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1  | INTRODUC TION

The assumption that genetic homogeneity predominates in ma-
rine organisms due to the lack of physical barriers and high 

dispersal potential at all life stages has been challenged in recent 
years (Allendorf, 2017). The advent of genomic markers generated by 
scanning the whole genome of an organism has equipped research-
ers with the necessary statistical power to detect more fine-scale 
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Abstract
Population dynamics of marine species that are sessile as adults are driven by ocean-
ographic dispersal of larvae from spawning to nursery grounds. This is mediated by 
life-history traits such as the timing and frequency of spawning, larval behaviour 
and duration, and settlement success. Here, we use 1725 single nucleotide polymor-
phisms (SNPs) to study the fine-scale spatial genetic structure in the commercially im-
portant cockle species Cerastoderma edule and compare it to environmental variables 
and current-mediated larval dispersal within a modelling framework. Hydrodynamic 
modelling employing the NEMO Atlantic Margin Model (AMM15) was used to simu-
late larval transport and estimate connectivity between populations during spawning 
months (April–September), factoring in larval duration and interannual variability of 
ocean currents. Results at neutral loci reveal the existence of three separate genetic 
clusters (mean FST = 0.021) within a relatively fine spatial scale in the north-west 
Atlantic. Environmental association analysis indicates that oceanographic currents 
and geographic proximity explain over 20% of the variance observed at neutral loci, 
while genetic variance (71%) at outlier loci was explained by sea surface temperature 
extremes. These results fill an important knowledge gap in the management of a 
commercially important and overexploited species, bringing us closer to understand-
ing the role of larval dispersal in connecting populations at a fine geographic scale.
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population differentiation within the marine realm (Benestan et al., 
2015; Maroso et al., 2018). Nevertheless, there has been a shift 
in focus from neutral variation to adaptive genetic differentiation 
when studying marine organisms (Nielsen, Hemmer-Hansen, Larsen, 
& Bekkevold, 2009). Markers under selection display higher diver-
gent frequencies and can facilitate the identification of population 
structure and individual assignment (Araneda, Larraín, Hecht, & 
Narum, 2016; Nielsen et al., 2012; Woodings et al., 2018). They can 
also indicate the potential for resilience to environmental change 
(Razgour et al., 2019). Connectivity between marine populations 
is central to their health and resilience to external pressures such 
as parasites and pathogens (Rowley et al., 2014), pollution, human 
exploitation and climate change over ecological and evolutionary 
timescales (Burgess, Bowring, & Shen, 2014; Cowen & Sponaugle, 
2009; Gimenez, 2019). For these reasons, it is vital to distinguish 
between neutral variation and adaptive divergence when attempt-
ing to understand what drives the observed population structure in 
marine organisms.

A seascape genomics approach is particularly valuable in this 
context (Grummer et al., 2019; Selkoe et al., 2016). Genetic and ge-
nomic data can be used in conjunction with environmental variables 
such as sea water temperature, salinity, water depth, irradiance, tur-
bidity and sediment type (Viricel & Rosel, 2014) against neutral and 
adaptive genetic differentiation (Coscia, Robins, Porter, Malham, & 
Ironside, 2012; Young et al., 2015). This can provide new insights for 
interpreting genetic patchiness in relation to specific environmen-
tal features (Benestan et al., 2016; Bernatchez et al., 2019; Truelove 
et al., 2017).

Seascape genomics has proven to be particularly useful when 
considering exploited species, as it has the potential to inform man-
agement and aid sustainable exploitation by enabling management 
units to be defined (Bernatchez et al., 2017; Teacher, André, Jonsson, 
& Merilä, 2013). Despite intense exploitation of many marine species, 
their management rarely takes into account genomic information 
(Bernatchez et al., 2017; ICES, 2018) and exploited aquatic inver-
tebrates (shellfish) in particular receive little attention from policy-
makers and stakeholders in comparison with fish (Elliott & Holden, 
2017). In the Irish Sea, shellfish represent 80% of the total landings 
per year, with an economic value of £46.6 million (Elliott & Holden, 
2017). Among these, the common cockle Cerastoderma edule fish-
eries are some of the most valuable fisheries for both Ireland and 
Britain (Dare, Bell, Walker, & Bannister, 2004; Hervas, Tully, Hickey, 
O’Keeffe, & Kelly, 2008) and are of high socio-economic importance, 
valued at £3.3 million for Wales alone (Elliott & Holden, 2017).

The common cockle has both ecological and commercial impor-
tance, providing an important food source for wading birds in addi-
tion to employment for coastal communities (Flach & de Bruin, 1994; 
Hickin, 2013). Cerastoderma edule occurs in intertidal soft sediment 
regions of the eastern Atlantic, from Norway to Senegal. It can live 
for up to ten years and is characterized by high fecundity and high 
dispersal potential due to a pelagic larval phase which lasts for ap-
proximately 3–5 weeks following spawning from May to August 
(Malham, Hutchinson, & Longshaw, 2012). In recent decades, cockle 

stocks have declined across Europe, with production falling from 
108,000 tons in 1987 to less than 25,000 tons in 2008 (Martínez, 
Mendez, Insua, Arias-Pérez, & Freire, 2013). Cockle declines have 
been attributed to different factors in different locations, such as 
overharvesting (Wolff, 2005) and parasitic infections (Longshaw & 
Malham, 2015; Thieltges, 2006). In the UK, recurrent mass mor-
talities have occurred at several long-established cockle fisheries, 
resulting in significant economic losses (Woolmer, 2013). These 
mortalities have not been attributed to any single environmental fac-
tor, and interactions between multiple stress factors are suspected 
(Callaway, Burdon, Deasey, Mazik, & Elliott, 2013; Malham et al., 
2012). Sustainable management of the common cockle is hindered 
by poor understanding of their population connectivity. Analysis of 
microsatellite and mitochondrial DNA markers suggests weak bar-
riers to gene flow between C. edule populations along the North 
European coast (Coscia et al., 2012; Martínez, Freire, Arias-Pérez, 
Mendez, & Insua, 2015). However, these markers lack sufficient 
resolution to investigate connectivity at the finer scales relevant to 
fisheries management (Bernatchez et al., 2017).

Given the major logistical challenges of directly quantifying lar-
val connectivity, efforts have focused on simulating ocean hydrody-
namics to estimate larval dispersal (Cowen, Gawarkiewicz, Pineda, 
Thorrold, & Werner, 2007; Paris, Cowen, Claro, & Lindeman, 2005; 
Robins, Neill, Giménez, Jenkins, & Malham, 2013). This approach 
identifies well-connected population groups as well as weakly 
connected, partially connected or isolated populations. These 
simulations highlight the importance of local and mesoscale hy-
drodynamics interacting with species-specific larval behaviours in 
driving population persistence (Bode et al., 2019; Botsford et al., 
2009; North et al., 2008; Robins et al., 2013) and recovery from 
stock decline (Gimenez, 2019). They highlight how the capacity of 
a population to recover from mass mortalities is contingent on the 
scale of disturbance relative to the scale of connectivity (Masier 
& Bonte, 2019). Usual circulation patterns, and hence connectivity, 
can be modulated by severe wind and wave conditions. Previous 
larval dispersal studies have predicted that given atypical meteoro-
logical conditions during spawning events, new connectivity routes 
can be established (e.g. by reversing the Celtic Sea front circulation 
(Hartnett, Berry, Tully, & Dabrowski, 2007) or by large-distance dis-
placements from expected routes affecting sea turtles (Monzón-
Argüello et al., 2012)).

In the present study, a seascape genomics approach using single 
nucleotide polymorphisms (SNPs) was employed, for the first time, 
to resolve patterns of population structure of the common cockle 
between estuaries within a commercially active area (the Irish and 
Celtic seas), with the goal of identifying management units. For this 
purpose, we first tested for neutral population structure and then 
assessed the role of current-mediated larval dispersal in shaping it. 
We then investigated the relationship between environmental fac-
tors and adaptive divergence, after identifying outlier markers, with 
a particular focus on abiotic factors such as water temperatures 
(surface) and ocean stratification during the spawning season. To do 
this, larval transport between sites was estimated and connectivity 
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matrices derived from oceanographic modelling, accounting for in-
terannual variability due to biophysical parameters, like spawning 
time and larval duration.

2  | MATERIAL S AND METHODS

2.1 | Sampling and DNA extraction

Cockles were collected during 2010 and 2011 from seven loca-
tions off the coasts of Ireland (Bannow Bay [BAN] and Flaxfort 
Strand [FLX]) and Britain (Burry Inlet [BUR], Gann Estuary [GAN], 
Dyfi Estuary [DYF], Red Wharf Bay [RWB] and Dee Estuary [DEE]) 
(Figure 1 and Table 1). Genomic DNA was extracted from ethanol-
preserved and frozen tissue using the DNeasy Blood and Tissue Kit 
with an additional RNase A step (Qiagen©). The quality and quantity 
of the extracted DNA were assessed by gel electrophoresis (1% aga-
rose) and Qubit dsDNA HS (high sensitivity, 0.2–100 ng) Assay Kit on 
a Qubit 3.0 fluorometer (©Thermo Fisher).

2.2 | RAD sequencing and bioinformatic analysis

Reduced representation libraries (Baird et al., 2008) were con-
structed using the restriction enzyme PstI (New England Biolabs) for 
restriction site-associated DNA sequencing (RADseq). RAD libraries 
(each consisting of 24 uniquely barcoded individuals) were produced 
according to Etter, Preston, Bassham, Cresko, and Johnson (2011). 
Each library was quantified using real-time PCR and single-end (100-
bp target)-sequenced in-house on an Illumina HiSeq 2000.

Initial bioinformatic analysis, including quality control, demul-
tiplexing and identification of polymorphisms, was performed by 
Floragenex (www.flora genex.com), using Samtools 0.2 (Li et al., 2009) 
and custom scripts, retaining one SNP per tag, with a minimum cov-
erage depth of six for each allele, and genotyped in at least 70% of 
the individuals in the overall data set. These settings produced an 
initial data set of 191 individuals and 4,271 single nucleotide poly-
morphisms (SNPs), which was then further filtered by the authors 
using the packages poppr 2.8.1 (Kamvar, Brooks, & Grünwald, 2015; 
Kamvar, Tabima, & Grünwald, 2014) and adegenet (Jombart, 2008; 
Jombart & Ahmed, 2011) in R (R Core Team, 2019). Markers with 
data missing in more than 25% of individuals were discarded from 
the data set, as well as loci with FIS equal to 1, −1 or NA. Three MAF 
(minimum allele frequency) filters of 0.05, 0.025 and 0.01 were then 
applied, generating three data sets. No significant effect of MAF fil-
ter upon heterozygosity, global FST and population structure was de-
tected, and so a MAF filter of 0.01 across all sites was applied (Xuereb 
et al.., 2018). This allowed us to maximize the number of markers and 
hence the information available at fine spatial scale, while reducing 
the bias that might be introduced by retaining low-frequency SNPs 
(Roesti, Salzburger, & Berner, 2012). All the downstream analyses 
were thus performed on the MAF = 0.01 data set. Markers in linkage 
disequilibrium (LD) were identified and removed using the function 

pair.ia of the poppr package (r2 > .7). Finally, SNPs that were found 
to deviate from Hardy–Weinberg equilibrium (HWE; p = .01) in four 
out of seven populations were removed (Wyngaarden et al., 2018). 
The final, filtered data set included 138 individuals from the seven 
locations, and 1,725 SNPs (Table S1).

2.3 | Neutrality tests and population structure

Genomic markers were tested for neutrality using two complemen-
tary methods: BayeScan 2.1 (Foll & Gaggiotti, 2008) and the R package 
pcadapt (Luu, Bazin, & Blum, 2017). In order to minimize the detec-
tion of false positives, we considered as outliers only those SNPs that 
were selected by both methods (Coscia et al., 2012). BayeScan is an 
FST-based, Bayesian method (Beaumont & Balding, 2004), while pca-
dapt is based on a principal component analysis (PCA) of individual 
genotypes and is known to perform particularly well in the presence 
of weak structure, admixture or range expansions (Luu et al. 2017). 
BayeScan was run using default settings (5,000 iterations, 10 thinning 
intervals, 20 pilot runs—5,000 iterations each, 10 prior odds). For pca-
dapt, we chose the most appropriate number of clusters K in the scree 
plot, which displays in decreasing order the percentage of variance ex-
plained by each principal component (PC). Q-values were used to ac-
count for false discovery rate, and SNPs were considered as significant 
outliers at alpha values ≤.05. Genetic diversity was estimated on three 
data sets: overall, neutral and outliers, in order to disentangle the role 
of demographic processes versus selection. Heterozygosity (expected 
and observed) was estimated with the R package hierfstat (Goudet, 
2005; Goudet & Jombart, 2015), while population pairwise FST (Weir & 
Cockerham, 1984) and relative 95% confidence interval (1,000 boot-
straps) were estimated with the R package assigner (Gosselin, 2019).

Individual-based population structure was assessed using two 
approaches: discriminant analysis of principal components (DAPC) 
as implemented in adegenet (Jombart, 2008; Jombart & Ahmed, 
2011) and the function sNMF of the LEA package (Frichot & Francois, 
2015). While DAPC uses a priori spatial information (sampling lo-
cations), sNMF does not make any assumptions about sampled and 
ancestral populations. The number of K clusters in the data sets was 
chosen using the Bayesian information criterion (Schwarz, 1978) in 
DAPC. In sNMF, the entropy criterion provided a basis for choos-
ing the number of ancestral populations that best explain the ge-
notypic data (Alexander & Lange, 2011; Frichot, Mathieu, Trouillon, 
Bouchard, & Francois, 2014).

The power of the neutral and outlier data sets to discriminate 
and assign individuals was determined with a genotype accumula-
tion curve (Figure S2), calculated with the function genotype_curve 
of the poppr package.

2.4 | Hydrodynamic modelling

Simulations of 3D flow fields were used to drive a particle tracking 
model (PTM) developed to simulate potential larval transport and 

http://www.floragenex.com
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connectivity between the seven sampling locations. The modelling 
considered natural variability in larval dispersal caused by the tim-
ing of spawning relative to the lunar tidal cycle and the variability of 
ocean currents over seasonal and interannual timescales. Each PTM 
simulation time was varied from 20 to 40 days to reflect the pelagic 
larval duration of C. edule (Malham et al., 2012). Simulated flow fields 
in the Irish and Celtic seas were obtained from the NEMO Atlantic 
Margin Model (AMM15). The model was developed to resolve key 
dynamic features of the European north-west shelf including the 
influence of shelf-break dynamics. It has a horizontal resolution of 

1.5 km and 51 terrain-following vertical layers. Simulated veloci-
ties accounted for interannual variability (Grummer et al., 2019) and 
were obtained for the years 2008–2014, at daily-averaged resolu-
tion (Figure S7). For the year 2014, simulated velocities were output 
during the cockle spawning/settlement season (April–September) 
at hourly averaged temporal resolution. While our results focus on 
the higher resolution data (2014 hourly averaged), we compare our 
results with the interannual daily-averaged data (Figure 2). Further 
details of the model set-up and validation are presented in the 
Supplementary Material.

F I G U R E  1   (a) Sampling locations; (b) DAPC using the neutral data set; (c) DAPC using the 14 outliers; below, the barplots generated by 
sNMF from the neutral (d, f) and outlier (e, g) data sets, for both K = 2 and K = 3

A
nc

es
try

 c
oe

ffi
ci

en
t (
Q

-v
al

ue
)

A
nc

es
try

 c
oe

ffi
ci

en
t (
Q

-v
al

ue
)

A
nc

es
try

 c
oe

ffi
ci

en
t (
Q

-v
al

ue
)

A
nc

es
try

 c
oe

ffi
ci

en
t (
Q

-v
al

ue
)

(a)

(d) (e)

(g)(f)

(b) (c)



     |  5COSCIA et Al.

2.5 | Particle tracking model (PTM)

The particle tracking model simulates the lagrangian movement of 
individual particles in space and time, based on oceanographic dis-
persion and individual particle behaviour. In our case, particle be-
haviour was represented by varying the pelagic larval duration to 
reflect the observations in the field (Malham et al., 2012). However, 
given the paucity of data about C. edule larval behaviour, the effects 
of vertical swimming were not incorporated into the PTM. The PTM 
was programmed in Python.

A previous sensitivity study by Robins et al. (2013) demonstrated 
that cohorts of 10,000 particles released from a range of locations 
within the Irish Sea were sufficient to statistically represent dispersal 

and connectivity patterns. Accordingly, cohorts of 750 particles 
were released from Sites 1–7 (Figure 3), each day at 12:00, over the 
first 16 days of April 2014, that is a total of 12,000 particles per site, 
with releases spanning a spring–neap tidal cycle. These simulations 
were repeated from April to September 2014. Due to interannual 
variations in weather patterns, the timing of the onset of seasonal 
stratification and its strength can vary between years. To assess this, 
the procedure was repeated for 2008–2014 using daily-averaged ve-
locity fields. The dispersal of each particle was tracked for 40 days’ 
pelagic larval duration (PLD). Particles were neutrally buoyant and 
able to disperse throughout the 3D flow field. Connectivity between 
populations was determined from particle trajectories during days 
30–40; particles that travelled within 10 km of a settlement site 

  N

Neutral Outlier

HO HE FIS HO HE FIS

Bannow Bay BAN 22 0.133 0.150 0.087 0.269 0.272 0.006

Gann GAN 17 0.129 0.147 0.094 0.246 0.240 0.032

Dee DEE 22 0.116 0.148 0.173 0.218 0.355 0.335

Dyfi DYF 11 0.103 0.149 0.238 0.146 0.234 0.394

Flaxfort Strand FLX 13 0.103 0.156 0.275 0.197 0.266 0.201

Red Wharf RWB 18 0.118 0.144 0.141 0.286 0.337 0.179

Burry Inlet BUR 30 0.109 0.150 0.230 0.173 0.218 0.159

Abbreviations: FIS, the inbreeding coefficient; HE, expected heterozygosity; HO, observed 
heterozygosity; N, number of individuals remaining after filtering for each location.
Values that are significant (95% confidence interval) are in bold.

TA B L E  1   Genetic diversity indices for 
the two data sets.

F I G U R E  2   (Left) Simulated mean 
depth averaged ocean current strength 
in the Irish and Celtic seas for April (top) 
and July (bottom) 2014. The magnitude 
of the currents is shaded in red, and the 
direction of the currents is indicated with 
the grey arrows. (Right) Simulated mean 
surface to bottom temperature difference 
for April (top) and July (bottom) 2014. This 
is a measure of the degree of stratification 
of the water column with blue colours 
resembling a more mixed water column 
and yellows a more stratified water 
column
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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were assumed to have settled there. The 10 km threshold was based 
on the average tidal excursion for the Irish Sea (Robins et al., 2013), 
although a range of thresholds are discussed in the Section 3.

2.6 | Spatial eigenfunction analysis (SEA) and 
environmental association (EA) analysis

To test for association between the oceanographic environment 
and the cockle genetic structure, a spatial eigenfunction analy-
sis (SEA) (Dray et al., 2012) was performed. This approach was 
implemented through the vegan and adespatial packages (Dray 
et al., 2019; Oksanen et al., 2017) in R. This method allowed us 
to estimate the influence of geographic distance between sam-
ples as well as the influence of modelled connectivity on genomic 
variation.

Geographic distance was represented as distance-based Moran's 
eigenvector maps or dbMEM (Stéphane Dray, Legendre, & Peres-
Neto, 2006). dbMEMs were calculated using the PCNM function of 
the vegan package on the Euclidean distances (calculated with the 
function dist) in turn estimated from Cartesian-transformed coor-
dinates using the geoXY function in the SoDA package (Chambers, 
2013). PCNM transforms spatial distances in rectangular matrices 
that are suitable for constrained ordination (Legendre & Gallagher, 
2001).

For the environmental association analysis (EA), simulated 
connectivity was represented as asymmetric eigenvector maps or 
AEM (Blanchet, Legendre, & Borcard, 2008; Blanchet, Legendre, 
Maranger, Monti, & Pepin, 2011). AEM is a spatial eigenfunction 
approach specifically developed to model multivariate responses to 
asymmetric and directional processes such as current-driven larval 
dispersal (Blanchet et al., 2011). The connectivity probability ma-
trix generated by the particle tracking model was translated into a 
nodes-to-edge matrix which records the presence/absence of con-
nectivity links (through edges, 19 here) between nodes (the 7 sam-
pling locations). Each edge has an associated “weight,” based on the 
simulated probability of connectivity. AEMs were calculated with 
the aem function in R.

For each of the seven sampling locations, the simulated 
monthly averaged sea surface temperature (SST) and surface–
bottom temperature difference (SBTD—the difference between 
the temperature at the surface and the bottom of the water col-
umn) representing ocean stratification, were extracted from the 
ocean model (Figure S1). The relative contribution of temperature 
(SST and SBTD), geographic distance (dbMEMs) and simulated lar-
val connectivity (AEMs) to genetic variation in both the neutral 
and the outlier data sets (response variable) was estimated using 
redundancy analysis (RDA). In particular, the response variable 

was represented by population-specific minor allele frequencies 
(MAF) of each SNP calculated in the R package hierfstat (func-
tion minorAllele) (Goudet & Jombart, 2015), detrended using the 
decostand function with the hellinger transformation available 
in vegan (Oksanen et al.,2019). The most important explanatory 
variables were chosen by performing the forward selection with 
10,000 permutations in vegan using the function ordistep. The 
significance of the results was assessed with an analysis of vari-
ance (function ANOVA in vegan) with 1,000 permutations, to fi-
nally establish which factors were most correlated with genetic 
variation. Redundancy analysis (RDA) and partial RDA (corrected 
for geographic distance between populations) were performed on 
the putatively neutral (1711) and outlier (14) SNP data sets, and 
parsimonious RDAs were carried out using the variables selected 
(Borcard, Gillet, & Legendre, 2011).

3  | RESULTS

3.1 | Genetic diversity and population structure

After filtering for missing data, FIS, minimum allele frequency, 
Hardy–Weinberg equilibrium and linkage disequilibrium, 138 in-
dividuals and 1725 SNPs were retained (Table S1). BayeScan de-
tected 28 SNPs as potential outliers, with a False Discovery Rate 
of 0.05, whereas pcadapt found 62. Only 14 SNPs overlapped be-
tween the two approaches. The downstream analyses were then 
carried out on two data sets: neutral (1711 SNPs) and outliers (14 
SNPs).

For the neutral data set, expected and observed heterozy-
gosity (HE and HO) were similar across locations, ranging between 
0.148–0.157 and 0.103–0.134, respectively (Table 1). Pairwise FST 
(Figures S3 and S4) ranged between 0 (Red Wharf Bay–Dee) and 
0.0289 (Gann–Dee). sNMF detected three clusters using the en-
tropy criterion (k = 3; Figure 1d-G), while DAPC’s find.clust found 
a maximum of five clusters (k = 5; Figure 1b,c) based on the BIC 
scores. For the putative outlier data set, FST values ranged be-
tween 0 (Dyfi–Gann) and 0.38 (Burry–Flaxfort Strand), but DAPC’s 
find.clust indicated that one cluster explained the structure in the 
data. All population-level neutral FIS values were significant (95% 
confidence interval) and positive, ranging between 0.08 and 0.27 
(Table 1). For the outlier data set, HE and HO varied respectively 
between 0.21–0.35 and 0.14–0.28 and FIS values were positive 
and significant for four populations: Dee, Red Wharf Bay, Dyfi and 
Flaxfort Strand.

Genotype accumulation curves (Figure S2) for both data sets—
neutral and outlier—show that a plateau is reached and variance 
decreased, indicating that the data sets have sufficient power to 

F I G U R E  3   (a–g) Probability density distribution maps for 2014 showing simulated dispersal probability from release Sites 1–7 (black 
squares). Each panel shows dispersal probability for 11,520,000 particles (12,000 each month × 6 months × 10 settlement days). (h) 
Seasonally-averaged connectivity networks: the thickness of the pathways in corresponds to the average modelled connectivity. The size of 
the red circles corresponds to self-recruitment, and the dashed green circle show the settlement radius used to estimate connectivity
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distinguish between individuals (Arnaud-Haond, Duarte, Alberto, & 
Serrão, 2007).

3.2 | Seasonal circulation and larval dispersal

The simulated circulation structure within the Celtic and Irish seas 
has, in our study, contributed markedly to distinct patterns of larval 
transport and population connectivity that would not be anticipated 
from geographic location alone. Moreover, spatial variability in these 
patterns was simulated over seasonal timescales. The strong tides 
that characterize this region and have the potential to advect lar-
vae tens of kilometres away but are oscillatory, resulting in minimal 
net larval dispersal (Robins et al., 2013; Robins et al. 2015). Thus, 
larval transport is controlled by density-driven currents (or lack of) 
along frontal boundaries that develop due to thermal stratification 
during summer months (Horsburgh, Hill, & Brown, 1998; Simpson 
& Hunter, 1974). Although much weaker than tidal currents, these 
density-driven currents are persistent over time and act as key path-
ways for dispersing larvae. For example, the Celtic Sea front may fa-
cilitate connectivity of cockle populations from South Wales across 
to Ireland (Coscia et al., 2012), but also restrict transport across the 
front between the Celtic and Irish seas.

Since our cockle samples were collected during 2010–2011, we 
ensured that 2014 was representative of the oceanographic condi-
tions by carrying out PTM simulations using daily current data from 
2008 to 2014. Correlations between dispersal maps for the 2014 
hourly versus daily current data were high (r2 > .87) for the major-
ity of sites. The largest differences were found for Red Wharf Bay, 
where particles dispersed similar distances but north-eastwards in 
the hourly runs and north-westwards in the daily simulations; and 
Flaxfort Strand, where differences in the degree of retention close 
to the Irish coast can be seen. However, for all sites, correlations 
between connectivity networks for the 2014 hourly versus daily 
current data were high (r2 > .95). For the daily current data spanning 
2008–2014, dispersal maps for all sites and years (Figures S7.1–S7.7) 
were correlated by a minimum of r2 > .83 (mean r2 = .97) (Figure S8), 
suggesting very little interannual variability. A similar pattern was 
found for the yearly (2008–2014) connectivity matrices which were 
correlated with each other year on average with an r2 of .99.

The AMM15 simulation showed two distinct circulation patterns. 
Firstly, in April, the region is vertically well mixed and mostly gov-
erned by tides (Pingree & Griffiths, 1979) (Figure 2). These net flows 
were generally weak (<0.1 m/s) and directed west around southern 
Ireland and north in the Irish Sea. Secondly, from May to September, 
density-driven currents generated by the inset stratification started 
to develop (Figure 2 shows July). Persistent east-to-west currents 
developed along the Celtic Sea front and an anticlockwise gyre 
formed in the western Irish Sea. Along these fronts/gyres, the stron-
gest flows were ~0.2 m/s at the thermocline at ~30 m depth.

The degree of exposure of the spawning grounds (e.g. open coast 
or enclosed bay) influenced the population's ability to connect with 
other sites (Figure 3 and Figure S5). This is shown by comparing the 

simulated particle dispersal from Dee (Site 1, enclosed bay) with 
Red Wharf Bay (Site 2, open coast) on the north Wales coast. The 
majority of particles dispersing from DEE remained <30 km from 
the release site, resulting in high proportions of self-recruitment 
(17.4 ± 0.7%), with small proportions of particles dispersed further 
to the Scottish coast (Figure 3a and Figure S5). In contrast, particles 
from Red Wharf Bay were exposed to stronger currents and the site 
experienced lower self-recruitment (13.6 ± 3.5%) with “hot spots” of 
higher density particles (up to 0.5%) advected ~100 km northwards 
(Figure 3b).

Our simulations suggest a high degree of isolation at Dyfi (Site 
3; Figure 3c and Figure S5), with the majority of particles retained in 
close proximity. At the same time, due to the weak flows, simulated 
particles from other sites never reached this site. Particles from Gann 
(Site 4) and Burry (Site 5) were capable of dispersing readily between 
one another (up to 1% connectivity) and also westwards to the Irish 
populations, particularly from the more exposed Gann Estuary (up 
to 0.5% connectivity) (Figure 3d,e and Figure S5). Connectivity with 
Dee was possible but unlikely (<0.01%). It was clear from the simu-
lations that seasonal patterns of dispersal are expected, for example 
from Bannow Bay (Site 6) and Flaxfort Strand (Site 7) (Figures S5 and 
S6). Simulated dispersal from these populations was caught in the 
persistent westward currents around southern Ireland, with the par-
ticles generally travelling further west as the residuals strengthened 
during summer months. For Bannow Bay, only during April when the 
Celtic front had not formed, were particles able to disperse north-
wards from the Celtic into the Irish Sea.

3.3 | Environmental association analysis

The ordistep function found that three variables were linked to the 
population structure found at neutral loci: (a) July SBTD explained 
10% of the genetic variance (p = .002, adjR2 = .10); (b) geographic 
distance (dbMEM-1) explained 7% (p = .000, adjR2 = .07); and (c) 
simulated connectivity (AEM2) explained 4% (p = .050, adjR2 = .04). 
Partial RDAs on neutral data using these three variables were not 
significant.

For the outlier data set, two environmental factors were found to 
be significant, explaining 71% of the genetic variance: April min SST 
(p = .025, adjR2 = .71) and September min SST (p = .004, adjR2 = .71). 
These SST values were the lowest daily mean SST in each month 
(Figure S1). The global parsimonious RDA (Figure 4a) was overall 
nonsignificant when including the three selected factors at once 
(p = .11), although it was significant when including two at a time: 
geographic distance (dbMEM-1) + July mean SBTD (p = .008), and 
simulated connectivity (AEM2) + geographic distance (dbMEM-1) 
(p = .022). Partial RDAs were not significant. The parsimonious RDA 
run on outliers was globally highly significant (p = .002; Figure 4b).

For the neutral RDA, the first axis explained almost 48% of 
the total variance and was mainly driven by geographic distance 
(dbMEM-1) between sites. This axis separates the northern sites of 
Red Wharf Bay, Dee Estuary and Dyfi Estuary from the southern 
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sites of Flaxfort Strand (FLX), Bannow Bay (BAN), Gann Estuary 
(GAN) and Burry Inlet (BUR), describing a north–south divide that is 
not connected by oceanic currents. The second axis (RDA2) was in-
fluenced predominantly by an asymmetrical eigenvector represent-
ing simulated connectivity (AEM2) and July mean SBTD, a proxy for 
maximum seasonal ocean stratification. On this axis, the southern-
most population Flaxfort Strand (light green) is strongly related to 
simulated larval connectivity (AEM2) (Figure 4a). Redundancy anal-
ysis carried out on the outlier data set revealed patterns of adaptive 
divergence, with cooler sea surface temperatures being the most 
significant driver (Figure 4b).

4  | DISCUSSION

This is the first study to use genomic markers and biophysical lar-
val transport simulations to investigate the drivers of connectivity 
in a commercially important shellfish in north-western Europe. This 
research was conducted in the Irish and Celtic seas where C. edule 
forms valuable shellfisheries for both Ireland and Britain. A panel 
of 1,725 SNP markers were analysed in relation to sea temperature 
and oceanographic currents, environmental variables that have been 
shown to be drivers of population structure in bivalves (Araneda 
et al., 2016; Bernatchez et al., 2019; Gormley et al., 2015; Lehnert 
et al., 2019; Xuereb et al., 2018). Using neutral genomic markers, 
three main genetic groups were identified, which can be consid-
ered stocks or management units. The first group includes the north 
Wales populations of Red Wharf Bay and Dee Estuary, the second 
includes the Irish Bannow Bay and Flaxfort Strand and the Welsh 
Gann Estuary, and the final group contains only the Burry Inlet on 

the south coast of Wales. To our knowledge, this is the first time 
such a pattern has been detected in C. edule, or in any other shellfish 
species in the Irish Sea.

Overall, the genetic results fit well with the predictions of the 
larval transport model, providing a level of empirical validation 
for both the simulated hydrodynamics and connectivity by larval 
dispersal. Environmental association analysis revealed that neu-
tral genetic structure was strongly linked to geographic distance 
between sites and to the strength and direction of the ocean cur-
rents acting as corridors for larval dispersal, whereas colder pe-
riods (cold SSTs) were identified as potential drivers of adaptive 
divergence.

4.1 | Connectivity, fine-scale population 
structure and adaptive divergence

Neutral genetic diversity was low across the cockle populations 
within the study area, and low compared with previous studies 
on marine bivalve population genomics (e.g. Bernatchez et al., 
2019; Lehnert et al., 2019). Populations of cockles in the Irish 
Sea have been under pressure for at least two decades, with 
mass mortality events and declines due to overexploitation lead-
ing to strict management of most beds across the UK (Woolmer, 
2013). In addition, variance in reproductive success is known to 
occur in bivalves (Hedgecock & Pudovkin, 2011). These events 
could be responsible for the loss of genetic diversity, as already 
observed in several marine organisms (Pinsky & Palumbi, 2014). 
On the other hand, heterozygote deficiency (as indicated by posi-
tive FIS in all sampling locations; Table 1) is well known to occur in 

F I G U R E  4   Redundancy analysis (parsimonious RDA) performed for the (a) neutral and (b) outlier data sets. Each circle is a sampling 
location, and each arrow is an environmental variable that significantly drives the observed population structure
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marine bivalves (Gaffney, 1994), and had already been detected in 
these cockle populations using microsatellites (Coscia et al., 2012). 
Furthermore, cockles have been shown to undergo boom and bust 
years (Morgan, O’Riordan, & Culloty, 2013) with the dispersal 
of cockle larvae and recruitment altering between years (Miller, 
Versace, Matthews, Montgomery, & Bowie, 2013; Morgan et al., 
2013). Another explanation of positive FIS could be the Wahlund 
effect, caused by the presence of substructure within populations. 
This was not considered to be the case in this data set, given that 
no subpopulation pattern was found in the clustering analysis 
(Manangwa et al., 2019).

Given the fine spatial scale and the reproductive biology of 
the study organism (broadcast spawner with a long pelagic lar-
val phase), a lack of or weak population structure was expected. 
Previous studies in the same geographic area identified a lack of 
genetic structure in shellfish species using microsatellite mark-
ers (Coscia et al., 2012; McKeown, Watson, Coscia, Wootton, & 
Ironside, 2019; Watson, McKeown, Coscia, Wootton, & Ironside, 
2016).

Geographic proximity certainly favours gene flow, but oceano-
graphic currents aiding larval transport are also major drivers of pop-
ulation structure (Barbut et al., 2019). For example, Red Wharf Bay 
and the Dee Estuary appear to be genetically homogeneous, due to 
high levels of gene flow, but these populations are very distinct from 
those further south (150–350 km away). This concurs with the mod-
el's prediction that larvae from the north coast of Wales will disperse 
northwards. The high levels of gene flow detected between the 
Gann Estuary on Wales’ south-west coast and sites on the south-
east coast of Ireland also corresponds with the model's prediction of 
high levels of westward dispersal along the Celtic Sea front (Coscia 
et al., 2012).

Of particular interest is the genetic make-up of the popula-
tion in the Burry Inlet. Here, cockles have experienced recurrent 
mass mortality events for 15 years (https://marin escie nce.blog.
gov.uk/2015/08/14/unusu al-cockle-morta lities-burry-inlet/). The 
relatively high level of genetic differentiation between the neigh-
bouring Burry Inlet and Gann Estuary populations indicates that 
gene flow between these populations is low, seemingly contra-
dicting the larval transport model's prediction of high connectiv-
ity. This result suggests that the Burry Inlet population may able 
to persist through self-recruitment, rather than forming a sink 
population depending upon immigration from healthier popula-
tions elsewhere, and could explain the low genetic diversity and 
high levels of inbreeding detected there. However, the model 
showed that larval dispersal is possible from the Gann to Burry 
estuaries, although we assumed a relatively large settlement zone 
that extended beyond the mouth of the Burry Inlet (Figure S9). 
Furthermore, it must be acknowledged that the Gann Estuary 
cockle population is far smaller than that of the Burry Inlet so lar-
vae dispersing from the Gann into the Burry may be swamped by 
self-recruitment or might not survive due to local selection against 
them (i.e. density dependence; Ford, Shima, & Swearer, 2016). 
Additionally, the southern coast of Wales contains other large 

cockle populations, such as the Three Rivers fishery midway be-
tween the Gann and Burry. These populations were not sampled/
modelled in this study but may provide a nearer and greater source 
of larvae for the Burry Inlet than does the Gann Estuary.

The spatial environmental association analysis identified several 
environmental factors that appeared associated with the population 
structure observed at neutral and outlier genetic markers. This is 
a strong statistical approach, which has already been successfully 
employed to study the influence of the environment on the genetic 
structure of commercially important bivalves, such as the eastern 
oyster (Crassostrea virginica; Bernatchez et al., 2019) and Atlantic 
deep-sea scallop (Placopecten magellanicus; Lehnert et al., 2019). 
In C. edule, neutral genetic structure is strongly dependent on geo-
graphic distance between sites (dbMEM-1), indicating that isolation 
by distance plays an important role in shaping the observed genetic 
structure in this species, despite its long pelagic larval duration. 
Nevertheless, it is the interplay between isolation by distance, ex-
tremes in temperature-driven currents (July SBTD) and simulated 
connectivity (AEM2) that shapes neutral population structure. 
The summer stratification which strengthens the Celtic Sea front 
current, directed from south Wales to Ireland (Simpson & Hunter, 
1974), plays a major role in connecting cockle populations between 
the south of Wales and Ireland, while separating them from popu-
lations further north in the Irish Sea. Given the results of the lar-
val dispersal modelling, the lack of significant associations between 
most simulated AEMs and the genetic structure revealed by the RDA 
was surprising. The weak performance of the model in predicting 
the observed genetic structure may be because it simulates direct 
connectivity between populations over one generation, while in nat-
ural populations connectivity and gene flow are built over multiple 
years (generations), often via intermediary populations (in a stepping 
stone manner).

Furthermore, our connectivity matrices (Figure 3 and Figure 
S5) were not able to take into account the population abundance of 
cockles and hence the number of larvae produces at each site.

Our modelling results suggest that larval dispersal is stable on 
interannual timescales (2008–2014). However, a degree of inter-
annual variability was detected along exposed coasts and in re-
gions of fronts (e.g. Red Wharf Bay and Flaxfort Strand). Although 
this variability does not affect our results because the populations 
were coastal and generally, a high level of coastal retention can 
be seen for most sites, other species that spawn offshore or have 
longer PLDs (e.g. scallops or lobsters) would likely show higher 
interannual variability in dispersal and connectivity and hence 
population structure. This would be expected especially of pop-
ulations close to oceanographic fronts that are affected by inter-
annual variations in climate are likely show differences in dispersal 
patterns.

Considering the 14 outlier loci, the minimum sea surface tem-
peratures recorded in April and in September 2014 explained 
most of the genetic variance observed within this data set. In 
particular, the Burry Inlet was strongly associated with the SSTs 
in September, which was warmer compared with SSTs recorded 

https://marinescience.blog.gov.uk/2015/08/14/unusual-cockle-mortalities-burry-inlet/
https://marinescience.blog.gov.uk/2015/08/14/unusual-cockle-mortalities-burry-inlet/
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at other locations for the same time (Figure S1). If cockles in the 
Burry Inlet are indeed adapted to warmer sea surface tempera-
tures than populations at sites further west or north (and espe-
cially compared with SSTs at Gann), it could be speculated that this 
may explain the maintenance of genetic differentiation between 
the Burry Inlet and the Gann Estuary despite their spatial proxim-
ity and the potential for high connectivity predicted by the model 
(Figure 3 and Figure S5). Larvae dispersing from Gann to the Burry 
may not be able to survive postrecruitment given selective pres-
sure against them by higher temperatures. The data collected in 
this study is not suitable to test this hypothesis, but future investi-
gations of local adaptation of bivalves in the Irish Sea should take 
these findings into account. Because of the lack of a reference ge-
nome and because the sampling locations are not representative 
of an environmental gradient, our data cannot be used to test this 
hypothesis of adaptation.

4.2 | Implications for management

The results from our modelling are likely to be relevant to fishery 
management in terms of the potential seasonal and interannual vari-
ability in larval supply to cockle grounds. This study demonstrates 
the existence of three distinct units of cockles using both genomic 
tools and larval dispersal modelling. As with other recent studies 
(Lal, Southgate, Jerry, Bosserelle, & Zenger, 2017) these findings 
have important implications for fishery management (Coscia et al., 
2012; Miller et al., 2013) and how fisheries management can be rec-
onciled with conservation and other activities.

Given the incidence of recurrent mass mortality events at the 
Burry Inlet (Callaway et al., 2013), the genetic isolation of this cockle 
fishery implied by the results of this study should be investigated 
further. This could be achieved by expanding the sampling coverage 
of the Burry Inlet to multiple sites and years and assessing its con-
nectivity to other nearby cockle beds that have not been included 
in this study. Future investigations should be aimed at clarifying the 
role of adaptive divergence into the fine-scale population dynamics 
of the common cockle in this area, to improve management while 
also assessing the role played by diseases and infections. The results 
from this study highlight the importance of the use of genomic and 
hydrodynamic data in assessing population structure and connectiv-
ity in an exploited and commercially important marine species and 
may aid in current and long-term management regimes of this spe-
cies (Bernatchez et al., 2017; Lal et al., 2017).
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