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ABSTRACT 
Non-Newtonian fluids are increasingly being deployed in energy systems and materials 

processing. Motivated by these developments, in the current study, a numerical simulation is 

performed on two-dimensional, unsteady buoyancy-driven flow in a square cavity filled with 

non-Newtonian fluid (Casson liquid). The enclosure geometry features vertical isothermal 

walls (with one at higher temperature than the other) and thermally insulated horizontal walls. 

The conservation equations for mass, momentum and energy are normalized via appropriate 

transformations and the resulting dimensionless partial differential boundary value problem is 

solved computationally with a Marker and Cell (MAC) algorithm which features a finite 

difference scheme along with a staggered grid system. The projection method is employed to 

evaluate the pressure term. Extensive visualizations of the impact of emerging physical 

parameters (Rayleigh number and Casson viscoplastic parameter) on streamline and isotherm 

distributions in the cavity are presented for fixed Prandtl number. Nusselt number i.e. heat 

transfer rate is increased with rising values of the Casson viscoplastic fluid parameter for any 

value of Rayleigh number. The density of streamlines increases with increasing values of 

Casson viscoplastic fluid parameter up to 1. Overall the Casson fluid parameter plays a vital 

role in controlling the convective heat transfer within the enclosure. The computations are 

relevant to hybrid solar collectors, materials fabrication (polymer melts) etc. 

 

KEYWORDS: Free convection, square enclosure, unsteady flow, Non-Newtonian (Casson) 

fluid, finite difference scheme, Projection Method; isotherms; flow visualization. 

 

NOMENCLATURE 

g  Gravitational acceleration 

L  Length of the square cavity 

p  Dimensional pressure 

P  Dimensionless pressure 

Pr  Prandtl number 

Ra  Rayleigh number 
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T Temperature  

   Dimensionless temperature  

u,v  Velocity components 

U,V Dimensionless velocity components 

x,y  Cartesian co-ordinates  

X,Y Dimensionless Cartesian components  

t Dimensional time  

Greek symbols  

f
   Density of Casson fluid  

   Thermal diffusivity  

   Dynamic viscosity  

  Kinematic viscosity  

  Thermal expansion co-efficient  

   Casson rheological fluid parameter  

  shear stress (and dimensionless time) 

   shear rate  

ijijee=   

ije    (i, j)th component of the deformation rate  

    the product of the component of deformation rate  

c  critical value  

B   plastic dynamic viscosity of the non-Newtonian fluid 

yp  yield stress of the fluid. 

Subscripts  

c Cold  

h Hot/Heat  
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1. INTRODUCTION 

Buoyancy-driven flow is an interesting flow phenomenon in heat transfer sciences and arises 

in diverse engineering systems including environmental comfort, thermal control of electronic 

components, geothermal and solar energy systems, materials fabrication etc. Several 

technological applications have featured increasingly non-Newtonian fluids since they offer 

certain advantages over Newtonian fluids in terms of viscosity, thermophysical characteristics 

and durability. This has motivated substantial interest in mathematical modelling of non-

Newtonian heat transfer in different geometrical configurations including stretching sheet 

flows, wavy surfaces, inclined planes and within enclosures (cavities). Non-Newtonian 

(rheological) liquids are of many different and intriguing types including viscoplastic (where 

fluids require a yield stress to initiate flow), viscoelastic, micro-structural couple stress and 

micropolar fluids, among others. One model for viscoplastic liquids which has emerged as 

quite popular and relatively simple to implement is the Casson fluid model. This model 

adequately describes a variety of real liquids including jelly, honey, certain plastics and 

polymers. It is also applicable for modelling blood flow through vessels at high shear rates [1]. 

Casson’s model has received significant interest in engineering science simulation and a variety 

of analytical and computational methods have been utilized in simulating Casson rheological 

behavior in energy and industrial systems. Zaib et al.  [2] used a shooting numerical method to 

study the impact of viscous dissipation on the convective flow of Casson fluid towards a 

shrinking sheet. Prasad et al. [3] employed Keller’s finite difference box scheme to simulate 

enrobing slip thermal boundary layer flows of a cylindrical body in Casson fluid. They noted 

that temperatures are decreased whereas skin friction is enhanced with greater Casson 

rheological parameter. Das et. al [4] deployed a Laplace transform technique to investigate the 

time-dependent double diffusive magnetic Casson fluid convective flow from a flat plate, 

observing that increasing Casson fluid parameter enhances concentration values whereas it 

decelerates the flow and reduces temperatures. Reddy et al. [5] used a Crank-Bicholson 

difference scheme and Bejan’s methods of entropy generation minimization and heat line 

visualization to study the transient thermal convection Casson fluid flow external to a cylinder 

in a permeable medium. Ganganapalli et. al [6] used MATLAB shooting quadrature to analyze 

the influence of wall slip velocity, radiative flux and chemical reaction on Casson flow from a 

two-dimensional wedge, noting that increasing Casson fluid parameter enhances both velocity 

and temperature. Vasu et al. [7] implemented homotopy and generalized differential quadrature 

(GDQ) methods to simulate the impact of Casson viscoplasticity and bioconvection micro-

organism mass transfer in hydromagnetic rheological nanofluid flow from an extending sheet.  

Akbar et al. [8] studied electromagnetic propulsion of Casson liquids in ciliated tubes with 

power series methods.  

Buoyancy driven convection in enclosures is an area of particular interest in solar collector 

design [9] and also semi-conductor or polymer melt synthesis [10]. Such two-dimensional 

flows usually require numerical methods to solve the nonlinear governing conservation 

equations.  Most of the researchers to study the natural convection within the enclosure with 

air have a working fluid. In recent years, with the objective of improving the thermal 

performance of working fluids in enclosures, several investigators have studied a variety of 
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non-Newtonian fluid models in enclosure convection. Alloui and Vasseur [11] derived semi-

analytical solutions for non-Newtonian convection in polymeric shear-thinning Carreau–

Yasuda fluids in a vertical enclosure, observing the significant modification in heat transfer 

characteristics with pseudo-plastic rheological behavior. Kefayati [12] employed a Finite 

Difference Lattice Boltzmann method (FDLBM) to simulate the thermal convection in power-

law fluids in a sinusoidal heated cavity showing that with increasing power-law rheological 

index (from pseudoplastic to dilatant) there is a suppression in heat transfer. Further studies of 

enclosure convection include Kefayati [13] (on magnetic power-law nanofluids), Jecl and 

Škerget [14] (who employed a boundary element method for power-law fluids) and Barnoon 

and Toghraie [15] (who used a finite volume method to simulate pseudo-plastic non-Newtonian 

nanofluid (Al2O3 + CMC) within a porous circular concentric region). Several excellent  

benchmark studies exist for numerical simulations of natural convection in enclosures 

including the work of de Vahl Davis [16] who simulated natural convection heat transfer in an 

air filled square cavity. A similar analysis has been conducted by Valencia and Frederick [17] 

with partially active walls. The role of partially heated verticals on heat transfer in air of square 

enclosure has been reported by Kane et al. [18]. Recent studies of natural or mixed convection 

in a square cavity filled with different fluids and with different supplementary effects (e.g. 

magnetic body forces, lid-driven boundary etc) have been presented in [19]-[25]. 

From a close inspection of the scientific literature, it is evident that time-dependent 

natural convection heat transfer in a square enclosure filled with Casson fluid over a wide range 

of Rayleigh numbers has not been studied so far either numerically or experimentally. In view 

of this, the present computational analysis aim is to study the convective heat transfer of non-

Newtonian Casson fluid in a square enclosure under the transverse temperature gradients with 

a Marker and Cell (MAC) algorithm which features a finite difference scheme along with a 

staggered grid system. The projection method is employed to evaluate the pressure term. 

Extensive visualizations of the impact of emerging physical parameters (Rayleigh number, and 

Casson viscoplastic parameter) on streamline and isotherm distributions in the cavity are 

presented and Nusselt numbers also computed. 

2. MATHEMATICAL MODEL  

The physical regime under investigation comprises a two-dimensional square geometry. The 

square geometry enclosed by four thermal walls. The upper and lower horizontal walls are 

thermally insulated and the vertical walls are isothermal and prescribed different temperatures.  

The geometry analyzed is depicted in Fig. 1 and the working fluid in the enclosure is considered 

to be non-Newtonian fluid (i.e. Casson viscoplastic fluid). The vertical walls are orientated in 

the y-direction with unit length and the bottom and top walls are directed along the x-direction 

with unit length. The enclosure vertical left and right walls are sustained at temperatures, 
h

T  

and 
c

T  (i.e 
c h

T T  ) respectively. Except for the density, all properties of the Casson fluid are 

considered to be constant. In addition, the thermal buoyancy force is included through the 

Boussinesq approximation. The constitutive equation for a Casson fluid i.e. the stress-strain 

relation takes the form:  
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Fig. 1. Schematic of problem  

Under the above assumptions, neglecting viscous heating, the governing equations for mass, 

momentum and energy for two-dimensional, unsteady, laminar, incompressible Casson fluid 

in a square cavity may be presented in vector form (with the appropriate term incorporated 

from Eqn. (1) for Casson rheological effect) as follows, with associated boundary conditions 

at the four walls of the enclosure: 

0.V =             (2) 

( ) ( )21
1

f f c y
p T T

t
   



  
 +  =− + +  −       

V
V . V V+ g     (3) 

( ) 2T
T T

t



+  = 


V .           (4) 

0t = , 0u v T= = =  for  0 1x  ,  0 1y                   (5a) 

0t     0u v= = , 0
T

y


=


 at y=0, 1                  (5b) 

Casson 

viscoplastic fluid 
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0u v= = , h
T T= , at x=0              (5c) 

0u v= = , 
c

T T= , at x=1                 (5d) 

It is judicious to introduce the following non-dimensional variables:  

( )
( ) 2

2 2

,
, , , , , , c

h c

x yt uL vL pL T T
X Y U V P

L L T T


 

  

−
= = = = = =

−
   (6) 

Implementing Eqn. (6) in the primitive eqns. (2)-(5), the resulting non-dimensional governing 

equations of natural convective flow in the enclosure assume the form: 

0
U V

X Y

 
+ =

 
           (7) 

2 2

2 2

1
1

U U U P U U
U V Pr

X Y X X Y 

       
+ + = − + + +  

        
     (8) 

2 2

2 2

1
1

V V V P V V
U V Pr Ra Pr

X Y Y X Y


 

       
+ + = − + + + +  

        
.     (9) 

2 2

2 2
U V

X Y X Y

    



    
+ + = +

    
                  (10) 

The non-dimensional wall boundary conditions emerge as: 

0 =   0U V = = =  for  0 1X  ,   0 1Y       (11a) 

0    0U V= = , 0
Y


=


 at Y=0,1      (11b) 

0U V= = , 1 =  at  Y=0        (11c) 

0U V= = , 0 =  at  Y=1        (11d) 

In Eqns. (7)-(10), the non-dimensional governing parameters are Prandtl number, Pr



= , 

Rayleigh number, ( ) 3

2

cg T T L Pr
Ra





−
=  and Casson parameter, . The local and average heat 

transfer rates are defined respectively as: 

0X

Nu
X



=

 
= − 

 
,          (12a) 

0

L

Nu Nu dY=  ,         (12b) 
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3. MAC NUMERICAL SOLUTION AND VALIDATION 

The non-dimensional partial differential equations (7)-(10) under boundary conditions (11) are 

solved by the Marker and Cell (MAC) computational method. For this method we consider a 

uniform grid, i.e. the step length of both X and Y directions are equal (dX = dY). The 

discretization of the convective terms and diffusion term is conducted via a central difference 

finite scheme. The Poisson equation of stream function is solved by an effective iterative 

method known as successive over-relaxation (SOR). The vector form of the momentum 

equations (8) and (9) is:  

( ) ( ) 21p Pr K Ra Pr g



+  =− + +  •



V
V . V V +       (13) 

where 
1

K


= ,   U V=V  and 
0

1
g

 
=  
 

. In compact form the momentum Eqn. (13) 

becomes: 

A p B C



+ =− +



V
+                      (14)                    

Where  

( )
( ) 21

A

B Pr K

C Ra Pr g

= 

= + 

= •

V . V

V

 

 

Next the discrete vector equation across a step takes the form: 

1k k

i j i j k k k k

i j i j i j i j
A p B C

dt

+

−
= − − +

, ,

, , , ,

V V
+                    (15) 

With the constraint on velocity as follows:  

1

0
k

i j

+

 =
,

Vg                                            (16) 

Splitting Eqn. (15) we have:  

k

i j i j k k k

i j i j i j
A B C

dt

−
= − +

*

, ,

, , ,

V V
+                        (17) 

and  
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1k

i j i j k

i j
p

dt

+

−
= −

*

, ,

,

V V
                     (18) 

1k
k

i j i j i j
dt p

+

= − 
*

, , ,
V V .                   (19) 

 

Fig. 2. Staggered MAC grid  

Here the intermediate velocity is introduced by 
i j

*

,
V  , To get the pressure Poisson equation, 

we apply the divergence of Eqn. (19) and using the mass conservation equation which yields:  

( )
1k

k

i j i j i j
dt p

+

 = −  
*

, , ,
.V .V .        (20) 

( )0 k

i j i j
dt p= −  

*

, ,
.V .         (21) 

21 k

i j i j
p

dt
 =

*

, ,
.V            (22) 

Equation (22) can be solved by the iterative method of successive over relaxation (SOR) and 

the final velocities are obtained as follows:  

1k

i j i j i j
dt p

+

= − 
*

, , ,
V V .            (23) 

Defining a dimensional stream function by the Cauchy-Riemann equations:  

U
Y


=


  and  V
X


= −


         (24) 

The temperature equation is solved as follows:  
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1

1, 1, 2

n n

i j i j

dt Y X X Y

     


+

+ −−    
= − + +
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     (25a) 

1 2

1, 1,

n

n n

i j i j dt
Y X X Y

   
  +

+ −

    
= + − + + 

    
          (25b) 

The MAC method has been coded in MATLAB symbolic software and validated with earlier 

studies for Pr = 0.71 (air) and the Newtonian case (→0) for a range of Rayleigh numbers. 

Table. 1 and Table. 2 provide good corroboration of the MAC solutions for local Nusselt 

number with these benchmark studies by de Vahl Davis [16] and Wan et al. [25]. High 

confidence in the MAC code is therefore achieved. 

Table. 1. Comparison of local Nusselt number. 

 
Nu 

MAC Results de Vahl Davis [16] 

Ra= 104 

Ra=105 

Ra=106 

2.2526 

4.5907 

8.9905 

2.242 

4.523 

9.035 

 

Table. 2. Comparison of local Nusselt number. 

 
Nu 

MAC Results Wan et al. [25] 

Ra= 104 

Ra=105 

Ra=106 

2.2526 

4.5907 

8.9905 

2.254 

4.598 

8.976 

 

 

4. RESULTS AND DISCUSSION 

All MAC MATLAB code simulations have been executed for buoyancy driven flow of non-

Newtonian Casson fluid with heating of side wall. A Prandtl number Pr=6.8 is considered 

throughout analysis which is appropriate for non-Newtonian polymeric fluids as noted by 

Incropera and De Witt [26]. Isotherms and streamline distributions (flow patterns) inside the 

square cavity have been plotted in Figs. 3-13. Herein, a comprehensive analysis of Casson fluid 

parameter and thermal Rayleigh number effects on the contours of flow patterns and 

temperature is conducted. The local and average Nusselt numbers are also computed.  
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 Fig.3. illustrates the effect of Casson fluid parameter () on flow patterns and 

temperature distribution inside the square cavity for Rayleigh number Ra =103. For all the 

values of Casson fluid parameter considered, a single enlarged circular eddy is developed 

within the enclosure which is induced due to flow rising along the hot wall and descending 

along the cold wall with low thermal Rayleigh number. The corresponding isotherms are also 

modified with a variation in Casson fluid parameter. At 0.1 = , the isotherms are parallel to 

gravity as well as normal to the horizontal walls. With greater Casson fluid parameter up to1 

the isotherms are morphed from the parallel topologies while the isotherms slowly migrate   

from the hot zone to the colder zones of the enclosure.   

The influence of Casson fluid parameter on streamlines and temperature distributions 

for Ra=104 is presented in Fig.4. The flow circulation changes and demonstrates the sensitivity 

of the flow structure to Casson fluid parameter i.e. rheology of the working fluid. The single 

enlarged circular eddy is adjusted from a dominant circular motion to a diagonal motion when 

increasing the Casson fluid parameter and this is associated with the domination of thermal 

convection by thermal conduction in the regime. The flow in the enclosure is accelerated with 

greater Rayleigh number whereas the flow is decelerated i.e. fluid velocity is damped by 

reducing (from 1 to 0.1) the Casson fluid parameter. Regardless of Rayleigh number, the fluid 

particle velocity is strongly regulated by the Casson fluid parameter. The corresponding 

isotherms exhibit gradual changes with increasing Casson fluid parameter from 0.1 to 1. The 

isotherms occupy a uniformly whole area of the enclosure for low values of . With elevation 

in Casson fluid parameter the density of the temperature contours is increased in the vicinity 

of the top portion of the right wall and also the bottom portion of left wall. Heat transfer rate is 

enhanced at high values of the Casson fluid parameter and heat transfer rate is reduced at low 

value of Casson fluid parameter. 

Fig. 5 illustrates the influence of Casson fluid parameter,  on streamline patterns and 

temperature distributions within the square enclosure for Rayleigh number, Ra= 105. 

Streamlines circulation within the enclosure is markedly changed when varying the Casson 

fluid parameter. In addition, the heat transfer rate is also controlled by the Casson fluid 

parameter. The streamlines demonstrate a circular structure for low   and the circulation is 

shifted laterally when increasing  . Accordingly, the isotherms also are altered. Generally, 

thermal convection is more intense at high values of Rayleigh number. For almost all the cases 

the isotherms are stretched towards the cold wall and form a thermal boundary layer at the 

bottom of the hot wall and top of the left wall. The strong thermal boundary layer is developed 

when the fluid circulation is stretched horizontally. Heat transfer is also modified substantially 

and is higher from the hot wall to the cold wall. 

The effect of Casson fluid parameter on streamline and temperature distributions at a 

higher value of Rayleigh number Ra=106 are depicted in Fig. 6.  For higher values of Ra, the 

velocity of fluid and convective heat transfer intensity are increased. Fluid circulation exhibits 

a horizontal elliptical eddy shape for all values of Casson fluid parameter. The density of 

streamlines are increased with greater Casson fluid parameter values up to 1. The isotherms 

distribution occupies the entire area of the enclosure. A strong thermal plume is developed 
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along the hot and cold walls while these isotherms are clustered at the opposite potions of the 

hot and cold wall. The steeper isotherms are diminished, and a more prominent thermal 

boundary layer is formed along the hot and cold wall with increasing Casson fluid parameter. 

As a result, the isotherms are parallel to the horizontal walls in the middle (core) of the 

enclosure.  

Mid-section velocity profile variations with the Casson fluid parameter for various 

values of Rayleigh number are presented in the Fig.7 and Fig.8 Regardless of Rayleigh number 

the fluid velocities along X and Y-directions are increased for greater values of Casson fluid 

parameter. These velocity profiles are symmetric at the line Y=0.5 and the line X=0.5 

respectively.  

Fig.9 and Fig.10 present the effects of Rayleigh number on non-dimensional velocity 

components, (U, V) along the vertical mid-plane and horizontal mid-plane respectively, for 

Casson fluid parameter, 0.1 = . The fluid velocity profiles are gradually enhanced as thermal 

Rayleigh number rises i.e. significant flow acceleration in both X, Y directions is induced. 

Figs. 11-13 illustrate the Nusselt number (local and average) distributions for various 

parameters at the hot wall. Fig.11 illustrates the local Nusselt number variations along the hot 

wall (right vertical boundary) for different values of Casson fluid parameter and different 

values of Rayleigh number. These results show that heat transfer rate along the hot wall is 

modified with both Casson rheological parameter,   and Rayleigh number. Low heat transfer 

rate is observed at Ra=103 and higher heat transfer rate is noticed at Ra=106. However, the heat 

transfer rate is increased with rising of  for any value of Rayleigh number. In addition, the 

local Nusselt number along the hot surface is enhanced with increasing Ra values at 0.1 =  

implying that stronger thermal buoyancy encourages heat transfer rates. It is also apparent in 

Fig.12. that the average Nusselt number along the hot wall is significantly boosted with 

increasing Rayleigh number. Fig.13 illustrates that the average Nusselt number is elevated with 

both increasing Rayleigh number and Casson fluid parameter, although the latter effect is 

decidedly more prominent at higher Rayleigh numbers.  

5. CONCLUSIONS 

The transport phenomena in natural convection of a Casson rheological fluid within a square 

enclosure with isothermal side walls and insulated horizontal walls. has been studied 

numerically with a MAC algorithm coded in MATLAB. A finite difference scheme and 

staggered grid have been used for the computational solution of the non-dimensional partial 

differential conservation equations with associated boundary conditions. Validation of the code 

with earlier Newtonian simulations has been included. Extensive graphical plots have been 

presented for streamline, temperature and Nusselt number (local and average) distributions. 

The computations have shown that: 

1. Increasing thermal Rayleigh number Ra leads to an increase in thermal convection 

intensity and heat transfer regardless of the value of the Casson fluid parameter. 
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2. For all Rayleigh numbers, the flow and heat transfer rate is enhanced with increasing 

Casson fluid parameter. 

3. The temperature contours are more clustered along the hot and cold walls for higher 

value of Rayleigh number. 

4. Increasing Rayleigh number enhances the local Nusselt number. 

5. Increasing both Rayleigh number and Casson fluid parameter results in an elevation in 

average Nusselt number. 

The present simulations have examined a simple viscoplastic model with the efficient MAC 

numerical approach. Future enclosure simulation investigations may consider alternate non-

Newtonian models e.g. micropolar liquids [27] and efforts in this regard are currently 

underway.  
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Fig. 3. Effect of Casson fluid parameter () on streamlines and isotherms for Ra=103. 
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Fig. 4.  Effect of Casson fluid parameter () on streamlines and isotherms for Ra=104.  
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Fig. 5.  Effect of Casson fluid parameter () on streamlines and isotherms for Ra=105  
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Fig. 6.  Effect of Casson fluid parameter () on streamlines and isotherms for Ra=106. 
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Fig. 7. Variations of non-dimensional velocity u for different values of Casson fluid parameter 

()  along the vertical mid-plane for different values of Ra at Pr = 6.8. 
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c. Ra=105       d. Ra=106 

 

Fig. 8. Variations of non-dimensional velocity v for different values of Casson fluid parameter 

() along the horizontal mid-plane for different values of Ra at Pr = 6.8.  

 

Fig. 9. Variations of non-dimensional velocity u along the vertical mid-plane for different 

values Ra at Pr = 6.8 and 0.1 = . 
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Fig. 10. Variations of non-dimensional velocity v along the horizontal mid-plane for different 

values Ra at Pr = 6.8 and 0.1 = . 
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c. Ra=105       d. Ra=106 

Fig. 11. Variations of local Nusselt number for different values of Casson fluid parameter along 

the hot wall for different values of Ra at Pr = 6.8. 

 

 

Fig. 12. Variations of local Nusselt number for different values of Ra along the hot wall at Pr 

= 6.8 and 0.1 = . 
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Fig. 13. Effect of Rayleigh number (Ra) and Casson parameter () on the average Nusselt 

number for hot wall 

 


