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Abstract  Several analytical models of velocity distribution for turbulent uniform open channel flows were lately 
developed by analysis and simplification of the Reynolds-averaged Navier-Stokes equations (RANS). These simplified 
RANS-based models, which are called dip-modified laws, are frequently employed to predict the velocity profile in flow 
cases where the maximum velocity may occur below the water surface. In this paper, the performance of two simplified 
RANS models, namely the dip-modified log law (DML-law) and the dip-modified log wake law (DMLW-law) are compared 
against the full 3D RANS model used in the computational fluid dynamics (CFD) modelling. The results show that although 
the simplified RANS models can predict the velocity dip phenomenon, the accuracy of such models is less than the full 
RANS (CFD) model. This is likely to be due to the assumption imposed for approximating the secondary current term in the 
governing equations. It is also found that the DMLW-law can give results closer to that obtained by the full RANS model. 
This may because of including the wake effect in eddy viscosity calculation. 
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1. Introduction 
Velocity distributions in open channel flows are required 

for a wide range of hydraulic applications relating to 
sediment transport, river pollution, channel scouring and 
power plant design. Therefore, the velocity profile, in 
particular over the vertical, has been given a great interest by 
many researchers. Beside numerous investigations, which 
have been conducted to measure the turbulent mean velocity 
profiles, theoretical laws are formulated, and hydrodynamic 
models are constructed for obtaining the velocity 
distributions to both the 2D and 3D flow cases.  

When 2D open channel flows are being considered, the 
well-known logarithmic law proposed by Keulegan [1] and 
Nikuradse [2] is widely used for obtaining the velocity 
profile in the inner region (z < 0.2h), where z is the vertical 
distance from the bed and h is the flow depth. However, the 
log law was reported to deviate from the experimental data in 
the outer region (z > 0.2h), [3, 4]. This deviation was first 
addressed by Coles [3] by adding the  wake function to the  
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log law. The log-wake law was found to be more accepted 
than the conventional log law for describing the velocity 
profile in wide open channels, provided that the wake 
strength parameter to be set to an empirically determined 
value, [4, 5]. 

However, in case of narrow open channel flows, the 
log-wake law deviates from the experimental data near the 
free surface. This is because such a law cannot be able to 
capture the velocity-dip-phenomenon, which causes the 
maximum velocity to occur below the water surface. The 
velocity-dip-phenomenon occur due to strong secondary 
currents generated in three-dimensional open channel flow 
[6]. Therefore, several analytical and semi-analytical 
equations have been proposed, trying to predict the 
velocity-dip-phenomenon in open channels by accounting 
for the effect of the secondary currents. Almost, all the 
analytical-based laws proposed are based on the analysis and 
simplification of the Reynolds-averaged Navier-Stokes 
equations (RANS).    

Yang et al. [7] proposed a dip-modified-log law 
(DML-law) using simplified RANS formulations. Although 
the DML-law is able to predict the velocity dip position, this 
law was derived to predict the velocity profile in only smooth 
channels with some limitations about specifying the position 
of the maximum velocity. Thus, many researchers have 
continued to offer improvements to both the log and wake 
laws for smooth or rough flows [8-12]. Based on the same 
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simplification of RANS equation used by Yang [7], but with 
using the log wake formulation instead, Absi [11] proposed 
another law for velocity, called dip-modified-log-wake law 
(DMLW-law). This modified law can be used in a smooth 
and rough open channel flow with the secondary currents 
because of its ability to predict the velocity dip, [13]. 
Lassabatere et al. [12] developed a simplified model by 
integrating the RANS equations through proposing a number 
of hypotheses, focusing in particular on the analytical 
analysis for the velocity vertical component. Despite the 
advantage of these laws in terms of easily applying to 
engineering problems, they all are based on proposed 
assumptions for the secondary velocities and eddy viscosity 
to simplify the RANS equations before the integration. 
Therefore, many researchers have discussed the validity of 
such laws, e.g. [12, 14, 15]. It was found that the assumptions 
employed in simplifying the RANS equation when deriving 
the dip-modified laws are still needed a further check. Thus, 
in this paper, the proposed dip-modified laws for velocity 
distribution is compared with three dimensional models 
which are based on the full RANS equations. The 
Computational Fluid Dynamics (CFD) technique was used 
to solve the full RANS equations. By comparing the results 
from the simplified RANS formulations (dip-modified laws) 
with those from the full RANS model (CFD model), the 
errors result from the former can be estimated. This may 
assist in determining the limitations of the dip-modified laws 
for engineering applications.  

2. Simplified RANS Approaches 
2.1. Basic Equations and Assumptions 

As mentioned previously, dip-modified log formulations 
were generally derived from RANS equations by simplifying 
these equations. This simplification can be made by 
imposing some assumptions to account for the effect of the 
secondary currents (normal wall or vertical component of 
velocity) and by using an appropriate expression for the 
turbulent eddy viscosity. 

For steady uniform open-channel flows, the continuity 
equation and the RANS momentum equation in the 

streamwise direction (x) can be combined to give the 
following equation (Figure 1): 

𝜕𝑈𝑉
𝜕𝑦

+ 𝜕𝑈𝑊
𝜕𝑧

= 𝜈 𝜕
2𝑈
𝜕𝑦2

+ 𝜈 𝜕
2𝑈
𝜕𝑧2

+ 𝜕(−𝑢𝑣����)
𝜕𝑦

+ 𝜕(−𝑢𝑤�����)
𝜕𝑧

+ 𝑔𝑆𝑜 (1) 

where 𝑈, 𝑉, and 𝑊 are mean velocity in the streamwise (x), 
lateral (y), and vertical (z) directions, respectively; 𝑔  is 
gravitational acceleration; 𝑆𝑜  is channel slope; −𝑢𝑣����  and 
−𝑢𝑤���� are Reynolds stress tensor components; and ν is fluid 
kinematic viscosity of fluid. In the central zone (Figure 1), it 
is assumed that the horizontal gradients (d/dy) are negligible 
comparing to the vertical gradients (d/dz) which are 
dominating in this zone, [7]. Therefore, Eq. (1) can be 
simplified to: 

𝜕𝑈𝑊
𝜕𝑧

= 𝜈 𝜕2𝑈
𝜕𝑧2
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After integration and algebraic manipulations, the 
following equation is obtained: 

−𝑢𝑤�����
𝑢∗2
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ℎ
� − 𝛼1

𝑧
ℎ

+ 𝑈𝑊
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         (3) 

where 𝑢∗ is the friction velocity, h is the flow depth and 
𝛼1 = [(𝑔𝑆𝑜ℎ)/𝑢∗2] − 1. 

In most simplified RANS approaches, two additional 
assumptions were often imposed on Eq. (3). One for 
modelling the Reynolds shear stress (−𝑢𝑤����) and the other for 
approximating the secondary flow term (𝑈𝑊/𝑢∗2). The third 
term on the right-hand side of Eq. (3), which reflects the 
influence of secondary currents, are often approximated 
using a linear relationship for simplicity, [7]: 

𝑈𝑊
𝑢∗2

≈ −𝛼2
𝑧
ℎ
                  (4) 

where 𝛼2 is a positive coefficient. On the other hand, the 
Boussinesq assumption are frequently used to model the 
Reynolds shear stress as following:  

−𝑢𝑤���� = 𝜈𝑡
𝑑𝑈
𝑑𝑧

                 (5) 

where 𝜈𝑡 is the eddy viscosity. Substituting Eq. (4) and Eq. 
(5) into Eq. (3), the following partial differential equation 
(PDE) is obtained: 

𝑑𝑈
𝑑𝑧

= 𝑢∗2
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Figure 1.  Definition sketch for the steady uniform flow in a rectangular channel 
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Equation (6) is the simplified form of RANS equations 
which is used as a basic equation for deriving the dip 
modified laws to obtain the mean velocity profile of the 
uniform flow. Depending upon the models by which the 
eddy viscosity (𝜈𝑡) is expressed, different formulations for 
calculating the velocity distribution can be obtained from the 
simplified RANS equation, Eq. (6). 

2.2. Dip-modified Laws 

2.2.1. Dip-modified Log Law (DML-law) 

Yang et al. [7] employed the parabolic model for the eddy 
viscosity to suggest DML-law based on Eq. (6). The widely 
used expression of the parabolic model is: 

𝜈𝑡
𝑢∗ℎ

= 𝑘 𝑧
ℎ
�1 − 𝑧

ℎ
�             (7) 

where k is the so-called Von Karman constant. Using Eq. (7) 
into Eq. (6) and making the integration, the final form of the 
DML-law can be obtained: 
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𝑘
�ln � 𝑧

𝑧𝑜
� + 𝛼 ln �1 − 𝑧

ℎ
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where 𝑧𝑜 is the distance from the bed at which the velocity 
is hypothetically equal to zero and 𝛼 is he dip-correction 
parameter. Equation (8) predicts the velocity-dip 
phenomenon by the term 𝛼ln(1 − 𝑧 ℎ⁄ ) which includes the 
dip-correction parameter  𝛼, [7]. This law returns into the 
classical log law if 𝛼 = 0. 

2.2.2. Dip-modified Log Wake Law (DMLW-law) 

Instead of the parabolic model, the approximation for the 
eddy viscosity distribution given by Nezu and Rodi [4] can 
also be employed in the simplified RANS Equation, Eq. (6), 
to drive a dip modified law for the velocity distribution [11]. 
Nezu and Rodi [4] suggested their model for eddy viscosity 
based on the log-wake law and it can be written as: 
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        (9) 

where Π is Coles parameter representing the wake strength 
in the boundary turbulent flow. If the eddy viscosity model 
given by Nezu and Rodi [4], Eq. (9), is used instead of the 
parabolic profile, the integration and simplification of Eq. (6) 
would yield the following dip-modified log wake law 
(DMLW-law):  
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This law is also called the dip-modified log wake law 
(DMLW-law).  

There are more complicated forms for the dip-modified 
laws such as Total DMLW-law proposed by Absi [11] and 
the model presented by Lassabatere et al. [12]. However, 
compromising between the simplicity in use of the less 
complicated model and a little improvement in accuracy 
obtained by the more complicated one makes using the 
simplest formulation of dip-modified laws in engineering 
applications more convenient. Therefore, in this study,   
the performance of dip-modified log law, Eq. (8), and the 

dip-modified wake law, Eq. (10), are only compared as a 
simplified RANs approaches against the 3D full RANs 
model that is solved using the CFD technique. 

3. 3D Full RANS Modelling 
3.1. Mathematical Framework of the CFD 

In this study, ANSYS CFX 13.0 code was used for 
performing the 3D CFD modelling. In this software, the 
Reynolds Averaged Navier-Stokes (RANS) equations are 
used to simulate the 3D turbulent flow in an open channel. 
The RANS equations are obtained by applying time 
averaging to the full Navier-Stokes equations. For an 
incompressible and turbulent fluid flow, RANS equations 
may be written in a Cartesian coordinate system as follows: 

𝜕𝑈𝑖
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= 0                  (11) 
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    (12) 

where the subscripts i, j (= 1, 2, 3) refer to the components in 
the x; y and z of the Cartesian coordinate system, U is the 
mean velocity, P is the mean pressure, and u is the velocity 
fluctuation. The Reynolds-averaging of the Navier-Stokes 
equations introduced six new unknowns (-𝑢𝑖𝑢𝑗 ) into the 
governing equations. These extra unknown quantities 
comprise the so-called Reynolds stresses. Hence, a 
turbulence model is then required to account for the 
Reynolds stresses in order to close the system of equations. 

3.2. Turbulence Model 

Various turbulence models have been developed to solve 
the closure problem of RANS equations. These models relate 
the Reynolds stresses to the global mean properties of the 
fluid flow on a physical basis. In general, two closure 
strategies are typically used to develop practical turbulence 
models for engineering computations, [16, 17]. The first 
strategy is the eddy-viscosity concept, whereas the second 
modelling strategy relies on directly solving transport 
equations for the individual Reynolds stresses.  

It is found that the models based on eddy viscosity concept, 
such as k-ε model and k-ω model, fail to predict any evidence 
of secondary flow in a prismatic channel such as the cases 
investigated in this work. This is due to the assumption that 
the turbulence is isotropic, but in such channel, the 
turbulence is actually known to be anisotropic, [18; 19]. 
Therefore, the models falling under this category were not 
employed for conducting 3D simulations during this study. 
On the contrary to the eddy viscosity-based models, 
Reynolds Stress models (RSM) physically include the 
effects of streamline curvature, sudden changes in the strain 
rate, anisotropic Reynolds stress and secondary flows,    
[20, 21]. Based on this fact, a Reynolds stress model (RSM) 
may be more appropriate for flows with secondary flows. 
Therefore, BSL RSM turbulence model which is falling 
under this category has been implemented in this study.  
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BSL RSM is based on the Reynolds stress transport 
equations. The exact transport equation for the Reynolds 
stresses in Cartesian tensor notation is as follows [22]: 

𝜕𝑢𝑖𝑢𝑗
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  (13) 

where 𝑃𝑖𝑗 is the production of the turbulence, 𝐷𝑇𝑖𝑗 is the 
turbulent diffusion due to the fluctuations, 𝐷𝐿𝑖𝑗  is the 
diffusion of the Reynolds stresses due to molecular mixing, 
Φ𝑖𝑗 is the pressure-strain redistribution term and 𝐸𝑖𝑗 is the 
viscous dissipation of Reynolds stresses. Terms (I), (II) and 
(IV) contain only mean velocity components and the 
Reynolds stresses, thus, they do not require modelling when 
Eq. (13) is used to close the mean flow Eq. (12). On the other 
hand, terms (III), (V) and (VI) introduce 22 new unknowns 
into the governing equations, thus they need to be modelled 
to close the equations.  

The modelled form of exact transport equation for the 
Reynolds stresses are written in the CFX as follows, [23]: 
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The pressure-strain (Φ𝑖𝑗) is modeled within CFX by the 
following constitutive relation: 
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in which, 𝜔 is the specific dissipation rate, 𝛿𝑖𝑗  is the unit 
tensor (Kronecker’s delta) and 𝑆𝑖𝑗 is the mean rate of strain 
tensor. The production tensor of Reynolds stresses is given 
by: 

𝑃𝑖𝑗 = −𝜌𝑢𝑖𝑢𝑘
𝜕𝑈𝑗
𝜕𝑥𝑘
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;    𝑃 = 0.5𝑃𝑘𝑘    (16) 

The tensor 𝐷𝑖𝑗 is given by: 

𝐷𝑖𝑗 = −𝜌𝑢𝑖𝑢𝑘
𝜕𝑈𝑘
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          (17) 

The coefficients for the model are: 

𝛽′ = 0.09; 𝑎′ = 8+𝐶2
11

;  𝛽′′ = 8𝐶2−2
11

;  

𝛾′ = 60𝐶2−4
55

;  𝐶1 = 1.8; 𝐶2 = 0.52        (18) 

It should be referred that the BSL RSM is based on the 
BSL k-ω model of Menter [24]. Menter’s model blends 
between k-ω the model near the wall and the k-ε model in the 
outer region by the following equation: 

𝜙3 = 𝐹𝜙1 + (1 − 𝐹)𝜙2             (19) 
where blending function F takes a value of 1 near the wall 
and decreases to a value of zero outside the boundary layer 
[24]. 

4. Applying the Models 
4.1. Experimental Data Used 

The velocity results from dip-modified laws, which are 
based on the simplified RANS approaches, and those 
predicted by CFD model, which is based on the full RANS 
equations, were both compared with experimental data to 
test their performance in predicting the velocity distribution. 
The data obtained from the experiments conducted by 
Tominaga & Ezaki [25] and Tominaga et al. [26] were used 
for this purpose. The first group in these experiments, which 
included the experiments on a smooth rectangular channel, 
only was considered herein.  

Table 1.  Experimental conditions for the rectangular smooth channel used by Tominaga & Ezaki [25] and Tominaga et al. [26] 

Case Q H B Ar Um Umax Re (x 104) Fr Se (x 10-3) 
[#] [l/s] [cm] [cm]  [cm/s] [cm/s]   [m/m] 

S1 7.95 5.00 40.0 8.00 39.73 46.31 6.37 0.57 0.937 

S2 7.58 10.15 40.0 3.94 18.68 23.50 5.07 0.19 0.138 

S3 15.14 19.90 40.0 2.01 19.24 24.36 7.31 0.18 --- 

Q = flow discharge, H = flow depth, Ar = aspect ratio (B/H), Um = mean velocity, Umax = maximum velocity, Re = Reynolds number,    
Fr = Froude number, and Se = energy slope. 

 

The channel used had a length of 12.5 m, width of 40 cm 
and height of 40 cm. Experimental conditions for flow cases 
in this group are given in Table 1. The channel width was 
fixed in all the three cases (S1, S2 and S3), whereas the flow 
depth was changed. Therefore, selecting these experiments 
will allow examining the effect of the aspect ratio and the 
secondary currents on the performance of the model tested.   

4.2. Applying Simplified RANS Models 

As presented in previous section, the DML-law (Eq. 8) 
and the DMLW-law (Eq. 10), take the velocity-dip 

phenomenon into consideration by using the dip-correction 
parameter 𝛼. Therefore, 𝛼 should be first estimated before 
application of the models. 

An empirical formula, which is proposed by Yang et al. 
[7], could be used for finding 𝛼. This formula relates the 
dip-correction parameter to (z/h) and is given as: 

𝛼 = 1.3𝑒(−𝑧/ℎ)                 (20) 
However, it was found that the computed velocity profile 

may not match well with the experimental data when 𝛼 is 
calculated by using Eq. (20), [9, 13, 27]. Absi [11] proposed 
another relation for calculating the dip-correction parameter: 
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𝛼 = 1
𝜉𝑑𝑖𝑝

− 1                 (21) 

where 𝜉𝑑𝑖𝑝  (= zdip/h) is normalized distance of maximum 
velocity measured from the channel bed. In the central zone, 
Yan et al. found that 𝜉𝑑𝑖𝑝 depends closely on the aspect ratio 
(Ar), and 𝜉𝑑𝑖𝑝  decreases with the increase of Ar, [7]. 
Equation (21) produces results consistent well with this fact. 
Hence, in this study, Eq. (21) was employed to estimate the 
value of 𝛼 in both simplified RANS models (i.e. DML-law 
and DMLW-law). 

Added to the estimation of the dip-correction parameter, 
the wake strength parameter (Π) also need to be estimated 
when the DMLW-law is applied. Π seems to be not universal 
and its value depends on turbulence structure and the   
effect of secondary currents. Cebeci and Smith found 
experimentally that Π increases with Reynolds number    
in zero-pressure-gradient boundary layers, and at high 
Reynolds numbers, Π rises to a value of 0.55, [28]. Nezu and 
Rodi indicated through Laser Doppler anemometry velocity 
measurements that Π increases significantly with the 
Reynolds number but becomes nearly constant (Π ≈ 0.2) for 
 (𝑅𝑒 = 4ℎ𝑈𝑚 𝜈⁄ > 104) , where 𝑈𝑚  is the mean bulk 
velocity [4]. Cardoso et al. observed in their experiments on 
smooth open channel that a wake of small strength (Π ≈ 0.08) 
occurred in the core of the outer region (0.2 < z/h < 0.7), 
followed by the retarding effect near the free surface due to 
the downflow of the secondary currents [5]. This suggests 
that the secondary currents may influence the wake strength 
and cause the value of Π to be lower.  

The flow cases considered in this study are almost narrow 
channels (except S3) and have a relatively high Reynolds 
number, therefore the effect of the secondary currents at the 
center of the flow is considerable. Therefore, a value in a 
range from 0.0 to 0.2 could be selected for the wake strength 
parameter. However, in all velocity calculations conducted 
by the dip-modified laws herein, it was found that the 
agreement between computed and experimental results was 
rather better when Π takes a value of 0.2. Hence, the value of 
Π = 0.2 was used for all test cases considered in the present 
work. 

4.3. Applying 3D CFD Simulations 

A computational CFD model was built by the commercial 
code (CFX 13.0) to simulate the cases S1, S2 and S3 of the 
experiments by Tominaga et al. [26]. This means, three 
different aspect ratios were considered, i.e. (Ar = 8.0, 3.94 
and 2.01) as shown in Table 1. Figure 2 shows the 
computational setup and the boundary surfaces for the flow 
cases simulated herein. 

The width and height of the computational domain were 
chosen to be similar to those of the corresponding 
experimental flume. But, the domain length of 0.1 m has 
been used for the geometry under consideration. Since the 
flow is uniform and can be assumed to be statistically 
homogeneous in the streamwise direction, the periodic 
boundary conditions with a constant pressure gradient (Δp) 
were applied. This allowed for the solution domain to be 
setup with a much shorter length and fewer cells in 
streamwise direction than using a longer length required for 
establishing the fully developed flow, [29, 30]. 

In all simulations conducted in this study, the free-slip 
condition with the modified free surface treatment supplied 
by CFX was imposed on the free surface boundary. Through 
this approach, the turbulence terms at the free surface are 
modified in a similar way as in the approach proposed by 
Celik & Rodi [31] to mimic the damping of turbulent 
fluctuations by the surface. Using this modified boundary 
condition helps to reproduce the effect of the velocity dip by 
reducing the turbulent length scale near a free surface [29]. 
For the channel walls (bed and side walls), the smooth 
no-slip wall boundary conditions were imposed for all test 
cases simulated in the present study. 

Throughout this work, hexahedral cells have been utilized 
and this has been relatively easy to implement with the 
non-complex geometries being considered. To ensure that 
the mesh adopted is sufficiently fine so that it does not affect 
the results, a mesh independence study was performed first. 
Based on the mesh independence study, all results predicted 
were obtained using the mesh sizes of Δx = 2.5mm, Δy = 2.0 
mm and Δz = 2.0 mm.  

 

 

Figure 2.  Schematic of domain geometry and boundary conditions 
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For all simulations conducted in this study, the reliable 
convergence was considered to be achieved when the root 
mean square (RMS) residual of main variables in mass   
and momentum equations dropped below the residual  
target value (1 x 10-6). In addition, flow rate and average 
streamwise velocity were also monitored and used as 
additional convergence criteria. The monitoring points 
specified within the CFX had to reach nearly constant values 
and equal to those from experiments in order for the 
simulation was assumed to be met all convergence criteria. 

5. Results and Discussion 
To evaluate the performance of the simplified RANS 

model, i.e. DML-law or DMLW-law, against the full RANS 
(CFD) model, the results predicted by both models were 
compared with the measured data. 

Figure 3 compares the velocity profiles computed by the 
conventional log law, DML-law and 3D CFD model with 
experimental data from Tominaga et al. [29] for the three 
flow cases considered (S1, S2 and S3). It should be pointed 
out here that the log law was included in the comparison, due 
to the reason that this law represents the case where the dip 
correction factor in DML-law is reduced to the zero. The 
results show that both the full RANS (CFD) model and the 
simplified RANS (DML-law) model are able to simulate the 
velocity dip, with the CFD reproducing the velocity profile 
more accurately. Although the dip-modified-log law 
(DML-law) can predict the dip phenomenon well, a 
noticeable deviation between its results and the experimental 
data can be seen. This deviation is thought to be associated 
with the assumptions for approximating the effects of the 
secondary currents and eddy viscosity. As discussed earlier, 
to derive the DML-law from the simplified RANS equation, 
Eq. (6), the vertical velocity (W) in the outer region is 
assumed to be in the downward direction over all the centre 
of the channel and the eddy viscosity was modelled without 
considering the wake strength effect. This means that an 
exaggerated value of the dip modified term is applied to the 
entire flow depth, resulting in the underestimation of 
predicted velocities. It is also clear from the Figure 3 that 
DML-law can represent the measured velocity profile more 
closely when the dip correction factor is set to be zero (i.e. 
DML-law turns into log law). Nevertheless, it is not possible 
to predict the velocity dip feature by using the log law (or 
DML-law with 𝛼 of zero). Thus, DML-law may not be able 
to predict the maximum velocity location and, at the same 
time, lead to accurate computations of the velocity profile by 
only adjusting the factor 𝛼. 

Figure 4 shows the comparison between the velocity 
profiles computed by the simplified RANS (DMLW-law) 
and the full RANS (CFD) model with that obtained 
experimentally by the Tominaga et al. [26]. The velocity 
profiles from the log wake law were also plotted in the  
figure to represent the application of the DMLW-law with 

neglecting the dip correction factor. From the figure, it is 
noted that the velocity profile predicted by DMLW-law is 
nearly close to the flume measurements and highly close to 
the full RANS predictions for all test cases, except a slight 
difference for the case S3. This indicates that the 
DMLW-law may predict the velocity distribution in the same 
order of the accuracy of the full RANS based model, and also 
more accurate than the DML-law. Therefore, it is suggested 
that including the wake strength parameter (Π) into the 
simplified RANS model improve the predicted results. 
Figures 3 and 4 shows that the CFD results for the velocity 
are more accurate compared with both the simplified RANS 
models used in the present study. This is not surprising 
because the CFD model is based on the full RANS equations. 
However, it should be noted that the ability of the CFD 
model with RSM turbulence model to predict the dip 
velocity phenomena is not typical. This is suggested to be a 
consequence of the underestimation in the turbulence 
anisotropy of the normal stresses (𝑣𝑣��� − 𝑤𝑤�����) as shown in 
Figure 5. Although a modified treatment for the free surface 
boundary conditions are used, the magnitude of the 
computed turbulence anisotropy at free surface zone (z/h > 
0.7) is comparatively low with respect to the measured data. 
This may affect predicting the secondary velocity 
components (V, W) which are responsible for generating the 
velocity dip. To improve the predicted results from the full 
RANS (CFD) model, more sophisticated boundary condition 
is required to impose at the free surface. This makes the 
application of the full RANS model more impractical for 
engineering problems compared to using the simplified 
RANS-based models. 

To quantitatively evaluate the performance of the 
simplified RANS models and compare them with that of the 
full RANS CFD model, the root-mean-square deviation 
(RMSD) is given as an index for comparison: 

𝑅𝑀𝑆𝐷 = �∑ �𝑥𝑝−𝑥𝑚�
2𝑛

𝑖=1
𝑛

            (22) 

where 𝑥𝑝 , 𝑥𝑚  are predicted and measured values 
respectively, and n is the total number of data in each of the 
individual profiles. 

The RMSD of (𝑈 𝑢∗)⁄  for all models used and for all test 
cases are summarized and shown by the bar-graph in Figure 
6. It can be seen that the 3D CFD models based on full 
RANS equations gives nearly the lowest values of RMSD 
(0.3, 0.4, and 0.6), compared to those obtained for both dip 
modified formulations based on the simplified RANS 
equations. However, the DMLW-law, which include the 
wake effect, may give velocity results with RMSD values 
(0.5, 0.6 and 0.9) close to those for full RANS model. 
DML-law gives the greatest RMSD of 1.8 for the case S3 (i.e. 
for the narrowest channel) while DMLW-law improves the 
prediction with RMSD of 0.9. Additionally, Figure 6 shows 
that the velocity profiles computed by conventional log wake 
law deviate from those measured with RMSD being less or 
equal to that obtained for DML-law. 
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(a) Case S1 (Ar=8.00) (b) Case S2 (Ar=3.94) 

 
(c) Case S3 (Ar=2.01) 

Figure 3.  Mean streamwise velocity profile, comparing the simplified RANS model (DML-law) and full RANS model (3D CFD model) with the 
experimental data from Tominaga et al. [26] 

  
(a) Case S1 (Ar=8.00) (b) Case S2 (Ar=3.94) 
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(c) Case S3 (Ar=2.01) 

Figure 4.  Mean streamwise velocity profile, comparing the simplified RANS model (DMLW-law) and full RANS model (3D CFD model) with the 
Experimental data from Tominaga et al. [26] 

 
Figure 5.  Turbulence anisotropy of the normal stresses (𝑣𝑣��� − 𝑤𝑤�����) for case S3 at the channel centre: computed by CFD model and measured by Tominaga 
& Ezaki [25] 

 

Figure 6.  Root mean square deviation (RMSD) for predicted velocity from measured data 
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6. Conclusions 
The performance of the dip modified laws, which are 

based on the simplified RANS equations, are tested against 
the application of the full RANS model used in the CFD 
modelling. The results for velocity profiles obtained by two 
simplified RANS models, namely dip-modified log law 
(DML-law) and dip-modified log wake law (DMLW-law), 
and by the full RANS (CFD) model are compared with the 
experiments conducted by Tominaga et al. [26] for uniform 
flow in a smooth rectangular channel. Form comparison and 
analysis of the predicted velocity profiles obtained by all the 
models, it can be concluded that: 

1)  The dip-modified log law (DML-law) given by Eq. (8) 
is able to capture the velocity dip phenomenon but it 
underestimates the predicted velocity in the outer 
region, particularly for the narrowest channel. 

2)  The dip-modified log wake law (DMLW-law) is able 
to predict the dip velocity and can give a better 
prediction for velocity than the DML-law due to 
including the wake effect on the velocity. However, 
the performance of DMLW-law is still less than the 
full RANS model. 

3)  The full RANS (CFD) model predicts the velocity 
profile with a high degree of accuracy if compared 
with the both dip modified laws. However, the CFD 
modelling cannot predict the velocity dip phenomenon 
perfectly even though a complicated turbulence model 
with complicated formulations for boundary 
conditions are used. Therefore, it would be 
impractically difficult to use the full RANS model for 
velocity calculations in engineering applications. 

4)  The underestimations of the predicted velocity by 
DML-law are suggested to be due to the assumption of 
the secondary currents effect and the negligence the 
wake effect.  

5)  Based on the root mean square deviation (RMSD), 
which is calculated for all the models in the interest, 
the DML-law gives the least accurate results for the 
velocity, while the DMLW-law can give results close 
to the full RANS model (CFD). 
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