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Environmental noise has documented effects on productivity in the workplace, and suggested impacts on health 
and wellbeing. However, there remains a gap in knowledge in determining whether there are neural markers for 
these effects that might be used in design, planning, and stakeholder engagement. Neuro-physiological measure-
ment has become practical in laboratory listening tests, due to advances in in dry electrode technology, fast ana-
logue-to-digital conversion, and cross-platform synchronisation, allowing for simultaneous ambisonic playback 
and collection of listener response data in multimodal contexts. The datasets created by such measurement are 
large and typically impractical to analyse over significant numbers of trials without modelling. In this work we 
present results from a pilot study (number of participants N=37), in which listeners were exposed to a randomised 
playback of first-order ambisonic recordings of typical urban environmental soundscapes (aircraft, trains, road 
traffic, and construction noise). Electroencephalograph (EEG)  measurements were captured synchronously across 
a 10/20 scalp position. Data for each subject was normalised and smoothed before being filtered into alpha and 
beta frequency bands using PSD calculations, before being further filtered to remove artefacts including high 
frequency interference and event-related potential activity such as blinking and similar head movement. Self-re-
ported data on perceived annoyance was also captured using the ISO 15666 scale from each participant in response 
to the stimulus set. We subsequently extract three acoustic components across the stimulus set using signal pro-
cessing analysis techniques; loudness, sharpness (as a factor of spectral centroid), and mel-frequency cepstral co-
efficients (MFCC), and map these against neural activity indicated by correlates in the EEG recordings. We also 
compare EEG recordings with self-reported levels of annoyance. We plan further work to train a regression model 
with weighted vectors for EEG activity, acoustic features, and self-reported annoyance.  
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1. Introduction 
Increasingly soundscape measurement has suggested that our acoustic environment can exert an in-

fluence on both physical and mental health, with benefits of effective noise management including im-
provements in cardiovascular health, link to reduction of cases of dementia in elderly populations, and 
improvements in markers of general mental well-being such as stress reduction [1]. Here, we describe 
progress on a case study addressing the use of biophysiological metrics in combination with self-report 
techniques and acoustic feature extraction, towards fuller understanding of the underlying mechanisms 
between noise and health effects.   
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Previous work from this study, documenting the interaction between Galvanic Skin Response (GSR, 
interchangeably known as Electrodermal Activity) and self-reported perceived annoyance measured us-
ing the ISO 15666 standard, was presented and published in [2]. Perceived annoyance has been found 
previously useful in examination of urban spaces [3]. 

GSR was used as a marker of psychological arousal and as an estimate of emotional state. Measure-
ment of GSR has been shown to be a robust metric for analysis of emotional responses to music [4]–[6]. 
Thus, there is a potential crossover between mental state, physiological reaction, and auditory stimula-
tion. Chambers [7] showed that states of relaxation have correlations GSR, heart rate variability, and the 
ratio of alpha and beta waves in electroencephalographic measurement. The electroencephalograph 
(EEG) is a technique for metering electrical activity from the scalp used to infer patterns of brain activity. 
Bondolfi [8] and Economides [9] proposed that proactive training and entrainment of mental states might 
thus contribute to therapeutic treatment and physiological state improvement. In this paper we report on 
the next stage of analysis, incorporating acoustic feature extraction and moving towards the use of the 
synchronous (EEG) measurement which was collected during our experiments. This type of measure-
ment has become practical in laboratory contexts in recent years, due to advances in ‘dry’ electrode 
technology and portable, near real-time analogue-to-digital conversion. This allowed for a multimodal 
experiment to be conducted capturing synchronous EEG data, GSR, heart-rate, and self-reported re-
sponses within the SoundLab listening environment, which provides first order ambisonic playback in a 
calibrated listening environment at <NC15. 

The distinction between affective state, emotion, and mood, is complex, and is generally drawn along 
the duration of the response [10]. Various models of affective state exist, including models with dimen-
sions for positivity and activation strength, such as the cirumplex model of affect [11]. This model places 
valence (as a measure of positivity) and arousal (as a measure of activation strength) on the horizontal 
and vertical axes respectively. Often, individual emotional descriptors can be plotted across these types 
of spaces [12], such as, in our example, perceived annoyance in the case of ISO 15666. We are interested 
in exploring biophysiological markers elicited synchronously to these self-reported responses, and cor-
relating these with acoustic features extracted from real-world environmental soundscapes. The use of 
biophysiological measurement in these contexts presents the possibility of unconscious report, and the 
removal of the ‘self-report confound’ – listeners with environmental noise problems are, by-and-large, 
keen to voice their concerns, and by the time a sound has become a problem it may already be too late to 
mediate the likely effects on the listener. 

1.1 Goals 
The goal of this work is to move towards an understanding of the biophysiological mechanisms which 

occur in response to environmental noise, by determining acoustic correlates for physiological markers 
and self-reported responses. Based on previous work with GSR and EEG we hypothesise that where 
listeners described a soundscape as more annoying, there will be an increased level of beta waves in the 
EEG, and correlations in three acoustic features: spectral centroid, loudness, and mel-frequency cepstral 
coefficients, as extracted using traditional feature analysis from the stimulus set.  

2. Method 
Thirty-seven participants were recruited from a working office environment and were compensated 

for their time. All subjects were healthy, reported no medical problems or being under the influence of 
any medication at the time of taking part. Approval for the study was provided by University of York 
Physical Sciences Ethics Committee, including specific requirements for data storage and compliance 
with GDPR.  
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Participants were asked to listen to a series of first-order ambisonic recordings of urban environmental 
soundscapes, calibrated as shown in Table 1. The stimuli were played back through an ambisonic loud-
speaker array at calibrated sound levels within the Arup SoundLab™ facility in Manchester to give an 
aural experience similar in level to the original sounds as recorded outside the laboratory environment. 
During a training exercise, participants were asked to conduct active and focused listening to the sound 
during the experiment, and to focus on how the sound made them feel.  

 The stimulus recordings themselves include aircraft, road traffic, construction noise, and other 
transport sounds. The order of stimulus presentation was randomised in each trial using a customised 
GUI created with Max/MSP. This GUI also allowed for synchronisation of audio playback and word 
clock with the biometric sensors.  

 One of the stimuli, the aircraft sound, was repeated (whilst maintaining an individually randomised 
order of stimulus presentation in each trial), in order to provide an anchor signal to facilitate within-
participant comparison of variance if necessary. 
Table 1: Stimulus set and calibrated playback level. Each stimulus was cropped with a linear fade in and fade out 

to a total duration of 30s. 

Sound Stimulus Playback level 
High speed train  82 dBLAmax,s 

Urban Traffic  65 dBLAeq 
Aircraft pass-by (650ft height) 82 dBLAmax,s 
Tram curving (wheel squeal) 82 dBLAmax,s 

Construction - Breaker  76 dBLAeq 
Highway  76 dBLAeq 

 
Electrical activity in the brain was recorded synchronously using an 8 channel, dry-electrode based 

electroencephalogram (EEG) with electrodes positioned in the 10/20 position [13], shown in Figure 1. 
Electrodes were recorded with a resistance of less than 1000m- ohms per channel. 

 
Figure 1. Eight channel configuration of EEG in the 10/20 position, where Fp = frontal parietal, C = central, P = 

parietal, and O = occipital regions 

Each participant undertook the experiment in around 15 to 20 minutes, including time taken for fa-
miliarisation. This duration was only made possible due to the speed of calibration of dry electrodes, and 
was a length which should not create fatigue according to conventional listening test practices [14] – 
however, the biosensors themselves do create additional discomfort and fatigue for the wearer over time, 
which some participants remarked on informally after the experiment. 
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Immediately prior to the start of the listening test sequence, participants were asked to rate their 
own noise sensitivity on a scale of 0-7, following an existing protocol by Clark et al., [15]. Responses 
received ranged between 2-6. Participant ages varied from 17-55 years of age, the majority of respondents 
being between 25-35 years old. No participants declared a history of hearing impairment. Participants 
were also allowed time to acclimatise to the laboratory environment and the biosensors, which allowed 
for baseline levels to be captured for use in subsequent signal cleaning.  

 

2.1 Data Cleaning 
Several metrics for extracting meaningful control data from EEG are common. The ERP ( or 

‘oddball’ paradigm ) has been used to allow active control in brain-computer interfacing systems [16], 
[17].  Stimulus-responsive input measures, for example, the SSVEP1 [18], have been adapted to real-
time audio and music applications [21]. However, the intended use of our system is unconscious auto-
nomic measurement in noise evaluation, and as such we focus on preparing data for analysis by means 
of spectrum and spatial distribution. Alpha bands in EEG can be extracted by means of filtering the power 
spectrum of a recording between 8-12 Hz, and beta bands in the region 12-28 Hz [22]. Nevertheless the 
EEG data is challenging to interpret [23], [24] and remains the subject of further work. EEG was filtered 
with a high pass filter at 3Hz to remove offset and a lowpass filter at 40Hz to restrict the spectrogram. 
Our dataset for each subject was further filtered to remove artefacts including high frequency interference 
and event-related potential activity such as blinking and similar head movement. There were marked 
event-related potentials (ERP) in the occipital cortex which we used an interpolation across the other 
remaining channels to remove. Data was then normalised and smoothed before being filtered into alpha 
and beta frequency bands using PSD calculations, and a full data process flow chart is shown in Figure 
2. 

 
1 SSVEP is a response to visual stimulation at a given frequency and integer multiples thereof, measurable in the visual 
cortex. For a detailed explanation of the signal characteristics under analysis, the reader is referred to [18], [19], and to 
[20] for a review of use in various BCMI platforms 
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Figure 2: Data cleaning process for EEG data. 

Figure 3 shows wave and spectrogram data from the frontal parietal channels, with marked interfer-
ence at 25Hz, whilst Figure 4 shows spectrogram of frontal parietal channels for a complete trial with 
more successful cleaning and artefact removal (prior to 40Hz lowpass filtering).  
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Figure 3: Complete trial data prior to cleaning (prior to lowpass filtering at 40Hz) in the frontal parietal elec-

trodes 

 
Figure 4: Complete trial data for a cleaned subject (prior to lowpass filtering at 40Hz) in the frontal parietal elec-

trodes 

 

3. Results 
Spatial distribution and band power analysis for a single subject are shown in Figure 5. 
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Figure 5 Spatial distribution of activity and bandpower analysis from participant #35 

Initial examination of self-reported annoyance rankings using a single factor ANOVA and a two-
sample t-test assuming equal variance (p=<0.05) indicated that participants found sounds with temporal 
or impulsive spectrums and high frequency tonal components to be most annoying. Participants would 
likely be most familiar with the urban traffic sound, which notably they reported as the least annoying of 
the stimulus set, whilst the construction sound was reported as the most annoying. For more detailed 
results analysis of the perceived responses and GSR recordings the interested reader is referred to previ-
ous work in [2].  

We extract three acoustic components, chosen on the basis of previous work reducing acoustic fea-
tureset choice for maximal correlation with annoyance [25] - integrated loudness, sharpness (spectral 
centroid), and mel-frequency cepstral coefficients (MFCC). Results are shown in Table 2 across the 
stimulus set with mean and standard deviation rankings for perceived annoyance.  
Table 2: Mean responses to each stimulus type (rounded up to 1 decimal place), with values for two acoustic fea-
tures extracted using the MATLAB audio toolbox. Integrated loudness calculated according to ITU-R BS.1770-4 

Stimulus Mean annoyance St. Dev annoyance Integrated 
loudness 

Spectral 
Centroid 

High speed train  6.3 2.2 -30.4 14 
Urban Traffic  4.3 2.4 -45.8 14 

Aircraft pass-by 
(650ft height) 

6.5 2.2 -33.7 14 

Tram curving (wheel 
squeal) 

7.1 2.2 -34.0 14 

Construction - 
Breaker  

7.2 2.3 -28.3 14 

Highway  5.1 2.4 -26.6 14 
 
Note that whilst there appears to be no variation in the spectral centroid across the stimulus set, the 

time-varying spectral centroid, shown in Figure 6, does vary across each stimulus. Figure 6 also shows 
the time-varying MFCC (due to space restrictions it is not possible to reproduce all MFCC and time-
varying spectral centroid plots here). 
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Figure 6: MFCC and spectral centroid change over time for first stimulus – high speed train. 
 

4. Conclusions and further work 
Environmental noise has documented effects on productivity in the workplace, and significant impact 

on health and wellbeing. However, there remains a gap in knowledge in determining whether there are 
neural markers for these effects. Real-world testing of systems using bio-signal mappings in audio labor-
atory contexts has become an emerging field of research, partly due to recent advances in portability, 
wearability, and affordability of biosensors. 

Metrics like the ISO 15666 for perceived annoyance used here have emotional connotations. The 
distinction between affect, mood, and emotion is complex, but in the context of sound evaluation the 
temporal nature of such responses can be useful [26]. Previous work has shown that there are measurable 
neurological and physiological responses to sound stimuli [27]. When listening to sound, our bodies may 
respond by inducing reactions such as pupil dilation, increased heart-rate, blood pressure, and skin con-
ductivity [4].  

The potential use of biophysiological data to help understand the mechanism of health effects 
caused by noise is therefore appealing,  as biophysiological regulation may also help to circumvent some 
of the problems of self-reported emotion (e.g., users being unwilling to report particular felt responses, 
politically motivated responses, or perhaps simply confusing perceived responses with felt responses 
[28]). 

In this work, analysis of perceived responses suggests that participants found sounds with certain 
acoustic correlates (temporal impulsive content, and high frequency tonal components), were most an-
noying. In future work, we plan to train a regression model with weighted vectors for EEG activity, our 
acoustic featureset, and self-reported annoyance, to analyse the large biometric dataset resulting from 
these experiments. We hope to harness these findings to create a prediction system which can help cor-
relate affective state and biophysiological response with quantifiable acoustic features and qualitative 
self-report data from listeners. Beyond understanding the mechanisms at play there is potential for self-
mediation and mood-based regulation (becoming less annoyed by disturbing sounds), by empowering 
the stakeholders/end users with their own data in the future. 
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