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measurement in assembly lines
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Abstract Dynamic manufacturing processes are characterized by a lack of coordi-
nation, complexity and sheer volumes of data. Digital transformation technologies
offer the manufacturers the capability to better monitor and control both assets and
production. This provides also an ever-improving ability to investigate new prod-
ucts and production concepts in the virtual world while optimizing future produc-
tion with IoT-captured data form different devices and shop floor machine centres.
In this study, a digital twin is presented for an assembly line, where loT-captured
data are fed back into the digital twin enabling manufacturers to interface, analyse
and measure the performance in real-time of a manufacturing process. The digital
twin concept is then applied to an assembly production plan found in the automotive
industry, where actual data is considered to analyse how the digital duplicate can be
used to review activities and improve productivity within all production shifts.

Key words: digital twins, performance measurement, assembly lines, automotive
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1 Introduction

The distribution of products with shortened life cycles, as well as the continuously
increasing customer expectations have led manufacturing companies to invest more
in technology and product augmentation [1, 25]. Production managers put efforts
to reduce production costs significantly while maintaining excellent product quality
and high levels of customer services. The globalization of markets together with the
elimination of import trade duties and restrictions has also forced manufacturers to
look for ways to improve their competitive positions by focusing on Research &
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Development (R&D) [5]. Many companies contemplate that significant (especially
long-term) savings can be achieved by managing their manufacturing supply chain
more effectively in the midst of investing in technology [32, 24].

Manufacturing systems should be not only designed and operated for high re-
liability and throughput but also to have the capability to integrate the shop-floor
with other departments and sections of the business environment. Production plan-
ning in a dynamic business environment should have the capacity of dealing with
uncertainty in line with satisfying customer delivery time, low cost and high qual-
ity. Therefore, manufacturing plants require a mechanism that monitors production
process flow and normalization in the case of production disruption [8].

Manufacturing plants are often characterized by complexity and very often man-
agers experience difficulties to perform in-depth data analysis and decision making.
In most cases, efforts are made to evaluate production data and elaborating results by
improving the quality of products while reducing manufacturing costs [23]. Produc-
tion planning in manufacturing involves in most cases the synchronization with the
downstream demand and thereby has a strong impact in warehouses of both man-
ufacturers and other participants of supply chains [19]. By the manipulation of the
production line, it is hoped that new knowledge about the production process can be
obtained without the inconvenience or cost of manipulating the real process itself.
Therefore, it becomes indispensable to understand production systems’ behaviour
and the parameters that affect the performance of production lines [11, 27].

In the past years, manufacturing companies have been able to reduce waste and
volatility in their production processes and dramatically improve product quality
and yield by applying lean techniques [1]. However, in certain processing environ-
ments, extreme swings in variability are still a fact of life, while the complexity
of manufacturing systems complicates planning and scheduling for managers and
operators. Often, the continuity of the production process is at risk due to the inad-
equate planning and control in the production systems [17]. Standstills in the man-
ufacturing line - in the event of failure, commissioning, reconfiguration, adaptation
or breakdown - apart from the disruption that cause can be very detrimental to the
manufacturing company.

Production and manufacturing systems are characterized by a number of different
performance measures including flexibility, resource and output measurement [5].
The goals of each of these three measures are different, and therefore, at least one
individual goal type that corresponds with the organizations’ strategic goals from
the three listed measures must be present in a supply chain performance measure-
ment system. According to Simpson et al. (2007), flexibility level system reacts to
uncertainty and also made a similar observation by proposing a performance mea-
surement system, should be carried out at each node of an extended enterprise [26].
Firms should have key performance indicators in the areas of cost, time, innova-
tion, quality and precision corresponding with the mission and strategy according to
stakeholders’ perception.

Output measurements are often associated with throughput and average up-times.
Thus, most of the manufacturers in order to increase the productivity tend to min-
imise the unavailability of the lines. As a result, reconfiguration of the manufactur-
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ing systems occurs (erroneously) only when essential work has to be done although
upgrades of the system are desirable to increase quality, increase throughput or re-
duce energy consumption. Assessing real-time manufacturing environment involves
understanding the dynamics affecting the performance. In a manufacturing environ-
ment, a precise performance measurement of supply chain activities is based on
quantitative measures which are the utilization of resources and cost, quality and
manufacturing flexibility. The related data to the quantitative key performance in-
dicators (KPI) can be retrieved from annual and financial companies’ report and
company management opinion. Very often manufacturers invest in new machin-
ery and online optimisation after commissioning and installation. In high volume
manufacturing and especially in automotive manufacturing a efficiency and good
performance heavily depend on reliable and highly available manufacturing and au-
tomation systems.

Furthermore, existing literature suggests that essential knowledge such as infor-
mation and advanced technology can enhance supply chain performance [16, 5].
However, there is a limited literature on how this knowledge can be applied in the
manufacturing supply chain. Most of the studies in regard to measuring performance
management of a manufacturing plant in the automotive industry are restricted in
limited locations such as Brazil, India, and Australia. This constitutes a limitation
per se because the conclusions can be hardly generalized to other countries [14].
Therefore, it is vital to investigate how knowledge contributes to the automotive in-
dustry in another country as performance is subject to location, plant’s setting and
size among other factors [4].

1.1 Digital twins in manufacturing context

In the last five years, technology and knowledge transfer within an industrial organ-
isation or between manufacturing plants have been reinforced by digital transforma-
tion and Internet of Things. Fourth industrial revolution has started to reshape many
organisations while digitalization has enabled companies to transform operational
effectiveness, improve safety and increase production. However, as both complex-
ity and uncertainty are always present in production lines, industrial organizations
should make a further step beyond digitalization and consider a more granular vir-
tual model approach to monitoring, diagnosing and correcting process flaws. This
model approach constitutes a form of a digital twin.

Digital twins (DT) have been introduced initially as virtual clones to physical
products, in order to improve geometry assurance in early product design phases
or to observe and study certain aspects of the products without having to interfere
or taking the product out of service [31, 27]. Tuegel et al. (2011), propose a DT
for predicting the life of aircraft structure and assuring its structural integrity while
system dynamics of a product were reinforced by DT for better interpretation of
customers’ needs [29].
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The interest in digital twin technologies is rising as the concept of a smart digital
factory and sensor-driven operations have gained the attention of many manufac-
turing companies [2]. DT enable autonomous objects to imitate the current state of
processes and their own behaviour. Also, they can be used as a flexible data-centric
communication middleware to develop a reliable advanced driver assistance system
in autonomous systems such as self-driving cars [33]. In recent years, there is a fo-
cus on digital twin-driven manufacturing cyber-physical system (MCPS) for parallel
controlling and simulation of shop floor processes [18, 7]. Thanks to the historical
production data, manufacturers can apply computational methods to create a digital
model of the manufacturing process whereas the use of real-time data from sen-
sors in may reduce waste, maximize throughput and conduct innovations. Alam and
Saddik, (2017), introduced a digital twin architecture reference model to describe
the properties of a cloud-based cyber-physical system (CPS) [3]. Modelling and
simulation with the aid of DT may offer recommendations, support design tasks or
validation of system properties [6].

This work suggests a DT platform, which replicates a complex manufacturing
system and predicts future intervention requirements by supporting “ad-hoc” data
analytics to maximise the performance of the factory. Apart from the palpable bene-
fits to the manufacturing process, the proposed DT model coupled with the Internet
of Things, big data analytics and cloud technologies can be used to drive growth in
manufacturing and to open up new business models. Software companies develop
DT technology that further builds out IoT capabilities in their enterprise asset man-
agement portfolio by allowing customers to leverage IoT data in creating a virtual
model of an asset.

2 The digital twin modelling platform

Manufacturing systems require deeper analysis of various data from machine cen-
tres and processes. Although manufacturing companies take advantage of state-of-
the-art modelling techniques and advanced systems increasing complexity due to
the large data arrival can be only addressed using appropriate distributed, interoper-
able, and high-performance ICT solutions. For that reason DT technology, which is
applied in dynamic manufacturing processes, should self-optimize, capturing data
from production and, potentially, ambient data from various sensors, as well as data
from operators and managers involved in the production process. The data feeds
back into the DT, creating a closed loop that enables manufacturers to interface with
an actual plant as if it were internet-based software.

An overview of the proposed DT platform within a manufacturing environment is
depicted in Figure 1. As it can be inferred, prediction techniques derived via the DT
platform are able to forecast the ever-changing needs of plant facilities and to offer
the potential of creating new markets. DT platform adopts and leverage (symbiotic)
simulation techniques, and, thus, it interacts with the physical system in a mutually
beneficial way. Also, the DT platform is highly adaptive, in that the DT platform not
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only performs what-if experiments that are used to control the physical system but
also validates and responds to data from the physical system via actuators. [12].
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Fig. 1 Digital twin modelling platform

There are still manufacturing companies that fail to exploit valuable big datasets
created in process planning while working with quality and environmental stan-
dards [20]. Shop-floor data analytics are very important as it is expected that data in
manufacturing environments will increase exponentially during the following years.
The DT platform can manipulate large amounts of shop floor data accrued from the
physical system. The proposed DT platform may work as an enabler to manipulate
big data and optimise the physical system by automatic control based on scenario
testing of different variables in real-time towards optimisation. It can run in par-
allel with the manufacturing processes whilst constantly analysing, modelling and
visualising relevant data in real-time. As a result, the DT platform may uncover and
leverage data that is hidden or unappreciated so as to deliver information capable of
transforming processes.

With the aid of big data analytics, the proposed DT platform provides also an
integrated approach for advanced modelling, analysis, feedback and visualisation
techniques which are helping manufacturing companies to eliminate waste and cre-
ate value through the design and production of the products. Datasets are analysed
against essential KPIs, while with the aid of a cloud this information is propagated
to other departments and core activities of the company including marketing and fi-
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nance. Thus, the DT platform depicted in Figure 1 constitutes an inextricable “busi-
ness as usual” strategic business module that offers further opportunities including
product development acceleration, design methods that minimise production costs
and a plethora of products that can be bought at better prices from customers. More-
over, DT platform harnesses consumer insights to reduce development costs through
innovative approaches and customized products, which can mark the dawning of the
Manufacturing as a Service innovation [9]. Things are already starting to move in
that direction with companies such as Adidas with its innovative SpeedFactory fa-
cility, which produces semi-custom shoes and Nike, which just acquired computer
vision firm Invertex [30].

With the ever-increasing complexity of manufacturing organisation processes
and business models, the challenge of linking high performance and quality with
cost-effective productivity is always present. Most manufacturing companies in or-
der to cope with downstream demand and new customer requirements follow the
traditional three shifts scheme, which often increases in involvement in occupational
injury for employees [28]. On the other hand, studies showed that night-shifts op-
erators manage their work-life balance without sacrificing productivity. From man-
agement’s perspective, the performance for each shift is subject to throughput and
shop-floor data. Thus, a DT platform should also provide a transparent user interface
of all relevant variables, such as throughput, and raw data derived from shop-floor
and especially machinery. In the next section, the purposed DT platform will be
utilized to study the performance of a three-shift assembly setup in an automotive
industry.

3 Case study: The adoption of digital twin platform to leverage
the performance of an assembly line

The motivation for this case study is to review the problems encountered within a
complex manufacturing plant with respect to the execution of performance valua-
tion within production management, as well as how these problems can be checked,
controlled and enhanced within the performance management perspective of pro-
duction. In accomplishing this motive, this study was centred on the assembly man-
ufacture line of an automotive company situated in the UK. There are 56 machine
centres (workstations) across the production line whereas parts are processed in a
sequential manner.

The occurrence of machine breakdown is very common and uncertain in assem-
bly production plants and repair times depend on the condition of the machine at
each breakdown event. In this study, the overall time of machine breakdowns for
all machine centres and for each eight-hour shift in a single day is calculated. As
the determination of the exact time of machine breakdown and the duration of the
repairs is quite difficult, manufacturing companies fail in achieving an optimal plan
of productivity or even due-to-order deliveries of end products under the given time
horizon by the client. There are different reasons for machine breakdown varying
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from poor maintenance, machine deterioration and overruns to weather conditions
and operator mistakes. However, there is a limited number of studies on the break-
down events. For example, changeovers may last longer than the work schedule due
to operators’ own volition or machines’ stoppage times can be elicited manually by
operators for no certain reasons. Some studies suggest that preventive maintenance
may lessen the likelihood of machine breakdown [10], however the emphasis is
given more on the reduction of maintenance cost rather than on operational perfor-
mance and breakdown events [15]. Thus, a DT platform with the aid of an automated
data collection system and actuators may restore machines’ operation to the desired
work levels.

This study opts for the acquisition of quantitative shop-floor data that could assist
in determining the impact of machines breakdown in performance by using the pro-
posed DT platform depicted in Figure 1. Furthermore, primary research helped to
acquire important data that assisted in obtaining answers to the following questions
identified in this study:

e Question 1: What are the major difficulties and requirements with respect to af-
fecting performance management within production management by utilizing a
DT platform?

e Question 2: In what way can these difficulties and requirements be observed and
addressed by deploying a DT platform in the performance management context?

3.1 Validation and curation of the shop floor data

Different raw shop-floor annual data (365 days) was gathered and aggregated. This
data includes (a) “flag” event data every time a breakdown arises accompanied by
information of the date and the ID of the machine centre the breakdown occurred,
and two timestamps signifying the start and end of the breakdown; (b) temperature
data from the machines centres, collected every second; and, (c) the number and
duration of jobs each machine performs in an hour. Due to the fact that all this
information comes in raw format, validation helps to confirm the source of data in
terms of origin and contain.

Curation of raw data from the shop floor is important in light of the fact that every
company has its own methods of data collection. This data is extremely instrumental
on the grounds that it helps in comprehending the company’s machines behaviour
under certain ambient conditions. The accumulation of raw semi-structured data
poses the challenge of complexity in terms of analytics given the huge amount of
data generated by the shop floor. Thus, this step provides a sustained and consistent
form of systematic data curation and error prevention, which can eliminate bias in
analysis and misinterpretation of machines behaviour. Validation and curation stage
was processed by means of a numerical computing environment and proprietary
programming languages.
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3.2 Analytics and prediction of the shop floor data

After the data has been validated and curated, analytics can identify certain machine
activities and reveal important information (e.g., patterns) about the performance of
each machine. In this section, the DT platform is utilized to exploit complex and
large data to obtain trend analysis and prediction of breakdowns which is otherwise
an extremely complex time-consuming task and very often prone to errors. Most
manufacturing organisations currently have systems which capture and store data
from all business areas; however, they do not have a technology which provides
trend analysis and prediction, but most importantly, they do not run a simulation in
real-time which can optimise the physical processes.

The production plant’s performance for each shift is measured by throughput
rate (TR), which provides the number of finished products at a given time. In a
traditional manufacturing, environment throughput is often subject to machines’
breakdown times and production yield; which is expressed by the number of non-
defective products divided with the total number of manufactured products [28]. By
introducing a DT platform, data from compressing sensors measuring temperature
changes in all machine centres is also considered to investigate whether tempera-
ture levels in addition to key shop-floor data are associated with throughput rates.
It should be also noted that data curation and validation of such data with the aid
of visualization tools - provided a new set of variables, which constitute a “clean”
format of manufacturing ambient data.

The aggregated breakdown times (BT) in seconds, production yield (PY) and
average temperature values (TV) in °C for all 56 machine centres in a single day are
used as independent variables in a two-step hierarchical multiple regression model,
in order to investigate their effect on the throughput rates. Two-tailed correlations
among the variables adopted in the analysis are shown in Table 1. In this study, Shift
1 is the night-shift (22:00-06:00), Shift 2 the early-shift (06:00-14:00) and Shift
3 is the late-shift (14:00-22:00). It should be noted that almost all same types of
shop-floor data differ among the three shifts, with breakdown times between Shift
2 and Shift 3 the only exception. Also, the night-shift has the lowest production
yield, throughput rate and the longest breakdown times. This signifies that night-
shift has the worst performance, which may lead to long cycle times and an increase
of control costs in factories [17].

Table 1 Descriptive statistics and correlation among variables

Mean Min Max TR1 PY1 BT1 TV1 TR2 PY2 BT2 TV2 TR3 PY3 BT3
Throughput, Shift 1 (TR1) ~ 493.904 0.000 860.000 1.000
Yield, Shift 1 (PY1) 0.371 0.007 0.944 0.247*  1.000

Breakdown, Shift 1 (BT1) ~ 99932.86 11820.394 379264.342 -0.263* -0.009  1.000

Temperature, Shift 1 (TV1)  215.536  50.650 348870 07977 0.133  -0.080 1.000

Throughput, Shift 2 (TR2) ~ 590.231 0.000 870.000  0.126  0.002 -0.007 0.209  1.000

Yield, Shift 2 (PY2) 0.653 0.017 0.998 0.082 -0.194 -0.091 0.136 0.276° 1.000

Breakdown, Shift 2 (BT2) ~ 97807.606 26940.073 459027.734 0.005 -0.260% -0.054 -0.038 -0.4587 0.008 1.000

Temperature, Shift 2 (TV2)  269.282  45.670 383730 0.168 0218* 0005 0210 07667 0.153 -0.5997 1.000

Throughput, Shift 3 (TR3)  586.519 0.000 830.000 -0.116 -0.055 -0.249* -0.247* 0.032 -0.105 -0.140 -0.052 1.000

Yield, Shift 3 (PY3) 0.715 0.075 0.997 0.135  0.039 -0.052 0.141 0.080 0.111 -0.072 0.122 0.150  1.000
Breakdown, Shift 3 (BT3)  98442.055 24619.447 330000447 -0.091 -0.093 0293° 0012 0178 0219%* 0.130 0044 -0.6797 -0279° 1.000

Temperature, Shift 3, (TV3) 296.634  88.100 390240 -0211* -0.197 0.107 -0.101 -0.071 -0.083 -0.141 -0.006 04737 -0.062 -0.278°
T ant at 0.01 level, ®significant at 0.05 level, *significant at 0.1 level
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To further understand whether key shop-floor data is associated with productivity,
hierarchical regression analyses were performed. Estimations based on a two-step
hierarchical regression model for each shift are presented in Table 2. Initially, three
different models were implemented to examine the linear relationship between the
throughput rates with traditional key managerial data Model A1, Model A2 and
Model A3 for each shift, respectively. Then, the impact of the proposed digital twin
platform was examined by adding the temperature levels for the 56 machine cen-
tres leading to Model B1, Model B2 and Model B3 for each shift, respectively.
The initial findings suggest a significant direct association between throughput rates
and shop-floor data for Shift 1. The addition of temperature levels increases the re-
gression model’s R? from 0.229 to 0.636. Thus, the inclusion of temperature levels
assisted by DT platform explains more than 63% of the variance in throughput rates
(Model B1), while the production yield and breakdown times on their own explain
22.9% of the variance in throughput rates (Model Al).

Table 2 Results of Hierarchical Regression Analyses

Dependent variable: Throughput rate

Shift 1 Shift 2 Shift 3

Independent variables Model A1 Model B1 Model A2 Model B2 Model A3 Model B3
Constant 589.0777 588.058" 473.062F 383.1397 797.894% 510.333F
Production yield 209.038* 170.030* 164.711 145.477% -29.387  -1.056
Breakdown times -.002% -.0017 -.005 .000 -.0027 -.002F
Temperature levels 2.239f A17* 8257
Model F 72627 279027 2058  2.125* 21.1307 18.903F
R? 229 636 077 117 463 542

Tsignificant at 0.01 level, °significant at 0.05 level, *significant at 0.1 level

In regard to Shift 2, the results in Table suggest that for Model A2 the regression
equation is not significant (¥=2.058). The addition of temperature levels in Model
B2 improved significance (F'=2.125, p < 0.1), but only temperature levels variable
is significant (8 = 2.125, p < 0.1). The R? has slightly increased from Model A2
(0.077) to Model B2 (0.117), indicating a small contribution to the throughput rates
for the Shift 2 by utilizing the DT platform. In contrast, the results for Shift 3
show that production yield is not significant to the throughput rates. This means
that production yield numbers derived for Shift 3 do not provide a clear picture of
the production performance. However, Model A3 and Model B3 suggest that the
breakdown have a negative impact on throughput rates (f=-0.002, p <0.01. The
inclusion of a DT platform in our analysis resulted to a highly significant model
(Model B3) with R?=0.542, as more than 50% of the variation in throughput rates
can be explained by breakdown times and temperature levels. The analyses reveal
that the insertion of a DT platform has a statistically significant positive relationship
with the performance of the production plant. Note that temperature levels variable
has the largest and highly significant coefficient in all 6 models, indicating that it



10 Christos 1. Papanagnou

is the most important factor, statistically, that could affect the performance by the
means of throughput rates.

Results in Table 2 show that although a direct significant association exists be-
tween production’s performance and breakdown times, the proposed DT platform
helps to explain the influence of the machine centres’ temperature values far more
precisely and meaningfully. Note, that the results for Shift 3 indicate that prob-
lematic shifts in terms of throughput and can be linearly explained with the aid of
breakdown times, production yield and temperature values. It is also clear that the
proposed DT platform reinforces the initial results derived by the means of Model
Al, as more than 63% of the variation in throughput rates can be explained by all
independent variables in Model B1. Last, in order to ascertain the multicollinearity
does not comprise an issue in shop-floor data, the variance inflation factor (VIF) was
derived for all models. The largest VIF score found was 5.67 (Model B3), which is
below the maximum level of 10 that multicollinearity could cause unstable regres-
sion coefficients [22].

4 Managerial implications

Even in complex manufacturing environments, continuous improvement and adop-
tion of advanced technology to attain manufacturing excellence are often essential.
Large investments at all of the products’ life-cycle from designing to re-engineering,
involve decisions pertaining to technology and innovation management. The adop-
tion of the proposed DT platform indicates that a manufacturer, as the recipient
of knowledge, investor and decision-maker, should actively seek how digital twins
can be provisioned, realized and utilized within the manufacturing environment. As
assembly lines consist of many workstations and may become very complex espe-
cially with large product variety [21], the beneficial role of a DT platform should be
emphasized and encouraged.

As the vast majority of manufacturing companies rely on key performance in-
dicators to assess the production performance versus operational costs and com-
pliance (e.g., strict environmental laws and regulations) the interconnection of ob-
jects and processes via open virtual platforms becomes essential. The integration of
computation with physical processes is not new as cyber-physical, socio-technical
systems and symbiotic simulation offer a plethora of advantages, however, manu-
facturers should be also able to monitor the behavior of the physical asset in real life
and embed technology seamlessly into core business processes. Thus, as through-
put rates relate also with ambient data derived from machinery, DT platforms can
enhance machine-to-machine communication to save energy and prevent machines
precocious deterioration, and thus, minimise breakdown times and occurrences. The
evaluation of data and information provides also the benefit of improving human-
machine interaction (e.g., by introducing new technologies that promote the use of
immersive data), which cultivates personnel’ skills, performance and working con-
ditions.
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Managers from manufacturing companies should recognize that DT platforms
are very important in order to simulate operations under different performances and
predict key performance indicators with the actual behaviour of existing machinery.
Visualization techniques can help also managers to understand whether a particular
machine is reliable and switch from preventive maintenance to predictive mainte-
nance. The findings of this study suggest that DT platforms give prominence to
powerful simulation models that increase the accuracy and reliability of machines
and controls within assembly production facilities. This is very important as the
dependability on planned production sequence in assembly lines is very high [13].

5 Limitations and future directions

The proposed DT platform can assist manufacturing companies to become more
competitive and generate the income that is required to cover labour costs and over-
heads of knowledge workers and to invest in environmentally friendly and worker-
friendly factories. However, as sophisticated as a given DT technology might be
initially, further studies should be undertaken to anticipate the sheer number of vari-
ables that can affect production, whether it is humidity, temperature, the intensity of
use of a given machine and so on.

This study derives results from an automotive assembly line without investigat-
ing how the proposed DT platform may also reinforce machine-to-machine (M2M)
communication by allowing cloud connectivity and integration resulting to speed-
ing up manufacturing processes and optimal productivity. M2M technology helps
to cope with the challenges of distributed devices and high data capacity by lever-
aging cloud infrastructures to enable assets spread across distributed manufacturing
plants, which would be very helpful in complex assembly lines.

Last, the proposed DT platform should be tested in terms of supporting transmis-
sion status and exception information being processed on-the-fly by persistency en-
gines and rendered on workstations through dedicated protocols. A further data ana-
lytics could reveal useful insights on how DT technology can provide state-of-the-art
solutions for energy-efficient product life cycles and ECO-usage for multi-modal vi-
sualisation and interaction technologies. In addition, it should be investigated in the
future how the proposed DT platform can facilitate better automation/self-assembly
technologies for conventional workforce tasks (e.g., joining processes in a vehicle
assembly line or mechanical fastening).

The proposed DT platform can be used as the bedrock to implement the next gen-
eration core virtual autonomous platform, which can be used by managers to gain
insights into the manufacturing plant and strengthen the company’s competitiveness.
The exploration and analysis of diverse types of data can assist decision-making and
add value to previously unexploited data streams, and, thus, reduce the costs asso-
ciated with data even involving personnel with less IT skills.

Manufacturing systems integration requires intelligent tools that will have the
ability to monitor the plant floor assets, and predict the variation and performance
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loss. Digital twins can offer dynamic rescheduling of production and maintenance
operations, and synchronize with other related business actions to achieve a com-
plete integration between manufacturing systems and upper-level enterprise appli-
cation. It is expected that the proposed DT platform will reshape industrial produc-
tion and service design in the name of future outcome-based value creation, mass
customization and smarter cities, where citizens’ demands and their consuming be-
havior will become an integral part of the manufacturing process.

6 Conclusion

As many manufacturing companies still suffer from data transparency and shop-
floor complexity this study proposes a sophisticated DT platform that can act as
the beacon for manufacturing companies to put their big data insights into real-time
action and not only map but also optimize their entire plant lifecycle. An actual
assembly line and real shop-floor data have been used to associate and predict the
production performance initially with breakdown times and production yield. The
analysis throughout three different manufacturing shifts did not reveal initially safe
deductions. Then, the results from the adoption of a DT platform and the inclusion
of machines’ temperature levels indicated that digital twins’ technologies provide
a better understanding on the relationships between shop-floor data and production
performance by the means of throughput levels.
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