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ABSTRACT

Southern and northern glacial refugia are considered paradigms that explain the complex
phylogeographic patterns and processes of European biota. Here, we provide a revisited
statistical phylogeographic analysis of the pygmy shrew Sorex minutus Linnaeus, 1766
(Eulipotyphla, Soricidae) examining the genetic diversity, genetic differentiation and
demographic history in the Mediterranean peninsulas and in Western and Central Europe.
The results showed support for genetically distinct and diverse phylogeographic groups
consistent with southern and northern glacial refugia, as expected from previous studies, but
also identified geographical barriers concordant with glaciated mountain ranges during the
Last Glacial Maximum (LGM), early diversification events dated between the Upper
Pleistocene and Lower Holocene for the main phylogeographic groups, and recent (post-
LGM) patterns of demographic expansions. This study is the most comprehensive
investigation of this species to date, and the results have implications for the conservation of

intraspecific diversity and the preservation of the evolutionary potential of S. minutus.

KEYWORDS: mitochondrially encoded cytochrome b — glacial refugia — historical

demography — Last Glacial Maximum — mammals — postglacial colonisation.
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INTRODUCTION

During the Quaternary glaciations, species in Europe were restricted to glacial refugia at
glacial maxima (Bilton et al., 1998; Taberlet et al., 1998; Hewitt, 2000; Stewart & Lister,
2001; Pazonyi, 2004; Sommer & Nadachowski, 2006). As glaciers retreated, a broad range
of recolonisation patterns emerged, as evidenced by palaeontological, biogeographic and
phylogeographic studies on various taxa, resulting in the complex contemporary patterns of
endemism, species richness and biodiversity hotspots observed across Europe. While
population contraction and lineage diversification within southern glacial refugia in the
Mediterranean peninsulas during the Last Glacial Maximum [LGM; 19-26.5 thousand years
ago (KYA) (Clark et al., 2009)], and subsequent northward postglacial recolonisation of
Europe have been accepted and recognised since the 1990s (Bilton et al., 1998; Taberlet et
al., 1998; Hewitt 2000), the concept of northern glacial refugia also became a paradigm to
explain the complex phylogeographic patterns and processes of European biota (Stewart &
Lister, 2001; Pazonyi 2004; Sommer & Nadachowski, 2006). Fossil records and
phylogenetic analyses revealed that many species of flora and fauna could have survived
during the LGM in the Carpathian Basin (Stewart & Lister, 2001; Pazonyi, 2004; Sommer &
Nadachowski, 2006; Stojak et al., 2015) and in the Dordogne region (Steward et al., 2010),
and glacial refugia could also be located in Crimea (Markova, 2011) or in the Russian Plain
(Banaszek et al., 2012). Nowadays, locations of southern and northern glacial refugia during
the LGM are hotspots of genetic diversity (Petit et al., 2003; Stojak et al., 2016).

The Eurasian pygmy shrew Sorex minutus Linnaeus, 1766 (Eulipotyphla, Soricidae)
(Hutterer, 1990) has been used as a phylogeographic model species for understanding the
effects of the glaciations in Europe and the colonisation history during the Pleistocene and
postglacial times (Bilton et al., 1998: McDevitt et al., 2010; Vega et al., 2010a, b). However,
little is still known about the phylogeographic structure, genetic diversity and structure, and
demographic history of this small mammal within these regions due to the limited number of
samples from Mediterranean peninsulas. An expanded phylogeographic study of the pygmy
shrew is therefore important for the understanding and further development of biogeographic

4
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models of glacial refugia and postglacial recolonization, for depicting areas with high
intraspecific genetic diversity, for establishing conservation measures of rear-edge
populations, and for the preservation of the evolutionary potential of species, particularly in
the face of climate and anthropogenic change (Deffontaine et al., 2005; Provan & Bennett,
2008; Stojak et al., 2019; Stojak & Tarnowska, 2019).

In this study, we explored the evolutionary history and phylogeographic structure of
Sorex minutus using a statistical phylogeography approach (Knowles & Maddison, 2002;
Knowles, 2009). Here, we emphasise the genetic diversity and structure within and among
refugia, the inference of geographical barriers and the demographic history of S. minutus,
which are aspects that have not been studied in detail previously. Specifically, we asked the
following questions: 1) What are the geographical distribution and genetic diversity patterns
of the genealogical lineages of S. minutus? 2) Is there significant population genetic
structure across the geographic range of S. minutus? 3) What is the historical demography
of S. minutus in Europe? Our results showed support for distinct and genetically diverse
lineages, geographical barriers concordant with glaciated mountain ranges during the LGM,
and recent (post-LGM) population expansions with contemporary contact areas. The results
presented here have implications for the long-term conservation of intraspecific diversity and
the preservation of the evolutionary potential of S. minutus in the face of modern climate

change.

MATERIALS AND METHODS

Study species

Sorex minutus is common over most of its distribution but is rarely dominant and it occurs in
a wide range of terrestrial habitats with adequate ground cover and in relatively damp areas,
including swamps, grasslands, heaths, sand dunes, woodland edge, rocky areas, shrubland
and montane forests (Hutterer, 1990, 2016; Churchfield, 1990; Churchfield & Searle, 2008).
It is found from southern and western Europe to much of central and northern Europe,

Ireland and the British Isles, and Siberia to Lake Baikal in the east (Hutterer, 1990, 2016). It

Biological Journal of the Linnean Society
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is found from sea level up to 2260 m (in the Alps), but its distribution becomes patchy and
limited to higher altitudes in southern Europe where it occurs with some degree of
geographical isolation and differentiation, while in central and northern parts of Europe and
in Siberia it is more abundant and populations are more connected and widespread

(Hutterer, 1990, 2016).

Samples and molecular methods

A total of 671 mitochondrially encoded cytochrome b (MT-CYB) DNA sequences of S.
minutus from Europe and Siberia were used for this study (Fig. 1B; see Supplementary
information Table S1). DNA sequences were obtained from samples collected from the wild
following ethical guidelines (Sikes, Gannon & the Animal Care and Use Committee of the
American Society of Mammalogists, 2011), or from museums, and from published GenBank
data (including AB175132: Ohdachi et al., 2006; AJ535393 — AJ535457: Mascheretti et al.,
2003; GQ272492 — GQ272518: Vega et al., 2010a; GQ494305 — GQ494350: Vega et al.,
2010b; and JF510376 — JF510321: McDevitt et al., 2011). In addition, four MT-CYB
sequences of S. volnuchini, which was used as an outgroup (Fumagalli et al., 1999), were
incorporated into the analysis (including AJ535458: Mascheretti et al., 2003).

Genomic DNA from wild and museum samples was extracted using a commercial kit
(Qiagen). Partial (1110 bp) MT-CYB sequences were obtained by PCR using two primer
pairs that amplified approximately 700 bp of overlapping fragments, or using five primer pairs
(for museum samples with highly degraded DNA) that amplified approximately 250 bp of
overlapping fragments (Vega et al., 2010a). PCR amplification was performed in a 50 pl final
volume: 1X Buffer, 1 yM each primer, 1 yM dNTP's, 3 mM MgCl, and 0.5 U Platinum Taq
Polymerase (Invitrogen), with cycling conditions: 94°C for 4 min, 40 cycles at 94°C for 30 s,
55°C for 30 s and 72°C for 45 s, and a final elongation step at 72°C for 7 min. Purification of
PCR products was done with a commercial kit (Qiagen) and sequenced (Macrogen and

Cornell University Core Laboratories Center).

Biological Journal of the Linnean Society
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Phylogenetic analysis

DNA sequences were edited by eye in BioEdit version 7.0.9.0 (Hall, 1999), contigs were
made from forward and reverse sequences also in BioEdit, and sequences were aligned
using ClustalX version 2.0 (Larkin et al., 2007). A haplotype data file was obtained using
DnaSP version 5.10.1 (Librado & Rozas, 2009). Newly obtained haplotypes were deposited
in GenBank (Accession Numbers: MN840358 - MN840484, Supplementary information
Table S1).

The model of evolution that best fitted the molecular data (haplotypes) was searched
using jModelTest version 2.1.10 (Darriba et al., 2012) using the Bayesian Information
Criterion value. The substitution model supported was the General Time Reversible (GTR)
with specified substitution types (A—C=0.4250, A-G=23.5124, A-T=1.6091, C-G=1.8671,
C-T=17.2314, G-T=1.0000), proportion of invariable sites (0.6044), gamma shape
parameter (0.2816) and nucleotide frequencies (A=0.2777, C=0.3076, G=0.1416,
T=0.2731).

The phylogenetic relationships among MT-CYB haplotypes of S. minutus were
inferred by Bayesian analysis and by generating a parsimony phylogenetic network. The
Bayesian analysis was done using MrBayes version 3.2.7 (Ronquist et al., 2012) with two
independent runs (10 million generations and 5 chains each), a sampling frequency every
1000 generations and temperature of 0.1 for the heated chain, and checking for
convergence in Tracer version 1.7.1 (Rambaut et al., 2018). Trees were summarized after a
burn-in value of 2500 to obtain the posterior probabilities of each phylogenetic branch. The
main phylogenetic groups (phylogroups) were identified based on monophyly of the
haplotypes, and were named based on the geographical origin of the samples. The

phylogenetic network was done using PopART version 1.7 (http://popart.otago.ac.nz)

implementing a median-joining algorithm.
Sequence polymorphism indices and diversity values, including the number of

haplotypes (H), polymorphic (segregating) sites (S) and parsimony informative sites (P),

Biological Journal of the Linnean Society
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haplotype diversity (Hd), nucleotide diversity (17), and average number of nucleotide
differences (k), were estimated using DnaSP. This was done for the whole data set
(ingroup), for the main phylogroups, and also for other relevant geographic groups, including

island populations and continental samples.

Population genetic structure
Pairwise genetic differentiation values (Fst) between all pairs of phylogroups and other
relevant geographic groups, and an Analysis of Molecular Variance (AMOVA) were
calculated using Arlequin version 3.11 (Excoffier et al., 2005). Ten thousand nonparametric
permutations were performed to generate a random distribution to test the significance of the
pairwise Fst values and covariance components of the AMOVA, and a = 0.05 was set as the
threshold for statistical significance.

With samples assigned to phylogroups and with the samples’ geographical
coordinates, the geographic midpoints (i.e. mid-geographic location between two or more
coordinates) of the phylogroups were calculated using the Geographic Midpoint Calculator

(available at http://www.geomidpoint.com/). The geographic midpoints were used to obtain

the pairwise geographic distances among phylogroups with the Geographic Distance Matrix
Calculator version 1.2.3 (by PJ Ersts, available at

http://biodiversityinformatics.amnh.org/open_source/gdmg. ) A Mantel test was used to

evaluate the relationship between matrices of pairwise geographic distances and genetic
differentiation values (Slatkin’s linearised pairwise Fst as D = Fs1/(1-Fst); Slatkin, 1995).
Despite criticisms, the Mantel test is still a widely used and can be a powerful statistical
approach to analyse sequence data to test evolutionary hypotheses (Diniz-Filho et al.,
2013). Due to the very low (or absence of) genetic variation in the Orkney islands, DNA
sequences originating from there were pooled to avoid issues with pairwise Fst calculations.
Geographic barriers were computed using Barrier version 2.2 (Manni et al., 2004).

This approach implements Monmonier's maximum difference algorithm to find edges

Biological Journal of the Linnean Society
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(boundaries) on a Voronoi tessellation associated with the highest rate of change in genetic
distances among samples interconnected by a geometric network (i.e. Delaunay
triangulation) (Manni et al., 2004). A barrier highlights the geographic areas where a genetic
discontinuity is found, and where samples on each side of the barrier are genetically more
similar than samples taken on different sides of the boundary. Pairwise genetic distances
were estimated using continental samples only, limiting the data set in the geometric network

calculation to one sample per locality, and computing a maximum of 10 barriers.

Historical demography

A strict molecular clock was compared to the uncorrelated lognormal relaxed molecular clock
(Drummond et al., 2006). Coalescent constant population size and Bayesian skyline
demographic models (Drummond et al., 2005) were compared to identify the best-fitting
pattern of changes in the pygmy shrew population. For model selection, path sampling and
stepping-stone sampling (Baele et al., 2013), based on four independent MCMC chains
(1000 steps of 100,000 generations each, following a 10 million generations burn-in period),
were used for calculating the log Marginal Likelihoods Estimates (MLEs) for each model.
MLEs were used to calculate Bayes Factors (BFs) for each comparison between tested
models to determine the best-fitting one (Kass & Raftery, 1995). The best-fitting models
were then used to estimate the Time of divergence from the Most Recent Common Ancestor
(TMRCA) and Bayesian Skyline Plots (BSP) (see below). The 95% Highest Posterior
Density (HPD) was included in the TMRCA and BSP estimations.

TMRCAs for the ingroup (all S. minutus samples) and the phylogroups were
estimated using BEAST version 2.5.2 (Bouckaert et al., 2014). The following prior
assumptions were: random starting tree, monophyletic groups (for the ingroup and the Irish
phylogroups) (Drummond et al., 2006) to calculate the evolutionary rate, and the GTR
substitution model with four categories, gamma = 0.9680 and proportion of invariable sites =
0.4680 (from jModelTest using the full data set). The oldest record of S. minutus has been
found in Podlesice and Mata Cave, Poland dated between 5.3 and 3.6 MYA (Early Pliocene;

9
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Mammal Neogene 14) (Rzebik-Kowalska, 1998). Using this fossil information, a calibration
point for the ingroup was set at 4.45 MYA (SD = 0.5 MY; 5.27 — 3.63 MYA) with a normal
prior distribution. Due to the absence of dated fossils of pygmy shrews that can be assigned
specifically to the main phylogroups, a second calibration was set for the node age of the
Irish lineage at 0.006 MYA (SD = 0.0005 MYA; 0.00682 — 0.00518 MYA). This secondary
calibration point, derived from a previous analysis and applied to our data set, was based on
the inferred colonisation time of Ireland by S. minutus in the Neolithic using multiple genetic
markers and fossil data (McDevitt et al., 2009, 2011). The trace files were analysed in
Tracer, the tree information from the four runs were combined and resampled at a lower
frequency (for a total of 10,000 trees) using LogCombiner, and the information was
summarized using TreeAnnotator selecting Maximum clade credibility tree and median
heights. The phylogenetic tree showing the TMRCAs was created using FigTree version

1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) with median and 95% HPD values based on

those 10,000 trees.

Genetic evidence of population expansion for the phylogroups, island populations
and continental samples was investigated using the R, test of neutrality (Ramos-Onsins &
Rozas, 2002), based on the difference of the number of singleton mutations and the average
number of nucleotide differences, and Fu's Fs (Fu, 1997), a statistic based on the infinite-site
model without recombination that shows large negative Fs values when there has been a
demographic population expansion. Both population expansion tests were carried out in
DnaSP using coalescent simulations for testing significance (10,000 replicates).

Mismatch distributions (i.e. the distribution of the number of differences between
pairs of haplotypes) were estimated for the phylogroups (and where N = 10) to compare the
demography of the populations with the expectations of a sudden population expansion
model (Rogers & Harpending, 1992). For the phylogroups and continental samples that
showed a unimodal mismatch distribution and significant population expansion, the time
since the population expansion (f) was calculated as t = 1/2u, where 1 (tau) is the mode for

the unimodal mismatch distribution, and u is the cumulative (across the sequence)

10
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probability of substitution (Schenekar & Weiss, 2011). The calculations were done using the
MS Excel Mismatch Calculator (Schenekar & Weiss, 2011) with sequence length = 1110 bp,
generation time = 1 year (Hutterer et al., 2016), substitutions per site per million years
(subst/Site/MY) = 0.551 (based on the average substitution rate across all sites ‘clock.rate’
results from BEAST) and cumulative substitutions/generation = 0.00062.

BSPs were calculated using BEAST based on the posterior distribution of effective
population size through time from a sample of gene sequences. This was done for the
phylogroups showing a unimodal mismatch distribution and significant signatures of recent
population expansion (where N = 10). The analysis was run for 100 million generations,

sampled every 1000, using the best-fitting model.

RESULTS

Phylogenetic analysis

For the complete S. minutus data set (N = 671) (Fig. 1B), there were 424 haplotypes with
390 polymorphic sites of which 277 were parsimony informative (Table 1). We report 160
newly sequenced specimens of S. minutus from the Iberian (4) and Balkan (19) peninsulas
and from Central and Northern Europe (137) from which 127 were new haplotypes. Also,
there were three new sequences and haplotypes of S. volnuchini, from which two were from
Turkey and one from the Crimean Peninsula.

The Bayesian phylogenetic analysis showed S. minutus as a monophyletic group and
revealed six distinct lineages corresponding to their geographical origin (i.e. phylogroups)
supported by high posterior probabilities (Fig. 2A). Samples from the Mediterranean
peninsulas clustered in three distinct phylogroups, namely the Iberian, Italian and Balkan
phylogroups. The Iberian group was represented with few DNA sequences (N = 6). It was
geographically restricted to the Iberian Peninsula and included samples from Rascafria,
Central Spain (Sierra de Guadarrama) and Picos de Europa, Northern Spain. The Italian
phylogroup (N = 26) was mostly restricted to the north-central regions of the Italian
peninsula; it included samples from the Apennines and the Alps in Italy, but also from

11
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Switzerland, Slovenia, Southern and Eastern France near the border with Italy, Czech
Republic and Germany. The Balkan phylogroup (N = 22) included samples mostly from the
Balkan Peninsula and a few from further north in Central Europe. This phylogroup showed a
weak north/south subdivision, with one clade containing samples from Switzerland, Austria,
Slovakia, Czech Republic, Hungary and Montenegro, another clade containing samples from
Serbia, Bosnia and Herzegovina and North Macedonia, plus other ungrouped basal samples
from Montenegro, North Macedonia, Serbia and Turkey (East Thrace, Southeast Europe).

There was also a well-supported and geographically widespread Western phylogroup
(N = 283), which included samples from northern Spain (Cantabrian Mountain Range),
Southern France and Andorra (i.e. the Pyrenees), western and central France (including
Belle-lle), Ireland, the Orkney Islands, and western mainland Britain and offshore islands on
the western coast of mainland Britain. Samples from Ireland formed an internal monophyletic
lineage (i.e. the Irish phylogroup, N = 94) within the Western phylogroup. Notably, two
samples from Navarra in northern Spain (ESNa0861 and ESNa1131; Accession Number
JF510331) shared haplotypes with samples from Ireland (Hap_64). A monophyletic South
Italian phylogroup (N = 4) was most closely related to the Western phylogroup than to the
Italian phylogroup, and was geographically restricted to La Sila, Calabria in Southern Italy.

Samples from northern and central Europe and Siberia, namely the Northern
phylogroup (N = 330), formed the most geographically widespread lineage and included
samples ranging from Central France and Britain (excluding those within the Western
phylogroup), across Central and Northern Europe to Lake Baikal in Siberia, but did not
include samples from Southern Europe. Samples from mainland Britain belonging to the
Northern phylogroup did not form an internal monophyletic cluster.

The phylogenetic network had a complex structure (Fig. 2B), but the haplotypes
clustered into the same phylogroups detected with Bayesian phylogenetics and were
distantly related from each other (> 10 mutational steps). The Western phylogroup had a
star-like pattern and showed three most internal haplotypes; notably, Hap_61 was found in
the Pyrenees with other Western haplotypes directly connected to it, Hap_94 was found on

12

Biological Journal of the Linnean Society



Page 13 of 60 Biological Journal of the Linnean Society

1

2

2 1 islands of the western coast of Scotland (Arran and Mull) with other Scottish and continental
Z 2 Western haplotypes directly connected to it, and Hap_64 included samples from Northern

; 3 Spain and Ireland with other Irish haplotypes connected to it. The Northern phylogroup

?0 4 showed a star-like pattern with many reticulations and three most internal haplotypes

1; 5 separated from each other by few mutational steps. There was a weak geographical

:i 6 subdivision within the Northern phylogroup, where samples from Siberia, Eastern and

12 7  Northern Europe were derived or most closely connected to samples from Central Ukraine
:&73 8 (Hap_287), samples from Central Europe were derived or most closely connected to

%(19) 9 samples from The Netherlands (Hap_274), and all samples from Britain were derived or

;g 10 most closely connected to other samples from The Netherlands than to the other central

;2' 11 haplotypes (Hap_90); however, the highly reticulated pattern of the inner haplotypes of the
;? 12 Northern phylogroup indicated that this geographical subdivision was weak.

;g 13 Sequence polymorphism indices and diversity values for the phylogroups and other
g? 14 geographic groups are shown in Table 1. For the phylogroups, the haplotype diversity values
§§ 15 were high (>90%), and the nucleotide diversity values were either half or almost half as

gg 16 much as the ingroup. Notably, the Northern phylogroup had the highest haplotype diversity
g? 17 values, followed by the Balkan phylogroup; however, the Balkan phylogroup had the highest
;E 18 nucleotide diversity values. The Irish phylogroup, which clustered within the Western

j; 19  phylogroup, showed slightly lower haplotype diversity than any other phylogroups.

ji 20 The continental groups (Northern continental and Western continental) showed

jg 21  equivalent DNA polymorphism values as the main phylogroups, but the island groups

j; 22 showed different levels of DNA polymorphism (Table 1). There was low DNA polymorphism
gg 23 inislands of the Orkney Archipelago, with only 11 haplotypes in all Orkney Islands combined
g; 24 (N =119), but all haplotypes were unique to these islands. There were eight haplotypes in
gi 25 Orkney Mainland (N = 44), from which seven were unique to this island (the largest island of
gg 26 the archipelago), there were two unique haplotypes in Orkney South Ronaldsay (N = 40),

gg 27 and there was only one haplotype in Orkney Westray (N = 33) also present in Orkney Hoy
60 28 (N =2) and Orkney Mainland. There were five haplotypes in Belle-lle (N = 5), and only one
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was present in the continent also belonging to the Western phylogroup. The British group (N
= 91) showed high haplotype diversity but moderate nucleotide diversity values and had 80

haplotypes from which 77 were unique haplotypes not found elsewhere.

Population genetic structure

The highest pairwise differentiation values were found between some southern phylogroups
and island groups, while the lowest values were between phylogroups and islands groups
that clustered within them (Supplementary information Table S2). There was higher
percentage of variation among (73.5 %) than within (26.5 %) groups, and there was a
significant population differentiation (Fst = 0.7349, P < 0.0001). The Mantel test showed a
nonsignificant relationship between pairwise geographic and genetic distances based on
Slatkin’s linearised Fst (R> = 0.0095, P = 0.2935) (Supplementary information Fig. S1).

The barriers identified using the computational geometry approach reflected the
genetic differentiation between S. minutus and S. volnuchini, and among the phylogroups
within S. minutus (Fig. 1C). The first barrier separated S. minutus from S. volunichini. The
nine following barriers coincided with the location of mountain ranges, including a barrier
located in the north of the Balkan Peninsula, in the Alps and in the Pyrenees, which reflected

the genetic subdivisions and lineages in S. minutus.

Historical demography

Comparison of BFs for each model indicated the Bayesian skyline demographic model as
the best-fitting one (BF = 391), and the strict molecular clock was better than the
uncorrelated lognormal relaxed molecular clock (BF = 23). The MLEs for the constant
population size and Bayesian skyline demographic models using the strict molecular clock
were -10960 and -10569, while using the uncorrelated lognormal relaxed molecular clock
were -10907 and -10592, respectively. Therefore, the strict clock and Bayesian skyline
demographic model were selected as the best-fitting according to BFs. The effective sample
size (ESS) for all values was higher than 200.
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Biological Journal of the Linnean Society



Page 15 of 60 Biological Journal of the Linnean Society

1

2

431 1 All branches of the Bayesian genealogy (Fig. 3, Table 2) were well-supported

Z 2 (posterior probabilities PP = 0.97), except for the clade containing all phylogroups excluding
; 3 Iberian (PP = 0.05). Molecular dating analysis revealed that the ingroup and outgroup

?0 4 separated approximately 83.4 KYA, with lower and upper 95% HPD limits between 59.7 and
1; 5 110.2 KYA (Fig. 3, Table 2). The diversification of S. minutus occurred approximately 31.8
:i 6 KYA (95% HPD: 21.8 — 40.5 KYA) with the formation of the Iberian phylogroup, followed by
12 7  the formation of the Balkan group 29.6 KYA (95% HPD: 21.8 — 40.5 KYA), while in Western,
:&73 8 Central and Northern Europe, S. minutus continued its diversification with the Northern

%(19) 9 phylogroup forming 24.1 KYA (95% HPD: 16.4 — 33.1 KYA), the Italian phylogroup forming

22 10 15.3 KYA (95% HPD: 10.7 — 21.5 KYA), the South Italian phylogroup forming 12.8 KYA

24 11 (95% HPD: 8.5 — 17.8 KYA), and the Western phylogroup forming 9.3 KYA (95% HPD: 6.7 —
12 12.6 KYA) (Fig. 3, Table 2). The TMRCA of the Balkan phylogroup was the earliest, dated

13 back to 15.5 KYA (95% HPD: 9.7-22.7 KYA), followed by the Northern phylogroup, dated

31 14 back to 11.8 KYA (95% HPD = 7.7-16.8 KYA), while the rest of the main phylogroups had

33 15 TMRCAs dated approximately to about 6 and 9 KYA (Fig. 3, Table 2). Within the Western

35 16  phylogroup, the TMRCA for the Irish clade dated back to 5.9 KYA (95% HPD: 4.9 - 6.9

37 17 KYA).

;E 18 The population expansion tests (R, and Fu’s Fs) showed significant departures from
2; 19 neutrality for the ingroup and several other phylogroups, except for the Balkan, Iberian and
ji 20  South ltalian (Table 2). The population expansions were not an effect of the island samples
jg 21  belonging to these phylogroups, and continental samples analysed separately also

j; 22 demonstrated a similar pattern (Table 2). For the island groups, only the Irish and British

gg 23 groups showed signatures of recent population expansions (Table 2).

?; 24 The mismatch distributions varied significantly among the phylogroups (Fig. 4A;

gi 25 Supplementary information Fig. S2). The ingroup showed a bimodal mismatch distribution,
gg 26  which reflected the pairwise comparisons within and among phylogroups in S. minutus. The
gg 27  Northern (and Northern continental), ltalian, Western (and Western continental) and Irish

60 28 phylogroups all had distinctly unimodal distributions with an almost perfect fit between
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observed and expected pairwise differences of a sudden population expansion model. All
population expansions for the phylogroups were dated to the Holocene; the Italian and
Northern phylogroups had the oldest times of expansion (>8.0 KYA), while the Irish showed
a relatively recent population expansion dated to 1.6 KYA.

The BSP obtained for three phylogroups (Northern, Western and Irish) suggested
that demographic expansions of these populations started approximately 5.0 KYA (Fig. 4B).
BSP calculation for the Italian phylogroup indicated an even earlier demographic expansion

(approximately 5.5 KYA) (Fig. 4B).

DISCUSSION

Quaternary refugia represent the geographical regions that species inhabit during periods of
glacial or interglacial cycles when there is the maximum contraction in geographical range
(Stewart et al., 2009). There is support for both southern (Taberlet et al., 1998; Hewitt, 2000)
and northern glacial European refugia (Bilton et al., 1998; Stewart & Lister, 2001; Kotlik et
al., 2006; Provan & Bennett 2008; Flgjgaard et al., 2009; Vega et al., 2010a, b). Rather than
polarising the biogeographic patterns into southern and northern refugia (Tzedakis et al.,
2013), the paradigms of postglacial colonisation in Europe (Hewitt, 2000) can be improved
with the acceptance of southern hotspots of diversification without northward colonisation
(Bilton et al., 1998) and the concept of refugia-within-refugia (Gomez & Lunt, 2007), as well
as with the findings of northern glacial refugia (Stewart & Lister 2001; Provan & Bennett,
2008; Stewart et al., 2009), to reflect the evolutionary processes across varied topographical
areas that have shaped genetic diversity. The statistical phylogeographic results obtained
here contribute to the understanding of the phylogeographic patterns and processes during
the Quaternary glaciations that shaped the European biota, and provide further evidence to
the emerging pattern of complex biogeographical histories in Europe (Pedreschi et al.,

2019).
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1

2

3 1

4

Z 2 Sorex minutus phylogeography

; 3 The significant genetic structure among phylogroups defined in this study illustrate the

?0 4 complex history of European colonisation, isolation and diversification of S. minutus during
1; 5 the Pleistocene and Holocene, and is not a simple case of isolation by distance and

12 6 colonisation of Northern and Central Europe from expanding populations from the south.

12 7 While the southern phylogroups, including the Iberian, Balkan, Italian and South Italian, were
:&73 8 mostly restricted to the Southern European peninsulas (consistent with the traditional

%(19) 9 southern glacial refugia), the Northern and Western phylogroups were widespread

;g 10 geographically and were found north of the Mediterranean peninsulas, consistent with

;;' 11 previous studies with fewer samples (Bilton et al., 1998; Mascheretti et al., 2003; Vega et al.
;? 12 2010a, b) and with different molecular markers (McDevitt et al., 2010).

;g 13 The hypothesis of northern refugia is further supported by palaeontological and

g? 14  palynological evidence for other temperate and boreal species (Willis et al., 2000; Willis &
32

33 15 van Andel, 2004; Magri et al., 2006; Sommer & Nadachowski, 2006), as well as many
35 16 phylogeographic studies in small mammals, including the field vole M. agrestis (Jaarola &

37 17 Searle, 2002; Herman et al., 2019), bank vole M. glareolus (Deffontaine et al., 2005; Kotlik et

4313 18 al., 2006; Wojcik et al., 2010), root vole M. oeconomus (Brunhoff et al., 2003), common vole
j; 19 M. arvalis (Heckel et al., 2005; Stojak et al., 2016), common shrew S. araneus (Bilton et al.,
ji 20 1998; Yannic et al., 2008) and weasels Mustela nivalis (McDevitt et al., 2012). For several
jg 21 small mammals, including S. minutus, suitable climatic conditions at the LGM could have

j; 22 been widespread across Central and Eastern Europe (Flgjgaard et al., 2009; Vega et al.,

gg 23 2010b; McDevitt et al. 2012; Stojak et al., 2019).

?; 24 Until recently, it was unclear which species of Sorex inhabit Crimea. According to

53

54 25 Zagorodniuk (1996) it could be S. (minutus) dahli [mentioned in Hutterer (2005) as a

56 26  synonym of Sorex volnuchini (dahli)], and Zaitsev et al. (2014) and Hutterer et al. (2016)
57

58 27 indicated the presence of S. minutus in mainland Ukraine and in Crimea. Hutterer (2005)
59

60 28 mentioned that S. volnuchini might be present in Crimea, but in Hutterer et al. (2016) S.
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volnuchini is only found in southern Russia and Caucasus States, Turkey and northern Iran.
Our research demonstrated that S. volnuchini may be present in the southern region of
Crimea (based on one MT-CYB sequence), while S. minutus is present in mainland Ukraine
and in the northern region of Crimea, but further sampling in this region is needed.

The finding of two phylogroups in the Iberian peninsula (i.e. Iberian and Western
phylogroups) and two in the Italian peninsula (i.e. Italian and South Italian phylogroups),
support the hypothesis of microevolutionary processes shaping the genetic diversity and
structure within the Mediterranean peninsulas. In the Iberian Peninsula, the topography of
the region with east-west mountain ranges and other high ground (over 1000 m a.s.l.), large
rivers (which could act as barriers to dispersal), and the distinct seasonal precipitation and
vegetation types (O’Regan, 2008), must have played an important role in the colonisation of
the region and the genetic differentiation of populations. McDevitt et al. (2010) proposed that
the Western phylogroup could have originated in the Dordogne region based on a limited
number of samples from France, but the presence of this phylogroup in northern Iberia and
the central position of Hap_61 (Pyrenees) could mean that an Iberian origin is possible
instead. A similar process could explain the presence of the two phylogroups in the Italian
peninsula (i.e. Italian and South Italian). The genetic differentiation of the South Italian
phylogroup, further supported by morphological data (Vega et al., 2010a, 2016), could be
due to the unique geography of Southern Italy consisting of mountain massifs of Pollino, La
Sila and Aspromonte separated by lowland areas, which from the Pliocene to the end of the
Middle Pleistocene, at times of high sea level, were islands in a chain (Malatesta, 1985;
Caloi et al., 1989; Bonardi et al., 2001; Bonfiglio et al., 2002). The patterns of differentiation
within refugial areas were concordant with the ‘refugia-within-refugia’ concept widely
recognized for the Iberian Peninsula (Gomez & Lunt, 2007; Abellan & Svenning, 2019) and
similar to microrefugia in the Balkans (Krystufek et al., 2007). For the Italian peninsula, a
comparable ‘refugia-within-refugia’ pattern was found in several species (Amori et al., 2008;
Canestrelli et al., 2008; Castiglia et al., 2008; Vega et al., 2010a, 2016; Senczuk et al., 2017;
Bisconti et al., 2018).
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1

2

431 1 The genetic similarity between the Western and South Italian phylogroups indicates a
Z 2 common history and it can be hypothesised that their common ancestor was more

; 3 widespread throughout the Italian peninsula, probably displaced later by the Italian lineage in
?0 4 the Apennines and Western Alps. A similar scenario has been proposed for the water shrew
1; 5 Neomys fodiens (Castiglia et al., 2007), Alpine salamander Salamandra salamandra

:i 6 (Steinfartz et al., 2000), black pine Pinus nigra (Afzal-Rafii & Dodd, 2007) and green lizard
12 7  Lacerta bilineata bilineata (Bbhme et al., 2007), which showed closely related South Italian
1&73 8 and Western phylogroups most closely related to each other than to a North-Central Italian
;g 9 lineage.

21

;g 10 The phylogeographic patterns found here were further supported by the

;2' 11 determination of barriers that coincided with mountain ranges located on the north of the

;? 12 Iberian, ltalian and Balkan peninsulas. Contact zones among phylogroups (i.e. localities

;g 13 where at least two MT-CYB phylogroups were present) were detected at the northern

g? 14 extremes of the southern peninsulas. During the LGM, glaciers covered most of the Alpine
§§ 15 (Buoncristiani & Campy, 2004) and Pyrenean mountain ranges (Calvet, 2004), while glaciers
34

35 16 in the Carpathians (Reuther et al., 2007) and in the Balkan Peninsula (Hughes et al., 2006)

37 17 were found > 1,000 m a.s.l. When climate ameliorated and suitable habitat became

;E 18 available, pygmy shrew populations belonging to different phylogroups on different sides of
j; 19 the mountain ranges could have expanded and colonised previously glaciated areas thus
ji 20 forming the observed contact zones. Moreover, the widespread distribution and absence of
jg 21  phylogeographic structure of the Northern phylogroup could be explained by the apparent
j; 22 absence of major geographical barriers across Central and Northern Europe, and

gg 23 recolonization from northern refugia. Similarly, pygmy shrews belonging to the Western and
?; 24 Northern phylogroups could have quickly colonised mainland Britain across a land

gi 25 connection to continental Europe (i.e. Doggerland; Gaffney et al., 2007), resulting in the

gg 26 genetic similarities observed between the British Isles and continental Europe.

R

59

60 28
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Sorex minutus demography

The oldest fossils assigned to S. minutus were found in Podlesice and Mata Cave, Poland
dated to the Early Pliocene between 4 and 5.3 MYA (Rzebik-Kowalska, 1998). An early
widespread colonisation of Europe by S. minutus might have been possible because it was
probably one of the first species of the genus Sorex in the continent (Rzebik-Kowalska,
1998, 2008). The Bayesian analysis revealed, however, more recent diversification events,
with TMRCAs for the ingroup and the phylogroups in continental Europe between the Upper
Pleistocene and Lower Holocene. This is consistent with recent studies on field vole
(Microtus agrestis) phylogeography in Europe (Herman & Searle, 2011; Herman et al., 2014)
which demonstrated the importance of the Younger Dryas (11.7-12.9 KYA) glacial re-
advance for the diversification within this species. Similar colonisation scenarios and
divergence before the LGM from Eastern to Western Europe have been proposed for other
species, including the common vole Microtus arvalis (Heckel et al., 2005; Stojak et al.,
2016), the bank vole Clethrionomys glareolus (Deffontaine et al., 2005; Kotlik et al., 2006;
Wojcik et al., 2010), and the root vole M. oeconomus (Brunhoff et al., 2003).

The population expansion signatures for the Northern and Western phylogroups,
star-like patterns in phylogenetic networks and population expansion times support recent
and quick colonisation events of central and northern Europe, and appear to reflect
responses to postglacial climate warming. The Western lineage was restricted to Central,
Western and South-Eastern France and North-Western Spain in continental Europe, but it
was the only lineage found in Ireland and several islands off the west and north coasts of
Britain. The region of the Dordogne in South-Western France was situated outside the LGM
permafrost area and has temperate mammal fossil records dated to the end of the LGM;
therefore, it has been suggested as another likely northern refugium (Sommer &
Nadachowski, 2006; McDevitt et al., 2010) where the Western lineage could have persisted
and recolonised Western and Central France after the LGM. But as stated above, an Iberian
origin for this phylogroup is also possible. However, SDM studies showed that suitable
climatic conditions during the LGM for S. minutus and other temperate small mammal
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1

2

431 1 species could have been more continuous and present further north (Flgjgaard et al., 2009;
Z 2 Vega et al., 2010b), which could explain its widespread distribution in Western Europe and
; 3 its presence in Britain. According to BSP results, it is plausible that Northern and Western
?0 4 phylogroups spread across Europe after the Younger Dryas. The British (island) group,

1; 5 belonging to the Northern phylogroup, showed a significant signature of population

12 6 expansion. This expansion could have selectively displaced pygmy shrew populations of the
12 7  Western lineage, which still remain in uplands and islands in the periphery to the north, west
:&73 8 and south of Britain forming a ‘Celtic fringe’ (Searle et al., 2009).

%(19) 9 The widespread Italian lineage may be presumed to derive from a glacial refugium
;g 10 located somewhere within the vicinity of the Apennine mountain chain. A significant

;2' 11 population expansion signature demonstrates that the Italian phylogroup went through a

;? 12 recent expansion phase, calculated in BSP for about 5.5 KYA. Contrastingly, the lack of a
;g 13 population expansion signature, the high nucleotide and haplotype diversities, and the highly
g? 14  divergent sequences showing a weak north/south subdivision of the Balkan phylogroup

§§ 15 warrants further attention. The Balkans is a European hotspot for biodiversity given its

gg 16 environmental stability, topographic and climatic diversity and occasional connectedness

36

37 17  with Asia Minor (Krystufek & Reed, 2004; Krystufek et al., 2007, 2009; Buzan et al., 2010),

4313 18 and it could be expected that some of these factors shaped the genetic diversity of the

j; 19 Balkan lineage there. Similarly, the lack of significant population expansion values for the
ji 20 Iberian lineage may relate to historical stable population sizes; however, the sample size

jg 21 was low and this result should be taken with caution.

A

gg 23 Further considerations and implications

?; 24  The comparison of the results obtained here with those elsewhere shows an emerging

gi 25 pattern of glacial refugia in Mediterranean peninsulas and further north in Central Europe for
gg 26 several species.

gg 27 Although S. minutus is considered as a least concern species by the IUCN (Hutterer
60 28 etal., 2016), the distinct phylogroups deserve more attention than this implies. Genetic
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diversity is considered an important aspect of global biodiversity (McNeely et al., 1990), and
local and/or country-based conservation efforts are highly valued (for example, in Britain and
Ireland the pygmy shrew is protected by law). The refugial areas in Southern Europe are
often found in mountain ranges at the low-latitude margins of the present-day distribution
ranges of species and are most likely to contain rear-edge populations where selection for
local adaptations could have resulted in the evolution of distinct ecotypes (Cook, 1961;
Hampe & Petit, 2005). Rear-edge populations, including the southern lineages of S. minutus,
deserve further investigation and should be regarded for conservation because they are
important to determine the responses of species to modern climate change (Petit et al.,
2003; Hampe & Petit, 2005).

In conclusion, the Eurasian pygmy shrew Sorex minutus is a good model for
understanding biological diversity, colonisation patterns and the effects of past climate
change on biological diversity. There is a mosaic of genetic lineages across continental
Europe, characterised by different demographic histories and natural colonisation patterns,
while island populations are characterised by recent natural and human-mediated
colonisations. This study has notably expanded previous findings on S. minutus, with a more
precise statistical phylogeographic analysis of the genetic variability and structure,
colonisation routes, geographical barriers and historical demography across Europe.
Specifically, we provided new data from the Iberian and Balkan peninsulas, and from Central
and Eastern Europe (Poland, Ukraine and Russia), important for understanding postglacial
events. Sorex minutus is not an easy species to obtain in large numbers, and the sampling
described here represents a very substantial effort. However, it is a species that is unusually
widespread and genetically subdivided and therefore can inform better than almost any other

about the relative importance of southern and northern glacial refugia.
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SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article at the

publisher’'s website.

Table S1. Sorex minutus dataset and sample information

Table S2. Pairwise geographic distances (in Km, below diagonal) and genetic differentiation
(Slatkin's Fst, above diagonal) among Sorex minutus phylogroups and other geographic
groups

Figure S1. Correlogram of pairwise geographic and genetic distances among Sorex minutus
phylogroups and other geographic groups.

Figure S2. Mismatch distributions of Sorex minutus phylogroups and other geographic

groups.
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Table 1. DNA sequence polymorphism in Sorex minutus phylogroups and other geographic groups

Biological Journal of the Linnean Society

Phylogroups N S P H Hd Hd (SD) 7 7 (SD) k
Ingroup 671 390 277 424 0.9899 0.0015 0.0143 0.0000 15.8670
Italian 26 51 19 18 0.9600 0.0230 0.0061 0.0004 6.7720
South Italian 4 16 0 4 1.0000 0.1770 0.0072 0.0020 8.0000
Balkan 22 55 28 17 0.9610 0.0290 0.0097 0.0009 10.7970
Iberian 6 15 6 5 0.9330 0.1220 0.0058 0.0013 6.4000
Western 283 147 83 102 0.9458 0.0067 0.0049 0.0002 5.4400
Irish 94 53 21 42 0.8920 0.0270 0.0020 0.0002 2.2180
Northern 330 311 197 278 0.9984 0.0005 0.0065 0.0002 7.1840
Continental groups

Western (Continental) 15 28 11 13 0.9810 0.0310 0.0050 0.0006 5.5430
Northern (Continental) 226 241 142 188 0.9978 0.0007 0.0062 0.0002 6.9300
Other island groups

Orkney Islands (All) 119 17 13 11 0.7720 0.0210 0.0027 0.0001 3.0140
Orkney Mainland 44 9 7 8 0.7550 0.0550 0.0013 0.0002 1.4790
Orkney South Ronaldsay 40 1 1 2 0.1420 0.0710 0.0001 0.0001 0.1420
Orkney Westray 33 0 0 1 0.0000 0.0000 0.0000 0.0000 0.0000
Orkney Hoy 2 2 0 2 1.0000 0.5000 0.0018 0.0009 2.0000
Belle Tle 5 9 3 5 1.0000 0.1260 0.0038 0.0010 4.2000
British 91 146 61 80 0.9960 0.0030 0.0055 0.0003 6.1210

N = Sample size; S = Number of polymorphic (segregating) sites; P = Parsimony informative sites; H = Number of
haplotypes; Hd = Haplotype diversity; SD = Standard Deviation; m = Nucleotide diversity; k = Average number of

nucleotide differences.
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Table 2. Population expansion tests for Sorex minutus phylogroups and other geographic groups

t TMRCA 95% HPD
Phylogroups R, P-value Fs P-value T (in years) (in KYA) (in KYA)
Ingroup 0.0198 0.0004 -741.2620 bl 7.8590 6425 31.8 22.0-43.1
Italian 0.0521 0.0000 -5.8766 0.0152 6.7720 5536 7.2 4.8-10.2
South ltalian 0.1822 0.1658 0.0687 0.2975 5.6340 - 7.7 4.2-12.1
Balkan 0.0830 0.0542 -3.6701 0.0768 7.1500 - 15.5 9.7-22.7
Iberian 0.1462 0.0888 0.0731 0.4290 4.0100 - 6.2 3.9-10.0
Western 0.0175 0.0004 -114.6990 il 3.6660 2997 9.3 6.7-12.6
Irish 0.0187 0.0000 -52.5664 o 1.3040 1066 5.9 4.9-6.9
Northern 0.0105 0.0000 -663.4730 e 6.5390 5346 11.8 7.7-16.8
Continental groups
Western (Continental) 0.0793 0.0045 -6.0342 0.0035 5.5430 4532 - -
Northern (Continental) 0.0128 0.0000 -386.4520 bl 5.8010 4742 - -
Other island groups
Orkney Islands (All) 0.0880 0.5209 0.6044 0.6437 1.1740 - - -
Orkney Mainland 0.0839 0.2301 -1.6879 0.1892 1.4790 - - -
Orkney Hoy 0.5000 1.0000 NC NC 2.0000 - - -
Orkney South Ronaldsay 0.0712 0.1770 -0.2182 0.4420 0.1420 - - -
Orkney Westray NC NC NC NC NC - - -
Belle Tle 0.1915 0.2467 -1.6330 0.0732 3.5500 - - -
British 0.0161 0.0000 -122.8550 el 6.1210 5004 - -

R, = Ramos-Onsins and Rozas (2002) test of neutrality; P-value = P-values of expansion tests expected under neutrality (*** = P < 0.001);
Fs = Demographic population expansion test (Fu 1997); r = (2ut) The mode of a mismatch distribution; t = Time of population expansion

(for phylogroups with bi- or unimodal mismatch distributions); TMRCA = Time of divergence from the Most Recent Common Ancestor; 95%

HPD = 95% Highest Posterior Density; KYA = Thousand Years Ago; NC = Not computable (not enough variation or samples)
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FIGURE LEGENDS

Figure 1. A) Map of Eurasia showing the geographical distribution of the Eurasian pygmy
shrew Sorex minutus (Hutterer et al., 2016). B) Sample localities of S. minutus used for this
study and divided into mitochondrially encoded cytochrome b (MT-CYB) phylogroups
(symbols with a dot represent samples used for inferring geographic barriers). C)
Geographic barriers (red lines) for S. minutus; the barriers (up to a maximum of 10) were
inferred using Monmonier’s maximum difference algorithm which finds edges (boundaries)
on the Voronoi tessellation (blue polygons) associated with the highest rate of change in
genetic distances among a subset of continental samples (dots) interconnected with a

Delaunay triangulation (green lines).

Figure 2. Phylogenetic reconstructions of the Eurasian pygmy shrew Sorex minutus using
MT-CYB sequences. A) Bayesian phylogenetic tree (with posterior probabilities on
branches) showing the phylogroups. B) Haplotype phylogenetic network with haplotypes
represented as nodes and their evolutionary relationships represented by edges; relevant

haplotypes named at the centre of star-like patterns.

Figure 3. Maximum Clade Credibility tree for 671 sequences of Sorex minutus from Europe
and Siberia, annotated from 10,000 Bayesian genealogy sampling. Posterior probabilities of
basal nodes indicate support for each lineage. Horizontal bars represent 95% HPD intervals
for Time to Most Recent Common Ancestor (TMRCA) of each lineage (in thousand years

ago, KYA).

Figure 4. Historical demography of the Eurasian pygmy shrew Sorex minutus. A) Mismatch
distributions of groups with significant signatures of population expansion. B) Bayesian

Skyline Plots (BSP) of phylogroups with significant signatures of population expansion. The
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solid lines in BSP are median estimates and the shaded areas represent 95% Highest

Probability Densities (confidence intervals).
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Table S1. Sorex minutus dataset and sample information

ID Country County/Region LongDEC LatDEC Phylogroup Phylogroup 2 Source Haplotype
ADAdO0001 Andorra Andorra 1.583333  42.583333 Western ContinentalWestern Mascheretti et al., 2003 Hap_1
ADAd0002 Andorra Andorra 1.583333  42.583334 Western ContinentalWestern Mascheretti et al., 2003 Hap_2
ATDo1611 Austria Donnerskirchen, Neusiedlersee 16.641250 47.895703 Balkan This article Hap_3
ATDo1612 Austria Donnerskirchen, Neusiedlersee 16.641250 47.895704 Northern ContinentalNorthern Vega et al., 2010b Hap_4
ATII0001 Austria llimitz 16.845403 47.764706 Balkan This article Hap_5
ATII0003 Austria limitz 16.845403 47.764707 Northern ContinentalNorthern Vega et al., 2010b Hap_6
ATII0004 Austria llimitz 16.845403 47.764708 Northern ContinentalNorthern Vega et al., 2010b Hap_7
ATII0005 Austria lImitz 16.845403 47.764709 Northern ContinentalNorthern Vega et al., 2010b Hap_8
BAOs5670 Bosnia Herzegovina Osjecenica 16.288743 44.239741 Balkan This article Hap_9
BYLE0026 Belorusia Lesnojeozero 26.691825 54.830219 Northern ContinentalNorthern Vega et al., 2010b Hap_10
CHBa0001 Switzerland Bassins, Vaud 6.650000 46.533333 Northern ContinentalNorthern Mascheretti et al., 2003 Hap_11
CHBa5698 Switzerland Bassins, Vaud 6.231061  46.462789 Northern ContinentalNorthern This article Hap_12
CHBa5712 Switzerland Bassins, Vaud 6.231061  46.462790 Balkan This article Hap_13
CHBa5756 Switzerland Bassins, Vaud 6.231061 46.462791 Northern ContinentalNorthern Vega et al., 2010a Hap_14
CHBr5421 Switzerland Bretolet, Valais 6.865181  46.168864 Italian Vega et al., 2010a Hap_15
CHCE0889 Switzerland Chalet des Enfants, Vaud 6.664442  46.574206 Balkan Vega et al., 2010a Hap_16
CHCG5272 Switzerland Chalet a Gobet, Vaud 6.692656  46.564611 Northern ContinentalNorthern Vega et al., 2010a Hap_17
CHCh7622 Switzerland Champmartin, Vaud 6.997358  46.932742 Northern ContinentalNorthern Vega et al., 2010a Hap_18
CHCu7581 Switzerland Chablais Cudrefin, Vaud 7.026558  46.959283 Northern ContinentalNorthern Vega et al., 2010a Hap_19
CHGI7628 Switzerland Gletterens, Fribourg 6.936106  46.892650 Northern ContinentalNorthern Vega et al., 2010a Hap_20
CHOC7576 Switzerland Ostende Chevroux, Vaud 6.917847  46.894258 Northern ContinentalNorthern This article Hap_20
CHOC7583 Switzerland Ostende Chevroux, Vaud 6.917847  46.894259 Northern ContinentalNorthern Vega et al., 2010a Hap_21
CHPN5442 Switzerland Pont de Nant, Vaud 7.094307  46.249087 Italian Vega et al., 2010a Hap_22
CHVI14747 Switzerland Val d'llliez, Valais 6.892742  46.204300 Northern ContinentalNorthern Vega et al., 2010a Hap_23
CHVI14748 Switzerland Val d'llliez, Valais 6.892742  46.204301 Italian Vega et al., 2010a Hap_24
CZBo0153 Czech Republic Bohemia 13.569494 49.864183 Balkan This article Hap_25
CZBo0154 Czech Republic Bohemia 13.569494 49.864184 Northern ContinentalNorthern Vega et al., 2010b Hap_26
CZBo0155 Czech Republic Bohemia 13.569494 49.864185 Northern ContinentalNorthern Vega et al., 2010b Hap_27
CZBo0156 Czech Republic Bohemia 13.569494 49.864186 Northern ContinentalNorthern Vega et al., 2010b Hap_28
CzCJ0o01 Czech Republic Ceske Jiretin 13.566667 50.683333 Northern ContinentalNorthern Mascheretti et al., 2003 Hap_29
CZDe0009 Czech Republic Decin City, bern Bohemia 14.198800 50.805900 Northern ContinentalNorthern Vega et al., 2010b Hap_30
CZDe0010 Czech Republic Decin City, bern Bohemia 14.198800 50.805901 Northern ContinentalNorthern Vega et al., 2010b Hap_31
CZMo0794 Czech Republic Flaje, Most district, bern Bohemia, Krusne Hoy Mountains 13.537700 50.600300 Northern ContinentalNorthern Vega et al., 2010b Hap_32
Cz0I0039 Czech Republic Oleska 14.909572 49.948594 Northern ContinentalNorthern Vega et al., 2010b Hap_33
CZzSS0237 Czech Republic Srnin Sumava Mountains 13.475481 49.065617 Northern ContinentalNorthern Vega et al., 2010b Hap_34
CZSS0238 Czech Republic Srnin Sumava Mountains 13.475481 49.065618 Northern ContinentalNorthern Vega et al., 2010b Hap_35
CZ554767 Czech Republic Srnin Sumava Mountains 13.475481 49.065619 Italian Vega et al.,, 2010a Hap_36
Cz554838 Czech Republic Srnin Sumava Mountains 13.475481 49.065620 Italian Vega et al., 2010a Hap_36
CZVI10001 Czech Republic Vlitava River West Side, Ceske Budejovice, Southern Bohemia 14.412928 48.911359 Northern ContinentalNorthern Vega et al., 2010b Hap_37
CZV10002 Czech Republic Vitava River West Side, Ceske Budejovice, Southern Bohemia 14.412928 48.911360 Northern ContinentalNorthern Vega et al., 2010b Hap_37
CzvIiooo3 Czech Republic Vitava River West Side, Ceske Budejovice, Southern Bohemia 14.412928 48.911361 Northern ContinentalNorthern Vega et al., 2010b Hap_38
CZVI0004 Czech Republic Vitava River West Side, Ceske Budejovice, Southern Bohemia 14.412928 48.911362 Northern ContinentalNorthern Vega et al., 2010b Hap_39
CzVI0005 Czech Republic Vitava River East Side, Ceske Budejovice, Southern Bohemia 14.419040 48.911533 Northern ContinentalNorthern Vega et al., 2010b Hap_40
CZV10006 Czech Republic Vlitava River East Side, Ceske Budejovice, Southern Bohemia 14.419040 48.911534 Italian Vega et al.,, 2010a Hap_41
CzvIioo07 Czech Republic Vitava River East Side, Ceske Budejovice, Southern Bohemia 14.419040 48.911535 Italian Vega et al., 2010a Hap_41
CZV10008 Czech Republic Vlitava River East Side, Ceske Budejovice, Southern Bohemia 14.419040 48.911536 Italian Vega et al., 2010a Hap_41
DEBK0001 Germany Beltringserharder Koog/Nordfriesland (BKN) 8.784617  54.675639 Northern ContinentalNorthern Vega et al., 2010b Hap_42
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Hap_126
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1
2 GBGi0001
GBGi0002
3 GBGi0003
4 GBGI0004
5 GBGI0005
6 GBGi0006
7 GBGI0001
GBGI0043
8 GBGI0047
9 GBGr0001
10 GBHa0039
-I -I GBHa0040
GBHa0041
12 GBH00001
13 GBHOO0868
14 GBIMO0001
15 GBIM0002
16 GBIM0600
GBIM0601
17 GBIM0602
18 GBIN0180
19 GBIn0181
20 GBIn0182
2
22 GBIs0002
23 GBIs0003
24 GBIs0004
25 GBIW0001
2% GBIW0002
GBIW0003
27 GBJu0815
28 GBJu0816
29 GBKe0009
30 GBKe0010
31 GBK?0972
GBKi0795
32 GBKk0099
33 GBKk0100
34 GBKk0589
35 GBLa1071
GBLC0001
36 GBLC0002
37 GBLe0497
38 GBL00001
39 GBMa0001
40 GBMu0858
GBMu0859
41 GBMu0860
42
43
44
45

Scotland
Scotland
Scotland
Scotland
Scotland
Scotland
England
England
England
England
England
England
England
Scotland
Scotland
Isle of Man
Isle of Man
Isle of Man
Isle of Man
Isle of Man
Scotland
Scotland
Scotland
Scotland
Scotland
Scotland
Scotland
Scotland
England
England
England
Scotland
Scotland
England
England
England
Scotland
Scotland
Scotland
Scotland
England
Wales
Wales
England
England
England
Scotland
Scotland
Scotland

Gigha
Gigha
Gigha
Gigha
Gigha
Gigha
Gloucestershire
Gloucestershire
Gloucestershire
Grittenham
Hampshire
Hampshire
Hampshire
Hoy
Hoy
Isle of Man
Isle of Man
Isle of Man
Isle of Man
Isle of Man
Inverness
Inverness
Inverness
Inverness
Islay
Islay
Islay
Islay
Isle of Wight
Isle of Wight
Isle of Wight
Jura
Jura
Kent
Kent
Kent
Kintyre
Kirkcudbright
Kirkcudbrightshire
Kirkcudbrightshire
Lancashire
Lyn Conwy
Lyn Conwy
Leicestershire
Longnor
Macclesfield
Mull
Mull
Mull
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-5.741033
-5.741033
-5.741033
-5.741033
-5.741033
-5.741033
-2.645000
-2.109722
-2.103056
-1.966667
-1.080000
-1.225833
-1.225833
-3.333333
-3.382778
-4.483333
-4.483333
-4.483333
-4.351111
-4.451667
-3.485556
-4.416944
-4.416944
-3.960556
-6.233333
-6.233333
-6.233333
-6.233333
-1.252778
-1.252778
-1.471944
-5.943511
-5.943511
1.257778
0.933889
0.960278
-5.582778
-3.823333
-3.823333
-3.781389
-2.432778
-3.833333
-3.833333
-1.133333
-1.883333
-2.033333
-5.837778
-5.837778
-5.861111

55.683333
55.683334
55.683335
55.683336
55.683337
55.683338
51.788333
51.651111
51.809167
51.550000
51.187222
51.358889
51.358890
58.916667
58.880278
54.150000
54.150001
54.150002
54.291389
54.172500
57.341111
57.454444
57.454445
57.336389
55.750000
55.750001
55.750002
55.750003
50.668889
50.668890
50.688889
55.852778
55.852779
51.126944
51.067222
50.995278
55.281944
54.866944
54.866945
54.975556
53.812222
53.283334
53.283335
52.633333
53.166667
53.250000
56.510000
56.510001
56.404722

Western
Western
Western
Western
Western
Western
Northern
Northern
Northern
Northern
Western
Northern
Northern
Western
Western
Northern
Northern
Northern
Northern
Northern
Northern
Northern
Northern
Northern
Western
Western
Western
Western
Western
Western
Western
Northern
Northern
Northern
Northern
Northern
Western
Northern
Northern
Northern
Northern
Northern
Northern
Northern
Northern
Northern
Western
Western
Western
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CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands

Islands

Britain

Britain

Britain

CelticFringeUKmain

Britain

Britain

Orkney

Orkney

Britain

Britain

Britain

Britain

Britain

Britain

Britain

Britain

Britain
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands

Britain

Britain

Britain

Britain

Britain
CelticFringeUKIslands

Islands

Britain

Britain

Britain

Islands

Britain

Britain

Britain

Islands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands

McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011

Mascheretti et al., 2003

McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011

Mascheretti et al., 2003
Mascheretti et al., 2003

McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
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McDevitt et al., 2011
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McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
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McDevitt et al., 2011

Mascheretti et al., 2003
Mascheretti et al., 2003

McDevitt et al., 2011

Mascheretti et al., 2003
Mascheretti et al., 2003

McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011

Hap_127
Hap_127
Hap_127
Hap_127
Hap_127
Hap_127
Hap_33
Hap_128
Hap_129
Hap_130
Hap_131
Hap_132
Hap_133
Hap_134
Hap_135
Hap_136
Hap_137
Hap_138
Hap_139
Hap_138
Hap_140
Hap_141
Hap_142
Hap_143
Hap_144
Hap_145
Hap_146
Hap_147
Hap_148
Hap_148
Hap_149
Hap_150
Hap_150
Hap_151
Hap_152
Hap_153
Hap_154
Hap_114
Hap_90
Hap_155
Hap_156
Hap_157
Hap_158
Hap_159
Hap_160
Hap_161
Hap_94
Hap_162
Hap_163



oNOYTULT D WN =

GBMu0861
GBNo0001
GBNo0002
GBNo0003
GBNo0004
GBNUO0319
GBNUO0325
GBNYOOF2
GBNYOOF3
GBNYO00Y1
GBOMO0001
GBOMO0002
GBOMO0003
GBOMO0004
GBOMO0260
GBOMO0261
GBOMO0262
GBOMO0418
GBOMO0419
GBPe0005
GBPe0006
GBPe0026
GBPe0042
GBPr0132
GBRa0001
GBRa0002
GBRa0003
GBRa0004
GBRu0104
GBRu0105
GBRu0127
GBSG0044
GBSh0006
GBSh0007
GBS00002
GBSR0273
GBSR0274
GBSR0612
GBSR0613
GBSt0005
GBSt0030
GBSu0005
GBSu0006
GBSu0007
GBSu0008
GBSU0227
GBSU0310
GBWa0050
GBWa0051

Scotland
England
England
England
England
Scotland
Scotland
England
England
England
Scotland
Scotland
Scotland
Scotland
Scotland
Scotland
Scotland
Scotland
Scotland
Wales
Wales
Wales
Wales
Scotland
Scotland
Scotland
Scotland
Scotland
Scotland
Scotland
Scotland
England
England
England
England
Scotland
Scotland
Scotland
Scotland
England
England
England
England
England
England
Scotland
Scotland
England
England

Mull
Norfolk
Norfolk
Norfolk
Norfolk
N. Uist
N. Uist

North Yorkshire
North Yorkshire
North Yorkshire
Orkney Mainland
Orkney Mainland
Orkney Mainland
Orkney Mainland
Orkney Mainland
Orkney Mainland
Orkney Mainland
Orkney Mainland
Orkney Mainland
Pembrokeshire
Pembrokeshire
Pembrokeshire
Pembrokeshire
Perthshire
Raasay
Raasay
Raasay
Raasay

Rum

Rum

Rum

South Gloucestershire

Shropshire
Shropshire
Somerset
S. Ronaldsay
S. Ronaldsay
S. Ronaldsay
S. Ronaldsay
Staffordshire
Staffordshire
Suffolk
Suffolk
Suffolk
Suffolk
S. Uist
S. Uist
Warwickshire
Warwickshire
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-6.200556
0.591944
0.591944
0.556111
0.570556

-7.322500

-7.322500

-1.073611

-1.073611

-1.073611

-2.913056

-2.913056

-2.913056

-2.913056

-2.925556

-3.293056

-2.878333

-3.051389

-3.224444

-4.657500

-4.657500

-4.953889

-4.953889

-4.003333

-6.033333

-6.033333

-6.033333

-6.033333

-6.269167

-6.330000

-6.280278

-2.331667

-2.259722

-2.259722

-2.659722

-2.974722

-2.921389

-3.021667

-3.021667

-2.290278

-2.092500
0.518889
0.541111
0.541111
0.541111

-7.370833

-7.370833

-1.243056

-1.243056

56.333611
52.748056
52.748057
52.765000
52.762778
57.518056
57.518057
53.936389
53.936390
53.936391
58.906667
58.906668
58.906669
58.906670
58.918611
59.128333
58.904444
58.944444
58.970000
51.772500
51.772501
51.650833
51.650834
56.346389
57.400000
57.400001
57.400002
57.400003
56.987778
57.029722
57.012500
51.561667
52.574167
52.574168
51.285556
58.780833
58.758611
58.820833
58.820834
52.723333
53.098333
52.247778
52.276944
52.276945
52.276946
57.323611
57.323333
52.127222
52.127223

Western
Northern
Northern
Northern
Northern
Western
Western
Northern
Northern
Northern
Western
Western
Western
Western
Western
Western
Western
Western
Western
Northern
Northern
Northern
Northern
Northern
Western
Western
Western
Western
Western
Western
Western
Northern
Northern
Northern
Northern
Western
Western
Western
Western
Northern
Northern
Northern
Northern
Northern
Northern
Western
Western
Northern
Northern
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CelticFringeUKIslands

Britain

Britain

Britain

Britain
CelticFringeUKIslands
CelticFringeUKIslands

Britain

Britain

Britain

Orkney

Orkney

Orkney

Orkney

Orkney

Orkney

Orkney

Orkney

Orkney

Islands

Islands

Islands

Islands

Britain
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands
CelticFringeUKIslands

Britain

Islands

Britain

Islands

Orkney

Orkney

Orkney

Orkney

Britain

Britain

Britain

Britain

Islands

Britain
CelticFringeUKIslands
CelticFringeUKIslands

Britain

Britain

McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
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McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011

Hap_164
Hap_165
Hap_90
Hap_166
Hap_167
Hap_99
Hap_168
Hap_169
Hap_170
Hap_171
Hap_172
Hap_172
Hap_172
Hap_172
Hap_173
Hap_174
Hap_173
Hap_175
Hap_134
Hap_176
Hap_177
Hap_178
Hap_179
Hap_180
Hap_181
Hap_182
Hap_181
Hap_181
Hap_106
Hap_106
Hap_183
Hap_184
Hap_185
Hap_186
Hap_187
Hap_188
Hap_188
Hap_188
Hap_189
Hap_190
Hap_191
Hap_192
Hap_193
Hap_194
Hap_195
Hap_99
Hap_196
Hap_197
Hap_197
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; GBWi0042
GBWk0037
3 GBWk0038
4 GBWI0669
5 GBWI0670
6 GBWI0671
2 GBW00009
GBW00011
8 GBW00012
9 GBWRO0176
10 GBWR0178
11 GBWS0011
HUTa3711
12 IEAI0001
13 IECa0001
14 IECI0001
15 IEC00095
16 IEC00098
IEC00099
17 IEC00100
18 IEC00101
19 IEC00102
20 IEC00103
2 IEC00104
IEC00105
22 IEC00108
23 IECt0001
24 IEDN0001
25 IEDN0009
26 IEDy0001
IEDY0003
27 IEDy0004
28 IEDy0005
29 IEDy0006
30 IEDy0007
31 IEDY0008
IEDY0009
32 IEDY0010
33 IEDy0011
34 IEDY0012
35 IEGa0039
IEGa0046
36 IEGa0047
37 IEGa0050
38 IEGa0057
39 IEGW0001
40 IEGW0026
41 FQwWoosh
42
43
44
45

England
England
England
England
England
England
England
England
England
Scotland
Scotland
England
Hungary
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland

Wiltshire
Wokingham
Wokingham

Walney
Walney
Walney
Worcestershire
Worcestershire
Worcestershire
Wester Ross
Wester Ross
West Sussex

Téska village, Fehérviz moorland

Aran Island
Camolin
Cloghan

Cork
Cork
Cork
Cork
Cork
Cork
Cork
Cork
Cork
Cork

Castlebridge
Donegal
Donegal

Derry
Derry
Derry
Derry
Derry
Derry
Derry
Derry
Derry
Derry
Derry
Galway
Galway
Galway
Galway
Galway
Donegal
Donegal
Donegal
Donegal
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-2.149444
-0.903889
-0.903889
-3.227500
-3.227500
-3.227500
-2.124722
-2.029444
-2.413333
-5.331667
-5.331667
0.307500

17.500000
-8.528647
-6.416667
-7.750000
-7.828344
-7.828344
-7.828344
-7.828344
-7.828344
-7.828344
-7.828344
-7.828344
-7.828344
-7.828344
-6.500000
-8.300000
-8.300000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-8.866667
-8.866667
-8.966667
-8.966667
-8.966667
-8.383333
-8.383333
-8.383333
-8.383333

51.397500
51.366389
51.366390
54.077222
54.077223
54.077224
52.310000
52.412500
52.266667
57.481944
57.481945
50.844722
46.616667
54.993439
52.583333
53.250000
51.949406
51.949407
51.949408
51.949409
51.949410
51.949411
51.949412
51.949413
51.949414
51.949415
52.416667
54.650000
54.650001
55.000000
55.000001
55.000002
55.000003
55.000004
55.000005
55.000006
55.000007
55.000008
55.000009
55.000010
53.150000
53.150001
53.133333
53.133334
53.133335
55.050000
55.050001
55.050002
55.050003

Northern
Western
Western
Northern
Northern
Northern
Northern
Northern
Northern
Western
Western
Northern
Balkan
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
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Britain
CelticFringeUKmain
CelticFringeUKmain

Britain

Britain

Britain

Britain

Islands

Britain
CelticFringeUKmain
CelticFringeUKmain

Islands

Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish
Irish

McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
This article
McDevitt et al., 2011

Mascheretti et al., 2003
Mascheretti et al., 2003

McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011

Mascheretti et al., 2003

McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011
McDevitt et al., 2011

Hap_198
Hap_199
Hap_200
Hap_201
Hap_201
Hap_201
Hap_202
Hap_203
Hap_204
Hap_205
Hap_206
Hap_207
Hap_208
Hap_64
Hap_209
Hap_210
Hap_211
Hap_211
Hap_211
Hap_212
Hap_211
Hap_213
Hap_214
Hap_215
Hap_216
Hap_217
Hap_218
Hap_219
Hap_220
Hap_64
Hap_221
Hap_64
Hap_221
Hap_221
Hap_221
Hap_221
Hap_221
Hap_221
Hap_221
Hap_221
Hap_222
Hap_223
Hap_64
Hap_224
Hap_225
Hap_226
Hap_226
Hap_226
Hap_226



oNOYTULT D WN =

IEKe0001
IEKe0002
IEKe0004
IEKe0005
IEKeP3kY
IEKi0084
IEKi0085
IEKiO086
IEKiI0087
IEKi0089
IELaOLSa
IELaOLSb
IELaOLSc
|IELe0001
IELe0007
IELe0008
IELe0018
IELe0019
IELIO058
IELI0059
IELIO060
IELIO068
IELI0069
IELIO080
IELi0082
IELoO11a
IELo011b
IELoO11c
IEMa0020
IEMa0025
IEMa0032
IEMa0037
IEOf0019
IEOf0026
IEOf0048
IESI0001
IEWa0001
IEWa0002
IEWa0003
IEWa0004
IEWa0005
IEWB0001
IEWB0002
IEWB0003
IEWe0005
IEWe0008
IEWe0018
IEWe0031
IEWe0033

Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland

Kerry
Kerry
Kerry
Kerry
Kerry
Kildare
Kildare
Kildare
Kildare
Kildare
Laois
Laois
Laois
Leitrim
Leitrim
Leitrim
Leitrim
Leitrim
Limerick
Limerick
Limerick
Limerick
Limerick
Limerick
Limerick
Louth
Louth
Louth
Mayo
Mayo
Mayo
Mayo
Offaly
Offaly
Offaly
Slane
Waterford
Waterford
Waterford
Waterford
Waterford
Whiting Bay
Whiting Bay
Whiting Bay
Wexford
Wexford
Wexford
Wexford
Wexford
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-9.533333
-9.533333
-9.533333
-9.533333
-9.533333
-6.977778
-6.977778
-6.977778
-6.977778
-6.977778
-7.500000
-7.500000
-7.500000
-7.786111
-7.786111
-7.768889
-7.773333
-7.773333
-8.834167
-8.834167
-8.834167
-8.834167
-8.769167
-8.769167
-8.769167
-6.183333
-6.183333
-6.183333
-9.250000
-9.250000
-9.316667
-9.316667
-7.750000
-7.750000
-7.750000
-6.500000
-7.333333
-7.333333
-7.333333
-7.333333
-7.333333
-7.833333
-7.833333
-7.833333
-6.841667
-6.841667
-6.841667
-6.841667
-6.841667

52.055556
52.055557
52.055558
52.055559
52.055560
53.279722
53.279723
53.279724
53.279725
53.279726
52.783333
52.783334
52.783335
53.958333
53.958334
53.991111
53.986667
53.986668
52.584167
52.584168
52.584169
52.584170
52.617500
52.617501
52.617502
54.033333
54.033334
54.033335
54.166667
54.166668
54.233333
54.233334
53.250001
53.250002
53.250003
53.750000
52.175000
52.175001
52.175002
52.175003
52.175004
51.833333
51.833334
51.833335
52.233333
52.233334
52.233335
52.233336
52.233338

Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
Western
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Mount Galicica 20.850800

Pelister Mountains 21.166667
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Orkney Mainland, Harray -3.190167
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Table S2. Pairwise geographic distances (in Km, below diagonal) and genetic differentiation (Slatkin's Fst, above diagonal) among
Sorex minutus phylogroups and other geographic groups

South Northern Western Orkney

Italian ltalian Balkan Iberian Belle lle Britain (Continental) (Continental) Islands Irish
Italian - 1.6558 3.0387 3.6919 1.594  2.8852 2.3798 1.4534 2.8673  4.009
South Italian 773.14 - 25113 3.3869 1.3569 2.8562 2.3204 1.1713 2.7079  4.682
Balkan 547.27 628.96 - 1.9234 25617 3.1494 2.8093 2.7975 6.2456  7.0533
Iberian 1349.26 1768.56 1880.98 - 4.265 3.185 2.6191 3.8498 7.3804 10.8797
Belle lle 1162.82 1815.47 1701.44 640.58 - 2.7595 2.179 0.3345 1.2148 2.4003
Britain 1347.34 2108.66 1795.12 1286.79 647.11 - 0.1449 2.6083 3.9225 4.7265
Northern (Continental) 1022.36 1488.84 863.37 2218.78 1788.28 1554.91 - 2.0767 2.791 3.2035
Western (Continental) 903.9 144478 1448.34 476.18 434.81 1006.85 1742.75 - 0.5436 1.1193
Orkney Islands 3476.34 3693.42 3127.67 4679.14 4175.54 3739.02 2477.61 4206.5 - 1.4635
Irish 1652.35 2396.73 2124.06 1311.98 726.86 346.14 1897.29 1151.96 4016.56 -
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