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Abstract: The echo state network (ESN) is a powerful recurrent neural network for 

time series modelling. ESN inherits the simplified structure and relatively 

straightforward training process of conventional neural networks, and shows strong 

computational capabilities to solve nonlinear problems. It is able to map 

low-dimensional input signals to high-dimensional space for information extraction, 

but it is found that not every dimension of the reservoir output directly contributes to 

the model generalization. This work aims to improve the generalization capabilities of 

the ESN model by reducing the redundant reservoir output features. A novel hybrid 

model, namely binary grey wolf echo state network (BGWO-ESN), is proposed which 

optimises the ESN output connection by the feature selection scheme. Specially, the 

feature selection scheme of BGWO is developed to improve the ESN output 

connection structure. The proposed method is evaluated using synthetic and financial 

data sets. Experimental results demonstrate that the proposed BGWO-ESN model is 

more effective than other benchmarks, and obtains the lowest generalization error. 

Keywords: echo state network; binary grey wolf optimization; time series; network 

structure optimization 

1. Introduction 

Recurrent neural networks are often used to solve time series related prediction 

tasks [1]. However, there are a few problems hamper its practical applications, such as 

complicated training process, large amount of calculation, and slow convergence [2]. 

In order to reduce the computational complexity of the training process, the echo state 

network (ESN) and the liquid state machine (LSM) are proposed [3, 4], and the study 

in [5] has proved that ESN and LSM are conceptually similar, they are hence 

collectively summarized as “reservoir computing”. ESN is a special recursive 

structure that is known for its structural simplicity and high forecasting precision. Two 

main features distinguish ESN from other recursive networks: (a) the hidden layer of 

the ESN is a large-scale sparsely connected reservoir; and (b) only the connection 
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weights between the reservoir and the system output need to be trained, where often 

only a linear regression problem need to be solved to finish the training process [3]. 

The ESN reservoir is designed to map low dimensional input to high dimensional 

space with a feedback connection between the reservoir and the output layer, which is 

ideal for dealing with dynamic system modelling problems [3]. The low 

computational cost and powerful performance of ESN make it widely used in a range 

of applications, e.g. classification task [6], stock prediction [7], electric load 

forecasting [8], nonlinear model predictive control [9], tourist arrival forecasting [10] 

etc. Although the ESN model shows strong learning ability, its rich dynamic 

characteristics and random weight structure have not been fully studied. Hence, how 

to build an optimized reservoir for a specific task is a challenge which needs to be 

solved [11]. Hyperparameter optimization is one of the common optimization 

strategies. Some intelligent algorithms such as fruit fly algorithm and particle swarm 

optimization are often used to optimize the important parameters of the ESN to get a 

better performance [12, 13]. The topology of the network is also often optimized to 

further enhance the competitiveness of ESN [14]. In addition, the optimal output 

connection of the ESN should be explored. The ESN reservoir is sparsely connected. 

Paradoxically, the output layer is fully connected. Research works have shown that 

setting the ESN output layer to a sparsely connected state is beneficial for the network 

performance [15], which is also in line with the sparse connections of brain neurons 

[16]. However, the method to optimize the connections is still a challenge which 

needs to be addressed. 

The process of optimizing the connections between the reservoir and the output 

layer neurons can be considered as a feature selection problem [16]. In practical, the 

representation of data usually has many redundant features, some these replaceable 

features can be eliminated [16]. The purpose of feature selection is to improve the 

network performance by reducing the dimensionality of the feature. Recently, some 

researches have done to optimize the output connection of ESN. For example, some 

classical feature selection algorithms (such as least angle regression, backward 

selection, etc.) are used to trim redundant connections between the reservoir and the 

output layer, thereby improving the generalization ability of the network [15]. In 

addition, the greedy feature selection algorithm is also used to reduce the high 

computation complexity output connection [16]. However, many of these feature 

selection methods have limitations in solving ESN output connection optimization 

problem, and the evolutionary computation algorithms can avoid these limitations. 

The evolutionary computation algorithm is inspired by the process of natural 

evaluation, and a series of approaches for the global optimization are proposed based 

on the study of biota behaviours [17, 18]. Genetic algorithm (GA) [19] is one of the 

popular evolutionary computation algorithms. Compared with traditional optimization 

methods (e.g. enumeration, heuristic, etc.), it has good convergence speed and can be 
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directly used for discrete problems such as feature selection. It has advantages of 

robustness and strong scalability, however is also complicated in programming, 

parameter tunings, and slow search speed [20]. The particle swarm optimization (PSO) 

algorithm on the other hand, has a fairly fast approximation speed of the optimal 

solution, which can effectively optimize the parameters of the system [13]. It uses the 

information of current position, global extremum and individual extremum to 

iteratively update the position of the particle. The advantage of the PSO algorithm is 

that it can solve the optimization problem of continuous functions. However, it is easy 

to converge in advance (especially while dealing with complex multi-modal 

problems), and the local optimization ability is poor. In addition, it cannot be directly 

applied to discrete feature selection problems. Thus a discrete binary particle swarm 

optimization (BPSO) algorithm is proposed in the approach of [21], whose trajectory 

coordinates are only zero or one.  

The grey wolf optimization (GWO) is another novel evolutionary computation 

algorithm that simulates the social level and hunting behaviour of the grey wolf [22]. 

It is based on the tracking, enveloping, chasing, and attacking behaviours of wolves 

for optimization purposes. The binary grey wolf optimization (BGWO) algorithm is 

proposed in the approach of [23], which is used to select the classification purpose of 

the best feature subset. In this work, BGWO is used to optimize the output 

connections of the ESN, and synthetic and financial data are used to evaluate the 

performance of the proposed model. Experimental results show that the proposed 

BGWO-ESN model achieves a better performance and successfully reduces the 

generalization error of the original ESN, which reflect the superiority of the BGWO 

algorithm. The rest of this paper is organized as follows: Section 2 provides a brief 

introduction to the background of the ESN. Then the ESN optimization method using 

BGWO is presented in Section 3. Section 4 provides the experimental results and 

Section 5 concludes the paper. 

2. Echo state network 

In this section, the ESN will be briefly described. Two conventional evolutionary 

algorithms (i.e., GA and BPSO) used for comparison will also be introduced. 

2.1 ESN 

ESN is a type of recurrent neural networks (RNNs), which is composed of input 

layer, hidden layer and output layer. Unlike the conventional RNN, the connection 

weights from the input layer to the hidden layer, and the internal connection weights 

of the ESN reservoir are randomly initialized. In the process of training, only the 

connection weights of the hidden layer to the output layer need to be trained. As a 

linear regression problem, the training of ESN is very fast. The structure of the ESN is 

shown in the Figure 1. A reservoir is similar to the hidden layer of conventional neural 
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network. The connection weights from the input layer to the reservoir is 𝑊𝑖𝑛, the 

connection weights of the neurons in the reservoir is 𝑊, and the connection weights 

from the reservoir to the output layer is 𝑊𝑜𝑢𝑡. In addition, there is a connection 

𝑊𝑏𝑎𝑐𝑘 from output layer to the reservoir. This connection (which is represented by 

the dotted arrow in the Figure 1) is not necessarily required. When 𝑊𝑏𝑎𝑐𝑘 exists, the 

ESN can make multi-step predictions. Otherwise, it can only do single-step 

prediction. 
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Figure 1. The structure of ESN. 

As shown in Figure 1, the input at time t is 𝑢(𝑡), and there are M neuron nodes. 

The reservoir state is 𝑥(𝑡) and there are N neuron nodes. The output is 𝑦(𝑡), and 

there are L neuron nodes. The reservoir updates its state when each time 𝑢 is entered. 

The state update of reservoir is described by 

 𝑥(𝑡 + 1) = 𝑓(𝑊𝑥(𝑡) +𝑊𝑖𝑛𝑢(𝑡 + 1) +𝑊𝑏𝑎𝑐𝑘𝑦(𝑡)), (1) 

where the 𝑊𝑖𝑛  and 𝑊  are randomly initialized when the network is initially 

established, and they remain unchanged during training. The 𝑢(𝑡 + 1) is the input of 

the current time, and 𝑥(𝑡) is the reservoir state at the previous time. It can be 

initialized with zero. 𝑓 is an activation function, which is usually set to tanh. 

The output of ESN is described by 

𝑦(𝑡 + 1) = 𝑓𝑜𝑢𝑡(𝑊𝑜𝑢𝑡[𝑥(𝑡 + 1), 𝑢(𝑡 + 1), 𝑦(𝑡)] +𝑊𝑏𝑖𝑎𝑠
𝑜𝑢𝑡 ), (2) 

where 𝑓𝑜𝑢𝑡 is the activation function of output layer, and 𝑊𝑏𝑖𝑎𝑠
𝑜𝑢𝑡  is the bias term. 

After the reservoir state and the output mode of the ESN are determined, 𝑊𝑜𝑢𝑡 can 

be determined according to the target output, so that the error between 𝑦(𝑡) and the 

target output is as small as possible. This is a simple linear regression problem and 

many methods can be used to calculate it [24]. In addition, ESN has a good advantage 

for the processing of one-dimensional time series. But for high-dimensional timing 

series, such as video frames, ESN is not very capable [3]. 
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To make sure the ESN working properly, a few factors need to be considered 

carefully: (a) because the input from the previous moment will be echoing in the ESN 

reservoir, to avoid the explosion of the reservoir state, the eigenvalues of 𝑊 must be 

less than or equal to one; (b) since 𝑊𝑜𝑢𝑡 is the only variable in the network, 𝑊 must 

be set large enough to represent as many different data rules as possible; and (c) the 

sparse degree of 𝑊 also needs to be set appropriately, which is usually between 1% 

and 5%. 

2.2 Genetic algorithm 

Genetic algorithm (GA) is a classic evolutionary algorithm. The original GA has 

been improved by many researches, which greatly increase the convergence speed and 

accuracy of the algorithm. It uses the choice, crossover and mutation operations to 

search for the optimal solution in the problem space. Classic GA first encodes 

parameters to generate a certain number of individuals. Each individual in the 

generated initial population can be a one-dimensional or multi-dimensional vector, 

represented by a string of binary numbers, i.e. a chromosome. Each binary number on 

a chromosome is called a gene. According to the choice of natural survival of the 

fittest, the fitness function is designed as a criterion for judging the performance of 

each individual. Individuals with good performance are selected as parents, and they 

have certain probability to participate in future genetic operations to generate a new 

generation of population. After repeating selection, hybridization, and mutation, the 

optimal population is finally produced. 

2.3 PSO and BPSO 

Particle swarm optimization (PSO) algorithm has been considered one of the 

most popular evolutionary algorithms in recent years. Similar to other evolutionary 

algorithms, PSO also adopts the concepts of “group” and “evolution”. Through the 

cooperation and competition among individuals, the search for the optimal solution in 

complex space is realized. The PSO first generates an initial population by randomly 

initializing a group of particles in the feasible solution space. Each particle is a 

feasible solution to the optimization problem, and the objective function determines a 

fitness value for it. The particles will move in the solution space and their direction 

and distance will be determined by a speed. Usually the particles follow the current 

optimal particle and move through the generations to get the optimal solution. In each 

generation, the particles track the positions of two optimal solutions. One is the 

optimal solution found by the particle itself, and the other is the optimal solution 

found in the whole population. PSO is often applied to continuous function 

optimization, but it is not good at solving discrete problems. To address its 

disadvantages on discrete problems, the binary particle swarm optimization (BPSO) 

algorithm was proposed [25], which is based on the PSO algorithm. Compare to the 

PSO, the position and velocity values in the BPSO algorithm are discrete values. 
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BPSO has a strong global search capability, but it cannot converge to the global 

optimal value. The approach [21] optimizes BPSO and overcomes the inherent 

shortcomings, so that the algorithm can converge better. In addition to GA and 

improved BPSO, the recently proposed BGWO algorithm has been proven to be 

competitive in the problems of feature selection. The algorithm will be used for the 

ESN output connection optimization in this work and more details will be introduced 

in the next section. 

3. BGWO-ESN 

The optimization of the ESN output connection is a problem of feature selection, 

and the BGWO algorithm is used to solve this problem in this section. This section 

introduces the basic theory of GWO and BGWO. Then the BGWO-ESN model is 

proposed and discussed in detail. 

3.1 Grey Wolf Optimization (GWO) 

The GWO algorithm is an evolutionary computation technique that mimics the 

predation behaviour of grey wolves [23]. A wolf group has ~5-12 intelligent 

individuals. They don’t act alone when they prey, but they are divided into small 

groups and act together. In the group, according to the dominant hierarchy, the grey 

wolves are divided into four categories: alpha (α), beta (β), delta (δ), and omega (ω) 

[23]. Alphas lead the pack and are responsible for making decisions about predation, 

rest, and action. The primary responsibility of betas is to help alphas in decision 

making and other activities. Deltas must be subject to alphas and betas, but they can 

control omegas. Omegas needs to obey all other dominant wolves. 

According to [23], the model of grey wolf predation consists of two steps. Firstly, 

the wolves surround the prey, which is described by 

 𝑋⃗(𝑡 + 1) = 𝑋𝑝⃗⃗ ⃗⃗⃗(𝑡) + 𝐴 ∙ 𝐷⃗⃗⃗, 
(3) 

where 𝑡 is the iterations, 𝑋⃗ is the wolf position, 𝑋𝑝⃗⃗ ⃗⃗⃗ is the target position, and 𝐴 is 

the coefficient constant. 𝐷⃗⃗⃗ is defined by  

 𝐷⃗⃗⃗ = |𝐶 ∙ 𝑋𝑝⃗⃗ ⃗⃗⃗(𝑡) − 𝑋⃗(𝑡)|, (4) 

where 𝐶 is coefficient vector. The 𝐴 and 𝐶 is defined by 

 𝐴 = 2𝑎 ∙ 𝑟1⃗⃗⃗ ⃗ − 𝑎, (5) 

and 
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 𝐶 = 2 ∙ 𝑟2⃗⃗⃗⃗ , (6) 

where 𝑎 decreases linearly from two to zero as the number of iterations increases. 𝑟1⃗⃗⃗ ⃗ 

and 𝑟2⃗⃗⃗⃗  are random vectors in [0, 1]. In the GWO algorithm, alphas are considered to 

be the best candidate solutions, betas are considered to be the second-best candidate 

solutions, and deltas are the third-best candidate solutions. Alphas, betas and deltas 

have the most of knowledge for the position of the food. When their best positions are 

obtained, other search individuals (including the omegas) are also forced to update 

their positions. Hence, to further attack the prey, wolves (including omegas) need to 

update their position by 

 𝑋⃗(𝑡 + 1) =
𝑋1⃗⃗⃗⃗⃗ + 𝑋2⃗⃗⃗⃗⃗ + 𝑋3⃗⃗⃗⃗⃗

3
, (7) 

where 𝑋1⃗⃗⃗⃗⃗, 𝑋2⃗⃗⃗⃗⃗ and 𝑋3⃗⃗⃗⃗⃗ are calculated by 

 𝑋1⃗⃗⃗⃗⃗ = |𝑋𝛼⃗⃗ ⃗⃗ ⃗ − 𝐴1⃗⃗⃗⃗⃗ ∙ 𝐷𝛼⃗⃗⃗⃗⃗⃗ |, (8) 

 

 𝑋2⃗⃗⃗⃗⃗ = |𝑋𝛽⃗⃗ ⃗⃗⃗ − 𝐴2⃗⃗ ⃗⃗⃗ ∙ 𝐷𝛽⃗⃗ ⃗⃗ ⃗|, (9) 

 

 𝑋3⃗⃗⃗⃗⃗ = |𝑋𝛿⃗⃗ ⃗⃗⃗ − 𝐴3⃗⃗ ⃗⃗⃗ ∙ 𝐷𝛿⃗⃗ ⃗⃗ ⃗|, (10) 

where 𝑋𝛼⃗⃗ ⃗⃗ ⃗, 𝑋𝛽⃗⃗ ⃗⃗⃗, 𝑋𝛿⃗⃗ ⃗⃗⃗ are the optimal first three solutions for the each iteration, and 𝐴1⃗⃗⃗⃗⃗, 

𝐴2⃗⃗ ⃗⃗⃗, 𝐴3⃗⃗ ⃗⃗⃗ can be calculated by Eq. (5). The 𝐷𝛼⃗⃗⃗⃗⃗⃗ , 𝐷𝛽⃗⃗ ⃗⃗ ⃗, 𝐷𝛿⃗⃗ ⃗⃗ ⃗ can be obtained by 

 𝐷𝛼⃗⃗⃗⃗⃗⃗ = |𝐶1⃗⃗⃗⃗⃗ ∙ 𝑋𝛼⃗⃗ ⃗⃗ ⃗ − 𝑋⃗|, (11) 

 

 𝐷𝛽⃗⃗ ⃗⃗ ⃗ = |𝐶2⃗⃗⃗⃗⃗ ∙ 𝑋𝛽⃗⃗ ⃗⃗⃗ − 𝑋⃗|, (12) 

 

 𝐷𝛿⃗⃗ ⃗⃗ ⃗ = |𝐶3⃗⃗⃗⃗⃗ ∙ 𝑋𝛿⃗⃗ ⃗⃗⃗ − 𝑋⃗|, (13) 

where 𝐶1⃗⃗⃗⃗⃗, 𝐶2⃗⃗⃗⃗⃗ and 𝐶3⃗⃗⃗⃗⃗ are calculated by Eq. (6). These two steps are repeated until 
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the wolves capture the prey. 

3.2 BGWO 

In GWO, wolves can change their continuous positions to find prey. But in some 

specific tasks (such as feature selection), the problem is in binary space, and the 

solution is limited to zero and one values, which becomes a problem for the typical 

GWO. Hence, the BGWO has been proposed for feature selection tasks, where all 

solutions are represented in binary form. Two position update algorithms in the 

approach of [23] are used in this work, where the position update algorithm 1 (PUA1) 

and the position update algorithm 2 (PUA2) are expressed by 

 𝑥𝑑
𝑡+1 =

{
 
 

 
 𝑥1

𝑑 , 𝑖𝑓 𝑟𝑎𝑛𝑑 <
1

3

𝑥2
𝑑 ,

1

3
≤ 𝑟𝑎𝑛𝑑 <

2

3
 

𝑥3
𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (14) 

and 

 𝑥𝑑
𝑡+1 = {

1, 𝑖𝑓 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(
𝑥1 + 𝑥2 + 𝑥3

3
) ≥ 𝑟𝑎𝑛𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (15) 

respectively, where 𝑟𝑎𝑛𝑑 is a random number of [0, 1] and obeys the uniform 

distribution. The 𝑥𝑑
𝑡+1 is the updated d-dimensional binary wolf position after the 

t-th iteration. The 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 is defined by 

 𝑠𝑔𝑖𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−10(𝑥−0.5)
, (16) 

and the 𝑥1, 𝑥2, 𝑥3 are binary vectors representing the effect of wolf move towards 

the alpha, beta, delta grey wolves. They are defined by 

 𝑥1
𝑑 = {

1, 𝑖𝑓 (𝑥𝛼
𝑑 + 𝑏𝑠𝑡𝑒𝑝𝛼

𝑑) ≥ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (17) 

 

 𝑥2
𝑑 = {

1, 𝑖𝑓 (𝑥𝛽
𝑑 + 𝑏𝑠𝑡𝑒𝑝𝛽

𝑑) ≥ 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (18) 

 

 𝑥3
𝑑 = {

1, 𝑖𝑓 (𝑥𝛿
𝑑 + 𝑏𝑠𝑡𝑒𝑝𝛿

𝑑) ≥ 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (19) 

where 𝑥𝛼
𝑑,  𝑥𝛽

𝑑, 𝑥𝛿
𝑑 are the positions of the alpha, beta and delta wolves respectively, 
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and 𝑏𝑠𝑡𝑒𝑝𝛼
𝑑, 𝑏𝑠𝑡𝑒𝑝𝛽

𝑑, 𝑏𝑠𝑡𝑒𝑝𝛿
𝑑 are given by 

 𝑏𝑠𝑡𝑒𝑝𝛼
𝑑 = {

1, 𝑖𝑓  𝑐𝑠𝑡𝑒𝑝𝛼
𝑑 ≥ 𝑟𝑎𝑛𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (20) 

 

 𝑏𝑠𝑡𝑒𝑝𝛽
𝑑 = {

1, 𝑖𝑓  𝑐𝑠𝑡𝑒𝑝𝛽
𝑑 ≥ 𝑟𝑎𝑛𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (21) 

 

 𝑏𝑠𝑡𝑒𝑝𝛿
𝑑 = {

1, 𝑖𝑓  𝑐𝑠𝑡𝑒𝑝𝛿
𝑑 ≥ 𝑟𝑎𝑛𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (22) 

where 𝑐𝑠𝑡𝑒𝑝𝛼
𝑑, 𝑐𝑠𝑡𝑒𝑝𝛽

𝑑, 𝑐𝑠𝑡𝑒𝑝𝛿
𝑑 are described by 

 𝑐𝑠𝑡𝑒𝑝𝛼
𝑑 =

1

1 + 𝑒−10(𝐴1
𝑑𝐷𝛼

𝑑−0.5)
, (23) 

 

 𝑐𝑠𝑡𝑒𝑝𝛽
𝑑 =

1

1 + 𝑒−10(𝐴1
𝑑𝐷𝛽

𝑑−0.5)
, (24) 

 

 𝑐𝑠𝑡𝑒𝑝𝛿
𝑑 =

1

1 + 𝑒−10(𝐴1
𝑑𝐷𝛿

𝑑−0.5)
, (25) 

where the 𝐴1
𝑑, 𝐷𝛼

𝑑, 𝐷𝛽
𝑑 and 𝐷𝛿

𝑑 are calculated by Eq. (5), (11), (12), (13). 

3.3 BGWO-ESN 

In this paper, the BGWO algorithm is used to optimize the output connection 

structure of ESN, with the aim to remove the redundant connections between the 

reservoir and the output layer, i.e. besides the conventional connection weight 

computation, some of the connection weights in 𝑊𝑜𝑢𝑡 will be selectively set to zero. 

The disconnection and connection of with respect to the output connectivity are 

hereby represented by 1 and 0, respectively. The optimization variable can then form a 

binary matrix (corresponding to the state of the ESN output connection), and its 

dimension is equal to the number of neurons in the reservoir. 

The pseudocode and detailed optimization process are given by Algorithm 1, 

which includes the following steps: 
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(a) Initialize the parameters of the BGWO algorithm as shown by line #1 in the 

pseudocode, including the number of search agents, maximum number of 

iterations, and positions of search agents (which are represented by the 

matrices consisting of only 0 and 1). 

(b) Initialize the ESN model (line #2). A properly sized reservoir is created using 

tanh as an internal activation function. The sparseness of the reservoir is 

maintained at 1% to 5%. The spectral radius needs to be less than or equal to 

1 to ensure the stability of the model. Input weights and internal weights are 

randomly generated and remain unchanged during the subsequent training. 

Feedback connection weights can be set according to specific tasks.  

(c) Calculate the objective function for each search agent (line #4-#8). In this 

paper, the ESN output connection (represented by the binary matrix) is used 

as the position of grey wolf, the normalized mean square error and root mean 

squared error between each predicted and actual values are used as the 

objective function, and the minimum value of the function is defined as the 

search target. 

(d) Update alpha, beta and delta (line #10). They are calculated once per 

iteration. 

(e) Update the position of search agents, including the omegas (line #11). 

(f) Perform iterative optimization (line #3-#12). BGWO repeatedly updates and 

adjusts the wolf position until reaching the maximum iterations or the target 

accuracy, i.e. the iteration stops when the best connection weight vector is 

obtained. 

(g) The optimal connection weight is applied to the ESN, and then the 

performance of the optimized ESN is evaluated (line #13).  

Algorithm 1. BGWO-ESN algorithm. 

Input: data (X,Y), reservoir size M, number of iterations for optimization 𝑁𝑖𝑡𝑒𝑟, 

number of grey wolves in the pack n; 

Output: trained BGWO-ESN; 

1.  Initialize a population of n wolves positions at random∈[0,1] (step (a)); 

2.  Initialize the ESN, generate 𝑾𝒊𝒏, 𝑾 and 𝑾𝒃𝒂𝒄𝒌 randomly (step (b)); 

3.  While stopping criteria not met do (step (f)) 

4.    for wolfi ∈ pack do 

5.       set ESN output connection to wolfi position; 

6.       compute 𝑾𝒐𝒖𝒕; 

7.       calculate objective function (step (c)); 

8.    endfor 

9.    update a, A, C; 
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10.   update α, β, δ (step (d)); 

11.   update wolfi position to a binary position according to Eq.(14), (15)(step (e)); 

12.  End 

13.  Obtain optimal 𝑾𝒐𝒖𝒕 (step (g)); 

4. Results 

In this section, the two binary versions of BGWO algorithm (i.e., PUA1 and 

PUA2) are exploited in the optimization of the ESN output connection. Their 

performances are evaluated by two sets of experiment to demonstrate its 

generalization: the first one is a widely used benchmarking database for time series 

prediction, and the other is the financial datasets of the Standard & Poor’s 500 index 

and high frequency foreign exchange data. For each experiment, a comparison of the 

accuracies with and without BGWO is performed. BGWO-ESN is compared to not 

only the original ESN but also other similar hybrid models (GA-ESN, BPSO-ESN). 

In fact, the network architecture of BGWO-ESN is critical in training process, 

especially for the size (N) and connectivity rate of the reservoir. These parameters are 

set based on the corresponding tasks. For BGWO, the number of search agents is 12, 

and the maximum number of iterations is 300. The problem dimension is the number 

of features in the data. In addition, the normalized mean square error (NMSE) and 

root mean squared error (RMSE) given in Eq. (26) and (27) are used for evaluation to 

intuitively analyse the performance of BGWO. All experiments were run on 

MATLAB R2016b platform. To avoid the effects of random initialization of some 

network parameters, each experiment is repeated 10 times and the average is chosen 

as the result.  

 𝑁𝑀𝑆𝐸 =∑
(𝑄𝑖 − 𝑃𝑖)

2

𝑀 ⋅ 𝜎2

𝑀

𝑖=1

, (26) 

 

 𝑅𝑀𝑆𝐸 = √∑
(𝑄𝑖 − 𝑃𝑖)2

𝑀

𝑀

𝑖=1

, (27) 

where 𝑄𝑖, 𝑃𝑖 are predicted and target value, respectively. 𝑀 is the number of data 

samples. 𝜎2 is the variance of 𝑃𝑖. 

4.1 Evaluation using synthetic data 

In this section, two benchmarking sequences (i.e., nonlinear autoregressive 

moving average (NARMA) and mackey–glass (MG) time series) are used to test the 

proposed method. 
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1) NARMA prediction: NARMA is one of the popular benchmarks that has been 

widely used for ESN testing [13]. One appealing feature of the NARMA sequence is 

its unpredictable complexity, due to its high degrees of confusion and non-correlation 

of inputs. A detailed explanation of this sequence is described in [26], and its dynamic 

expression is given by 

𝑦(𝑡 + 1) = 𝑐1𝑦(𝑡) + 𝑐2𝑦(𝑡)∑ 𝑦(𝑡 − 𝑖)
𝑘−1

𝑖=0
+ 𝑐3𝑥(𝑡 − (𝑘 − 1))𝑥(𝑡) + 𝑐4, (28) 

where 𝑦(𝑡) and 𝑥(𝑡) are the output and input of the system at time 𝑡, respectively. 

The constant parameters 𝑐𝑖 are set as 0.3, 0.05, 1.5, 0.1, respectively. Parameter 𝑘 

determines the complexity of NARMA. In general, 𝑘 is either set to 10 or 30, which 

are the most common choices used in the literature [13]. In this test, k was 10. The 

input signal was assumed to be independent identically distributed random samples, 

and its value is in the range [0, 0.5]. 

 

Figure 2. Evolution of the absolute error signal between the testing patterns and the desired 

ones (NARMA, order k=10). 

In the experiment, 3,600 items were generated, where the first 1,200 items were 

used for training and 1,200 items were used for validation. The remaining 1,200 were 

used for testing. The size of the reservoir (N) were set to 200, 300 and 500, 

respectively. The connectivity rate was set to 5%. In addition, the output activation 

function of BGWO-ESN model was linear, and the 𝑊𝑏𝑎𝑐𝑘 was zero matrix. Figure 2 

tracks the absolute error between the test results of BGWO-ESN (including 

PUA1-ESN and PUA2-ESN) and the expected values, respectively. In order to further 

evaluate the performance of BGWO-ESN, five other conventional methods are 

chosen for performance comparisons, including pruning ESN output connection 

randomly (RAND-ESN), optimizing ESN output connection by least angle regression 

(LAR-ESN), optimizing ESN output connection by GA (GA-ESN), optimizing ESN 
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output connection by BPSO (BPSO-ESN) and the original ESN. Table I, Table II and 

Table III give the comparison results. 

Table I. NMSEs of ESN, LAR-ESN, RAND-ESN, GA-ESN, BPSO-ESN and BGWO-ESN 

under the NARMA predication task when N=200. 

Method NMSE 
Accuracy 

improvement 
Running time 

ESN 0.0491 - - 

LAR-ESN [27] 

RAND-ESN 

GA-ESN 

BPSO-ESN [27] 

0.0439 

0.0811 

0.0475 

0.0428 

11% 

-39% 

3% 

13% 

- 

- 

12252s 

- 

BGWO-ESN 
PUA1 0.0459 7% 1253s 

PUA2 0.0419 15% 1109s 

 

Table II. NMSEs of ESN, LAR-ESN, RAND-ESN, GA-ESN, BPSO-ESN and BGWO-ESN 

under the NARMA predication task when N=300. 

Method NMSE 
Accuracy 

improvement 
Running time 

ESN 0.0448 - - 

LAR-ESN [27] 

RAND-ESN 

GA-ESN 

BPSO-ESN [27] 

0.0374 

0.0738 

0.0426 

0.0369 

17% 

-39% 

11% 

18% 

- 

- 

15181s 

- 

BGWO-ESN 
PUA1 0.0370 17% 1302s 

PUA2 0.0315 27% 1221s 

 

Table III. NMSEs of ESN, LAR-ESN, RAND-ESN, GA-ESN, BPSO-ESN and BGWO-ESN 

under the NARMA predication task when N=500. 

Method NMSE 
Accuracy 

improvement 
Running time 

ESN 0.0411 - - 

LAR-ESN [27] 

RAND-ESN 

GA-ESN 

BPSO-ESN [27] 

0.0370 

0.0554 

0.0363 

0.0346 

10% 

-26% 

12% 

16% 

- 

- 

17056s 

- 

BGWO-ESN 
PUA1 0.0348 15% 2625s 

PUA2 0.0293 29% 2739s 

 

Table I, Table II and Table III show that the ESN is greatly improved 
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performance due to the use of BGWO algorithm to optimize the ESN output 

connection, where PUA2-ESN achieved the best performance in different reservoir 

size tasks. It also shows the superiority of the BGWO algorithm compare to other 

optimization algorithms. RAND-ESN got the worst result, and its average NMSE was 

0.0701, which was 35% lower than ESN, i.e. blindly cutting the output connection 

could not improve model performance. The GA-ESN model also failed to achieve 

satisfactory results, and it was not even as good as the traditional LAR-ESN model. 

This maybe because there are many decision variables and large dimensions in the 

task, so GA algorithm cannot solve such problems well. In addition, GA algorithm 

often needs to adopt a large population and a large number of iterations, which leads 

to a long running time. The BGWO algorithms only need 5-12 individuals, and 

running times are very short, which is a great advantage over other evolutionary 

algorithms. 

2) MG time series prediction: The MG is a typical chaotic system, which can be 

described by 

 
𝑑𝑥(𝑡)

𝑑𝑡
=
0.2 · 𝑥(𝑡 − 𝜏)

1 + 𝑥10(𝑡 − 𝜏)
− 0.1 · 𝑥(𝑡), (29) 

where 𝜏 is an important parameter of the MG system and has been discussed in 

detail in [28]. 𝜏 is adjustable, which is often set to 17 and 30 [13]. In this work, 𝜏 

was set to 17 for best system performance. 500 samples were used as training data 

sets and 500 samples were used for testing. The size of the reservoir was set to 200. 

Feedback connection was required for testing tasks at different reservoir sizes (N=50, 

100 and 200). Figure 3 tracks the absolute error between the output values of 

BGWO-ESN (including PUA1-ESN and PUA2-ESN) and the target values. Table IV, 

Table V, Table VI and Table VII present a series of statistical comparisons to further 

explore the proposed method and its effectiveness in prediction tasks. 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

A
b

so
lu

te
 e

rr
o

r

Patterns

PUA1-ESN PUA2-ESN



15 

 

Figure 3. Evolution of the absolute error signal between the testing patterns and the desired 

ones (MG sequence, order 𝜏=17). 

 

Table IV. NMSEs of ESN, LAR-ESN, RAND-ESN, GA-ESN, BPSO-ESN and BGWO-ESN 

under the MG time series predication task when N=50. 

Method NMSE 
Accuracy 

improvement 
Running time 

ESN 5.08e-03 - - 

RAND-ESN 

GA-ESN 

7.24e-03 

4.90e-03 

-30% 

4% 

- 

1502s 

BGWO-ESN 
PUA1 4.52e-03 11% 342s 

PUA2 4.18e-03 18% 338s 

 

Table V. NMSEs of ESN, LAR-ESN, RAND-ESN, GA-ESN, BPSO-ESN and BGWO-ESN 

under the MG time series predication task when N=100. 

Method NMSE 
Accuracy 

improvement 
Running time 

ESN 3.33e-03 - - 

RAND-ESN 

GA-ESN 

4.81e-03 

3.32e-03 

-31% 

0.3% 

- 

1702s 

BGWO-ESN 
PUA1 3.09e-03 7% 388s 

PUA2 2.73e-03 18% 372s 

 

Table VI. NMSEs of ESN, LAR-ESN, RAND-ESN, GA-ESN, BPSO-ESN and BGWO-ESN 

under the MG time series predication task when N=200. 

Method NMSE 
Accuracy 

improvement 
Running time 

ESN 4.56e-03 - - 

RAND-ESN 

GA-ESN 

5.53e-03 

3.01e-03 

-18% 

34% 

- 

1937s 

BGWO-ESN 
PUA1 2.37e-03 48% 463s 

PUA2 2.09e-03 54% 452s 

 

Table VII. The comparison of BGWO-ESN and other approaches under the Mackey and 

Glass time series task where delay 𝜏=17. 

Method RMSE 

ESN 1.72e-02 

HMDDE-BBFNN [29] 1.70e-02 
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GA-BBFNN [30] 1.30e-02 

Classical RBF [31] 1.14e-02 

BGWO-ESN 
PUA1 1.16e-02 

PUA2 1.03e-02 

 

As can be seen from Table IV, Table V and Table VI, PUA2-ESN achieved the 

smallest NMSE value, i.e. it facilitated the best generalization performance for this 

MG predication task. The average prediction accuracies of PUA2-ESN were increased 

by 30%, 21% and 11%, respectively, compared to the standard ESN, GA-ESN and 

PUA1-ESN approaches. The results shown in Table VII also indicate the proposed 

PUA2-ESN achieved a good performance for the MG predication task. 

The experimental results in this subsection show that the proposed BGWO-ESN 

demonstrated the reduced generalization errors for the predication tasks under 

NARMA and MG tasks, compared to other evolutionary methods. BPSO-ESN and 

GA-ESN achieved better test results than ESN, but their running times were generally 

higher than BGWO-ESN. The prediction accuracy of RAND-ESN was the lowest, 

suggesting that randomly pruning ESN output connections was detrimental. 

Additionally, the experimental results also demonstrate the effectiveness of BGWO as 

feature selection algorithm. In the next section, the real-world stock index data and 

foreign exchange data will be used to evaluate the BGWO-ESN model. 

4.2 Tested using real-world financial datasets 

The Standard & Poor’s 500 index and high frequency foreign exchange data 

were used to further explore the performance of the BGWO-ESN in the real-life 

scenario. 

1) S&P 500 index dataset: The S&P 500 index is a world-wide stock index. Data 

of this dataset is considered quite challenging for prediction due to its strong 

nonlinearity. This experiment will use the S&P 500 index as a research object to 

perform simple single-step prediction. The BGWO-ESN has four input variables 

(open, high, low, and close) and one output variable (opening price of the next day). 

In this task, the first 15,000 data samples are used for training, and the rest 2,000 rows 

are used for testing. Based on our pilot study, the input layer of the model has been set 

with four neurons and the output layer has one neuron. The size of the reservoir is 200 

and the connectivity rate is 5%. In addition, the activation functions of the reservoir 

and the output layer are set to tanh and identity, respectively. 
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Figure 4. Results of opening prices, S&P 500 index using PUA1-ESN and PUA2-ESN 

methods. 

Table VIII. RMSEs of different methods for S&P 500 index predication. 

Method RMSE Accuracy improvement 

ESN 61.8445 - 

RAND-ESN 

GA-ESN 

BPSO-ESN 

73.1039 

17.8065 

4.8872 

-15% 

44% 

92% 

BGWO-ESN 
PUA1 4.5423 93% 

PUA2 3.4957 94% 

 

Figure 4 shows the actual opening price and the prediction outputs of 

PUA1-ESN and PUA2-ESN. Both methods appear to fit the curve moderately well. 

To further verify the performance of the proposed PUA1-ESN and PUA2-ESN, the 

RMSE values were computed and compared with a few other evolutionary algorithms 

(e.g. GA and BPSO), which were also applied to ESN for network connectivity 

evaluation. The experimental results are shown in Table VIII. 

Results in Table VIII shows that the PUA2-ESN model received the lowest 

generalization error amongst other models. In consistent with the conclusions of [15], 

it is proved that the optimization of the ESN output connection is advantageous. The 

proposed PUA2-ESN hybrid algorithm achieved the best performance with RMSE of 

3.4957. Compared to standard ESN, GA-ESN, BPSO-ESN and PUA1-ESN, the 

accuracy of PUA2-ESN is increased by 94%, 80%, 28% and 23%, respectively. 

2) EURO/USD exchange dataset: The EURO/USD database is featured by its 

high frequency (minute-sampling level) foreign data exchanging rate, which has 
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strong nonlinearity and complexity. In this experiment, the BGWO-ESN was applied 

to the dataset for single-step prediction. The input of BGWO-ESN has four financial 

variables, i.e., open, high, low, and close prices; the output is one variable, which 

indicates the opening price of the next minute. Therefore, the number of input nodes 

is set to four, the number of output node is set to one. In this task, the first 10,000 data 

samples are used for training, and the rest 5,000 rows are used for testing. Based on 

our empirical exploration, the number of nodes in the ESN reservoir is set to 200, and 

the connectivity rate of the reservoir is 5%. Figure 5 shows the target value and the 

output of the PUA1-ESN, PUA2-ESN. Meanwhile, Table IX shows the comparison 

results of BGWO-ESN and the other two methods (GA-ESN, BPSO-ESN). 

 

Figure 5. Results of opening prices, EURO/USD using PUA1-ESN and PUA2-ESN methods. 

 

Table IX. RMSEs of four methods for EURO/USD predication. 

Method RMSE Accuracy improvement 

ESN 2.42e-04 - 

RAND-ESN 

GA-ESN 

BPSO-ESN 

4.92e-04 

2.02e-04 

1.23e-04 

-51% 

17% 

49% 

BGWO-ESN 
PUA1 1.98e-04 18% 

PUA2 9.85e-05 59% 

 

It can be seen that the proposed PUA2-ESN model has a good performance on 

the foreign exchange data set, which received an improvement of 59%, 51%, 20% and 

50% compared to the ESN, GA-ESN, BPSO-ESN and PUA1-ESN, respectively. The 

results of RAND-ESN are still found been the worst, which means the optimization of 
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ESN output connection requires an appropriate algorithm, and PUA2-ESN is the 

solution we proposed in this study. These experimental results indicate the 

optimization of the ESN output connection can reduce the generalization error. At the 

same time, it is also verified that PUA2 [23] can improve the ESN performance by 

optimizing the connections between the reservoir and output layer. 

5. Conclusion 

ESN reservoir can map input signals to high-dimensional space, but not every 

dimension directly contributes to the output neurons, i.e. certain connections from the 

reservoir to the output layer are redundant. In this work, a hybrid methods combining 

ESN and BGWO was proposed to address this problem. Data was used to train a 

properly sized ESN reservoir. BGWO was then used to optimize the output 

connection. The proposed method was used for predications under the synthetic 

benchmarks and financial time series. Two other evolutionary algorithms (i.e., GA and 

BPSO) were compared to evaluate the performance of BGWO-ESN. The results show 

that compared to conventional ESN, the proposed methods of BGWO-ESN (including 

PUA1-ESN and PUA2-ESN) are able to reduce the generalization error. Moreover, 

the PUA2-ESN model achieves the best performance, and has a great advantage in 

running speed compared to other algorithms. Therefore, BGWO is an excellent 

optimization algorithm for feature selection, which has improved the predictive power 

of ESN. The proposed model has “echo” characteristic, which suits time series 

prediction tasks very well [3]. In the future, we will further optimize the model and 

apply the proposed model in other application domains, such as pattern recognition, 

robot control, event monitoring etc. 
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