag, 335 12 PLID_, 40995 Poland Corana <td>2</td> <td>OWNe0030</td> <td>Scotland</td> <td>Orkney Westray, Ness</td> <td>-2.866747</td> <td>59.233368</td> <td>Western</td> <td>Orkney</td> <td>McDevitt et al., 2011</td> <td>Hap_134</td>	2	OWNe0030	Scotland	Orkney Westray, Ness	-2.866747	59.233368	Western	Orkney	McDevitt et al., 2011	Hap_134
OWN-0002 Sociand Orney Watery, Ness -2.86747 63.3330 Wettern Otherny McCardt at 2.211 Hag, 14 5 P.B., 7466 Poland Balcon 12.607180 23.3330 Wettern Otherny McCardt at 2.211 Hag, 134 7 P.B., 27466 Poland Balcon 12.607180 S.60000 Poland Balcon 12.60718 S.60000 Poland Hag, 212 7 P.B., 20757 Poland Bociale 16.86822 S.85444 Morhern Continenilhorithern The atilities Hag, 331 9 P.B., 20131 Poland Balatoxica 21.87701 60.14330 Norhern Continenilhorithern The atilities Hag, 333 11 P.B., 20137 Poland Canna 22.32000 42.0773 Norhern Continenilhorithern The atilities Hag, 334 12 P.C., 4082 Poland Canna Baldoxica 22.32000 42.0773 Norhern Continenilhorithern The atilities Hag, 337 13	2	OWNe0041	Scotland	Orkney Westray, Ness	-2.866747	59.233369	Western	Orkney	McDevitt et al., 2011	Hap_134
4 OWNe0103 Sociated Denny Weatry, Neas -3.86747 0.86878 Western Otheres McLowit et al., 2011 Hen, 305 6 PLB0.001 Pointed Biscon 22.36667 50.6000 Northern Continent/Northern Mascrutteri 14, 2001 Hep, 303 7 PLB0.0017 Pointed Biocalice 15.86822 53.95444 Morthern Continent/Northern The article Hep, 303 8 PLB0.00177 Pointed Biocalice 12.847401 S0.144300 Morthern Continent/Northern The article Hep, 303 10 PLB_20181 Pointed Ganacocce 21.847401 S0.14330 Morthern Continent/Northern The article Hep, 383 11 PLC_40787 Pointed Carna 22.33200 42.1735 Morthern Continent/Northern The article Hep, 384 11 PLC_43738 Pointed Carna 22.31200 33.00208 Morthern Continent/Northern The article Hep, 384 11	3	OWNe0062	Scotland	Orkney Westray, Ness	-2.866747	59.233370	Western	Orkney	McDevitt et al., 2011	Hap_134
5 PLBg. 74-60 Poind Bogdanic 15.07600 Scattlenet Monther The antice Hag. 359 7 PLB_0.0080 Poind Bobolec 16.06602 51.00000 Northern Continent Monthern This antice Hag. 331 9 PLB_0.0080 Poind Bobolec 16.06602 51.00004 Northern Continent Monthern This antice Hag. 331 9 PLB_0.00767 Poind Bobolec 16.06602 51.00044 Northern Continent Monthern This antice Hag. 331 10 PLG_1.00777 Poind Battoxice 21.0771 Sol 11.0120 Northern Continent Monthern This antice Hag. 331 11 PLG_1.4077 Poind Carana Subotototo 22.32000 42.01735 Northern Continent Monthern This antice Hag. 331 12 PLG_1.4089 Poind Carana Biolotototo 22.32020 Sol 20080 Northern Continent Monthern This antice Hag. 346 12 PLG_2.43743 Poind	4	OWNe0103	Scotland	Orkney Westray, Ness	-2.866747	59.233371	Western	Orkney	McDevitt et al., 2011	Hap_134
6 PLBD001 Poind Bitucon 22.56672 50.40000 Northem Continental/Northem Margenetic at ,2003 Pag. 282 8 PLB., 2077 Poind Babolice 16.566922 53.55644 Northem Continental/Northem This article Hag. 301 9 PLB., 2073 Poind Babolice 15.666922 53.05644 Northem Continental/Northem This article Hag. 301 10 PLB., 20731 Poind Babolice 21.57771 01.11433 Northem Continental/Northem This article Hag. 351 11 PLC, 40797 Poind Cana 22.32930 42.10735 Northem Continental/Northem This article Hag. 337 13 PLC, 40797 Poind Canam Biadobicica 22.318102 53.32888 Northem Continental/Northem This article Hag. 337 14 PLC, 43732 Poind Canam Biadobicica 22.318102 53.32888 Northem Continental/Northem This article Hag. 337 15	5	PLBg_71469	Poland	Bogdaniec	15.067890	52.688519	Northern	ContinentalNorthern	This article	Hap_359
PLBs_06080 Poland Bobolice 16.08022 80.06444 Northam Cantenstalkortham The article Her_151 8 PLB_05075 Poland Bobolice 16.08022 20.0044 Northam Contenstalkortham This article Her_311 9 PLB_25218 Poland Bratlacovice 21.87470 50.11430 Northam Contenstalkortham This article Her_311 10 PLB_252181 Poland Bratlowice 21.87470 50.11430 Northam Contenstalkortham This article Her_313 11 PLD_252181 Poland Gratham 22.23500 Northam ContinentialNortham This article Her_331 12 PLC_45745 Poland Cortan Signostock 22.33500 Northam ContinentialNortham This article Her_331 13 PLC_457453 Poland Cortan Signostock 23.33103 Northam ContinentialNortham This article Her_341 14 PLC_457450 Poland Corta	6	PLBI0001	Poland	Blizocin	22.266667	51.600000	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_282
9 PLBD_80757 Poland Bocolice 16.38822 33.55441 Northem ContinentiNforthem This article Hap_351 9 PLB_12212 Poland Biscoloce 21.874701 50.11333 Northem ContinentiNforthem This article Hap_351 11 PLB_12212 Poland Biscoloce 21.874701 50.11333 Northem ContinentiNforthem This article Hap_3351 12 PLC_04080 Poland Cirana 22.20500 42.10735 Northem ContinentiNforthem This article Hap_335 13 PLC_40080 Poland Cirana 22.320109 42.10735 Northem ContinentiNforthem This article Hap_335 14 PLC_40383 Poland Cirana 22.321109 3.320283 Northem ContinentiNforthem This article Hap_334 15 PLC_40383 Poland Cirana 22.321109 3.320133 Northem ContinentiNforthem This article Hap_334 16 PLC_40865	7	PLBo_60680	Poland	Bobolice	16.586622	53.955494	Northern	ContinentalNorthern	This article	Hap_351
P.H.B.G. 60758 Poland Bobaloa 16.58622 83.55644 Northern ContinentiNorthern This article Map., 382 10 P.H.B. 52135 Poland Bratkowice 21.87471 50.114330 Northern ContinentiNorthern This article Hap, 383 11 P.H.B. 52135 Poland Bratkowice 21.874711 50.114330 Northern ContinentiNorthern This article Hap, 383 12 P.C. 40797 Poland Canna 22.35280 42.10735 Northern ContinentiNorthern This article Hap, 338 13 P.C. 43732 Poland Carans Biotostoca 22.31810 53.302808 Northern ContinentiNorthern This article Hap, 338 16 P.D. 43602 Poland Darabaco 13.23266 47.03333 Northern ContinentiNorthern This article Hap, 348 17 P.D. 43672 Poland Darabaco 13.23266 47.03333 Northern ContinentiNorthern This article Hap, 348 18	, 0	PLBo_60757	Poland	Bobolice	16.586622	53.955494	Northern	ContinentalNorthern	This article	Hap_351
9 PLEP_0213 Poland Brakowice 21.87/01 50.114330 Northam ConfinentialNorthem This article Hap_383 11 PLEP_02136 Poland Brakowice 21.87/01 50.114330 Northam ConfinentialNorthem This article Hap_383 12 PLCL_40985 Poland Clana 22.39300 42.10735 Northam ConfinentialNorthem This article Hap_383 13 PLC_43936 Poland Crame Bibliotoka 22.32800 43.0288 Northam ConfinentialNorthem This article Hap_333 14 PLC_43734 Poland Crame Bibliotoka 22.32800 53.0288 Northam ConfinentialNorthem This article Hap_333 16 PLD_60303 Poland Darzuble 18.32006 57.0333 Northam ConfinentialNorthem This article Hap_345 19 PLD_69303 Poland Darzuble 18.32006 15.33131 Northam ConfinentialNorthem This article Hap_378 19	8	PLBo_60758	Poland	Bobolice	16.586622	53.955494	Northern	ContinentalNorthern	This article	Hap_351
PLB_92151 Poland Brakewace 21.87/201 50.118330 Northem ContinentilNorthern This article Hap_383 PLC_40707 Poland Ginan 22.39300 49.21775 Northem ContinentilNorthern This article Hap_383 PLC_40707 Poland Ginan 22.39300 49.21775 Northem ContinentilNorthern This article Hap_338 PLC_43736 Poland Czana Balaktigota 22.38120 53.00288 Northem ContinentilNorthern This article Hap_338 PLC_43732 Poland Czana Balaktigota 22.38120 53.00288 Northem ContinentilNorthern This article Hap_338 PLD_69530 Poland DartLubic 18.32006 47.0333 Northem ContinentilNorthern This article Hap_345 PLD_69530 Poland DartLubic 18.32006 47.0333 Northem ContinentilNorthern This article Hap_345 PLD_69530 Poland DartLubic 18.32006 47.0333 Northem <td< td=""><td>9</td><td>PLBr_92123</td><td>Poland</td><td>Bratkowice</td><td>21.874701</td><td>50.114330</td><td>Northern</td><td>ContinentalNorthern</td><td>This article</td><td>Hap_382</td></td<>	9	PLBr_92123	Poland	Bratkowice	21.874701	50.114330	Northern	ContinentalNorthern	This article	Hap_382
PLE_92156 Poland Gradiest Allowaties 9.11433 Northern Confinent/Allowaties This article Hap_335 12 PLC_40797 Poland Cisana 22.32900 49.10735 Northern Confinent/Allowaties This article Hap_335 14 PLC_43736 Poland Cizarna Biabistoka 22.32180 35.02886 Northern Confinent/Allowaties Hap_337 15 PLC_43736 Poland Cizarna Biabistoka 22.32180 53.02886 Northern Confinent/Allowaties Hap_338 16 PLD_60730 Poland Darzlubie HB.32306 47.0333 Northern Confinent/Allowaties This article Hap_345 17 PLD_60730 Poland Darzlubie HB.32306 47.0333 Northern Confinent/Allowaties Hap_345 18 PLD_60730 Poland Debno H6.32407 51.33131 Northern Confinent/Allowaties Hap_345 19 PLC_107616 Poland Opbno H6.32407 51.33131 Northern	10	PLBr_92181	Poland	Bratkowice	21.874701	50.114330	Northern	ContinentalNorthern	This article	Hap_383
PLC_4077 Poland Clama 2232000 49.21725 Northem Continental/orthem This attice Hep_335 13 PLCz_43736 Poland Czama Bialostocka 2232810 65.30288 Northem Continental/orthem This attice Hep_337 14 PLCz_43743 Poland Czama Bialostocka 2238120 65.30288 Northem Continental/orthem This attice Hep_337 15 PLCz_43822 Poland Dazlubie 18.32036 64.70333 Northem Continental/orthem This attice Hep_345 16 PLDs_96730 Poland Dazlubie 18.32056 64.70333 Northem Continental/orthem This attice Hep_345 17 PLDs_96730 Poland Debno 16.52407 61.33111 Northem Continental/orthem This attice Hep_375 20 PLCI_07076 Poland Debno 16.52407 61.33111 Northem Continental/orthem This attice Hep_375 210 PLG_07076 Pol	11	PLBr_92195	Poland	Bratkowice	21.874701	50.114330	Northern	ContinentalNorthern	This article	Hap_383
PLC_40985 Poland Clama 223200 49 21735 Northem Continental/Northem This article Heg_335 14 PLCz_43734 Poland Czama Bialistoka 22.28120 53.02888 Northem Continental/Northem This article Heg_338 15 PLCz_43822 Poland Czama Bialistoka 22.28120 53.02888 Northem Continental/Northem This article Heg_338 16 PLDa_69630 Poland Darzkubie 18.23006 64.70333 Northem Continental/Northem This article Heg_344 17 PLDa_69730 Poland Darzkubie 18.23006 64.70333 Northem Continental/Northem This article Heg_347 18 PLDa_69303 Poland Debno 16.2307 61.33311 Northem Continental/Northem This article Heg_357 21 PLCa_7076 Poland Obako 15.944162 53.045467 Northem Continental/Northem This article Hag_357 22 PLCa_70760	12	PLCi_40797	Poland	Cisna	22.329300	49.210735	Northern	ContinentalNorthern	This article	Hap_335
PLC_4378 Poland Crama Blackstocka 22.81820 53.30289 Northem ContinentilNorthem This article Hop_38 15 PLC_43742 Poland Crama Blackstocka 22.81820 53.30289 Northem ContinentilNorthem This article Hup_38 16 PLDa_59730 Poland DarZubie 18.32306 54.70333 Northem ContinentilNorthem This article Hup_346 17 PLDa_59730 Poland DarZubie 18.32306 54.70333 Northem ContinentilNorthem This article Hup_347 18 PLDe_88430 Poland Depto 16.523407 51.38131 Northem ContinentilNorthem This article Hup_337 19 PLDe_88437 Poland Depto 16.523407 51.38131 Northem ContinentilNorthem This article Hup_337 20 PLG_170761 Poland Gloxon 16.944162 50.494467 Northem ContinentilNorthem This article Hup_337 21 PLG_170613	12	PLCi_40985	Poland	Cisna	22.329300	49.210735	Northern	ContinentalNorthern	This article	Hap_336
14PLC2_43743PolandCzama Biakastocka22 28182053 320269NorthemContinentalNorthemThis articleHap_38915PLC2_43822PolandDarzluble18.3205647/0333NorthemContinentalNorthemThis articleHap_34516PLDa_56300PolandDarzluble18.3205647/0333NorthemContinentalNorthemThis articleHap_34517PLDa_57870PolandDarzluble18.3205647/0333NorthemContinentalNorthemThis articleHap_34518PLDa_68430PolandDebno16.5244751.338131NorthemContinentalNorthemThis articleHap_37820PLDa_68457PolandObno16.5244751.338131NorthemContinentalNorthemThis articleHap_37821PLG1_70776PolandGoravo Baveckin2.94833354.268667NorthemContinentalNorthemThis articleHap_37822PLG1_7010PolandGoravo Baveckin2.04833354.268667NorthemContinentalNorthemThis articleHap_33923PLG2_45117PolandGoravo Baveckin2.04833354.268667NorthemContinentalNorthemThis articleHap_33724PLG2_45187PolandGoravo Baveckin2.04833354.268667NorthemContinentalNorthemThis articleHap_33725PLG2_45117PolandGoravo Baveckin2.04833354.268667NorthemContinentalNorthem	13	PLCz_43736	Poland	Czarna Białostocka	23.281820	53.302898	Northern	ContinentalNorthern	This article	Hap_337
15PLCz_43822PolandCozma Bialostoka23.28182063.302888NorthemContinentalNorthermThis articleHap_34416PLDz_95739PolandDarzlubie18.3206647.03333NorthemContinentalNorthermThis articleHap_34617PLDz_95730PolandDarzlubie18.3206647.03333NorthemContinentalNorthermThis articleHap_34618PLDz_95830PolandDebno16.5240751.338131NorthemContinentalNorthermThis articleHap_37720PLDz_95867PolandDebno16.5240751.338131NorthemContinentalNorthermThis articleHap_37721PLG_70776PolandGlusko15.94416253.045467NorthemContinentalNorthermThis articleHap_35722PLG_70810PolandGlusko15.94416253.045467NorthemContinentalNorthermThis articleHap_35723PLG_70810PolandGdrowo Ilswedsie20.4833354.266667NorthemContinentalNorthermThis articleHap_34224PLG_0.48010PolandGdrowo Ilswedsie20.4833354.266667NorthemContinentalNorthermThis articleHap_34225PLG_0.48016PolandGdrowo Ilswedsie20.4833354.266667NorthemContinentalNorthermThis articleHap_34226PLG_0.48017PolandKobio/Kobio/r18.93944450.060278NorthemContinentalNorth	14	PLCz_43743	Poland	Czarna Białostocka	23.281820	53.302898	Northern	ContinentalNorthern	This article	Hap_338
PLB_8650 Poland Darkubie 18.32065 6.470333 Northern ContinentNorthern This article Hap_344 PLD_85760 Poland Darkubie 18.32065 6.470333 Northern ContinentNorthern This article Hap_346 PLD_85760 Poland Darkubie 18.32065 6.470333 Northern ContinentNorthern This article Hap_346 19 PLD_86840 Poland Debno 16.523407 51.33131 Northern ContinentNorthern This article Hap_377 20 PLG_70716 Poland Glusko 15.944162 63.04467 Northern ContinentNorthern This article Hap_357 21 PLG_70713 Poland Glusko 15.944162 63.04467 Northern ContinentNorthern This article Hap_357 23 PLG_70713 Poland Glusko 15.944162 63.04467 Northern ContinentNorthern This article Hap_357 24 PLG_048026 Poland Gorovon Iaweckie	15	PLCz_43822	Poland	Czarna Białostocka	23.281820	53.302898	Northern	ContinentalNorthern	This article	Hap_339
PLG_89739 Poland Darzbule 18.32065 64.70333 Northern ContinentalNorthern This article Hap_345 18 PLG_89330 Poland Debno 16.523407 61.33311 Northern ContinentalNorthern This article Hap_376 19 PLG_89430 Poland Debno 16.523407 61.33111 Northern ContinentalNorthern This article Hap_376 20 PLG_89687 Poland Debno 16.523407 61.33111 Northern ContinentalNorthern This article Hap_378 21 PLG_170813 Poland Glusko 15.944162 63.045467 Northern ContinentalNorthern This article Hap_357 23 PLG_07010 Poland Glusko 15.944162 63.04567 Northern ContinentalNorthern This article Hap_357 24 PLG_04806 Poland Gorow laweckie 20.43333 64.26667 Northern ContinentalNorthern This article Hap_357 25 PLG_048016	16	PLDa_59630	Poland	Darżlubie	18.323056	54.703333	Northern	ContinentalNorthern	This article	Hap_344
PLDs_69780PolandDarzbule13.3230564.70333NorthernContinentalNorthernThis articleHap_37619PLDs_69430PolandDebno16.5240751.33111NorthernContinentalNorthernThis articleHap_37720PLDs_69457PolandDebno16.5240751.33111NorthernContinentalNorthernThis articleHap_37821PLG_70776PolandGlusko15.94416253.045467NorthernContinentalNorthernThis articleHap_35722PLG_70813PolandGlusko15.94416253.045467NorthernContinentalNorthernThis articleHap_35723PLG_47840PolandGorowo laweckie20.4833354.266667NorthernContinentalNorthernThis articleHap_35724PLG_648006PolandGorowo laweckie20.4833354.266667NorthernContinentalNorthernThis articleHap_33725PLG_648171PolandGorowo laweckie20.4833354.266667NorthernContinentalNorthernThis articleHap_37527PLKK_88317PolandGorowo laweckie20.4833354.26667NorthernContinentalNorthernThis articleHap_37528PLKK_88317PolandKobior/Kobibór18.8344450.060278NorthernContinentalNorthernThis articleHap_37129PLKK_101258PolandKobior/Kobibór18.8344450.062078NorthernContinentalNorthern </td <td>17</td> <td>PLDa_59739</td> <td>Poland</td> <td>Darżlubie</td> <td>18.323056</td> <td>54.703333</td> <td>Northern</td> <td>ContinentalNorthern</td> <td>This article</td> <td>Hap_345</td>	17	PLDa_59739	Poland	Darżlubie	18.323056	54.703333	Northern	ContinentalNorthern	This article	Hap_345
18PLDe_9830PolandDebno15.2340751.338131NorthernContinentalNorthernThis articleHap_37720PLDe_98667PolandDebno16.5240751.338131NorthernContinentalNorthernThis articleHap_37721PLG_170778PolandGlusko15.94416253.045467NorthernContinentalNorthernThis articleHap_35722PLG_17081PolandGlusko15.94416253.045467NorthernContinentalNorthernThis articleHap_35723PLG_047800PolandGdrowo laweckie20.4833354.26667NorthernContinentalNorthernThis articleHap_34124PLG_048006PolandGdrowo laweckie20.4833354.26667NorthernContinentalNorthernThis articleHap_34225PLG_048017PolandGdrowo laweckie20.4833354.26667NorthernContinentalNorthernThis articleHap_34226PLG_08959PolandGoroxo laweckie20.4833354.26667NorthernContinentalNorthernThis articleHap_37227PLKC_88317PolandKobio/rKobibdr18.9344450.060278NorthernContinentalNorthernThis articleHap_37328PLK0_102789PolandKobio/rKobibdr18.9344450.600278NorthernContinentalNorthernThis articleHap_37329PLK0_10280PolandKosobudy23.0744750.629036NorthernContinenta	17	PLDa_59780	Poland	Darżlubie	18.323056	54.703333	Northern	ContinentalNorthern	This article	Hap_346
19PLDe_98430PolandDebno16.52340751.338131NorthernContinentalNorthernThis articeHap_37821PLGL_70776PolandGlusko15.94416253.045467NorthernContinentalNorthernThis articeHap_37822PLGL_70910PolandGlusko15.94416253.045467NorthernContinentalNorthernThis articeHap_37823PLG_0_47060PolandGórovo laweckie20.4833354.26667NorthernContinentalNorthernThis articeHap_38924PLG_0_64006PolandGórovo laweckie20.4833354.26667NorthernContinentalNorthernThis articeHap_33826PLG_0_80259PolandGórovo laweckie20.4833354.26667NorthernContinentalNorthernThis articeHap_37227PLKK_8317PolandGórovo laweckie20.4833354.26667NorthernContinentalNorthernThis articeHap_37328PLKK_8317PolandKobio/rKobibór18.9344450.060278NorthernContinentalNorthernThis articeHap_37329PLKC_10280PolandKobio/rKobibór18.9344450.620738NorthernContinentalNorthernThis articeHap_39330PLKC_10284PolandKosobudy23.0744750.62038NorthernContinentalNorthernThis articeHap_39331PLKO_70919PolandKosobudy23.0744750.62038NorthernContinentalNort	18	PLDe_89330	Poland	Dębno	16.523407	51.338131	Northern	ContinentalNorthern	This article	Hap_376
20PLDe_B867PolandOption16,32440751.338131NorthemContinentalNorthernThis articleHap_37821PLGL_7076PolandGlusko15,94416253.045467NorthemContinentalNorthernThis articleHap_35723PLG_07910PolandGlusko15,94416253.045467NorthemContinentalNorthernThis articleHap_35724PLG_047940PolandGórowo laweckie20.4833354.266667NorthemContinentalNorthernThis articleHap_39325PLG_08066PolandGórowo laweckie20.4833354.266667NorthemContinentalNorthernThis articleHap_31226PLG_089259PolandGorowo laweckie20.4833354.266667NorthemContinentalNorthernThis articleHap_37227PLKK_88317PolandGorowo laweckie20.4833354.266667NorthemContinentalNorthernThis articleHap_37228PLKK_88317PolandKobior/Kobibór18.9394450.060278NorthemContinentalNorthernThis articleHap_37329PLKK_88317PolandKobior/Kobibór18.9394450.060278NorthemContinentalNorthernThis articleHap_37330PLKo_102880PolandKosobudy23.07446750.28036NorthemContinentalNorthernThis articleHap_37331PLKO_280960PolandKrosno Odrzańskie15.98247SonstemContinentalNorthern </td <td>19</td> <td>PLDe_89430</td> <td>Poland</td> <td>Dębno</td> <td>16.523407</td> <td>51.338131</td> <td>Northern</td> <td>ContinentalNorthern</td> <td>This article</td> <td>Hap_377</td>	19	PLDe_89430	Poland	Dębno	16.523407	51.338131	Northern	ContinentalNorthern	This article	Hap_377
P1 P1C0_7076PolandGlusko15.94416253.045467NorthernContinentalNorthernThis articleHap_35722 P1C0_70810PolandGlusko15.94416253.045467NorthernContinentalNorthernThis articleHap_38223 P1.Co_47840PolandGórwo Ilaweckie20.4833354.266667NorthernContinentalNorthernThis articleHap_38124 P1.Co_48006PolandGórwo Ilaweckie20.4833354.266667NorthernContinentalNorthernThis articleHap_38225 P1.Co_48117PolandGórwo Ilaweckie20.4833354.266667NorthernContinentalNorthernThis articleHap_34226 P1.Co_82829PolandGórwo Ilaweckie20.4833354.266667NorthernContinentalNorthernThis articleHap_37227 P1.KK, 88317PolandKoblór/Kobibór18.3944450.060278NorthernContinentalNorthernThis articleHap_37229 P1.Kc_102880PolandKoblór/Kobibór18.3944450.060278NorthernContinentalNorthernThis articleHap_39330 31 	20	PLDe_89667	Poland	Dębno	16.523407	51.338131	Northern	ContinentalNorthern	This article	Hap_378
PLGI_70813PolandGlusko15.94416253.045477NorthernContinentalNorthernThis articleHap_35823PLGo_47840PolandGórowo llaweckie20.48333354.266667NorthernContinentalNorthernThis articleHap_34124PLGo_4806PolandGórowo llaweckie20.48333354.266667NorthernContinentalNorthernThis articleHap_34225PLGo_48177PolandGórowo llaweckie20.48333354.266667NorthernContinentalNorthernThis articleHap_37226PLKG_88378PolandGoszcz17.48246651.395901NorthernContinentalNorthernThis articleHap_37327PLKK_88318PolandKobio/rKobibór18.93944450.060278NorthernContinentalNorthernThis articleHap_37128PLKK_8332PolandKobio/rKobibór18.93944450.060278NorthernContinentalNorthernThis articleHap_37329PLKG_102789PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_38331PLKG_70289PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39332PLKG_102804PolandKrosno Odrzańskie15.936252Si.7320NorthernContinentalNorthernThis articleHap_39333PLK_101253PolandKryńszczak22.36378751.990589Northern <td>21</td> <td>PLGI_70776</td> <td>Poland</td> <td>Głusko</td> <td>15.944162</td> <td>53.045467</td> <td>Northern</td> <td>ContinentalNorthern</td> <td>This article</td> <td>Hap_357</td>	21	PLGI_70776	Poland	Głusko	15.944162	53.045467	Northern	ContinentalNorthern	This article	Hap_357
PLG1_70910PolandGlusko15 94416253 045467NorthermContinentalNorthermThis articleHap_38124PLG0_47804PolandGórowo llaweckie20 48333354 266667NorthermContinentalNorthermThis articleHap_39325PLG0_48117PolandGórowo llaweckie20 48333354 266667NorthermContinentalNorthermThis articleHap_33926PLG0_89250PolandGórowo llaweckie20 48333354 266667NorthermContinentalNorthermThis articleHap_34227PLKK_88317PolandGórowo llaweckie18 3944450.060278NorthermContinentalNorthermThis articleHap_37028PLKK_88318PolandKobior/Kobibór18 3944450.060278NorthermContinentalNorthermThis articleHap_37129PLK0_102800PolandKobior/Kobibór18 3944450.060278NorthermContinentalNorthermThis articleHap_37129PLK0_102804PolandKosobudy23.07446750.629036NorthermContinentalNorthermThis articleHap_38331PLK0_102804PolandKrosno Odrzańskie15.536229NorthermContinentalNorthermThis articleHap_39333PLK1_10148PolandKrosno Odrzańskie15.536229NorthermContinentalNorthermThis articleHap_39334PLK2_101848PolandKryszczak22.36378751.900589NorthermContinenta	22	PLGI_70813	Poland	Głusko	15.944162	53.045467	Northern	ContinentalNorthern	This article	Hap_357
23PLGo_47840PolandGórowo laweckie20.4833354.26667NorthemContinentalNorthermThis articleHap_34124PLGo_48017PolandGórowo laweckie20.48333354.266667NorthemContinentalNorthermThis articleHap_34226PLGo_89259PolandGórowo laweckie20.48333354.266667NorthemContinentalNorthermThis articleHap_34226PLGo_89259PolandGórowo laweckie20.48333354.26667NorthemContinentalNorthermThis articleHap_37227PLKK_88317PolandKobiór/Kobibór18.93944450.060278NorthemContinentalNorthermThis articleHap_37128PLKS_102789PolandKobiór/Kobibór18.93944450.060278NorthemContinentalNorthermThis articleHap_37230PLKo_102880PolandKosobudy23.07446750.629308NorthemContinentalNorthermThis articleHap_39331PLKO_102880PolandKosobudy23.07446750.629308NorthemContinentalNorthermThis articleHap_39332PLKO_80960PolandKrosno Odrzańskie15.99651552.057320NorthemContinentalNorthermThis articleHap_39333PLKG_101253PolandKrynszczak22.3678751.990589NorthemContinentalNorthermThis articleHap_39334PLKr_101488PolandKrynszczak22.3678751.990589 <td< td=""><td>22</td><td>PLGI_70910</td><td>Poland</td><td>Głusko</td><td>15.944162</td><td>53.045467</td><td>Northern</td><td>ContinentalNorthern</td><td>This article</td><td>Hap_358</td></td<>	22	PLGI_70910	Poland	Głusko	15.944162	53.045467	Northern	ContinentalNorthern	This article	Hap_358
24PLG_48006PolandGórowo llaweckie20.4333354.266667NorthernContinentalNorthernThis articleHap_34225PLGo_48117PolandGórowo llaweckie20.4833354.266667NorthernContinentalNorthernThis articleHap_34226PLGo_89259PolandGoszcz17.4824651.39501NorthernContinentalNorthernThis articleHap_37527PLKK_88317PolandKobidr/Kobibór18.9344450.060278NorthernContinentalNorthernThis articleHap_37128PLKK_88318PolandKobidr/Kobibór18.9344450.060278NorthernContinentalNorthernThis articleHap_37229PLKo_102789PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39330PLKo_102880PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39331PLKO_102884PolandKrosno Odrzańskie15.5622951.559242NorthernContinentalNorthernThis articleHap_39333PLK_101223PolandKryńszczak22.3678751.990589NorthernContinentalNorthernThis articleHap_39334PLK_101488PolandKryńszczak22.3678751.990589NorthernContinentalNorthernThis articleHap_39335PLKr_101523PolandKryńszczak22.3678751.990589Northern	23	PLGo_47840	Poland	Górowo Iławeckie	20.483333	54.266667	Northern	ContinentalNorthern	This article	Hap_341
25PLGo_48117PolandGórowo llaweckie20.4833354.26667NorthernContinentalNorthernThis articleHap_37526PLGo_98259PolandGoszcz17.4824651.39501NorthernContinentalNorthernThis articleHap_37527PLKK_88317PolandKobiór/Kobibór18.93944450.060278NorthernContinentalNorthernThis articleHap_37028PLKG_102789PolandKobiór/Kobibór18.93944450.060278NorthernContinentalNorthernThis articleHap_37229PLKo_102789PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39730PLKo_102884PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39331PLKo_102880PolandKrosno Odrzańskie15.09631552.057320NorthernContinentalNorthernThis articleHap_39332PLKO_79019PolandKrosno Odrzańskie15.53622951.55924NorthernContinentalNorthernThis articleHap_39233PLK_101253PolandKryńszczak22.3678751.990589NorthernContinentalNorthernThis articleHap_39234PLKr_101488PolandKryńszczak22.3678751.990589NorthernContinentalNorthernThis articleHap_39336PLKr_56668PolandKryńszczak22.36787551.990589No	24	PLGo_48006	Poland	Górowo Iławeckie	20.483333	54.266667	Northern	ContinentalNorthern	This article	Hap_339
26PLGo_88259PolandGoszcz17.482466S1.385901NorthernContinentalNorthernThis articleHap_37527PLKK_88317PolandKobiór/Kobibór18.93844450.060278NorthernContinentalNorthernThis articleHap_37128PLKK_88392PolandKobiór/Kobibór18.93844450.060278NorthernContinentalNorthernThis articleHap_37229PLKo_102789PolandKosobudy23.07446750.622036NorthernContinentalNorthernThis articleHap_39730PLKo_102884PolandKosobudy23.07446750.622036NorthernContinentalNorthernThis articleHap_39331PLKO_102884PolandKosobudy23.07446750.622036NorthernContinentalNorthernThis articleHap_36333PLKO_102884PolandKrosno Odrzańskie15.09631552.057320NorthernContinentalNorthernThis articleHap_37234PLKG_101253PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_37335PLKG_101482PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_37936PLK_10152PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39037PLLG_100647PolandKochów21.71055652.531667Northern	25	PLGo_48117	Poland	Górowo Iławeckie	20.483333	54.266667	Northern	ContinentalNorthern	This article	Hap_342
PLKK_88317PolandKobio/rKobibor18.93944450.060278NorthernContinentalNorthernThis articleHap_37028PLKK_88312PolandKobio/rKobibor18.93944450.060278NorthernContinentalNorthernThis articleHap_37129PLKG_102789PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_37230PLKG_102884PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_38331PLKG_102884PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_38332PLKG_20884PolandKrosno Odrzańskie15.9631552.057320NorthernContinentalNorthernThis articleHap_36333PLKG_101283PolandKrosno Odrzańskie15.53822951.559242NorthernContinentalNorthernThis articleHap_37034PLKG_101488PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_37335PLK_101522PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_34936PLK_56668PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_34137PLLo_100647PolandKryńszczak22.36378751.990589Northern <td>26</td> <td>PLGo_89259</td> <td>Poland</td> <td>Goszcz</td> <td>17.482466</td> <td>51.395901</td> <td>Northern</td> <td>ContinentalNorthern</td> <td>This article</td> <td>Hap_375</td>	26	PLGo_89259	Poland	Goszcz	17.482466	51.395901	Northern	ContinentalNorthern	This article	Hap_375
PLKK_88318PolandKobiór/Kobibór18.93944450.060278NorthernContinentalNorthernThis articleHap_37129PLK6_102789PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_37230PLKo_102880PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39831PLKO_102884PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39932PLKO_102884PolandKrosno Odrzańskie15.09631552.057320NorthernContinentalNorthernThis articleHap_39333PLKO_101253PolandKrosno Odrzańskie15.53622951.559242NorthernContinentalNorthernThis articleHap_39234PLKr_101253PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39336PLKr_101522PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39336PLLS_100648PolandKrzystkowice15.23557951.798563NorthernContinentalNorthernThis articleHap_39338PLLo_100647PolandŁochów21.71055652.531667NorthernContinentalNorthernThis articleHap_39339PLLo_100678PolandŁochów21.71055652.531667Northern <t< td=""><td>27</td><td>PLKK_88317</td><td>Poland</td><td>Kobiór/Kobibór</td><td>18.939444</td><td>50.060278</td><td>Northern</td><td>ContinentalNorthern</td><td>This article</td><td>Hap_370</td></t<>	27	PLKK_88317	Poland	Kobiór/Kobibór	18.939444	50.060278	Northern	ContinentalNorthern	This article	Hap_370
20PLKx_88392PolandKobio/Kobibór18.83944450.060278NorthernContinentalNorthernThis articleHap_37229PLKo_102789PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_37830PLKo_10280PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_38831PLKO_102884PolandKrosno Odrzańskie15.09631552.05720NorthernContinentalNorthernThis articleHap_36332PLKO_80960PolandKrosno Odrzańskie15.53622951.559242NorthernContinentalNorthernThis articleHap_36333PLK_101253PolandKryńszczak22.8378751.990589NorthernContinentalNorthernThis articleHap_39234PLKr_101488PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39336PLKr_101522PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39337PLLo_100647PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39138PLLo_100678PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39139PLMe_90843PolandKochów21.7105652.531667NorthernC	20	PLKK_88318	Poland	Kobiór/Kobibór	18.939444	50.060278	Northern	ContinentalNorthern	This article	Hap_371
29PLKo_102789PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39730PLKo_102880PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39831PLKO_102884PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39332PLKO_102894PolandKrosno Odrzańskie15.09631552.057320NorthernContinentalNorthernThis articleHap_33333PLK_101253PolandKrosno Odrzańskie15.53622951.559242NorthernContinentalNorthernThis articleHap_33234PLK_101488PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_33235PLKr_101522PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_33936PLKr_56668PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_33937PLLo_100647PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_33938PLLo_100647PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_33139PLLo_100678PolandŁochów21.71055652.531667Northern	20	PLKK_88392	Poland	Kobiór/Kobibór	18.939444	50.060278	Northern	ContinentalNorthern	This article	Hap_372
30PLKo_102880PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39831PLKo_102884PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39932PLKO_70919PolandKrosno Odrzańskie15.09631552.057320NorthernContinentalNorthernThis articleHap_36333PLKr_101253PolandKrosno Odrzańskie15.53622951.559242NorthernContinentalNorthernThis articleHap_37934PLKr_101488PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39335PLKr_101522PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_49436PLKr_56668PolandKrzystkowice15.2357951.790583NorthernContinentalNorthernThis articleHap_49437PLLo_100647PolandŁochów21.71055652.531667NorthernContinentalNorthernThis articleHap_39138PLLo_100678PolandLochów21.71055652.531667NorthernContinentalNorthernThis articleHap_39139PLM_69500PolandMiędzychód15.8924052.598550NorthernContinentalNorthernThis articleHap_35540PLM_69843PolandMiędzychód15.89254052.598550Northern	29	PLKo_102789	Poland	Kosobudy	23.074467	50.629036	Northern	ContinentalNorthern	This article	Hap_397
31PLKo_102884PolandKosobudy23.07446750.629036NorthernContinentalNorthernThis articleHap_39932PLKO_79019PolandKrosno Odrzańskie15.09631552.057320NorthernContinentalNorthernThis articleHap_36033PLK_101253PolandKrosno Odrzańskie15.53622951.559242NorthernContinentalNorthernThis articleHap_35034PLKr_101253PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_37435PLKr_101522PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39336PLKr_56668PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39337PLLo_100647PolandKrystkowice15.23557951.798953NorthernContinentalNorthernThis articleHap_39138PLLo_100648PolandŁochów21.71055652.531667NorthernContinentalNorthernThis articleHap_39139PLM_69500PolandLochów21.71055652.531667NorthernContinentalNorthernThis articleHap_39139PLM_69500PolandMiędzychód15.89254052.598550NorthernContinentalNorthernThis articleHap_35540PLM_69843PolandMiędzychód15.89254052.598550Northern	30	PLKo_102880	Poland	Kosobudy	23.074467	50.629036	Northern	ContinentalNorthern	This article	Hap_398
32PLKO_79019PolandKrosno Odrzańskie15.09631552.057320NorthernContinentalNorthernThis articleHap_36333PLKO_80960PolandKrosno Odrzańskie15.53622951.559242NorthernContinentalNorthernThis articleHap_35034PLKr_101253PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_37035PLKr_101522PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39336PLKr_56668PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39337PLLo_100647PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39338PLLo_100647PolandŁochów21.71055652.531667NorthernContinentalNorthernThis articleHap_34139PLMi_69500PolandŁochów21.71055652.531667NorthernContinentalNorthernThis articleHap_35539PLMi_69500PolandMiędzychód15.89254052.598550NorthernContinentalNorthernThis articleHap_35530PLMi_69843PolandMiędzychód15.89254052.598550NorthernContinentalNorthernThis articleHap_35540PLMo_47591PolandNowogród21.87944453.226389Northern <td>31</td> <td>PLKo_102884</td> <td>Poland</td> <td>Kosobudy</td> <td>23.074467</td> <td>50.629036</td> <td>Northern</td> <td>ContinentalNorthern</td> <td>This article</td> <td>Hap_399</td>	31	PLKo_102884	Poland	Kosobudy	23.074467	50.629036	Northern	ContinentalNorthern	This article	Hap_399
J2PLKO_80960PolandKrosno Odrzańskie15.53622951.559242NorthernContinentalNorthernThis articleHap_35033PLKr_101253PolandKryńszczak22.3637851.990589NorthernContinentalNorthernThis articleHap_39234PLKr_101488PolandKryńszczak22.3637851.990589NorthernContinentalNorthernThis articleHap_39335PLKr_101522PolandKryńszczak22.3637851.990589NorthernContinentalNorthernThis articleHap_39336PLKr_56688PolandKrzystkowice15.23557951.798953NorthernContinentalNorthernThis articleHap_39037PLLo_100647PolandŁochów21.71055652.531667NorthernContinentalNorthernThis articleHap_39138PLLo_100678PolandŁochów21.71055652.531667NorthernContinentalNorthernThis articleHap_39139PLMi_69500PolandKiczychód15.89254052.59850NorthernContinentalNorthernThis articleHap_35540PLMi_69843PolandMiędzychód15.89254052.59850NorthernContinentalNorthernThis articleHap_35641PLNo_47464PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_35742PLNo_47551PolandNowogród21.87944453.226389NorthernContine	32	PLKO_79019	Poland	Krosno Odrzańskie	15.096315	52.057320	Northern	ContinentalNorthern	This article	Hap_363
33PLKr_101253PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39234PLKr_101488PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_27435PLKr_101522PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39336PLKr_56668PolandKrzystkowice15.23557951.798953NorthernContinentalNorthernThis articleHap_4437PLLo_100647PolandŁochów21.71055652.531667NorthernContinentalNorthernThis articleHap_39138PLLo_100678PolandŁochów21.71055652.531667NorthernContinentalNorthernThis articleHap_39139PLMi_69500PolandŁochów15.89254052.598550NorthernContinentalNorthernThis articleHap_39540PLMi_69843PolandMiędzychód15.89254052.598550NorthernContinentalNorthernThis articleHap_33541PLNo_47581PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_33542PLNo_47591PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_335	22	PLKO_80960	Poland	Krosno Odrzańskie	15.536229	51.559242	Northern	ContinentalNorthern	This article	Hap_350
34PLKr_101488PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_27435PLKr_101522PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39336PLKr_56668PolandKrzystkowice15.2357951.798953NorthernContinentalNorthernThis articleHap_4437PLLo_100647PolandŁochów21.71055652.531667NorthernContinentalNorthernThis articleHap_39038PLLo_100678PolandŁochów21.71055652.531667NorthernContinentalNorthernThis articleHap_39139PLMi_69500PolandŁochów15.89254052.598550NorthernContinentalNorthernThis articleHap_35540PLMi_69843PolandMiędzychód15.89254052.598550NorthernContinentalNorthernThis articleHap_35641PLNo_47464PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_33542	55	PLKr_101253	Poland	Kryńszczak	22.363787	51.990589	Northern	ContinentalNorthern	This article	Hap_392
35PLKr_101522PolandKryńszczak22.36378751.990589NorthernContinentalNorthernThis articleHap_39336PLKr_56668PolandKrzystkowice15.23557951.798953NorthernContinentalNorthernThis articleHap_4436PLLo_100647PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39037PLLo_100648PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39138PLLo_100678PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39139PLMi_69500PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39140PLMi_69843PolandMiędzychód15.8925052.598550NorthernContinentalNorthernThis articleHap_35641PLNo_47464PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_33742	34	PLKr_101488	Poland	Kryńszczak	22.363787	51.990589	Northern	ContinentalNorthern	This article	Hap_274
36PLKr_56668PolandKrzystkowice15.23557951.798953NorthernContinentalNorthernThis articleHap_4436PLLo_100647PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39037PLLo_100648PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39138PLLo_100678PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39139PLMi_69500PolandMiędzychód15.8925052.598550NorthernContinentalNorthernThis articleHap_35540PLMi_69843PolandMiędzychód15.8925052.598550NorthernContinentalNorthernThis articleHap_35641PLNo_47464PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_33742PLNo_47591PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_337	35	PLKr_101522	Poland	Kryńszczak	22.363787	51.990589	Northern	ContinentalNorthern	This article	Hap_393
PLLo_100647PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39037PLLo_100648PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_34138PLLo_100678PolandŁochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39139PLMi_69500PolandMiędzychód15.8925052.598550NorthernContinentalNorthernThis articleHap_35540PLMi_69843PolandMiędzychód15.8925052.598550NorthernContinentalNorthernThis articleHap_35641PLNo_47464PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_33542PLNo_47591PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_340	36	PLKr_56668	Poland	Krzystkowice	15.235579	51.798953	Northern	ContinentalNorthern	This article	Hap_44
JPLLo_100648PolandEochów21.7105652.531667NorthernContinentalNorthernThis articleHap_34138PLLo_100678PolandEochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39139PLMi_69500PolandMiędzychód15.8925052.598550NorthernContinentalNorthernThis articleHap_35540PLMi_69843PolandMiędzychód15.8925052.598550NorthernContinentalNorthernThis articleHap_35641PLNo_47464PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_33542PLNo_47591PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_340	37	PLLo_100647	Poland	Łochów	21.710556	52.531667	Northern	ContinentalNorthern	This article	Hap_390
SoPLLo_100678PolandEochów21.7105652.531667NorthernContinentalNorthernThis articleHap_39139PLMi_69500PolandMiędzychód15.8925052.598550NorthernContinentalNorthernThis articleHap_35540PLMi_69843PolandMiędzychód15.8925052.598550NorthernContinentalNorthernThis articleHap_35641PLNo_47464PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_33542PLNo_47591PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_340	20	PLLo_100648	Poland	Łochów	21.710556	52.531667	Northern	ContinentalNorthern	This article	Hap_341
39PLMI_698500PolandMiędzychód15.89254052.598550NorthernContinentalNorthernThis articleHap_35540PLMi_69843PolandMiędzychód15.89254052.598550NorthernContinentalNorthernThis articleHap_35641PLNo_47464PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_33542	00	PLLo_100678	Poland	Łochów	21.710556	52.531667	Northern	ContinentalNorthern	This article	Hap_391
40PLM_69843PolandMiędzychód15.89254052.598550NorthernContinentalNorthernThis articleHap_35641PLNo_47464PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_33542PLNo_47591PolandNowogród21.87944453.226389NorthernContinentalNorthernThis articleHap_335	39	PLMI_69500	Poland	Międzychód	15.892540	52.598550	Northern	ContinentalNorthern	This article	нар_355
41 PLN0_4/464 Poland Nowogrod 21.8/9444 53.226389 Northern ContinentalNorthern This article Hap_335 41 PLN0_47591 Poland Nowogród 21.879444 53.226389 Northern ContinentalNorthern This article Hap_335 42 42 Fille Fille Fille Fille Hap_340	40	PLMI_69843	Poland	Międzychód	15.892540	52.598550	Northern	ContinentalNorthern	This article	нар_356
PLN0_47591 Poland Nowogrod 21.879444 53.226389 Northern ContinentalNorthern This article Hap_340	41	PLNo_4/464	Poland	Nowogród	21.879444	53.226389	Northern	ContinentalNorthern	This article	нар_335
••	42	PLN0_47591	Poland	Nowogrod	21.8/9444	53.226389	Northern	ContinentalNorthern	i nis article	нар_340

43

1									
2	PLNu_100350	Poland	Nużec	23.173407	52.477722	Northern	ContinentalNorthern	This article	Hap_389
2	PLOs_115146	Poland	Ostróda	19.964795	53.696301	Northern	ContinentalNorthern	This article	Hap_339
3	PLOs_115150	Poland	Ostróda	19.964795	53.696301	Northern	ContinentalNorthern	This article	Hap_339
4	PLPo_26984	Poland	Pomorze	23.362616	54.046066	Northern	ContinentalNorthern	This article	Hap_325
5	PLPo_26985	Poland	Pomorze	23.362616	54.046066	Northern	ContinentalNorthern	This article	Hap_326
6	PLPo_27182	Poland	Pomorze	23.362616	54.046066	Northern	ContinentalNorthern	This article	Hap_327
7	PLPr_89890	Poland	Przysucha	20.631796	51.357877	Northern	ContinentalNorthern	This article	Hap_379
,	PLPr_89893	Poland	Przysucha	20.631796	51.357877	Northern	ContinentalNorthern	This article	Hap_380
0	PLPr_89902	Poland	Przysucha	20.631796	51.357877	Northern	ContinentalNorthern	This article	Hap_381
9	PLPu_48614	Poland	Pułkownikówka	18.982429	54.233230	Northern	ContinentalNorthern	This article	Hap_343
10	PLRo_88680	Poland	Rogalice	17.608795	50.961720	Northern	ContinentalNorthern	This article	Hap_373
11	PLRo_88712	Poland	Rogalice	17.608795	50.961720	Northern	ContinentalNorthern	This article	Hap_373
12	PLRo_88713	Poland	Rogalice	17.608795	50.961720	Northern	ContinentalNorthern	This article	Hap_374
12	PLRz_21223	Poland	Rzepin	14.832640	52.345688	Northern	ContinentalNorthern	This article	Hap_323
15	PLRz_21284	Poland	Rzepin	14.832640	52.345688	Northern	ContinentalNorthern	This article	Hap_324
14	PLSi_60205	Poland	Sierżno	17.471008	54.121005	Northern	ContinentalNorthern	This article	Hap_347
15	PLSi_60256	Poland	Sierżno	17.471008	54.121005	Northern	ContinentalNorthern	This article	Hap_348
16	PLSi_60304	Poland	Sierżno	17.471008	54.121005	Northern	ContinentalNorthern	This article	Hap_349
17	PLSo_103116	Poland	Sobibór	23.641667	51.475000	Northern	ContinentalNorthern	This article	Hap_400
10	PLSo_103118	Poland	Sobibór	23.641667	51.475000	Northern	ContinentalNorthern	This article	Hap_401
10	PLSo_103283	Poland	Sobibór	23.641667	51.475000	Northern	ContinentalNorthern	This article	Hap_323
19	PLSt_36121	Poland	Starzyna	23.531132	52.585400	Northern	ContinentalNorthern	This article	Hap_330
20	PLSt_60470	Poland	Stary Kraków	16.616111	54.438611	Northern	ContinentalNorthern	This article	Hap_350
21	PLSt_60531	Poland	Stary Kraków	16.616111	54.438611	Northern	ContinentalNorthern	This article	Hap_350
22	PLSw_36762	Poland	Swiętokrzyski PN	20.962500	50.901944	Northern	ContinentalNorthern	This article	Hap_331
	PLSw_36877	Poland	Swiętokrzyski PN	20.962500	50.901944	Northern	ContinentalNorthern	This article	Hap_331
23	PLSw_37798	Poland	Świętokrzyski PN	20.962500	50.901944	Northern	ContinentalNorthern	This article	Hap_332
24	PLSz_79991	Poland	Szprotawa	15.536229	51.559242	Northern	ContinentalNorthern	This article	Hap_367
25	PLSz_80045	Poland	Szprotawa	15.536229	51.559242	Northern	ContinentalNorthern	This article	Hap_368
26	PLSz_80236	Poland	Szprotawa	15.536229	51.559242	Northern	ContinentalNorthern	This article	Hap_369
27	PL1r_60989	Poland	Irzebieszki	16.61////	53.361942	Northern	ContinentalNorthern	This article	Нар_352
28	PLTr_61166	Poland	Irzebieszki	16.61////	53.361942	Northern	ContinentalNorthern	This article	Hap_353
20	PLTr_61209	Poland	Irzebieszki	16.61////	53.361942	Northern	ContinentalNorthern	This article	нар_354
29	PLWI_39015	Poland	Wierzchlas	18.10/185	53.517961	Northern	ContinentalNorthern	This article	Hap_333
30	PLWi_39077	Poland	Wierzchlas	18.10/185	53.517961	Northern	ContinentalNorthern	This article	Hap_334
31	PLWI_92325	Poland	WISNIOWA	21.660091	49.869003	Northern	ContinentalNorthern	This article	Hap_384
32	PLWI_92366	Poland	Wisniowa	21.660091	49.869003	Northern	ContinentalNorthern	This article	Hap_385
33	PLVV0_93527	Poland	wojsław	21.516667	50.383333	Northern	ContinentalNorthern		Hap_386
24	PLVV0_93557	Poland	Wojsław	21.516667	50.383333	Northern	ContinentalNorthern	This article	Пар_387
34	PLVV0_93556	Poland		21.510007	50.363333	Northern	ContinentalNorthern	This article	Пар_300 Цар 360
35	PLVVS_//065	Poland	Wschowa	16.314138	51.805599	Northern	ContinentalNorthern	This article	Hap_360
36	PLVVS_77007	Poland	West sure	10.314130	51.605599	Northern	ContinentalNorthern	This article	Hap_301
37	FLVVS_11323	Poland	Wymiarki	15.075700	01.0000999	Northern	ContinentalNorthern	This article	Пар_302 Нар_361
38	FLVVY_/9094		vvyilliälKi Mumiorki	15.0/5/00	01.000000	Northern	ContinentalNorthern	This article	Hap 365
20	FLVVY_/909/		VVyIIIaiki Mumiorki	15.0/5/00	01.000000 51 500065	Northern	ContinentalNorthern	This article	Пар_305 Нар_266
39	FLVVY_191/4			10.0/0/00	51.000000	Northorn	ContinentalNorthorn		Hap 204
40	FLZA_101000	Poland		21.400278	51 491667	Northorn	ContinentalNorthern	This article	11dµ_394 Han 305
41	PLZa_101007	r ulanu Poland		21.4002/0	51.401007	Northorn	ContinentalNorthern	This article	Han 306
42	1 LZa_102001			21.400270	51.401007		Continentainorthern		hap_330

- 44 45
- 46

Biological Journal of the Linnean Society

1									
2	PLZi_88044	Poland	Zielona	18.985233	50.547363	Northern	ContinentalNorthern	This article	Hap_341
2	PLZy_30037	Poland	Żytkiejmy	22.683333	54.347778	Northern	ContinentalNorthern	This article	Hap_328
3	PLZy_30465	Poland	Żytkiejmy	22.683333	54.347778	Northern	ContinentalNorthern	This article	Hap_329
4	PLZy_30720	Poland	Żytkiejmy	22.683333	54.347778	Northern	ContinentalNorthern	This article	Hap_40
5	RODa0161	Romania	Danube delta	29.603683	44.925383	Northern	ContinentalNorthern	This article	Hap_283
6	RSJa7390	Serbia	Jastrebac	20.587060	44.093560	Balkan		This article	Hap_284
7	RSMK1078	Serbia	Mount Kopaonik, Suvo Rudiste	20.893620	43.163242	Balkan		This article	Hap_271
,	RSMK7008	Serbia	Mount Kopaonik, Suvo Rudiste	20.893620	43.163243	Balkan		This article	Hap_271
8	RSVa7855	Serbia	Valjevo	19.882841	44.246277	Balkan		This article	Hap_271
9	RUBr0001	Russia	Brjansk	34.000000	52.333333	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_285
10	RUBr0002	Russia	Brjansk	34.000000	52.333334	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_286
11	RUCh0063	Russia	Cheboksary	47.015310	56.073350	Northern	ContinentalNorthern	This article	Hap_287
12	RUCh0064	Russia	Cheboksary	47.015310	56.073360	Northern	ContinentalNorthern	This article	Hap_287
12	RUKa1107	Russia	Karelia Republic	33.123778	66.551667	Northern	ContinentalNorthern	This article	Hap_288
13	RUKa1108	Russia	Karelia Republic	33.123778	66.551668	Northern	ContinentalNorthern	This article	Hap_288
14	RUKa1113	Russia	Karelia Republic	33.113111	66.558944	Northern	ContinentalNorthern	This article	Hap_289
15	RULB0001	Russia	Lake Baikal, Siberia	108.000000	53.666667	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_290
16	RUNo0001	Russia	Novosibirsk, Siberia	82.779117	55.201433	Northern	ContinentalNorthern	Ohdachi et al., 2006	Hap_291
17	RUNo0002	Russia	Novosibirsk, Siberia	83.100000	54.816667	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_292
10	RUNo0003	Russia	Novosibirsk, Siberia	83.100000	54.816668	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_293
18	RUPe0001	Russia	Pertozero	34.000000	62.083333	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_294
19	RUSv0058	Russia	Svetlopoliansk	52.413700	59.411660	Northern	ContinentalNorthern	This article	Hap_295
20	RUSy0037	Russia	Syktyvkar	50.428000	61.369500	Northern	ContinentalNorthern	This article	Hap_287
21	RUTa0001	Russia	Tambov	42.250000	51.916667	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_296
22	RUTa0002	Russia	Tambov	42.250000	51.916668	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_297
22	SEGo0001	Sweden	Gotland Vastergarn	18.166667	57.466667	Northern	Islands	Mascheretti et al., 2003	Hap_298
25	SEGo0002	Sweden	Gotland Vastergarn	18.166667	57.466668	Northern	Islands	Mascheretti et al., 2003	Hap_299
24	SEGo0003	Sweden	Gotland Tingstade	18.600000	57.700000	Northern	Islands	Mascheretti et al., 2003	Hap_300
25	SEJa0001	Sweden	Jamj	15.866667	56.166667	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_301
26	SEJa0002	Sweden	Jamj	15.866667	56.166668	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_302
27	SEOI0001	Sweden	Oland	17.083333	57.266667	Northern	Islands	Mascheretti et al., 2003	Hap_303
29	SEOI0002	Sweden	Oland	17.083333	57.266668	Northern	Islands	Mascheretti et al., 2003	Hap_304
20	SEREUUU1	Sweden	Revinge	14.333333	55.583333	Northern	ContinentalNorthern	Mascheretti et al., 2003	Нар_305
29	SEREUUU2	Sweden	Revinge	14.333333	55.583334	Northern	ContinentalNorthern	Mascheretti et al., 2003	Нар_306
30	SEUDOOOT	Sweden	Uppsala	17.666667	59.750000	Northern	ContinentaiNorthern	Mascheretti et al., 2003	Нар_307
31	SING0001	Slovenia	Nova Gorica, Anhovo	13.65/053	45.944656	Italian		Vega et al., 2010a	Нар_308
32	SIPOUUUI	Slovenia	Postjma	14.208181	45.781067	Italian		Vega et al., 2010a	Hap_309
33	SKBr5/30	Slovakla	Bratisiava	17.107736	48.147883	Baikan	ContinentelNorthern	I his article	Hap_310
21	SKB15733	Slovakia	Bratislava	17.107736	48.147884	Northern	ContinentaiNorthern	This article	нар_о
34	SKB15734	Slovakla	Bratislava	17.107736	48.147885	Balkan		This article	Hap_310
35	SKD15755	Slovakla	Bratislava	17.107730	40.147000	DdiKdii	ContinentelNorthern		нар_510
36	SKB15730	Slovakla	Bratislava	17.107736	48.147887	Northern	ContinentalNorthern	vega et al., 2010b	Hap_311
37	SKBIS/43	Slovakla	Bratisiava	1/.10//36	40.14/888	Northern	ContinentalNorthern	This article	нар_о
38	SKKOU410	Slovakla	Kezmarok Jezersko, Magura Mountains	20.3/114/	49.200/4/	Northern	ContinentalNorthern		∏aµ_33 ∐an 107
20	5KK60419	Siovakia	Kezmarok Jezersko, Magura Mountains	20.3/114/	49.208/48	Outgroup	Outgroup	Vega et al., 2010b	пар_18/ Нар_425
39	TPArG10C	Turkey	Sorex volnucnini	40.898814	31./23833 21 772022	Outgroup	Outgroup	This article	⊓aµ_425 ∐ap_426
40		Turkey	Surex volnuchini	40.898815	31.123833 21 772822	Outgroup	Outgroup	This article	⊓aµ_420 Hap 427
41		Turkey	Sorex voinucnini	40.898810	J1./23833	Dutgroup	Outgroup		⊓aµ_427 ∐ap_212
42	TODONE	титкеу	Stranuzna wountains	27.005333	41.750000	Ddikdii		wascherelli et al., 2003	TIGh_215

44 45 46

1									
כ	TRSM0002	Turkey	Strandzha Mountains	27.683333	41.750001	Balkan		Mascheretti et al., 2003	Hap_313
2	UACh_Sm05UA	Ukraine	Cherkasy1	31.307463	49.699916	Northern	ContinentalNorthern	This article	Hap_406
3	UACh0001	Ukraine	Cherkassy	31.500000	49.716667	Northern	ContinentalNorthern	Mascheretti et al., 2003	Hap_314
4	UACk_Sm09UA	Ukraine	Cherkasy2	31.431766	49.876058	Northern	ContinentalNorthern	This article	Hap_410
5	UACn_Sm40UA	Ukraine	Chernigiv	33.080539	51.837271	Northern	ContinentalNorthern	This article	Hap_422
6	UACn_Sm41UA	Ukraine	Chernigiv	32.951634	51.613213	Northern	ContinentalNorthern	This article	Hap_423
7	UACn_Sm42UA	Ukraine	Chernigiv	32.978952	51.618128	Northern	ContinentalNorthern	This article	Hap_424
<i>,</i>	UACr_Sm16UA	Ukraine	Crimea	34.420714	45.867575	Northern	ContinentalNorthern	This article	Hap_274
8	UAIF_Sm33UA	Ukraine	Ivano-Frankovsk	24.572465	48.427207	Northern	ContinentalNorthern	This article	Hap_419
9	UAJa0043	Ukraine	Jaduty	32.316667	51.366667	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_315
10	UAKa0024	Ukraine	Kanev	31.834931	49.692781	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_316
11	UAKa0025	Ukraine	Kanev	31.834931	49.692782	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_317
12	UAKa0180	Ukraine	Kazanki	44.517990	33.571930	Outgroup	Outgroup	This article	Hap_428
12	UAKa0250	Ukraine	Kanev	31.834931	49.692783	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_317
13	UAKi_Sm01UA	Ukraine	Kiev	30.491315	50.338831	Northern	ContinentalNorthern	This article	Hap_402
14	UAKi_Sm10UA	Ukraine	Kiev2	31.858608	49.987798	Northern	ContinentalNorthern	This article	Hap_411
15	UAKi_Sm12UA	Ukraine	Kiev	30.503392	50.244776	Northern	ContinentalNorthern	This article	Hap_413
16	UAKi_Sm18UA	Ukraine	Kiev	30.496701	50.271562	Northern	ContinentalNorthern	This article	Hap_413
17	UAKi_Sm19UA	Ukraine	Kiev2	31.858608	49.987798	Northern	ContinentalNorthern	This article	Hap_414
17	UAKi_Sm24UA	Ukraine	Kiev	30.559818	50.260968	Northern	ContinentalNorthern	This article	Hap_415
18	UAKi_Sm25UA	Ukraine	Kiev	30.541810	50.278688	Northern	ContinentalNorthern	This article	Hap_416
19	UALV0255	Ukraine	L'Vov	31.083333	47.900000	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_318
20	UAOd_Sm06UA	Ukraine	Odessa1	29.748193	45.349009	Northern	ContinentalNorthern	This article	Hap_407
21	UAOd_Sm07UA	Ukraine	Odessa2	29.748193	45.349009	Northern	ContinentalNorthern	This article	Hap_408
22	UAOd_Sm38UA	Ukraine	Odessa	29.748193	45.349009	Northern	ContinentalNorthern	This article	Hap_407
22	UAPo_Sm08UA	Ukraine	Poltava	33.5639 <mark>3</mark> 1	49.937811	Northern	ContinentalNorthern	This article	Hap_409
23	UASu_Sm02UA	Ukraine	Sumy	33.394014	52.262812	Northern	ContinentalNorthern	This article	Hap_403
24	UASu_Sm03UA	Ukraine	Sumy	33.394014	52.262812	Northern	ContinentalNorthern	This article	Hap_404
25	UASu_Sm04UA	Ukraine	Sumy	33.394014	52.26281 <mark>2</mark>	Northern	ContinentalNorthern	This article	Hap_405
26	UASu_Sm36UA	Ukraine	Sumy	33.394014	52.262812	Northern	ContinentalNorthern	This article	Hap_420
27	UASu_Sm37UA	Ukraine	Sumy	33.394014	52.262812	Northern	ContinentalNorthern	This article	Hap_421
27	UATi0266	Ukraine	Tishki	33.110944	50.107567	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_287
28	UAVi0253	Ukraine	Vinnitsa	28.562333	49.230672	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_319
29	UAVi0254	Ukraine	Vinnitsa	28.562333	49.230673	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_320
30	UAVo_Sm11UA	Ukraine	Volyn	23.798755	51.478853	Northern	ContinentalNorthern	This article	Hap_412
31	UAVo0256	Ukraine	Volyn	24.856700	51.124033	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_321
30	UAZh_Sm30UA	Ukraine	Zhytomir	28.107131	51.495035	Northern	ContinentalNorthern	This article	Hap_287
JZ 22	UAZh0257	Ukraine	Zhitomer	28.614911	50.261669	Northern	ContinentalNorthern	Vega et al., 2010b	Hap_322
33	UKOd_Sm31UA	Ukraine	Odessa	29.756303	45.301814	Northern	ContinentalNorthern	This article	Hap_417
34	UKOd Sm32UA	Ukraine	Odessa	29.578441	45.420647	Northern	ContinentalNorthern	This article	Hap_418

Biological Journal of the Linnean Society

Table S2. Pairwise geographic distances (in Km, below diagonal) and genetic differentiation (Slatkin's F_{ST}, above diagonal) among *Sorex minutus* phylogroups and other geographic groups

	Italian	South Italian	Balkan	Iberian	Belle Île	Britain	Northern (Continental)	Western (Continental)	Orkney Islands	Irish
Italian	-	1.6558	3.0387	3.6919	1.594	2.8852	2.3798	1.4534	2.8673	4.009
South Italian	773.14	-	2.5113	3.3869	1.3569	2.8562	2.3204	1.1713	2.7079	4.682
Balkan	547.27	628.96	-	1.9234	2.5617	3.1494	2.8093	2.7975	6.2456	7.0533
Iberian	1349.26	1768.56	1880.98	-	4.265	3.185	2.6191	3.8498	7.3804	10.8797
Belle Ile	1162.82	1815.47	1701.44	640.58	-	2.7595	2.179	0.3345	1.2148	2.4003
Britain	1347.34	2108.66	1795.12	1286.79	647.11	-	0.1449	2.6083	3.9225	4.7265
Northern (Continental)	1022.36	1488.84	863.37	2218.78	1788.28	1554.91	-	2.0767	2.791	3.2035
Western (Continental)	903.9	1444.78	1448.34	476.18	434.81	1006.85	1742.75	-	0.5436	1.1193
Orkney Islands	3476.34	3693.42	3127.67	4679.14	4175.54	3739.02	2477.61	4206.5	-	1.4635
Irish	1652.35	2396.73	2124.06	1311.98	726.86	346.14	1897.29	1151.96	4016.56	-