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2 ABSTRACT
3
4 Skeletal growth rates reconstructed from bone histology in extinct insular hippopotamids, 

5 elephants, bovids, and sauropods have been used to infer dwarfism as a response to island 

6 conditions. Limited published records of osteocyte lacunae densities (Ot.Dn), a proxy for living 

7 osteocyte proliferation, have suggested a slower rate of bone metabolism in giant mammals. 

8 Here, we test whether insularity may have affected bone metabolism in a series of small to 

9 giant murine rodents from Timor. Ten adult femora were selected from a fossil assemblage 

10 dated to the Late Quaternary (ca. 5–18 ka). Femur morphometric data were used in computing 

11 phylogenetically-informed body mass regressions, although phylogenetic signal was very low 

12 (Pagel’s lambda = 0.03). Weight estimates calculated from these femora ranged from 75g to 

13 1188g. Osteocyte lacunae densities from midshaft femur histological sections were evaluated 

14 against bone size and estimated body weight. Statistically significant (p < 0.05) and strongly 

15 negative relationships between Ot.Dn, femur size, and estimated weight were found. Larger 

16 specimens were characterised by lower Ot.Dn, indicating that giant murines from Timor may 

17 have had a relatively slow pace of bone metabolic activity, consistent with predictions made 

18 by the island rule. 

19

20 Keywords: bone histology, gigantism, insularity, Murinae, osteocyte lacunae, Late 

21 Pleistocene, Late Quaternary
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22 INTRODUCTION
23
24 Island ecology and biogeography have long served as models for investigating species richness, 

25 extinction, speciation, conservation and evolutionary biology (Brown & Kodric-Brown, 1977; 

26 Whittaker & Fernández-Palacios, 2007; Sax & Gaines, 2008; MacArthur & Wilson, 2016). 

27 Islands are ideal examples of isolated ecosystems that can trigger similar behavioural and 

28 biological responses across different animals (Whittaker & Fernández-Palacios, 2007; Miller 

29 & Spoolman, 2011; MacArthur & Wilson, 2016). Foster (1964) was the first to discuss body 

30 size shifts in species affected by insularity. Van Valen (1973) formalised this under the island 

31 rule, which is now known as one of the most fundamental theories in evolutionary biology 

32 (Clegg & Owens, 2002; Schillaci et al. 2009; Benton et al. 2010). It posits that large and small 

33 insular mammals decrease and increase their body size, respectively, to accommodate resource 

34 availability and drive optimal life histories. Sondaar (1977) then provided a broader perspective 

35 on mammal insularity and diversification, highlighting the need to consider islands based on 

36 their “oceanic and continental” (p. 617) origin, but study each one within its own context due 

37 to complex island histories. Lomolino’s (1985, Lomolino et al. 2013) later re-examination and 

38 re-definition of the island rule specifically encompassed a dwarfism – gigantism gradient (see 

39 Lokatis & Jeschke, 2018 for review). Some issues relating to biological constraints limiting a 

40 species’ plasticity (Meiri et al. 2004; 2008), otherwise known as phylogenetic inertia (Darwin, 

41 1859), have since also been considered.

42

43 Inferring the cause of body size change in relation to insularity has been subject to much 

44 discussion (e.g. Lomolino, 1985; 2013; Millien & Damuth, 2004; Meiri et al. 2004; 2006; 

45 Itescu et al. 2014; Faurby & Svenning, 2016). Trends in body size changes on islands are often 
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46 associated with data scatter, likely representing multiple factors contributing to an animal’s 

47 body mass. These include inter-island differences in competition for resources and mating 

48 opportunities, resource availability, geographical factors such as island size and distance from 

49 other islands or the mainland, latitude, and climate (McNab, 1971; 2010). In cases of adaptive 

50 radiation from a single ancestor, it is also possible for organisms to rapidly diversify into both 

51 giant and small forms. Only in conditions of ecological release and time in isolation could body 

52 mass trend lines be fitted perfectly (Lomolino, 2005). 

53

54 When applying the island rule to birds and mammals, which have high resource requirements 

55 associated with high metabolic rates compared to other terrestrial vertebrates, body mass is a 

56 good indicator of life history and energetic investment (McNab, 2019). Body mass closely 

57 reflects basal metabolic rate (BMR) in endotherms, which generate and regulate heat internally 

58 to satisfy energetic demands that are required for survival and reproduction (McNab, 2019). 

59 Body mass measures, including estimates from fossil material, and large scale meta-analyses 

60 have demonstrated gigantism and dwarfism in multiple species globally (Yabe, 1994; Boback 

61 & Guyer, 2003; Lomolino 2005; Palombo, 2007; Köhler & Moyà-Solà, 2009; van der Geer et 

62 al., 2013). Histology techniques in particular have also proven valuable in reconstructing 

63 metabolic activity of the once living bone tissues of different species and taxa by capturing cell 

64 metabolic activity indicators preserved in their fossils (e.g. Köhler & Moyà-Solà, 2009; Benton 

65 et al. 2010; Orlandi-Oliveras et al. 2016).

66

67 The island rule and rodents

68 Island rodents, particularly mice, rats, and related species (superfamily Muroidea) have been 

69 of particular interest for addressing physiological, morphological, and behavioural responses 
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70 to island ecology (Adler & Levins, 1994; Renaud & Millien, 2001; Abdelkrim et al. 2005; 

71 Harper et al. 2005; Towns et al., 2006; Firmat et al. 2010; Moncunill-Solé et al. 2014; Swift et 

72 al. 2018; van der Geer, 2018; Geffen & Yom-Tov, 2019). Because of their relatively short 

73 lifespans, high level of reproduction, and multiple adaptive radiations, they are important 

74 models for studying animal environmental plasticity (Miszkiewicz et al. 2019; van der Geer 

75 2019). Comparisons between insular and mainland rodent populations have focused on 

76 reproductive behaviour (Stamps & Buechner, 1985) and morphology (Lomolino, 1984), 

77 collectively termed the “island syndrome” (Adler & Levins, 1994; Adler, 1996; Russell et al. 

78 2011). Isolated insular rodent populations experience a demographic increase in density and 

79 dispersal, improved survival and associated reproduction rates, minimised inter-specific 

80 competition, and an increase in body mass the more isolated and smaller the island  (Foster, 

81 1964). However, there have also been cases of insular rodents that evolved into dwarfed forms 

82 (e.g. Perognathus spp. on islands bordering Mexico) due to food supply limitations in 

83 heterogeneous environments (Lawlor, 1982; Durst & Roth, 2015). Adaptive shifts in rodent 

84 morphology and/or behaviour are short or long term depending on the time scale, sample, and 

85 context investigated (Palkovacs, 2003). Rodent size adaptation probably occurs initially as a 

86 short-term phenotypic change in response to increased island population density. Longer time 

87 scale natural selection favouring increased body size would follow when mortality rates and 

88 predation are stable and low, as they are on islands (Brown & Sibly, 2006).

89

90 Foster’s (1964) report of insular mammal gigantism was based on observations of two species 

91 of deer mice (Peromyscus maniculatus and P. sitkensis) of the Queen Charlotte Islands in 

92 Canada. Almost double the size of P. maniculatus, P. sitkensis was found on the outer small 

93 and dispersed islands. Foster (1964) suggested a depauperate fauna, reduced competition for 
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94 resources, and minimised predation on small islands favoured insular gigantism as a selective 

95 advantage. Empirical evidence for rodent body mass change has since been reported for several 

96 other species spanning many geographical locations (e.g. Ventura & Fuster, 2000; Michaux et 

97 al. 2002; Millien & Damuth, 2004; Russell et al. 2011; Pergams et al. 2015). Body size increase 

98 on small islands has been observed in Japanese Apodemus speciosus (Millien & Damuth, 

99 2004), black rats (Rattus rattus) in the Mozambique Channel (Russell et al. 2011), Polynesian 

100 rat R. exulans and black rat R. rattus in New Zealand and the Pacific islands (Yom-Tov et al. 

101 1999), Californian R. rattus from Anacapa Island (Pergams et al. 2015), woodmouse 

102 (Apodemus sylvaticus) in the Western Mediterranean Sea (Michaux et al. 2002), and R. rattus 

103 from Congreso Island in Spain (Ventura & Foster, 2000). Skeletal biology literature of island 

104 fossil rats mostly reports gross anatomy and morphometric data used for taxonomic purposes. 

105 Measurements of dental material (Millien & Damuth, 2004; Louys et al. 2018), and cranial and 

106 post-cranial morphology (Bocherens et al. 2006; Aplin & Helgen, 2010) have been used in 

107 taxonomic assignments, but these data have proven equally informative about locomotion, diet, 

108 and ecology of rodents such as the case of a now well-studied extinct giant genus Mikrotia 

109 from the Gargano peninsula (Zafonte and Masini, 1992; Parra et al. 1999; Moncunill-Solé et 

110 al. 2018). Very large, insular members of the murid subfamily Murinae have been reported 

111 from the fossil record at multiple locations throughout the world, including the Flores giant rat 

112 (Papagomys armandvillei) in Indonesia (Locatelli et al. 2012), Coryphomys from Timor (Aplin 

113 & Helgen, 2010), the Tenerife giant rat (Canariomys bravoi) from the Canary Islands 

114 (Bocherens et al. 2006; Firmat et al., 2011). Megalomys is a member of another muroid family, 

115 Cricetidae, and is known from five very large species from the West Indies (van den Hoek 

116 Ostende et al. 2017). Some extant giant muroid species that had colonised their islands in the 

117 Late Pleistocene or earlier include Diplothrix legata, Apodemus speciosus and Apodemus 
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118 argenteus in Japan (Kawamura, 1991), Phloeomys cumingi and P. pallidus in the Philippines 

119 (Rickart & Heaney, 2002), and Hypogeomys antimena in Madagascar (Sommer et al. 2002). 

120

121 Bone histology and insular fossil animals 

122 Histological sectioning of fossil bone has proven successful for the reconstruction of tetrapod 

123 palaeobiology (Chinsamy-Turan, 2011; de Ricqlès, 2011). By studying microscopic structures 

124 and composition in bone samples of fossil vertebrates, skeletal maturation, seasonality, 

125 behaviour, and bone metabolism can be reconstructed (Chinsamy-Turan, 2011; Köhler et al. 

126 2012). As bone tissue forms, matures, and remodels throughout an animal’s lifespan, this 

127 information is reflected in the density, organisation, morphology, and geometric properties of 

128 bone microstructure (Enlow & Brown, 1956; 1957; 1958). This approach has been successfully 

129 applied in insularity contexts (see Kolb et al. 2015 for review). For example, slow bone growth 

130 rates indicate delayed maturity and extended lifespans in the Late Pleistocene dwarfed Balearic 

131 island “goat” (Myotragus balearicus) (Köhler, 2010; Köhler & Moyà-Solà, 2009), and insular 

132 dwarfism in the Late Jurassic sauropod Europasaurus holgeri (Sander et al. 2006). To the best 

133 of our knowledge, quantitative palaeohistological analyses in relation to island ecology have 

134 not been performed for island fossil rodents. Prior research in extinct giant rodent cases 

135 reported bone tissue only in the Late Miocene murine Mikrotia magna from Gargano Island in 

136 Italy (Kolb et al., 2015). We also recently (Miszkiewicz et al. 2019) reported descriptions of 

137 bone remodeling in one of the giant murines (ANU TDS 0‐30 #4) in comparison to a small 

138 murine femur (ANU TDD 1 #11) from the same assemblage analysed in the present research. 

139 Orlandi-Oliveras et al (2016) observed bone histology of the fossil giant dormouse Hypnomys 

140 onicensis (Gliridae) from the Balearic Islands indicating increased lifespan that may have been 

141 a result of gigantism. While these previous studies have included the description of bone tissue 
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142 types and their organisation, the quantification of osteocyte lacunae within the bone matrix in 

143 relation to insularity remains to be tested. 

144

145 Prior research exploring osteocyte lacunae densities (Ot.Dn) has revealed relationships 

146 between this measure of bone metabolic activity and negative relationships with body in non-

147 insular settings that may be ultimately linked to aspects of life history. Inter-specific studies of 

148 fast maturing and small-bodied, and slow maturing and large-bodied mammal species, exhibit 

149 higher and lower osteocyte densities, respectively (Mullender et al. 1996; Bromage et al. 2009). 

150 This phenomenon may reflect an underlying complex relationship between bone ontogeny, 

151 rates of metabolism and cell proliferation that are related to body mass (Bromage et al. 2009). 

152 For example, Ot.Dn decreased with increased body size when compared across selected non-

153 primate mammalian species (Mullender et al. 1996). Bromage et al (2009: 393) reported an 

154 average of 58,148/mm3 osteocytes in three females of R. norvegicus that had an average body 

155 weight of 300 g. In contrast, a hippo (Hippopotamus amphibius) with a body weight of 2000 

156 kg, exhibited 16,667/mm3 osteocytes (Bromage et al., 2009: 393). Furthermore, experimental 

157 findings suggest a relationship whereby bone and energy homeostasis is regulated through 

158 hormones that are involved both in bone cell biology and body mass accrual (Hogg et al., 2017; 

159 see their Figure 11.1). Taken together, these studies suggest a strong inter-specific relationship 

160 between Ot.Dn and body size in mammals. This relationship offers therefore a unique way to 

161 investigate the growth of fossil rats from island settings. 

162

163 Hypothesis and prediction 

164 The goal of this study was to evaluate the island rule using Timorese fossil murine rodents 

165 whose body size would have ranged from small to giant, as inferred from their bone size. We 
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166 studied osteocyte lacunae preserved in femoral midshaft samples to determine if bone 

167 metabolic activity, indicative of tissue growth and related to life history, is related with body 

168 size among insular members of the rodent subfamily Murinae. We predicted that larger bodied 

169 fossil specimens would have a slower rate of osteocyte proliferation compared to those with a 

170 smaller body.  

171

172 MATERIALS AND METHODS

173 Samples

174 We examined specimens that represent multiple species in the rodent subfamily Murinae from 

175 naturally accumulated late Quaternary fossil deposits of Matja Kuru TD on Timor Island. 

176 Timor Island is located in eastern Wallacea, a region compromised of over 17,000 islands. 

177 Having never been connected to Southeast Asia (SEA) or Australia, these islands represent 

178 permanently isolated geographical regions. Fossil material from this assemblage date to a 

179 minimum of ca. 5–18 ka (Louys et al. 2017). It was impossible to positively identify the murine 

180 species from postcranial elements, so we could not assign them to species or genus. Murine 

181 fossil material from Timor includes representatives of four giant extinct genera, of which only 

182 Coryphomys has been formally described with two species currently recognised, C. buehleri 

183 and C. musseri (Schaub 1937; Aplin and Helgen 2010). We have no way of estimating the 

184 potential sex of our specimens, so we cannot exclude sexual dimorphism as a confounding 

185 factor in our analyses. However, we note that previous research indicates it to be insignificant 

186 in small mammals (e.g. Lu et al. 2014). Giant murines have been on the island since at least 

187 the Middle Pleistocene (Louys et al. 2017), and likely constituted part of human diet until their 

188 extinction (Glover, 1971). 

189
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190 The ten specimens represented nine right femora and one left femur (Figure 1). The specimens 

191 and associated thin sections are housed at the Department of Archaeology and Natural History, 

192 and the School of Archaeology and Anthropology at the Australian National University 

193 (Canberra, Australia) (see Tables 1, 2 for accession numbers). For sampling consistency, the 

194 femora were selected based on preservation, side, midshaft completeness for thin-sectioning, 

195 and ensuring the final sample reflected a range of sizes. Bone histology and midshaft 

196 measurements for two of the specimens (TDS0-30#4 and TDD1#11) have been previously 

197 reported (Miszkiewicz et al. 2019). Most specimens were considered adult as indicated by 

198 epiphyseal fusion and mature femoral form. However, some distal and proximal femoral ends 

199 were fragmented. We also acknowledge that epiphyseal plate fusion in mammals cannot be 

200 entirely relied on for age estimation (Geiger et al. 2014). Therefore, we supplemented the age 

201 estimates from bone morphology with identification of adult tissue in bone microscopic 

202 organisation. For the small specimens, bone histology was very similar to that of adult Wistar 

203 rat (Rattus norvegicus) femoral cortex (see Singh & Gunberg, 1971; Martiniaková et al. 2005; 

204 Sengupta, 2013; Miszkiewicz et al. 2019). One of the giant femora (TDS0-30#4) also showed 

205 evidence of adult Haversian tissue (Miszkiewicz et al., 2019). 

206

207 Femoral measurements 

208 We quantitatively describe the size of each femur and compare them to a series of Asia-Pacific 

209 rodent species of known weight (Table 2). Two variables could be consistently applied across 

210 the specimens: femur midshaft width in a medial-lateral plane (MLW), and femur midshaft 

211 depth in a cranial-caudal (CCD) plane (in mm). These were taken using standard digital 

212 callipers (Mitutoyo®). The midshaft was either identified by dividing the length of intact 

213 femora in half, or by locating shaft segments immediately distal to the third trochanter (dashed 
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214 line in Figure 1A). We report maximum length and femoral head diameter where possible 

215 (Table 1), but exclude them from the statistical analyses as they represent only a fraction of 

216 our sample size. We computed body mass estimates using the femoral midshaft measurements. 

217 Because this assemblage was commingled and only isolated dental remains were uncovered, a 

218 confident match between postcranial and cranial elements per individual is not possible. In 

219 addition to the fragmentation of the femora, this meant that we were unable to apply published 

220 body mass estimation methods as they include dental data or they do not consider midshaft 

221 diameters only as proxies (e.g. Moncunill-Solé et al. 2014). Furthermore, as our material is of 

222 SEA origin, it warranted the calculation of new, region specific new body mass regression 

223 equations based on our new data. 

224

225 Thin section preparation and bone histology imaging 

226 Standard histological methods for fossil bone were followed to produce thin sections from each 

227 femoral midshaft (Chinsamy & Raath, 1992; Miszkiewicz et al. 2019). Femora were embedded 

228 in Buehler® epoxy resin and cut at midshaft in a transverse plane using a Kemet MICRACUT® 

229 151 Precision Cutter with a diamond cutting blade. Samples were then glued to microscope 

230 slides using Araldite®, ground and polished on a series of pads and cloths, dehydrated in 

231 ethanol (95% and 100%) baths, cleared in xylene, and cover slipped using a DPX mounting 

232 medium. The resulting sections were approximately 100-150 μm thick. 

233

234 Micro-anatomical descriptions indicate that rat compact bone is mostly avascular, marked with 

235 radial canals, osteocytes residing within osteocyte lacunae (Martiniaková et al. 2005; Oršolić 

236 et al. 2018). Haversian, remodelled, tissue in murine bone has been reported only in a few case 

237 studies (Kolb et al. 2015; Miszkiewicz et al. 2019). As osteocytes are responsible for bone 

Page 11 of 47

Biological Journal of the Linnean Society

Biological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Miszkiewicz et al BJLS R2 Page 12 of 37

238 maintenance, they essentially sustain living tissue by signalling mechanical load and 

239 facilitating the exchange of nutrients (Han et al. 2004; Tate et al. 2004). Osteocytes are the 

240 most abundant bone cell found in vertebrates (Hall, 2015), and as much as the cells themselves 

241 do not typically preserve in fossil bone, the cavities they would have resided in do. Osteocyte 

242 lacunae in fossil or archaeological bone can thus be studied as a proxy for osteocyte 

243 proliferation and bone metabolism (Bromage et al. 2009; Hogg et al. 2017; Miszkiewicz, 2016; 

244 Miszkiewicz & Mahoney, 2017). We accessed these micro-features from each thin section 

245 using standard light microscopy (Olympus BX51 and BX53 microscope with a DP73 and DP74 

246 camera respectively) and analysed them in ImageJ® (1.51k 2013).

247

248 All sections were first imaged at a 40x total magnification (~6.07 mm2 each image) so that an 

249 overview micrograph for each sample could be produced. For the larger femoral sections, an 

250 average of 10-14 individual images were collected, whereas the smaller femora were easily 

251 reproduced from two to three individual images. Each of these were stitched manually in Adobe 

252 Photoshop CC 2014 to create a starting point from which to identify the best preserved and 

253 taphonomy/bio-erosion free region of interest (ROI). Unlike modern or fresh bone, the 

254 palaeontological context of our samples meant that there was incomplete and inconsistent 

255 preservation of microstructure. Therefore, the selection of ROIs for data collection was 

256 determined by the visibility of, and our confidence in identifying, osteocyte lacunae. Where 

257 possible, we selected the same anatomical aspect of each femur so that osteocyte lacunae data 

258 could be compared consistently across the whole sample. This resulted in isolating the lateral 

259 femur region with some caudal or cranial overlap (Figure 1B). Ultimately, we captured 

260 osteocyte lacunae data from one ROI per section at 100x total magnification representing an 

261 image that measures ~0.93 mm2. The bone area within each image ranged from ~0.93 mm2 in 
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262 the giant rats to ~0.35 mm2 in the smaller rats. In the latter case, the area of the bone itself was 

263 measured by directly tracing the bone tissue, excluding image regions that were empty. Using 

264 the MultiPoint tool in ImageJ® (1.51k 2013), osteocyte lacunae were first recorded as total 

265 counts from the most superior surface of each section. Prior to counting, all images were 

266 adjusted to grey scale (black and white intensity = 100) and then exposed (offset = -0.100) in 

267 Adobe Photoshop CC 2014 to enhance each lacuna so that they could be distinguished against 

268 the white background (Figure 1B). In order to estimate densities, a standard Ot.Dn (osteocyte 

269 lacunae density = osteocyte lacunae count/ section area in mm2) variable was created by 

270 dividing each osteocyte lacunae count by the bone area examined in mm2 (Li et al. 2011; 

271 Miszkiewicz, 2016). To check for potential observer bias, osteocyte lacunae in two randomly 

272 selected images from our image bank were independently scored by three observers – two 

273 authors of the present study (JM, JL), and one external histologist (TJ Stewart). 

274

275 Statistical analyses

276 All statistical analyses were conducted in IBM SPSS Statistics 22.0 (2013), Past3 (Hammer et 

277 al., 2001), and R 3.6.0. We split the analyses into two steps – 1) testing for a phylogenetic 

278 signal and creating body mass regressions, 2) assessing relationships between measures of body 

279 size and Ot.Dn by examining linear trends and testing for allometric changes (Kilmer & 

280 Rodríguez, 2017). As we only had three independent data points, inter-observer measurements 

281 were compared between the repeated data descriptively by assessing the extent of deviation 

282 from the mean. The measurements were deemed repeatable if the disagreement was < 0.05%. 

283

284

285
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286 1) Phylogenetic signal and body mass regressions 

287 To produce a body mass regression equation that could be used to estimate body mass for our 

288 Timorese specimens, we collected CCD and MLW measurements for specimens of known 

289 body mass for 17 Asia-Pacific murine species (Table 2). Where data were available for 

290 multiple specimens of the same species, these were combined to produce mean estimates for 

291 that species (Table 2). The final CCD and MLW measurements and body mass for each species 

292 were natural-logged (ln) transformed prior to analysis. We used a phylogenetic generalised 

293 least squares (PGLS) approach (Symonds & Blomberg, 2014), with uncertainty in phylogenetic 

294 relationships and divergence times among our species taken into account using the R package 

295 sensiPhy (Paterno et al. 2018) and 1000 trees from the “Phylacine” database (Faurby et al. 

296 2018), pruned to match our set of 17 species using the “keep.tip” function of the R package 

297 ape (Paradis & Schliep, 2019). We used the “physig” function of sensiPhy to calculate the 

298 maximum likelihood estimate of Pagel’s lambda (λ) in the residuals of our data as a measure 

299 of phylogenetic signal, and then used this value of λ to determine the best-fitting regression. 

300 We calculated three different regressions, using body mass and either: 1) CCD, 2) MLW, or 3) 

301 cross-sectional area of the femoral midshaft, which we calculated as π x (0.5 x CCD) x (0.5 x 

302 MLW), i.e., treating it as an ellipse. We then used the Akaike Information Criterion (AIC) to 

303 determine which of these three regressions showed the best fit to our data, and used the best-

304 fitting regression to estimate body mass for our Timorese specimens.

305

306 2) Evaluating relationships between femur size, body mass, and osteocyte lacunae 

307 Firstly, all the raw data for body mass estimates (g), CCD (mm), MLW (mm), and Ot.Dn were 

308 correlated using non-parametric Spearman’s Rho tests to assess linear agreements between 

309 data. These were repeated on the raw Ot.Dn data corrected by femur midshaft size 
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310 (Ot.Dn/MLW and Ot.Dn/CCD). The results from these correlations were interpreted following 

311 Taylor (1990), whereby Rho > 0.67 is considered a high or strong correlation. To assess 

312 allometric changes in Ot.Dn along with femur size and body mass estimates we used ordinary 

313 least squares regressions (OLS) on log10 transformed data (which decreased data variability). 

314 We interpret the r2, slope (b), confidence interval (CI), intercept (Y), and statistical significance 

315 of these models using uncorrected p as well as Bonferroni corrected (uncorrected p divided by 

316 the number of repeated tests), more conservative, p for each set of analysis. Plots fitting OLS 

317 regressions illustrate the trend line and CIs to visually describe the scatter of data.

318

319 RESULTS

320 There was no inter-observer error in the independent measurements, with the three observers 

321 providing almost equal counts of lacunae per image (image 1 mean 127.33, SD 2.08, similarity 

322 = 98.37%; image 2 mean 132.67, SD = 2.52, similarity = 98.10%). The largest midshaft femur 

323 measured 7.25 mm in MLW and 5.89 mm in CCD, respectively (Tables 1-3). The smallest 

324 examined femur was of 2.33 mm MLW and 1.98 mm CCD, respectively (Miszkiewicz et al., 

325 2019). Body mass estimates for the sample ranged from 75g in the smallest specimen to 1188g 

326 in the largest specimen. We incorporated these estimates (relying on MLW and CCD data) into 

327 a bar chart encompassing modern rat data of known weight (Figure 2, Table 2). This shows 

328 that the smaller fossil murines were likely similar in their body mass to a house mouse (Mus 

329 domesticus), whereas the giant murines may have been comparable to a subalpine woolly rat 

330 (Mallomys istapantap, up to 2 kg in weight). 

331

332

333
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334 Body mass estimates

335 The phylogenetic signal (measured by Pagel’s lambda) in our data for specimens of known 

336 body mass for 17 Asia-Pacific species (Table 2) was very low and non-significant (mean = 

337 0.03, CI = 0.02, CI = 0.04, p = 0.99). AIC values for our three regressions were as follows: 

338 ln(MLWfemur width) = 10.38, ln(CCDfemur depth) = 16.53, ln(femoral midshaft cross-

339 sectional areafemur area) = 8.59. As lower AIC values represent better model fit, it is clear that 

340 combining femur width and depth into an estimate of femur area resulted in a better fitting 

341 model. The PGLS regression for ln(femur area) and an the maximum likelihood (ML) estimate 

342 of Pagel’s lambda (λ = 0.03) was: 

343 ln(body mass) = 1.24 x ln[(femur area = π  x (0.5 x CCD)  x (0.5 x MLW)] + 2.724

344 Body mass estimates for the Timor specimens, based on the above equation, are reported in 

345 Table 2. 

346

347 Osteocyte lacunae densities 

348 Osteocyte lacunae density data ranged from 2483.21/mm2 minimum to 3936.32/mm2 

349 maximum. However, corrections by femur size adjusted the data to 342.51/mm2 and 

350 1499.30/mm2 range in the MLW category, and 421.60/mm2 to 1764.32/mm2 in the CCD 

351 measure of femur shaft (Tables 1-3). The results of Spearman’s Rho tests (Table 4) suggest 

352 that Ot.Dn data are in strongly negative and statistically significant relationships with measures 

353 of femur size and body mass estimates. The Rho achieved in these cases was -0.952 to -0.661 

354 with p < 0.05. However, when CCD was considered, these relationships were not consistent, 

355 whereby Rho was -0.576 (p = 0.082) when raw Ot.Dn were included in the analysis. When 

356 using a more conservative Bonferroni correction on repeated tests, the correlation between 
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357 estimated body mass, and MLW and raw Ot.Dn did not meet significance, with p = 0.038 and 

358 0.019 respectively. 

359

360 Ordinary least squares regression of all log transformed data resulted in an almost consistently 

361 statistically significant and strong models that showed negative allometry (Table 4). Two of 

362 the models - log(estimated body mass), log(CCD), and log(Ot.Dn), returned p > 0.05 and had 

363 weak r2. However, most of the models were statistically significant at α = 0.05, except for 

364 Bonferroni corrected log(MLW) and log(Ot.Dn) where 0.05 > p > 0.017. The data scatter 

365 around regression lines was wider in the cases where raw data are used, but better fitting models 

366 can be seen for those where the size of the femur is accounted for in Ot.Dn (Figure 3). 

367

368 DISCUSSION

369 Our analyses revealed statistically significant negative correlations, and an allometric 

370 relationship between the histological and macroscopic measures of bone metabolism and body 

371 mass in a range of giant and small fossil murine rodents from Timor Island. Collectively, these 

372 provide clear evidence that fossil murine gigantism was associated with a slowing down of 

373 bone metabolism as inferred from low osteocyte lacunae densities. In contrast, the smaller 

374 murines in our sample exhibit increased osteocyte lacunae densities, indicating accelerated 

375 bone metabolism. Our study has implications for current understanding of the evolution of 

376 mammalian bone physiology in relation to body mass and insularity, as well as the 

377 palaeoenvironments of Timor. 

378

379

380
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381 Bone metabolism

382 This study unlocks bone physiology from cell structures preserved in thin sections of fossil 

383 femora to understand the biological adaptation of Timorese island members of the rodent 

384 subfamily Murinae, and to examine the relationships between bone osteocyte lacunae densities 

385 and body mass when compared between these in mammalian species. We have previously 

386 shown changes in osteocyte lacunae densities can be linked to bone remodelling rates (e.g. 

387 Miszkiewicz, 2016), and as such can provide insights into bone metabolism fluctuations. When 

388 examined within living mammals, strong inverse correlations between Ot.Dn and body mass 

389 show that osteocyte proliferation corresponds to body mass (Hogg et al. 2017). Data presented 

390 here support these ideas as they demonstrate a strongly negative decline in Ot.Dn with 

391 increasing within Timorese island murines. These data are similar to previous inter-specific 

392 findings for extant non-primate mammals (Mullender et al. 1996), and to those described by 

393 Bromage et al (2009) for species that included adult pygmy (Phanourios minutus) and common 

394 hippo (Hippopotamus amphibious), as well as the Mohol bushbaby (lesser galagos, Galago 

395 moholi) and greater dwarf lemur (Cheirogales major) (Bromage et al., 2009: 393). A pygmy 

396 hippo of an approximate 200 kg body mass had an average Ot.Dn reported as 23,641/mm3, 

397 whereas its larger counterpart (H. amphibius) had an Ot.Dn of 16,667/mm3. In the same study, 

398 an adult lesser galago with an approximate 244 g weight had 51,724/mm3 Ot.Dn, which was 

399 much higher than the 31,526/mm3 Ot.Dn from a greater galago with a body weight of 400 g. 

400 Our data conform to this general pattern. Our study shows a much more widely dispersed 

401 osteocyte lacunae in the giant murine specimen when compared to its smaller counterpart 

402 (Figure 1C), and body size and Ot.Dn are related through negative allometry. 

403
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404 Bone histology limitations of our study pertain to being understood two-dimensionally only, 

405 whereas three-dimensional scans of each entire femur in the sample may yield more osteocyte 

406 lacunae data in the future. We are also unable to make further connections to energy variables, 

407 such as the BMR, because of the nature of the samples. With no direct measures of muscle or 

408 physical activity in our fossil murine sample, we are limited in understanding how their 

409 energetic expenditure and heat generation may have fitted into life history strategies (McNab, 

410 2019). Finally, the unknown species identification limited our interpretations of the Ot.Dn links 

411 with phylogeny. However, previous accounts of inter-specific variation in bone micro-

412 organisation have cited animal size and lifespan as more direct influences on histology than 

413 phylogeny (de Ricqlès, 1993; Greenlee & Dunnell, 2010).

414

415 The extinct giant murines of Timor

416 As predicted by the island rule, animals may change with response to insular environments due 

417 to selective pressures that encourage anatomical and behavioural modifications. Smaller, 

418 lighter, and faster growing mammals can adapt more easily than those that have increased 

419 energetic demands. While being smaller comes with many advantages, it also decreases 

420 longevity as outlined in the classic r and K-selection evolutionary strategy principles (Pianka, 

421 1970). The relatively slow bone metabolism of giant Timorese murines could indicate extended 

422 lifespans, which can be linked to favourable palaeoenvironments. 

423

424 It is extremely difficult to pinpoint specific casualty of our giant murine extinction as multiple 

425 factors must have played a role in their demise. However, when compared to prior 

426 palaeobiological models that test extinction causality in small mammals in islands (e.g. Bover 

427 & Alcover, 2008), we can at least propose some environmental extinction elements. For 
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428 example, Bover and Alcover (2008) examined the extinction of Mallorcan small mammals 

429 analysing climate, predation, competition, habitat loss/ modification, and anthropogenic factors 

430 as potential reasons driving extinction in the Western Mediterranean. The authors obtained 

431 radiocarbon ages from fossil bone collagen to reconstruct uncertainty and restricted periods of 

432 extinction for species of Balearic dormouse (Eliomys morpheus) and the Balearic shrew 

433 (Asoriculus hidalgo), and corroborated archaeological and direct dating data of introduced 

434 garden dormouse Eliomys quercinus and the wood mouse Apodemus sylvaticus. They 

435 concluded that the extinction of the Mallorcan small mammals would have been most likely 

436 indirectly caused by human activity (the spread of disease). For the giant murines of Timor, we 

437 can find supporting evidence in the historical and archaeological record for at least two of these 

438 items – human co-existence with giant murines, and habitat modification on the island of 

439 Timor.

440

441 Fossil evidence suggests that giant murines were in Timor from the Middle Pleistocene (Louys 

442 et al. 2017), by which time the island was also home to small-bodied stegodons (Stegodon 

443 `trigonocephalus’ and Stegodon timorensis) - elephant-like animals that may have evolved into 

444 pygmy forms on the island (Louys et al. 2016). This hints at the effect of insularity impacting 

445 more than one mammal in Timor. To that end, giant murines have been found in association 

446 with humans in Timor for more than 40,000 years (Hawkins et al. 2017). Glover (1971:177), 

447 when reviewing archaeological and palaeontological excavations on the island of Timor since 

448 about 1935, noted that giant murines would have been “the principal prey” (in addition to 

449 pteropodid bats) of the first human groups. Increasing human contact may have not only 

450 entailed predation: it would have also likely led to significant habitat alteration, introduction 

451 of competitors, other predators, and disease.
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452

453 Human driven deforestation in SEA is a well-established issue that contributes to the reduction 

454 of resources and elimination forest ecology (see McWilliam, 2005; O’Connor et al. 2012). 

455 Modern biodiversity conservation efforts have continually documented the disappearance of 

456 rich native habitats in areas densely populated and exploited by humans in SEA (Sodhi et al. 

457 2010; Hughes, 2017; Carlson et al. 2018). Historical annotations indicate that Timor became 

458 an important centre for timber export of white sandalwood ca. 1500 AD (McWilliam, 2005; 

459 O’Connor et al. 2012), with prior introduction of metal tools (bronze and iron) to island SEA 

460 sometime 2500 and 1500 years ago (Higham, 1996; Bulbeck, 2008). These tool developments 

461 would have facilitated effective slash-and-burn agriculture, with the later timber export activity 

462 accelerating forest cultivation. By the Timorese fort building period, ~1500 years ago, many 

463 small, but no giant murine fossils are recovered in excavations, suggesting extinction of the 

464 latter by this time (O'Connor & Aplin, 2007).. 

465

466 While more direct evidence for the Timor palaeoenvironments, and a larger sample size, is 

467 needed, our histology study suggests that the slower bone metabolism of giant murines fitted 

468 principles of gigantism under the island rule. They may have been associated with slower 

469 growth and maturation requiring relatively higher amounts of energy obtained from good 

470 quality or quantity of resources, low levels of predation, facilitating longevity and increased 

471 offspring quality (Reznick et al. 2002; Dammhahn et al. 2018). Our findings match those from 

472 another palaeohistology study that inferred an “exceptionally long lifespan” (Orlandi-Oliveras 

473 et al. 2016: 238) from bone histology in a giant fossil glirid rodent, Hypnomys onicensis, on 

474 the Balearic Islands, confirming slower life history in an insular context. We acknowledge that 

475 true “gigantism” of our specimens cannot be confirmed until we know the body mass of their 
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476 ancestors and have an accurate phylogeny. The island rule specifies that if a colonising 

477 ancestral species was initially small, and the newly colonised island marked with favourable 

478 habitats, evolving into a giant form would be selectively advantageous. While we know that 

479 Timor has never been connected to SEA or Australia, and thus has been truly geographically 

480 isolated throughout its history, cases of island rodents that evolved into dwarfed from larger 

481 forms following deterioration in food resources are known (Durst & Roth, 2015). 

482 CONCLUSIONS

483 Lab rats have long been used in biology research, letting us observe animal phenotypic change 

484 upon experimental modification of external environmental and internal genotypic conditions. 

485 Here, we conducted an experiment in deep time, assessing murine size and bone microanatomy 

486 in the context of a changing and insular environment. The gradient of murine size in this sample 

487 served as a platform for investigating links between bone metabolism and its response to 

488 insularity. We show that the now extinct giant murines of Timor were likely characterised by 

489 slow bone metabolism, which could be related to abundant resources and plentiful forests until 

490 human driven action destroyed these habitats. This finding is consistent with predictions made 

491 from the island rule. We also find that surviving smaller murines were equipped with faster 

492 bone metabolism, allowing them to survive less certain environmental contexts once 

493 anthropogenic alteration increased. These findings further our understanding of vertebrate bone 

494 tissue metabolism, its adaptation in response to ecological change, along with its versatility and 

495 plasticity that can be reconstructed at a microscopic level. 

496
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774 FIGURE CAPTIONS
775
776 Figure 1.

777

778 The specimens examined in the present study (all caudal view) showing the size gradient in the 

779 sample and midshaft sampling location (dashed line, 1A), a histological cross-section through 

780 one of the specimens and an associated region of interest examined for osteocyte lacunae (1B), 

781 and examples of more (left) and less (right) widely dispersed osteocyte lacunae in a giant and 

782 small femora respectively (1C). 

783

784 Figure 2.

785

786 Estimated body weight in grams (top), and femur midshaft measurements in medial-lateral and 

787 cranial-caudal planes in mm (bottom) for the Timor specimens (highlighted on the graph by 

788 the boxes) presented amongst other 17 known weight Asia-Pacific murine rodents. 

789

790 Figure 3.

791

792 Negative allometric relationships between log estimated body mass (top row), log cranial-

793 caudal (middle row) and log medial-lateral midshaft (bottom row) diameter data, and log 

794 osteocyte lacunae (including data corrected by midshaft size, Y axis) in the sample. Regression 

795 line is red and the confidence interval is indicted by blue lines.    

796
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Table 1. Raw data for the entire sample reporting histology and gross morphometric femoral 

measurements in this study: MAXL - maximum intact femur length in mm, FHDM - femoral 

head diameter in mm, MLW - medial-lateral midshaft femur width in mm, CCD - cranial-

caudal midshaft femur depth in mm, Ot.N (a) – osteocyte lacunae number, Ot.Dn – osteocyte 

lacunae number (a) divided by section area (b) in mm2. *Data from Miszkiewicz et al., 2019

Femur accession ID

(Australian 

National 

University)

M
A

X
L

FH
D

M

M
L

W

C
C

D

O
t.N

 (a
)

Se
ct

io
n 

ar
ea

 (b
)

O
t.D

n 
(a

/b
)

TDD 1 #1 n/a n/a 7.18 5.24 2778 0.929 2990.31

TDD 1 #2 n/a n/a 6.84 5.39 2380 0.927 2567.42

TDD 1 #3 n/a n/a 7.25 5.89 2292 0.923 2483.21

TDS 0-30 #4 n/a n/a 6.15* 4.87* 2569 0.844 3043.84

TDS 15-30 #6 n/a n/a 3.59 2.31 877 0.346 2534.68

TDD 1 #7 n/a n/a 4.18 3.02 1628 0.580 2806.90

TDD 1 #8 26.27 2.41 3.21 2.61 1218 0.375 3248.00

TDD 1 #9 29.73 3.51 3.85 2.5 1996 0.586 3406.14

TDD 1 #10 26.13 2.78 3.13 2.57 2287 0.581 3936.32

TDD 1 #11 n/a n/a 2.33* 1.98* 1579 0.452 3493.36
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Miszkiewicz et al BJLS R2 Tables 5

Table 3. Data for the entire murine sample representing femoral morphometric and histological 

measurements: N – sample size, MIN. = minimum value of data, MAX. – maximum value of 

data, SD – standard deviation. 

VARIABLES N MIN. MAX. MEAN SD

MAXL 3 26.13 29.73 27.38 2.04

FHDM 3 2.41 3.51 2.90 0.56

MLW 10 2.33 7.25 4.77 1.88

CCD 10 1.98 5.89 3.64 1.51

Ot.N (#) 10 877.00 2778.00 1960.40 615.87

Section area (mm2) 10 0.35 0.93 0.65 0.23

Ot.Dn (#/mm2) 10 2483.21 3936.32 3051.02 474.99

Ot.Dn/ MLW 10 342.51 1499.30 766.03 393.57

Ot.Dn/ CCD 10 421.60 1764.32 1002.32 472.12

Page 42 of 47

Biological Journal of the Linnean Society

Biological Journal of the Linnean Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Fo
r P

ee
r R

ev
ie

w

M
isz

ki
ew

ic
z e

t a
l B

JL
S 

R2
 T

ab
le

s 6

T
ab

le
 4

. S
pe

ar
m

an
’s

 R
ho

 c
or

re
la

tio
ns

 a
nd

 o
rd

in
ar

y 
le

as
t s

qu
ar

es
 (

O
LS

) 
re

gr
es

si
on

s 
as

se
ss

in
g 

re
la

tio
ns

hi
ps

 b
et

w
ee

n 
os

te
oc

yt
e 

la
cu

na
e 

an
d 

ra
t 

fe
m

ur
 s

iz
e 

an
d 

es
tim

at
ed

 b
od

y 
m

as
s 

(u
si

ng
 ra

w
 a

nd
 lo

g 
tra

ns
fo

rm
ed

 d
at

a 
re

sp
ec

tiv
el

y)
: c

oe
ff

ic
ie

nt
 o

f d
et

er
m

in
at

io
n 

(r
2 )

, s
lo

pe
 (b

), 
co

nf
id

en
ce

 

in
te

rv
al

 (C
I)

, i
nt

er
ce

pt
 (Y

), 
 T

ot
al

 sa
m

pl
e 

si
ze

 is
 1

0 
in

 e
ac

h 
te

st
. * s

ta
tis

tic
al

ly
 si

gn
ifi

ca
nt

 a
t p

 <
 0

.0
5;

 † s
ta

tis
tic

al
ly

 si
gn

ifi
ca

nt
 a

t B
on

fe
rr

on
i c

or
re

ct
ed

 

p 
< 

0.
01

7.

X
 a

xi
s 

Y
 a

xi
s

Rh
o

p
es

tim
at

ed
 b

od
y 

m
as

s 
(g

)
O

t.D
n 

(#
/m

m
2 )

O
t.D

n/
C

C
D

 
O

t.D
n/

M
LW

  

-0
.6

61
-0

.9
39

-0
.9

52

<0
.0

38
*

<0
.0

00
1* †

<0
.0

00
1* †

C
C

D
 (m

m
)

O
t.D

n 
(#

/m
m

2 )
O

t.D
n/

C
C

D
 

O
t.D

n/
M

LW
  

-0
.5

76
-0

.9
15

-0
.8

91

0.
08

2
<0

.0
00

1* †

0.
00

1* †

M
LW

 (m
m

) 
O

t.D
n 

(#
/m

m
2 )

O
t.D

n/
C

C
D

 
O

t.D
n/

M
LW

  

-0
.7

21
-0

.9
52

-0
.9

76

0.
01

9*

<0
.0

00
1* †

<0
.0

00
1* †

O
L

S 
X

 a
xi

s 
Y

 a
xi

s
r2 , 

b,
 Y

, C
I

p
lo

g 
es

tim
at

ed
 b

od
y 

m
as

s 
lo

g 
O

t.D
n 

 
lo

g 
O

t.D
n/

C
C

D
lo

g 
O

t.D
n/

M
LW

0.
36

7,
 -0

.0
92

, 8
.5

46
, -

0.
17

8 
-0

.0
24

0.
95

2,
 -0

.4
98

, 9
.6

78
, -

0.
56

8 
-0

.4
29

0.
91

7,
 -0

.4
91

, 9
.3

61
, -

0.
56

0 
-0

.4
18

0.
06

4
<0

.0
00

1* †

<0
.0

00
1* †

lo
g 

C
C

D
 

lo
g 

O
t.D

n
lo

g 
O

t.D
n/

C
C

D
lo

g 
O

t.D
n/

M
LW

0.
31

7,
 -0

.2
10

, 8
.2

68
, -

0.
41

5 
-0

.0
28

0.
94

0,
 -1

.2
11

, 8
.2

69
, -

1.
43

6 
-1

.0
36

0.
86

4,
 -1

.1
67

, 7
.9

4,
 -1

.4
86

 -0
.9

20

0.
09

0
<0

.0
00

1* †

<0
.0

00
1* †

lo
g 

M
LW

lo
g 

O
t.D

n
lo

g 
O

t.D
n/

C
C

D
lo

g 
O

t.D
n/

M
LW

0.
40

9,
 -0

.2
43

, 8
.3

76
, -

0.
43

6 
-0

.0
69

0.
93

7,
 -1

.2
33

, 8
.6

37
, -

1.
43

2 
-0

.9
65

0.
94

7,
 -1

.2
44

, 8
.3

78
, -

1.
43

2 
-1

.0
58

0.
04

6*

<0
.0

00
1* †

<0
.0

00
1* †

Pa
ge

 4
3 

of
 4

7

Bi
ol

og
ic

al
 Jo

ur
na

l o
f t

he
 L

in
ne

an
 S

oc
ie

ty

Bi
ol

og
ic

al
 Jo

ur
na

l o
f t

he
 L

in
ne

an
 S

oc
ie

ty

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46



Fo
r P

ee
r R

ev
ie

w

M
isz

ki
ew

ic
z e

t a
l B

JL
S 

R2
 T

ab
le

s 7

Pa
ge

 4
4 

of
 4

7

Bi
ol

og
ic

al
 Jo

ur
na

l o
f t

he
 L

in
ne

an
 S

oc
ie

ty

Bi
ol

og
ic

al
 Jo

ur
na

l o
f t

he
 L

in
ne

an
 S

oc
ie

ty

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46



For Peer Review

 

Figure 1. 

The specimens examined in the present study (all caudal view) showing the size gradient in the sample and 
midshaft sampling location (dashed line, 1A), a histological cross-section through one of the specimens and 
an associated region of interest examined for osteocyte lacunae (1B), and examples of more (left) and less 

(right) widely dispersed osteocyte lacunae in a giant and small femora respectively (1C). 
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Figure 2. 

Estimated body weight in grams (top), and femur midshaft measurements in medial-lateral and cranial-
caudal planes in mm (bottom) for the Timor specimens (highlighted on the graph by the boxes) presented 

amongst other 17 known weight Asia-Pacific murine rodents. 
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Figure 3. 

Negative allometric relationships between log estimated body mass (top row), log cranial-caudal (middle 
row) and log medial-lateral midshaft (bottom row) diameter data, and log osteocyte lacunae (including data 

corrected by midshaft size, Y axis) in the sample. Regression line is red and the confidence interval is 
indicted by blue lines.     
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