
1© 2020 Authors. This work is licensed under the Creative Commons Attribution-Non-
Commercial-NoDerivs 4.0 License https://creativecommons.org/licenses/by-nc-nd/4.0/

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS
Issue 1 | Vol. 13 (2020)Article | DOI: 10.21307/ijssis-2020-003

Intelligent agent for formal modelling of temporal multi-agent
systems

Awais Qasim1, 2*, Zeeshan Aziz2,
Syed Asad Raza Kazmi1,
Adnan Khalid1, Ilyas Fakhir1
and Jawad Hassan3

1Department of Computer Science,
GC University, Lahore, Pakistan.
2School of Science, Engineering
and Environment, University of
Salford, Salford, UK.
3Lahore Garrison University,
Lahore, Pakistan.

*E-mail: awais@gcu.edu.pk

This paper was edited by
Ivan Laktionov.

Received for publication
December 10, 2019.

Abstract
Software systems are becoming complex and dynamic with the
passage of time, and to provide better fault tolerance and resource
management they need to have the ability of self-adaptation. Multi-
agent systems paradigm is an active area of research for modeling
real-time systems. In this research, we have proposed a new agent
named SA-ARTIS-agent, which is designed to work in hard real-time
temporal constraints with the ability of self-adaptation. This agent can
be used for the formal modeling of any self-adaptive real-time multi-
agent system. Our agent integrates the MAPE-K feedback loop with
ARTIS agent for the provision of self-adaptation. For an unambiguous
description, we formally specify our SA-ARTIS-agent using Time-
Communicating Object-Z (TCOZ) language. The objective of this
research is to provide an intelligent agent with self-adaptive abilities
for the execution of tasks with temporal constraints. Previous works
in this domain have used Z language which is not expressive to model
the distributed communication process of agents. The novelty of our
work is that we specified the non-terminating behavior of agents
using active class concept of TCOZ and expressed the distributed
communication among agents. For communication between active
entities, channel communication mechanism of TCOZ is utilized. We
demonstrate the effectiveness of the proposed agent using a real-
time case study of traffic monitoring system.

Keywords
Formal methods, Self-adaptation, Autonomic computing, Multi-agent
systems, Real-time systems, TCOZ.

Multi-agent system has been an active area of research
for specifying complex and adaptive systems. These
complex and adaptive systems when deployed in a
real-time domain have to work with hard temporal
constraints. An agent is defined as a computer
software system which works autonomously in an
environment to achieve its objectives (Jennings
et al., 1998). Such an agent with restrictive timing
constraints is called a real-time agent (RTA). The
correct functioning of these RTA agents does not
solely depend on whether they complete the task
rather than it depends on whether they complete the
task within the deadline or not. Previously, these RTA

agents have been classified as hard real-time agents
and soft real-time agents in the study of Julian and
Botti (2004). In soft real-time agents, there is a slight
marginal period for the fulfillment of their temporal
restrictions. A multi-agent system with at least one
real-time agent is called a real-time multi-agent
system (RTMAS). This dynamism of real-time software
systems has led to a new category of software
systems called self-adaptive software system.
These self-adaptive systems possess the necessary
knowledge to adapt their behavior in response to
environmental context. In the studies of Tesar (2016),
Nair et al. (2015), De Lemos et al. (2013), it has been

2

Intelligent agent for formal modelling of temporal multi-agent systems

argued that the development of autonomous physical
systems with real-time constraints is a challenging
task. Formal modeling corresponds to constructing
a mathematical representation of a software or a
hardware system using some level of abstraction.
Formal specification provides an unambiguous and
precise meaning of the different entities of the system
leading to its enhanced understanding. Moreover,
with formal semantics a system’s domain functionality
can be validated using different formal methods
techniques like model checking. It has been argued
in the study of Filieri et al. (2014) that formal methods
should be used for the automated verification of
safety critical and real-time systems to ensure their
correct functioning.

Multi-agent systems have been formally specified
and verified by many in the past but not self-adaptive
real-time multi-agent systems, according to our
knowledge. Reynisson et al. (2014) have formally
modeled real-time systems using an extension of the
Rebeca language. They used structural operational
semantics for modeling distributed systems with
temporal constraints. In the study of Chen (2012),
a new language named STeC (an extension of
process algebra) has been proposed for the formal
specification of location-trigger real-time systems.
In the study of Logenthiran et al. (2012), a multi-
agent system approach has been presented for
the real-time operation of scheduling and demand
management in microgrids. Multi-agent systems
have been formally specified and verified using
modal mu-calculus and Timed-Arc Petri-nets in the
study of Qasim et al. (2015a, b, 2016). Lomuscio et al.
(2015) has presented a new model checker named
MCMAS for the formal verification of multi-agent
systems. Their model checker can be used to verify
the epistemic, strategic, and temporal properties
of interest for these multi-agent systems. Konur et
al. (2013) have presented a new combined model
checking approach for eliminating the problem of
introducing new logics for the verification of different
aspects of multi-agent systems like knowledge
and time, knowledge and probability, real-time and
knowledge, etc. This will help to reduce the problem
of having different model checking tools targeting
different aspects of multi-agent systems. In the study
of Sun et al. (2013), hierarchical real-time systems
have been formally modeled and verified using an
extension of Timed CSP called Stateful Timed CSP.
Majorly, they solved the problem of verification with
non-zeroness assumption. In the study of Weyns
et al. (2012), a framework for formal modeling of
distributed self-adaptive systems has been proposed
called FORMS, which provides different modeling

elements and a set of relationships guiding the
design of self-adaptive software systems. Herrero
et al. (2013) have proposed a real-time multi-agent
architecture for intrusion detection system called
RT-MOVICAB-IDS. Their architecture ensures
that the agent’s response (reflex or deliberative)
conforms to temporal constraints of the system
in case of an intrusion. In the study of Guo and
Dimarogonas (2015), a cooperative motion and task
planning scheme for multi-agent systems has been
proposed. According to their scheme, the agent’s
tasks, categorized with hard or soft deadlines, are
specified as linear temporal logic formulas. The
tasks with hard temporal constraints are always
executed within the deadline and the agent tries to
improve the result for soft deadline. In the study of
Varzaneh et al. (2018), a recommender system based
on association rules has been presented that detects
the similarities among the users through association
rules among voted items. Ettefagh et al. (2017)
extended the Kautz parametrization of the model
predictive control (MPC) method for linear time-
varying systems. They showed how Kautz network
can be used to maintain a satisfactory performance,
while the number of decision variables is reduced
considerably. Dammalage (2018) evaluated the
effects of site-dependent errors on C/A code
differential GPS correction accuracies by providing
special emphasis on the multi-path error. El Kholy
et al. (2015) presented an extension of computation
tree logic called RTCTLcc for the specification of real-
time properties of multi-agent systems. They argued
that RTCTLcc can be used to formally model the
interaction among agents with temporal constraints.

However, up to our knowledge no real-time agent
with self-adaptive abilities has been proposed in the
past. For the specification of self-adaptive real-time
multi-agent systems, there is a dire need of such an
agent. In this paper, we have proposed a formal real-
time agent having self-adaptive ability which can be
used for the formal modeling of any real-time multi-
agent system. Our self-adaptive real-time agent makes
use of the ARTIS agent architecture proposed in the
study of Botti et al. (1999) and MAPE-K feedback loop
proposed in the study of Kephart and Chess (2003).
For complex systems, formal specifications are
devised at conceptual design before the systems are
implemented in many areas of software engineering.
Such specifications describe the semantics of the
system being implemented without the concern for
implementation details and can be used as a basis
for the verification and validation of the functionality
of the system. Hence, we provide a complete formal
specification of our self-adaptive real-time agent

3

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

using Timed Communicating Object-Z (TCOZ). One
of the major reason for choosing TCOZ as a formal
specification language is that we can utilize the
active class concept of TCOZ to express the non-
terminating behavior of autonomous agents.

The rest of this paper is divided as follows. In the
“Preliminaries” section, some preliminaries for the
entities description of ARTIS agent architecture are
explained. The “Proposed SA-Artis-agent” section
describes the proposed SA-ARTIS-agent and its
formal specification using TCOZ. In the “Discussion
and future work” section, we provide future directions
of our proposed work. The “Conclusion” section
concludes the paper.

Preliminaries

Artis agent architecture

ARTIS agent architecture was proposed in the study
of Botti et al. (1999) and it is an extension of the
blackboard model that has been modified to work
in environments with hard temporal constraints.
This agent guarantees that it will meet its temporal
constraints by the use of an off-line schedulability
analysis. Agents’ perception occurs through a set
of sensors and the systems response is exhibited
using a set of effectors. These perception and action
processes are real-time in nature. The agent has two
different categorization of processes, namely, reflex
process and a deliberative process. Every ARTIS
agent has a number of internal agents (In-agent) that
provides the domain functionality. Every In-agent
is designed to solve a particular problem. Every In-
agent is characterized as critical or acritical. A critical
In-agent has a period and a deadline and the agent
must perform its operations within those deadlines.
In other words, it provides the minimum system
functionality. On the contrary, acritical In-agent
can utilize artificial intelligence techniques to better
achieve the system goal. Every In-agent has two
layers, namely, reflex layer and real-time deliberative
layer. When a task arrives for execution, the In-agent
checks the deadline if it can provide a response via a
real-time deliberative layer. The real-time deliberative
layer provides an improved response as compared
to reflex layer, hence it needs more time. The reflex
layer only provides a minimal quality response. The
mandatory phase of an ARTIS agent consists of
reflex layers of all the In-agents it has. Similarly, the
real-time deliberative layers of all In-agents make up
the optional phase of an ARTIS agent. A reflex layer
is absent in a non-critical In-agents and only the
real-time deliberative layer is present. For real-time

environments, most of the In-agents are critical in
nature. Each In-agent has a set of beliefs comprising
the domain knowledge relevant to it. Each ARTIS
agent has a control module which controls the
execution of all the In-agents that belongs to it. It
is divided into two submodules, namely, the reflex
server (RS) and the deliberative server (DS). Reflex
server controls the execution of tasks with critical
temporal restrictions. Deliberative server controls the
execution of deliberative tasks.

Mape-K feedback loop

A self-adaptive system typically consists of a feedback
loop that deals with the architectural adaptation of
the system and a managed system, which provides
the domain functionality. Adaptation based on
architecture always requires a system to interact
with the environment, reason about its models
based on the stimulus received and then adapt
itself. The feedback loop is known as MAPE-K and
it was proposed in the study of Kephart and Chess
(2003). The MAPE represents the monitor, analyze,
plan, and execute phase, whereas the K represents
the knowledge, which consists of the models of the
system and the adaptation goals. MAPE-K feedback
loop-based self-adaptation ensures that the overall
system’s functionality is not affected by making a
clear distinction between the managed system and
the managing system. We refer the reader Kephart
and Chess’s (2003) study for details concerning the
MAPE-K feedback loop.

Proposed SA-Artis-agent

A self-adaptive system typically consists of a
managed system which provides the domain
functionality and a feedback loop which deals
with architectural adaptations of the system.
Architecture-based adaptation requires a system
to interact with the environment, reason about
its models based on the stimulus received and
then adapt itself. The feedback loop is known
as MAPE-K and it was proposed in the study of
Kephart and Chess (2003). The MAPE represents
monitor, analyze, plan, and execute phase, whereas
the K represents the models of the system, its
environment, and adaptation goals. We propose
a modification of the ARTIS-agent named self-
adaptive-ARTIS-agent (SA-ARTIS-agent) which will
have the ability of self-adaptation. Figure 1 shows
the architecture of SA-ARTIS-agent. Each ARTIS
agent has a MAPE-K loop to continuously monitor
all the In-agents. In monitor phase, the system

4

Intelligent agent for formal modelling of temporal multi-agent systems

continuously perceives the environment and after
any pre-processing of data it updates its models
and trigger the next phase, i.e. analyze. In analyze
phase, decision regarding whether the adaptations
are needed or not is made. In case an adaptation is
needed, it triggers the plan phase. In plan phase, a
set of tasks/actions are generated that are required
for the adaptation and then the execute phase is
triggered. In execute phase, all the planned tasks
are executed to perform self-adaptation. Knowledge
corresponds to models representing aspects of
the environment, system, and adaptation goals.
It should be mentioned that all the activities of
the system are considered as event triggered.
We will give a complete formal specification of
the SA-ARTIS-agent in the next section. This is
because it has been advocated in the past that the
use of precise and unambiguous notation of formal
methods is beneficial for self-adaptive systems
specification (Iglesia and Weyns, 2015). Although the
basic SA-ARTIS agent will guarantee that it meets
its deadlines for the tasks it has been designed
to execute but if the designer decides to include
feature like communicating with agents of other
types then this may prevent this real-time behavior.

Our SA-ARTIS-agent will consist of the following
entities summarized as follows. Task represents any
task that will be executed by the agent. The task can
be executed to provide the domain functionality or
to adapt the agent. In-Agent will perform a specific
task for which it has been designed. A single
SA-ARTIS-agent may contain multiple In-agents,
each providing different functionality. SA-ARTIS-
Agent will provide the systems domain functionality
and will possess the necessary knowledge required
for adapting itself according to the goals. Monitor-
In-Agent will continuously monitor the environment
and communicate with all the other In-agents of
the system. In case an event of interest occurs
it will trigger the Analyze-In-agent and update
the Knowledge accordingly. Analyze-In-Agent
will be responsible for making the decisions if the
adaptation decisions are required. In case the
agent does need to adapt, it will trigger the Plan-
In-agent. Plan-In-Agent is responsible for planning
the necessary actions in case of adaptation and
triggering the Execute-In-Agent. Execute-In-Agent
will execute the adaptation actions of the generated
plans. Knowledge entity will serve as model
which the system can use to make the adaptation

Figure 1: Proposed SA-ARTIS-agent architecture.

5

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

decisions. It will be represented by domain models.
Control Module is responsible for the real-time
execution of the all the In-agents in the system.
Reflex Server controls the execution of processes
with critical temporal restrictions. Deliberative Server
controls the execution of deliberative processes.

TCOZ specification of SA-ARTIS-agent

In this section, we will formally specify all the entities
of SA-ARTIS-agent as was described in the previous
section. We define a passive class named Task to
represent any task in the system. Each task requires
a single resource for certain duration without which
it cannot execute. For brevity we have only handled
the case of one resource per task but the approach
can be extended for multiple resources per task. The
ReflexExecute operation models the execution of a
task when the agent executing it does not have extra
time to improve the result. The DeliberativeExecute
models the execution of a task when the task has
soft deadline. The variable length represents the
expected amount of time which the task will take to
execute. Here, length is considered as the deadline
before which the task should have been executed.
Margin represents additional time for soft deadline.
In case a margin is available for a task then the
DeliberativeExecute process will be executed. It
is important to mention here that a task can be
executed both to provide the domain functionality
and for adaptation. For the categorization of tasks
and agents, we define two types as:

TaskType :: = REFLEX | DELIBERATIVE
AgentType :: = INAGENT | ARTISAGENT

Every InAgent is configured to solve a particular
type of problem. Here id represents the unique
identifier of the InAgent. tasks represent the set of
tasks, which this agent has to execute. The attribute
alloc contains information about which resources
have been allocated to this agent. c represents
the single communication channel that this agent
will use to communicate with the other entities.
Here margin represents the time that will be used
to decide if a task should be executed on reflex
server or deliberative server. We define a new type
State to represent the current status of any agent
so here state represents the current state of this In-
agent. type represents the agent type, i.e. In-agent
or ARTIS agent. rModel represents the set of all
representations required for the adaptation.

Each SA-ARTIS-agent will manage multiple In-
agents providing the domain functionality. There
should be at least one In-agent for every ARTIS-
agent. Here id represents the unique identifier of
this agent. agents represent the set of In-agent
that this agent manages. models represent the
set of domain models. tasks represent the set of
tasks which will then be delegated to the different
In-agents. c represents the single communication

6

Intelligent agent for formal modelling of temporal multi-agent systems

channel that this agent will use to communicate
with the other entities. type represents the agent
type, i.e. In-agent or ARTIS-agent. state represents
the current state of this SA-ARTIS-agent. cm
represents the control module. The attributes
mAgent, aAgent, pAgent, eAgent correspond to
the Monitor-In-Agent, Analyze-In-Agent, Plan-In-
Agent, and Execute-In-Agent, respectively, which
will handle the adaptation. We use a function SUM,
which will return the sum of all the tasks of In-agents
that any ARTIS Agent has.

The Monitor_In_Agent will continuously perceive
the environment and after any pre-processing
of data it will update the models and trigger the
next, i.e. Analyze_In_Agent. aInAgent represents
the Analyze_In_Agent to whom this agent will
notify in case an event of interest occurs requiring
adaptation.

The Analyze_In_Agent will make decisions
regarding whether the adaptations are needed or
not. In case an adaptation is needed it will triggers
the Plan_In_Agent. pInAgent represents the Plan_In_
Agent to whom this agent will notify to plan for the
necessary adaptations. requiredResources represent
the resources that this agent needs to complete its
assigned tasks. availableResources are the resources
that has been assigned to this agent. At any time the
attribute rRequirement represents the situation of
resources for this agent. Resource requirement can
be divided into four classes, one in which the system
does not require additional resources, second in
which the system has more resources than it needs,
third in which the system needs more resources, and
fourth in which it is not possible to get a predictable
total of the system resources.

ResourcesRequirement :: = SATISFIED | OVERSAT-
ISFIED | UNSATISFIED | UNDETERMINED

7

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

The Plan_In_Agent will prepare a set of tasks/
actions that are required for the adaptation and then
it will trigger the Execute_In_Agent. It basically plans
two types of actions. In case the system resources
are unsatisfied it creates plans to add resources to
the system. On the contrary, if the system resources
are oversatisfied it creates plans to release the extra
resources. eInAgent represents the Execute_In_
Agent to whom this agent will notify to execute the
actions required for the necessary adaptations. In
case the resources are under-satisfied, a set of plan
actions are devised in order to add resources to the
managed system. Similarly, in case of oversatisfied,
a set of plan actions are devised in order to release
extra resources of the managed system. We define a
new type Plan which is a collection of tasks.

Plan ::= PTask

The Execute_In_Agent is responsible for executing
the adaptation actions of the generated plans. There
are three phases in an execute behavior: PreProcess,
ExecutePlan, and PostProcess. In PreProcess, the
agent acquires all the resources that are required for
the adaptation goals. Once all the pre-processing has
been completed, the agent performs ExecutePlans to
perform the necessary adaptations. After all the plans
have been executed the agent performs PostProcess
to release all the acquired resources.

8

Intelligent agent for formal modelling of temporal multi-agent systems

Application of the proposed
SA-Artis-agent to real-time
traffic monitoring
In this section we will demonstrate how the proposed
SA-ARTIS-agent can be used to monitor and analyze
the real-time traffic and ensure its correct functioning.
An overview of the single monitoring station is shown
in Figure 2. Monitor ARTIS agent will be the main
agent responsible for monitoring and controlling the
traffic. It is assumed that each monitoring station will
work independently without any human intervention.
This includes not only turning the signals but also
managing the duration of each signal. This agent will
analyze the real-time traffic using the Image Sensor
In-agent and Video Sensor In-agent. Image Sensor
In-agent will analyze the traffic based on imagery
data, therefore it can process its data faster. Video
Sensor In-agent will analyze the traffic based on video
data. Each monitoring station will communicate with
the rest of the stations using SIMBA communicator
agent. This agent will also provide the yellow-pages
and white-pages services to the other agents using
DF In-agent and AMS In-agent, respectively. These

monitoring stations need to have decentralized
control so that we do not have a single point of failure.
Each monitoring station will operate the signals they
are controlling in two ways. First, under normal traffic
the signals will operate based on fixed timing. This
will give equal opportunity to each signal and the
adaptation decisions will not be required. Second,
in case congestion is detected then the adaptive
decision taking module will be active and real-time
timings for the signals will be derived.

Traffic Monitoring System attributes ==
{TrafficSignal, TrafficSensorInAgent, Monitor-Agent,
Analyze-Agent, Plan-Agent, Execute-Agent}

Traffic Monitoring System processes == {Change
TrafficStatus, ChangeTrafficType, UpdateNeighbors,
AnalyzeImageData, AnalyzeVideoData, GetTrafficData,
UpdateKnowledge, Trigger, AnalyzeTraffic-Data, Update
Knowledge, DevisePlanForFullCongestion, DevisePlan
ForNearCongestion, DevisePlanForFarCongestion, Acquire
Resources, ExecutePlans, ReleaseResources}

We will integrate the bounded delay response
requirements of agents as part of the QoS services. For
verification that agent’s actions conform to bound delay
response, its requirements will be formally represented

Figure 2: Overview of single traffic monitoring station.

9

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Figure 3: Timed Petri-Net model of the Muslim Town Mor signal.

as a validity problem. The validity problem will then be
solved with the help of TAPAAL model checker. The
TAPAAL is a verification tool for extended timed-arc
Petri-nets with its own verification engine. We can create
models of the system under consideration and perform
automated verification using fragments of TCTL via
transformation to timed automata.

The timed Petri-net model of the Muslim Town
Mor signal is shown in Figure 3. The five stations of
Muslim Town Mor signal have been represented by
the acronym MTM. The simulation will start with the
Start state with a single token. The transition Initialize
will forward the token to all the Red states of the five
signals. The transition MTM RedToYellow depicts the
change in signal state from red to yellow. Initially, all
the signals will be in red state. Since there can be only

one signal in green state at any time, we have defined
five constants for this purpose, namely, MTM1 Delay,
MTM2 Delay, MTM3 Delay, MTM4 Delay, and MTM5
Delay. A single unit of delay corresponds to 20 sec.
This means that each signal will remain green for
20 sec and it will for other signals in red or yellow state
for 80 sec. The transition MTM YellowToGreen depicts
the change in signal state from yellow to green. Since
there can be only one green signal at a time we have
a converging state named Converge. We have two
transitions for each signal to show the status of green
light. For this purpose, Turn MTM Green depicts that
the signal is about to be green, whereas MTM Turned
Green depicts that the signal has been green. The
properties of interest we want to verify on our model
are specified in Table 1.

10

Intelligent agent for formal modelling of temporal multi-agent systems

Table 1. Formal verification of the traffic monitoring system.

Query Formula Result

Is MTM3 signal’s green
light working?

EF (MTM Signal.MTM3 Red=0 and MTM Signal.MTM3 Yellow=0
and MTM Signal.MTM3 Green=1)

Satisfied

Is MTM3 signal’s yellow
light working?

EF (MTM Signal.MTM3 Red=0 and MTM Signal.MTM3 Yellow=1
and MTM Signal.MTM3 Green=0)

Satisfied

Is MTM3 signal’s red
light working?

EF (MTM Signal.MTM3 Red=1 and MTM Signal.MTM3 Yellow=0
and MTM Signal.MTM3 Green=0)

Satisfied

Is MTM4 signal working? EF ((MTM Signal.MTM4 Red=1and MTM Signal.MTM4 Yellow=0
and MTM Signal.MTM4 Green=0) or (MTM Signal.MTM4 Red=0
and MTM Signal.MTM4 Yellow=1 and MTM Signal.MTM4 Green=0)
or (MTM Signal.MTM4 Red=0 and MTM Signal.MTM4 Yellow=0
and MTM Signal.MTM4 Green=1))

Satisfied

Is MTM4 signal’s green
light working?

EF (MTM Signal.MTM4 Red=0 and MTM Signal.MTM4 Yellow=0
and MTM Signal.MTM4 Green=1)

Satisfied

Is MTM4 signal’s yellow
light working?

EF (MTM Signal.MTM4 Red=0 and MTM Signal.MTM4 Yellow=1
and MTM Signal.MTM4 Green=0)

Satisfied

Is MTM4 signal’s red
light working?

EF (MTM Signal.MTM4 Red=1 and MTM Signal.MTM4 Yellow=0
and MTM Signal.MTM4 Green=0)

Satisfied

Discussion and future work

The proposed SA-ARTIS-agent can used to design
any multi-agent system with ability of self-adaptation.
One example of such multi-agent system is shown

Figure 4: Self-adaptive SIMBA-Agent architecture.

in Figure 4. The proposed Self-Adaptive SIMBA
(SA-SIMBA) agent architecture makes use of the
SIMBA agent architecture as proposed in the study
of Julian et al. (2002) and FORMS reference model
for the adaptation as proposed in the study of Weyns

11

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Figure 5: Flow chart describing the agent’s initiation and working process.

et al. (2012). Basic agents of SA-SIMBA are SA-
ARTIS-agents that will provide the systems domain
functionality by using In-agents and adaptation using
the MAPE-K feedback loops. In Figure 4, the local
managed system corresponds to all those In-Agents

that will perform some specific task. The self-healing
subsystem, however, corresponds to the Monitor_
In_Agent, Analyze_In_Agent, Plan_In_Agent, and
Execute_In_Agent providing the adaptation logic.
SA-ARTIS-agents have been designed to work in

12

Intelligent agent for formal modelling of temporal multi-agent systems

dynamic environments with temporal constraints. The
proposed SA-ARTIS can be used for the architectural
specification of any self-adaptive real-time multi-
agent system. We also intend to work on the issues
of communication between multiple self-adaptive
systems using diverse agent platforms. Specifically,
issues related to agent communication languages for
diverse agents with self-adaptation ability. Figure 5
provides a complete flow chart on the usage of the
proposed agent. As compared to previous work
where either only Z language or Petri-nets have been
used for the controlling real-time traffic, our work
provided expressiveness to model the state and
communication ability at each traffic station. This
provided the ability to check any traffic signal that it
is deadlock free always and provides the maximum
efficiency by controlling congestion.

Conclusion

In this paper, we proposed a new self-adaptive real-
time agent named SA-ARTIS-agent that can be used
for the formal modeling of self-adaptive real-time
multi-agent systems. Self-adaptation was provided
by incorporating MAPE-K feedback loops in each
SA-ARTIS-agent. For a precise and unambiguous
notation, we formally specified the SA-ARTIS-agent
using TCOZ language. There are two major benefits
of using TCOZ as a specification language. First,
we can utilize the active class concept of TCOZ to
express the non-terminating behavior of autonomous
agents. Second, the provision of communication
channels in TCOZ greatly simplifies the reference
class definitions, enhancing their modularity. The
multi-agent system paradigm has been in use for
the modeling of systems in ubiquitous and pervasive
environments. The dynamism in the execution of
such systems has led to the development of self-
adaptive systems. According to our knowledge,
no work has been done for the proposition of real-
time agent with self-adaptive ability. The runtime
schedulability analysis ensures that the agent meet
their deadline when deployed, hence ensuring the
reliability of such systems. Our approach provides
future directions for integrating TCOZ, timed petri-
nets, and agent communication as a flexible and
powerful tool for formal modeling of intelligent real-
time systems. Formal verification will help to prove
the correctness of the system being modeled which
in turn will increase the confidence in the correctness
of these systems. Our formal vocabulary is generic
enough to express a real-time multi-agent system of
any domain. It is also fine grained enough to test the
properties of the system for the provision of domain

functionality. The research conducted will help to
formally model self-adaptive real-time multi-agent
systems at the design time.

Literature Cited
Botti, V., Carrascosa, C., Julián, V. and Soler, J.

1999. Modelling agents in hard real-time environments.
in Garijo F. J., Boman M. (Eds), Multi-Agent System
Engineering Springer, Berlin, Heidelberg, pp. 63–76,
available at: https://doi.org/10.1007/3-540-48437-X_6

Chen, Y. 2012. STeC: a location-triggered spec-
ification language for real-time systems. 2012 15th
IEEE International Symposium on Object/Component/
Service-Oriented Real-Time Distributed Computing
Workshops (ISORCW), IEEE, pp. 1–6, available at: https://
doi.org/10.1109/ISORCW.2012.11

Dammalage, T. L. 2018. Effects of site-dependent
errors on the accuracy of C/A code DGPS positioning.
Civil Engineering Journal 4(10): 2296–2304, available
at: https://doi.org/10.28991/cej-03091159

De Lemos, R., Giese, H., Müller, H. A., Shaw, M.,
Andersson, J., Litoiu, M., Schmerl, B., Tamura, G., Villegas,
N. M., Vogel, T., Weyns, D., Baresi, L., Becker, B., Bencomo,
N., Brun, Y., Cukic, B., Desmarais, R., Dustdar, S., Engels,
G., Geihs, K., Göschka, K. M., Gorla, A., Grassi, V., Inverardi,
P., Karsai, G., Kramer, J., Lopes, A., Magee, J., Malek, S.,
Mankovskii, S., Mirandola, R., Mylopoulos, J., Nierstrasz, O.,
Pezzè, M., Prehofer, C., Schäfer, W., Schlichting, R., Smith,
D. B., Sousa, J. P., Tahvildari, L., Wong, K. and Wuttke, J.
2013. Software engineering for self-adaptive systems: a
second research roadmap. in de Lemos R., Giese H., Müller
H. A., Shaw M. (Eds), Software Engineering for Self-Adaptive
Systems II Springer, Berlin, Heidelberg, pp. 1–32, available
at: https://doi.org/10.1007/978-3-642-35813-5_1

El Kholy, W., El Menshawy, M., Laarej, A., Bentahar, J.,
Al-Saqqar, F. and Dssouli, R. 2015. Real-time conditional
commitment logic. in Chen, Q., Torroni, P., Villata, S., Hsu
J., Omicini, A. (Eds), PRIMA 2015: Principles and Practice of
Multi-Agent Systems Springer, Cham, pp. 547–556, available
at: https://doi.org/10.1007/978-3-319-25524-8_37

Ettefagh, M. H., De Doná, J., Naraghi, M. and
Towhidkhah, F. 2017. Control of constrained linear-time
varying systems via Kautz parametrization of model
predictive control scheme. Emerging Science Journal 1(2):
65–74, available at: https://doi.org/10.28991/esj-2017-01117

Filieri, A., Hoffmann, H. and Maggio, M. 2014.
Automated design of self-adaptive software with
control-theoretical formal guarantees. Proceedings
of the 36th International Conference on Software
Engineering, ACM, pp. 299–310, available at: https://
doi.org/10.1145/2568225.2568272

Guo, M. and Dimarogonas, D. V. 2015. Multi-agent
plan reconfiguration under local LTL specifications. The
International Journal of Robotics Research 34(2): 218–235,
available at: https://doi.org/10.1177/0278364914546174

13

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Herrero, Navarro, M., Corchado, E. and Julián, V.
2013. RT-MOVICAB-IDS: addressing real-time intrusion
detection. Future Generation Computer Systems
29(1): 250–261, available at: https://doi.org/10.1016/j.
future.2010.12.017

Iglesia, D. G. D. L. and Weyns, D. 2015. Mape-k
formal templates to rigorously design behaviors for self-
adaptive systems. ACM Transactions on Autonomous
and Adaptive Systems, 10(3): 1–31, available at: https://
doi.org/10.1145/2724719

Jennings, N. R., Sycara, K. and Wooldridge, M.
1998. A roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems 1(1): 7–38,
available at: https://doi.org/10.1023/A:1010090405266

Julian, V. and Botti, V. 2004. Developing real-time
multi-agent systems. Integrated Computer-Aided
Engineering 11(2): 135–149, available at: https://doi.
org/10.3233/ICA-2004-11204

Julian V., Carrascosa C., Rebollo M., Soler J. and
Botti V. 2002. SIMBA: an approach for real-time multi-
agent systems. in Escrig M. T., Toledo F., Golobardes
E. (Eds), Topics in Artificial Intelligence Springer, Berlin,
Heidelberg, pp. 282–293, available at: https://doi.
org/10.1007/3-540-36079-4_25

Kephart, J. O. and Chess, D. M. 2003. The vision of
autonomic computing. Computer 36(1): 41–50.

Konur, S., Fisher, M. and Schewe, S. 2013.
Combined model checking for temporal, probabilistic,
and real-time logics. Theoretical Computer Science
503: 61–88, available at: https://doi.org/10.1109/
MC.2003.1160055

Logenthiran, T., Srinivasan, D., Khambadkone, A. M.
and Aung, H. N. 2012. Multiagent system for real-time
operation of a microgrid in real-time digital simulator.
IEEE Transactions on Smart Grid 3(2): 925–933,
available at: https://doi.org/10.1109/TSG.2012.2189028

Lomuscio, A., Qu, H. and Raimondi, F. 2015.
MCMAS: an open-source model checker for the
verification of multi-agent systems. International Journal
on Software Tools for Technology Transfer, 19(1): 1–22,
available at: https://doi.org/10.1007/s10009-015-0378-x

Nair, R. R., Behera, L., Kumar, V. and Jamshidi, M.
2015. Multisatellite formation control for remote sensing

applications using artificial potential field and adaptive
fuzzy sliding mode control. IEEE Systems Journal
9(2): 508–518, available at: https://doi.org/10.1109/
JSYST.2014.2335442

Qasim, A., Kazmi, S. A. R. and Fakhir, I. 2015a.
Executable semantics for the formal specification
and verification of e-agents. Indian Journal of Science
and Technology 8(16): 1–8, available at: https://doi.
org/10.17485/ijst/2015/v8i16/55160

Qasim, A., Kazmi, S. A. R. and Fakhir, I. 2015b.
Formal specification and verification of real-time multi-
agent systems using timed-arc petri nets. Advances
in Electrical and Computer Engineering 15(3): 73–78,
available at: https://doi.org/10.4316/AECE.2015.03010

Qasim, A. and Kazmi, S. A. R. 2016. MAPE-K
interfaces for formal modeling of real-time self-
adaptive multi-agent systems. IEEE Access 4:
4946–4958, available at: https://doi.org/10.1109/
ACCESS.2016.2592381

Reynisson, A. H., Sirjani, M., Aceto, L., Cimini, M.,
Jafari, A., Ingolfsdottir, A. and Sigurdarson, S. H. 2014.
Modelling and simulation of asynchronous real-time
systems using Timed Rebeca. Science of Computer
Programming 89: 41–68, available at: https://doi.
org/10.1016/j.scico.2014.01.008

Sun, J., Liu, Y., Dong, J. S., Liu, Y., Shi, L. and André
E. 2013. Modeling and verifying hierarchical real-time
systems using Stateful Timed CSP. ACM Transactions
on Software Engineering and Methodology 22(1): 1–29,
available at: https://doi.org/10.1145/2430536.2430537

Tesar, D. (2016), Next wave of technology. Intelligent
Automation & Soft Computing, 22(2): 211–225, available
at: https://doi.org/10.1080/10798587.2015.1118202

Varzaneh, H. H., Neysiani, B. S., Ziafat, H. and Soltani,
N. 2018. Recommendation systems based on association
rule mining for a target object by evolutionary algorithms.
Emerging Science Journal 2(2): 100–107, available at:
https://doi.org/10.28991/esj-2018-01133

Weyns, D., Malek, S. and Andersson, J. 2012.
Forms: unifying reference model for formal specification
of distributed self-adaptive systems. ACM Transactions
on Autonomous and Adaptive Systems 7(1): 1–61,
available at: https://doi.org/10.1145/2168260.2168268

