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Abstract 
 
Symbiosis is defined as the close and long relationship between two organisms. 

Establishment of new symbioses, or redefining relationships underpins much of the 

ecological diversity found in the natural world. Microbial symbionts, being some of the 

longest living organisms on the planet with the largest distribution, offer the best 

opportunity to understand the complex mechanisms behind host-symbiont interactions and 

evolutionary processes. The insect kingdom, comprised of over 1.2 million described 

species, is an ideal sample group in symbiont research as over 50% of them harbour 

microbial symbionts. Glossina spp., the viviparous, obligate blood feeding (tsetse) flies that 

populate sub Saharan Africa, are of interest within symbiont research as they play host to at 

least four bacterial symbionts, with diverse phenotypes: Wigglesworthia, Wolbachia, 

Spiroplasma and Sodalis. Sodalis glossinidius – a secondary endosymbiont - is interesting as 

sequencing of its genome suggests S. glossinidius has undergone less genome reduction 

than its primary symbiont counterparts such as Wigglesworthia, and therefore has a more 

recent association with its host than the other symbionts. The benefit of this reduced rate of 

genome reduction is the ability to culture S. glossinidius in vitro, a feature that most 

bacterial symbionts lack. Culture of two Sodalis species – S. glossinidius and a related 

species, S. praecaptivus, was performed to compare the viability of S. glossinidius to free 

living bacteria to determine its potential as a laboratory model of symbiosis. This was 

studied via growth curves in different laboratory media, resistance to oxidative stress, 

antibiotic susceptibility and survival in an experimental host – Galleria mellonella. The 

difficulties in culturing bacterial endosymbionts is highlighted; the ability, with care, to 

culture S. glossinidius, and the potential to compare to closely-related, free-living species 
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such as Sodalis praecaptivus is vital as a research model for studying symbiosis and host-

interaction.
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Introduction 

The importance of symbiosis in nature 

Symbiosis is defined as “the close and long-term relationship between two organisms”. The 

term “symbiosis” is often misconstrued or misused by scientists and the public alike. Most 

conflate “symbiosis” with “mutualism”, that is to say that both organisms benefit as a 

consequence of their close association, however it is more appropriate to define symbiosis 

as above. Symbiosis is split into three or four broad sub-definitions, which includes 

parasitism (where one symbiont is harmed), commensalism (where one symbiont benefits, 

while the other is essentially unaffected in any significant way) and mutualism (as described 

above). A fourth definition: neutralism – is controversial and defined as neither symbiont 

affecting the other in any way, however these are unlikely to exist in any meaningful way in 

nature (Martin and Schwab, 2012).  

Together these definitions come together on the “symbiosis spectrum”, as shown in figure 

1, below: 

 

Figure 1-The symbiotic spectrum which describes the effects of symbiotic bacteria in relation to the fitness 
advantages/disadvantages to the host- taken from Gerardo (2015) 
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These classifications are very fluid; one organism can interact differently depending on the 

other organism it is in symbiosis with. Wolbachia, for example, is a symbiotic bacterium that 

has an association with both arthropods and nematodes, but its effects on the host species 

vary. Within arthropods, Wolbachia largely acts a parasite which manipulates the 

reproductive capabilities of the host through four phenotypes; male killing, feminisation, 

parthenogenesis and cytoplasmic incompatibility (Warren et al, 2008). In nematodes, 

however, Wolbachia act in mutualistic association and provide their host with some fitness 

advantage necessary for reproduction and survival if the nematode (Foster et al., 2005). This 

was further proven in a further study by Taylor et al.( 2005) where nematode worms given 

doxycycline (200mg daily over an eight week period) experienced detrimental effects in 

fertility and viability.  

 

Symbiotic relationships can be the driving force for evolutionary novelty and ecological 

diversity found on the planet and is therefore an important area in evolutionary research 

(Wernegreen, 2004).  Microbial symbionts, due to the wide distribution of bacteria through 

various ecosystems and long-standing ancestry (~4 billion years), have had a catalytic effect 

on the evolution of many organisms (Wernegreen, 2004). 

A good example of the effect of microbial symbionts are the Rhizobia species and their 

relationship with leguminous plants. Rhizobia are Gram negative nitrogen-fixing bacteria 

that reside within soil and are the only nitrogen-fixing bacteria to form a symbiotic 

relationship with legumes. The symbiotic relationship formed between the two organisms 

involves the signal exchange of flavonoids secreted from the roots of the host plant which 

lead to the accumulation and attachment of Rhizobia to root hair cells (Maj et al., 2010). 

The flavonoids trigger the secretion of nod factors by Rhizobia which causes developmental 
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changes within the root hairs, leading to the formation of root nodules (Gage, 2004). Within 

the root nodules, Rhizobia fix atmospheric nitrogen into ammonium which is used to 

synthesise amino acids in their host. In return, the legumes provide carbohydrates to the 

bacteria as well as oxygen via leghaemoglobins for cellular respiration. The mutualism 

between the two species has developed over 66 million years (Zharan, 1999) to the point 

where Rhizobia cannot express the genes used in nitrogen fixation without the presence of 

the legumes. 

The relationship between coral and Symbiodinium (symbiotic dinoflagellates) is interesting 

from the point of symbiosis. Coral reefs exist in many marine ecosystems and are home to 

millions of species (Knowlton, 2001). It is widely known that Symbiodinium plays a key role 

in the survival of coral in harsh marine environments (Liu et al, 2018). Symbiodinium species 

colonise the tissue of the coral and photosynthesise and provide the photosynthates (water, 

glucose and oxygen) to the coral. The coral will metabolise the photsynthates to form a 

calcium carbonate skeleton strong enough to withstand harsh conditions. The waste 

inorganic nutrients and CO2 generated by the coral is recycled by the dinoflagellates 

(Muscatine and Porter, 1977). Similar to the leguminous plants and Rhizobia, the interaction 

between the coral and Symbiodinium is initiated by the secretion of chemical signals by the 

coral which attract free living dinoflagellates (Davy, Allemand and Weis, 2012). The coral 

undergoes dynamic remodeling of its cytoskeleton and membrane to allow entry of the 

dinoflagellate via phagocytosis (Davy, Allemand and Weis, 2012).  The association between 

the two is very interesting as it was thought to be a ‘pure’ symbiotic relationship, meaning 

that the two were reliant on each other for survival, however some research has found 

evidence to the contrary. Wooldridge (2010) found that the dinoflagellates are capable of 

survival outside of their host, however, when they enter their host, there is a negative 
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impact on their reproductive success and in essence become “trapped” within the coral. The 

coral, on the other hand, seem to pay no cost for this relationship and as such, it can be 

asserted that the relationship between the two is not a mutualistic one, but rather a more 

parasitic relationship in favour of the coral. 

The aforementioned examples of symbiosis are instances where there is one bacterial 

symbiont present, however, there are many host organisms that form symbiotic 

relationships with several microorganisms. This can be said to be most prevalent within the 

insect kingdom. 

Symbiosis and Insects 

The insect kingdom is comprised of over 1.2 million described species, and of that number, 

over 50% of them are estimated to harbour microbial symbionts, dubbed endosymbionts. 

(Hirose, Panizzi and Prado, 2012).  

Bacterial endosymbionts of insects can be categorised as either primary or secondary (Raina 

et al, 2005) and could be found intra- or intercellularly within the host body. Primary or P-

endosymbionts have been in a long association with its host, forming an obligate association 

and displaying phylogenetic congruence with the host (Clark, Baumann and Baumann, 

1992).   P-endosymbionts provide nutrients that their host is unable to acquire themselves 

and can metabolise waste products generated by the host into less harmful substances 

(Baumann, 2005) Secondary or S-endosymbionts have a comparatively shorter evolutionary 

history with their host (Dale and Moran, 2006) and thus exhibits a more facultative 

relationship. S-endosymbionts are reported to confer a variety of functional benefits to the 

host. Acyrthosiphon pisum (pea aphid) holds interest as it is host to both primary and 

secondary endosymbionts. The P-endosymbiont of the pea aphid is Buchnera aphidicola.  B. 

aphidiciola is found within specialised cells within A. pisum known as bacteriocytes (Clark et 
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al., 2000). The symbiotic relationship is primarily a nutritional one; the aphid’s diet typically 

consists of plant phloem sap which is insufficient in essential amino acids ((Douglas, 2006). 

Buchnera aphidicola can synthesise and provide these amino acids for their hosts in return 

for the other nutrients their host provides (Baumann et al., 1995).  

One of the more intriguing S-endosymbionts of A. pisium is Hamiltonella defensa. H. defensa 

is distributed within the sheath cells and haemolymph. While it is not essential for host 

survival, H. defensa confers protection to their host from parasitoid wasps such as Aphidius 

ervi and Aphidius eadyi by preventing the larval development of the wasps within the host 

(Oliver, Moran and Hunter, 2005). Despite this benefit, H. defensa is found irregularly within 

A. pisium and its presence within its host is tied to the intensity of parasitoid pressure 

(Oliver et al., 2008). 

Symbiosis and the Tsetse Fly 

Tsetse (Glossina spp.; Diptera: Glossinidae) are viviparous, obligate blood-feeding flies found 

across sub-Saharan Africa. Around 37 species of Tsetse exist across various ecological niches 

in Africa, ranging from savannah to tropical forest areas having the largest distribution. The 

adult flies of both sexes feed exclusively on largely sterile blood meals from livestock, 

wildlife and humans (Figure 2). 
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Figure 2- The distribution of the different species of tsetse fly across Africa. The prevalence of tsetse flies within the area is 
correlated to the spread of African trypanosomiasis. The distribution of the tsetse and areas where sleeping sickness is most 
prevalent are intrinsically linked, taken from https://blog.wellcome.ac.uk/2012/03/01/developing-the-atlas-of-human-
infectious-diseases/ 

Tsetse Life Cycle 

The life cycle of the tsetse fly is rather unusual; female tsetse flies after mating produce one 

egg which is retained within the uterus. The larva hatches from the egg and undergoes its 

first three developmental stages internally whilst feeding on the milk produced by the milk 

glands of its mother; this process is known as adenotrophic viviparity (Leak, 1999). The larva 

is then birthed on the ground and burrows into the earth to pupariate for around a month 

until eclosion. 

Trypanosomiasis and the Tsetse Fly 

Tsetse are of clinical and veterinary interest as they are the only arthropod vectors of 

African trypanosomes, responsible for human African trypanosomiasis (HAT) and animal 

African trypanosomiasis (AAT).  The two common parasitic agents that cause 

trypanosomiasis are Trypanosoma brucei gambiense which is responsible for 98% of 

reported cases (WHO, 2019) and Trypanosoma brucei rhodesiense which has limited 

https://en.wikipedia.org/wiki/Trypanosoma_brucei_rhodesiense
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geographical range and only affects East and South Africa (WHO, 2019).  T.b. gambiense 

causes a chronic condition with can remain undetected for several months until symptoms 

are exhibited and it can be up to three years into the infection before death occurs (Brun et 

al., 2010). T.b. rhodesiense causes the acute form of the disease; symptoms arise with 

weeks of infection and death with a few months (Kuepfer et al., 2011).  HAT has a case 

mortality rate of virtually 100% (WHO, 2019) and is estimated that Africa loses $1.5 billion 

per year as a direct result of the disease (WHO, 2019).  Drug treatment for the disease has a 

history of being ineffective and toxic to the recipients and although improvements have 

been made, more preventative measures such as vector control have taken the forefront 

(Kennedy, 2013).   Tsetse fly control strategies such as the clearing of vegetation and aerial 

distribution of pesticides (Hocking, Lamerton and Lewis, 1963) were effective in 1960s but 

as HAT prevalence decreased, there was a lack of follow-up in the control efforts and as a 

consequence, tsetse and trypanosomiasis resurged (Simarro et al., 2011). There has been 

some ruminations about looking into utilising the tsetse’s natural endosymbionts in 

preventing the establishment of trypanosomes (Van Den Abbeele and Rotureau, 2013). 

 

From a symbiosis point-of-view, tsetse flies are of particular interest, because of their 

unique reproductive strategy and similar to A. pisum, it is the host to multiple bacterial 

endosymbionts. Until recently the central dogma of tsetse symbiosis was that they harbour 

three main endosymbionts: Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia 

pipientis. However this has been recently revised to include Spiroplasma after its discovery 

in Glossina fuscipes (Doudoumis et al., 2017); Figure 3). 
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Figure 3- Visual representation of the tsetse fly microbiota and their localisation within their host, taken from 
https://www.iaea.org/newscenter/news/international-research-project-explores-novel-strategies-to-improving-the-sterile-
insect-technique-toeradicate-tsetse-flies-through-enhancing-males-refractoriness-to-trypanosome-infection) 

 

Wigglesworthia glossinidia is the P-endosymbiont of the tsetse and is found in 100% of 

tsetse flies. W. glossinidia  provides nutrients to its host that are otherwise deficient in the 

blood (e.g. B vitamins) and in exchange, it is granted nutrients for its own survival, 

protection from the host’s immune response and an efficient vertical transmission route to 

the tsetse’s offspring (Bing et al., 2017). In addition to its role in nutrition, W. glossinidia is 

essential for several essential physiological functions of the tsetse. A study conducted by 

(Weiss et al. (2011) discovered that the presence of W. glossinidia during larval 

development of the tsetse is beneficial to the maturation of the immune system in adult 

flies.  W. glossinidia also plays a crucial role in the maintenance of the fecundity of the 

female tsetse fly. W. glossinidia can synthesise the vitamin B6 which acts as a co-factor for 

the enzyme AGAT in the tsetse fly which is responsible for the biosynthesis of proline from 

alanine (Michalkova et al., 2014). Proline is utilised by the tsetse as an energy source and is 



9 
 

crucial during energy intensive processes during the tsetse’s reproductive cycle such as the 

lactation period.  Experimentally induced asymbiotic female tsetse flies were shown to have 

lower levels of vitamin B6 and exhibited hypoprolinemia which lead to a decrease in 

fecundity (Michalkova et al., 2014). 

Primary endosymbionts undergo genome reduction as they become more dependent on 

their host and therefore, there is inevitable loss of function required for free-living existence 

(Sloan and Moran, 2012). W. glossinidia has one of the smallest genomes of any living 

organism with a single chromosome of 700,000 base pairs and a singular plasmid of 5.2kbp 

(described further below) (Akman et al, 2002). 

  

Secondary endosymbionts, compared to P-endosymbionts, have been in association with 

their host for a comparative shorter period, and as such, their relationship with their host is 

facultative (Wernegreen, 2012). A notable secondary endosymbiont is Sodalis glossinidius 

which is also harboured by the tsetse fly. S. glossinidius can be found in various places of the 

tsetse’s anatomy; intracellularly and extracellularly within the gut lumen, milk glands, flight 

muscles, mouthparts, testes and ovaries (Cheng and Aksoy, 1999). 

 

Wolbachia 

Wolbachia, the second P-endosymbiont of the tsetse fly, are parasitic bacteria that are also 

prevalent in over 50% of arthropod species. Within the tsetse fly, Wolbachia reside within 

the reproductive tissue. The presence of Wolbachia infections have a significant negative 

impact on the reproductive capabilities on their host and are the driving force behind the 

cytoplasmic incompatibility within the tsetse fly.  Cytoplasmic incompatibility occurs when a 

Wolbachia infected male mates with an uninfected female which leads to the development 
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arrest of the embryo. It also involves Wolbachia infected females which can mate with 

infected or uninfected males, which guarantee the production of viable, Wolbachia-infected 

offspring (Alam et al., 2011). Along with effectively continuing its spread within the tsetse 

population through the female tsetse, Wolbachia may drive desirable phenotypes and other 

maternally-transmitted genes and symbionts (Jin, Ren and Rasgon, 2009) and effective lead 

to speciation (Werren, 1997).  Due to these factors, there has been research into utilizing 

Wolbachia as part of a vector control strategy (Alam et al, 2011). 

Spiroplasma 

Spiroplasma is the third endosymbiont of the tsetse fly, recently discovered in 2017 within 

Glossina fuscipes. Spiroplasma has known associations with various plant and arthropod 

species.  Spiroplasma species can live intracellularly within host tissue or systematically 

within haemolymph of the host (Doudoumis et al., 2017).  The role of Spiroplasma within 

the tsetse fly is thought to be protective and/or nutritional; higher densities of Spiroplasma 

were found in the gut tissue of larva and live female tsetse and because of this, it is 

suggested that it provides some form of fitness advantage (Doudomis et al, 2017). 

 

Studying Microbiota using 16S Sequencing 

Studies to investigate the bacterial communities of insects (including studies related to 

tsetse flies such as Doudoumis et al (2017)) have been enabled by the invention of high-

throughput sequencing, and specifically 16S-based microbiota sequencing. 16S sequencing 

focuses on sequencing, in a high-throughput manner – all copies of the 16S rRNA gene 

present in a population. The 16S rRNA gene, ubiquitous across bacteria and archaea, is 

comprised of both conserved and hypervariable regions; conserved regions allow for the 
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design of ‘universal primers’ that can amplify the corresponding hypervariable regions, 

which in turn act to delineate the bacterial species from which they are derived, by 

providing ample phylogenetic information (i.e. a “barcode”; Pereira et al, 2010). Another 

advantage of of 16S rRNA gene is that is suggested to evolve at relative constant rates.  

The application of 16S sequencing to insect symbionts has allowed for rapid identification 

and characterization of bacterial symbionts and their function within insect species that 

would be otherwise undetectable through phenotypic methods.  Betelman et al. (2017) 

utilised 16S sequencing in their study of the bacterial symbionts present within three 

species of filth fly parasitoids (Spalangia cameroni, Spalangia endius and Muscidifurax 

raptor). They discovered that there was a diversity in the species found; all of the flies 

contained Wolbachia strains, but they had also found that two of them contained Rickettsia 

and Sodalis species within them. Betelman and al (2017) suggest that Rickettsia and Sodalis 

were facultative symbionts of the parasitoids, moreso in the case of Sodalis as it was also 

found in samples that contained Wolbachia and Ricksettia with the implication being that 

Sodalis is dependent on the presence of other symbionts for vertical transmission. 

A different study utilised 16S amplicon sequencing to study the microbiome of two invasive 

species of aphids (Zepeda-Paulo et al., 2018) in comparison to other aphids native to that 

geographic location. They found that the cereal aphids Sitobion avanae and Rhopalosiphum 

padi had lower diversity of microbiota in comparison to other aphid species and more 

specifically, a difference in the prevalence of secondary endosymbionts among native and 

introduced S. avenae which suggests the association between aphids and endosymbiotic 

bacteria can vary across a geographic range.  

16S sequencing has been crucial in regards to the understanding the association between 

tsetse and their endosymbionts. (Pais et al., 2008) administered antibiotics (ampicillin, 
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carbenicillin, tetracycline and rifampin ranging between 20-60ng/ml) to female tsetse flies 

every two days over 60 days to selectively eliminate endosymbionts to better understand 

their function. The study found that tsetse lacking in Wigglesworthia negatively impacted 

the fertility of the female tsetse and the progeny produced from these females displayed a 

cost in longevity and a compromised ability to digest their blood meal.  The use of 16S 

sequencing has also allowed for the comparison of the relative ages of association with the 

tsetse between the different endosymbionts. Aksoy (1995) compared the 16S rDNA pair 

differences of the P- and S-endosymbionts of two distantly related tsetse species.  The data 

revealed that Wigglesworthia strains within the distant hosts had an 82 base pairs 

difference in 16S rDNA, S. glossinidius only had 4 base pairs different which indicated that 

Wigglesworthia symbiotic association is much older in origin than of Sodalis.  

 

Extreme Genome Reduction in Symbionts 

Since the advent of next-generation sequencing, with the release of the 454 Life Sciences 

GS20 and Solexa 1G (Schendure 2008), and the advent of rapid bacterial genome 

sequencing and annotation, our knowledge of bacterial genome structure and function has 

increased dramatically. Similarly, dramatically smaller genomes than were thought possible 

have been recovered from insect symbionts, and, in particular, obligate symbionts 

(McCutcheon and Moran, 2012). 
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Figure 4- Stages of the genome annotation in host-restricted bacteria for which small population sizes result in mutation 
fixation. Taken from McCutcheon and Moran (2012) 

 

McCutcheon and Moran (2012) discuss the effects of reduced genome size in the bacterial 

symbionts and how they challenge the notion of a minimal genome. They describe a 

minimal genome as the ‘gene set that is sufficient for life under nutrient rich and stress-free 

conditions’ or ‘gene set required for axenic growth in rich media’.  From 2006, drastically 

reduced genomes have been recovered by bacterial endosymbionts and were discovered to 

have genomes so small that it changed all previous views thought possible; four members of 

the Candidiatus genus were found to have genome sizes of less than 300 kb (McCutcheon 

and Moran, 2012). Mutualistic bacterial endosymbionts are thought to undergo rapid 

genome evolution as they shift towards functional integration with their host (Wernegreen, 

2015) and often have distinct phylogenetic lineages. Bacterial endosymbionts such as 

Wigglesworthia glossinidia (genome size ~700kb (Haines et al., 2002)) and Buchnera 

aphidicola (genome size ~618kb (Van Ham et al, 2003)) share similar roles within their 

respective hosts, however, their gene repertoire different in terms of host nutrition and 

cellular functions such as replication initiation and DNA repair (Aksoy, 2002) (van Ham et al., 

<300 kbp 

4.6-7.8 Mbp 2.7-4.0 Mbp 600-700 kbp 
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2003).  Primary symbiotic bacteria are curiously shown to retain genes for the synthesis of 

GroES and GroEL, chaperonin molecules that associated with the folding of many proteins. It 

is found to account 10% of the protein with B. aphidicola (Poliakov et al., 2011) and is 

thought to be the most abundant protein within W. glossinidia (Haines et al., 2002).  

Endosymbiotic bacterial genomes tend to be rich in AT base content (Wernegreen, 2015).  

There are a couple of models which theorise the reasoning behind this; Muto and Qsawa 

(1987) suggest that there is an extreme mutational bias against GC base pairs whereas an 

alternative model proposes a selection bias towards the selection of AT due to the lower 

associated energy cost and relative abundance of ATP (adenine) within intracellular niches 

(Rocha and Danchin, 2002). 

There have been various studies to underline the processes behind genome reduction 

within endosymbiotic bacteria but underpinning the evolutionary mechanisms has proven 

difficult. Some research suggest that it is neutral gene loss as a result of a relaxed selective 

pressure within an intracellular niche and bacterial genes that are not actively maintained 

during selection will eventually be deleted (Moran and Mira, 2001).  Genetic drift is also 

often attributed to the gene loss found in microbial endosymbionts (Giovannoni, Cameron 

Thrash and Temperton, 2014). Moran and Mira (2001) reconstruct the gene deletion events 

that occurred within Buchnera species using comparative 16S rDNA analysis of B. aphidicola 

and a larger ancestral genome. They suggest that Buchnera species, soon into the 

establishment into the endosymbiotic lifestyle, lost many genes through the fixation of large 

deletions, a process which does not fall in line with the principle of graduation genome 

reduction through neutral gene loss (Wernegreen, 2011) 

To fully understand the driving forces behind endosymbiont evolution, it is practical to study 

secondary endosymbionts as their facultative association with their host imply a 
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comparatively recent association with their host than the primary counterparts. This would 

suggest that S-endosymbionts have undergone less genome degradation and thus can 

functionally serve as analogues of P-endosymbionts within the early stages of their host 

association. 

Why is Sodalis so interesting? 

Sodalis glossinidius, the facultative secondary endosymbiont of the tsetse fly, is a key subject 

of interest. S. glossinidius was the first and, currently one of the few, insect endosymbionts 

to be successfully culture in vitro, initially isolated from Glossina morsitans morsitans (Dale 

and Maudlin, 1999) and further characterized by Matthew et al. (2005) 

One of the most interesting aspects of S. glossindius is its genomic structure. S. glossinidius 

possesses one circular chromosome of approximately 4Mb (Toh et al., 2006). In comparison 

to free-living bacteria such as E. coli (4.6Mb) (Serres et al., 2001), the genome size is S. 

glossinidius is small, however, not to the extreme extent of obligate endosymbionts such as 

W. glossinidia (700kb) (Aksoy, 2002).  As, previously discussed, genome reduction is typical of 

endosymbiotic relationships, as bacteria transition from free-living existence and start to 

become adapted to their host, yet, when compared to the P-endosymbiont Wigglesworthia, 

S. glossinidius appears to be in the early stages of its symbiotic relationship with the tsetse. 

Despite this, S. glossinidius has a reduced coding capacity of approximately 51%, possessing 

only 2,472 protein-coding genes, a trait that is unusual for bacterial genomes. Regarding these 

genes, S. glossinidius has retained genes involved in the synthesis of nucleic acids and amino 

acids, as well as those associated with transcription, translation and regulatory processes. The 

retention of these functions are most likely associated with the endosymbiont’s ability to be 

cultured outside of its host (Welburn, Maudlin and Ellis, 1987). Akin to other insect symbionts, 

S. glossinidius has started to accumulate pseudogenes. Pseudogenisation is defined as the 
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process of gene silencing via one or more deleterious mutations (Goodhead and Darby, 2015). 

Sodalis glossinidius possesses approx. 972 pseudogenes, and through hybridisation of its DNA 

to gene macroarrays, it was discovered that some of the genes were orthologous to genes in 

E. coli involving the metabolism of carbohydrates and inorganic ions, as well as defense 

mechanisms. The accumulation of pseudogenes infer the bacteria’s adaptation to the energy-

rich environment of the tsetse due to singular diet of blood (Akman et al., 2001). 

Accumulation of pseudogenes is an indication of recent adaption of endosymbionts to their 

host whereby genes unnecessary for viability within the host are selectively silenced (Darby 

and Goodhead, 2015), further suggesting the notion of a recent introduction of S. glossinidius 

to the Glossina species.  

S. glossinidius is thought to provide benefits similar to an obligate endosymbiont, i.e. 

provision of metabolites and vitamins to the tsetse (Douglas, 1989), however, it is also 

thought to increase susceptibility of the tsetse fly to trypanosome infection. The exact 

mechanism behind this interaction is unknown, it is postulated that the production of N-

acetyl-d-glucosamine by S. glossinidius inhibits the trypanocidal nature of the flies’ midgut 

(Farikou et al., 2010). 

 

Laboratory Models of Symbiosis, including Experimental Evolution 

Current laboratory models of bacterial symbiosis within insects are currently very limited by 

the very nature of the bacterial endosymbionts. Due to the extreme genome reduction 

outlined, studies of P-endosymbionts have been generally restricted to genomic and 

molecular analysis (Gil and Latorre, 2019). The ability to study endosymbiotic bacteria in 

vitro would allow for a better understanding of the molecular mechanisms that underpin 

the interaction between insect and microbe however due to the close association of the 
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two, P-endosymbionts are generally unamenable to axenic culture within a cell-free 

medium. Current laboratory models typically focus on the cultivation and maintenance of 

endosymbiotic bacteria with insect cell lines. One notable cell line is that of Aedes albopictus 

(Asian tiger mosquito) which has been utilised in the cultivation of Wolbachia pipentis 

(O’Neill et al., 1997) and two aphid S-endosymbionts (Darby et al., 2005). Drosophila 

melanogaster as both a common laboratory model and host to endosymbiotic bacteria has 

also be shown to cultivate Wolbachia pipentis (Andrianova et al., 2010).  

There is benefit in the of culture of endosymbiotic bacteria within insect cell lines, namely 

the indefinite maintenance of a single taxon under uniform conditions (Darby et al, 2005), 

however, the ability to culture bacterial endosymbionts in axenic and cell free culture will 

broaden the experimental possibilities available in the research of said symbionts. As 

previously mentioned, rapid improvement in and ready availability of sequencing 

technology and molecular biology techniques, there has been a significant increase in 

knowledge on the genome structure of bacterial symbionts (McCutcheon and Moran, 2012) 

and their various effects on  host phenotypes (Feldharr, 2011). Conversely, there is limited 

research on the phenotypic capabilities of bacterial symbionts and the phenotypic 

consequences associated with host-symbiont interactions. The in vitro culture of insect 

endosymbionts has the potential to provide a fresh perspective and insight into the 

mechanisms that drive host-symbiont interaction that has remained elusive over several 

decades. 

There has been some successful attempt in recent years to cultivate both primary and 

secondary symbionts in cell-free growth medium; Masson et al. (2018) managed to maintain 

the in vitro culture of the Spiroplasma poulsonii with an optimized commercial media, two 

individual groups respectively cultured S-endyosymbiont Serratica dosymbiotica (Sabri et al., 
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2011) and Hamiltonella defensa (Brandt et al., 2017) and Dale et al. (2006) isolated in pure 

culture Candidatus Arsenophonus Arthopodicus, a secondary endosymbiont of 

Pseudolynchia canariensis (hippoboscid louse fly). 

Sodalis glossinidius has been selected as the endosymbiotic bacterial model of choice for 

the basis of this thesis because its culture dynamics have been previous explored (Matthew 

et al, 2006) and S. glossinidius has a related free-living bacterium known as Sodalis 

praecaptivus which provides the opportunity for comparison in terms of in vitro viability. 

Sodalis praecaptivus is a Gram-negative bacterium, like S. glossinidius, but possesses several 

different characteristics. S. praecaptivus possesses a larger genome of 5.16 Mb and does not 

possess any traits of genome reduction (Clayton et al., 2012). It remains viable 

temperatures up to 37°C and grows aerobically (Chari et al., 2015).  Chiari et al. suggests 

that S. praecaptivus acted as an evolutionary precursor to the Sodalis-allied lineage of insect 

endosymbionts. 

 

Aims and Objectives 

This thesis presents Sodalis glossinidius alongside Sodalis praecaptivus as a viable 

experimental model of endosymbiotic bacteria in the exploration of their phenotypic 

capabilities. The two bacterial species will be investigated via growth dynamics under ten 

different laboratory media chosen due to their availability within the laboratory and their 

specific properties that were amenable to S. glossinidius growth (Table 1 for list of media) , 

resistance to oxidative stress, antibiotic resistance and viability in vivo with an experimental 

host Galleria mellonella (waxworm), a readily commercially available model organism that is 

easy to inoculate and can generate results with a 24-48 hour period ( Kavanagh et al, 2018). 
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Methods 

Culture of Sodalis glossinidius 

Sodalis glossinidius used was cultured from stocks provided from the University of 

Liverpool- the strain is GMMB4, originally isolated from Glossina morsitans morsitans. 5µl 

loops were used from the stock aliquots (stored at -80°C in 25% v/v glycerol) and streaked 

onto Columbia agar plates (Sigma-Aldrich) supplemented with 5% v/v horse blood. The 

plates were incubated at 25°C under microaerobic conditions generated by Campygen 

Atomsphere Generation 2.5L sachets inside of sealed anaerobic jars for 72-96 hours where 

individual colonies became visible. Individual colonies were taken from the blood plates and 

inoculated in 5ml of Schneider’s Insect Medium (Sigma-Aldrich) supplemented with 10% v/v 

fetal bovine serum and placed into ThermoScientific 15ml falcon tubes and incubated at 

25°C for 72 hours. 

Culture of Sodalis praecaptivus 

Sodalis praecaptivus was cultured from stocks from University of Liverpool- the strain and 

isolation origin are unknown. 5ml loops were taken from the stock and streaked onto LB 

agar plates. The plates were incubated under normal atmospheric conditions at 25°C for 24 

hours where individual colonies were visible. Individual colonies were taken from the LB 

agar plate and inoculated in 5ml of LB media in ThermoScientific 15ml falcon tubes and 

incubated at 25°C for 24 hours. 

Table 1- List of laboratory media used to test the growth dynamics of Sodalis species, their general function and key 
components 

 

 

Laboratory Media Primary Culture Usage Key Components per Litre (if available) 

Schneider’s Insect 
Media 

Insect Cell Lines Not Available from Sigma Aldirch 

M9 Minimal Salts 
Media 

Escherichia coli  33.9g disodium phosphate, 15g potassium monophosphate, 5g ammonium 
chloride, 2.5g sodium chloride 

Luria-Bertani Broth 
(LB) 

General bacterial culture 10g Select Peptone 140, 5g Select Yeast Extract, 5g Sodium Chloride 

Brain-Heart Infusion 
(BHI) Broth 

Fastidious Pathogens 5g beef heart, 12.5g calf brains, 2.5g disodium hydrogen phosphate, 2g D(+)-
glucose, 10g peptone, 5g sodium chloride 

Mueller-Hinton Broth Antibiotic Susceptibility 2g beef infusion solids, 17.5g casein hydrolysate, starch 1.5g 

Iso-sensitest Broth  Antibiotic Susceptibility 11g hydrolysed casein, 3g peptone, 2g glucose, 3g sodium chloride, 1g starch, 2g 
disodium hydrogen phosphate,1g sodium acetate 

Tryptone Soya Broth 
(TSB) 

Aerobes and Facultative 
Anaerobes 

16g  pancreatic digest of casein, 3g enzymatic digest of soya bean, 5g sodium 
chloride, 2.5g dipotassium hydrogen phosphate, 2.5g glucose 

Nutrient Broth General bacterial culture 1g ‘Lab-Lemco’ powder, 2g yeast extract, 5g peptone, 5g sodium chloride 

Malt Extract Broth Mold and yeast 17g malt extract, 3g mycological yeast 
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Growth dynamics of S.glossinidius and S.praecaptivus within various laboratory media 

Individual colonies were taken from Sodalis glossinidius and S. praecaptivus and inoculated 

into 5 ml of ten different culture media (Table 1). 200μL of each inoculum was pipetted into 

a 96 well plate with eight replicates for each growth medium. These plates were incubated 

at 25°C under normal atmospheric conditions for a seven-day period. Absorbance at 600nm 

for the plates and colony forming units were taken using the Miles Misra method (Hedges, 

2002) at daily intervals. 

 

Antimicrobial resistance in S.glossinidius and S. praecaptivus 

Swabs of liquid culture from S. glossinidius and S. praecaptivus were taken using aseptic 

technique and used to form a bacterial lawn on Columbia agar plates supplemented with 5% 

v/v horse blood (S. glossinidius) and LB agar plates (S. praecaptivus). An antibiotic disc of 

penicillin G (10µg), meropenem (10µg), linezolid (10µg), ceftazidme (30µg) and 

sulphamethorazole (25µg) were each placed respectively on the spread plates of 

S.glossinidius and S. praecaptivus, 3 replicate plates per antibiotic per bacteria plus a 

negative control plate with no antibiotic for each (32 plates in total). These five antibiotics 

were chosen as they were readily available in the laboratory and classed as broad-spectrum 

antibiotics that are known to act on a wide range of bacteria. The plates were incubated at 

25°C under microaerobic conditions with Campygen Atomsphere Generation 2.5L sachets 

inside of sealed anaerobic jars for 72 hours. The LB plates were incubated under normal 

atmospheric conditions at 25°C for 24 hours. The diameter of inhibitory zones was 

measured in millimeters (mm). 

 

Culture dynamics of S. glossinidius and S. praecaptivus under oxidative stress 

Schneider’s Insect Medium was supplemented with 30% w/v hydrogen peroxide to create a 

1mM stock solution. The stock was serially diluted with Schneider’s Insect Medium to give 

the final concentrations of 100µM, 10µM, 1µM and 0.1µM. 4.5ml of each concentration 

(including 1mM) was placed into ThermoScientific 15ml falcon tubes. 500µL of liquid S. 

glossinidius culture was inoculated into each concentration of hydrogen peroxide and left to 

incubate at 25°C over the duration of seven days. OD measurements at 600nm and colony 

forming units were counted using the Miles Misra method (Hedges, 2002). 
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 The above method was repeated for S. praecaptivus. 

qPCR Analysis of the effects of oxidative stress in S. glossinidius 

Primer design for oxidative stress analysis 

 Figure 5 and Sodalis glossinidius (strain GMMB4) genome annotation provided by my 

supervisor (genome annotation accessed through Artemis genome browser and annotation 

tool from the Sanger Institute website) were used to identify genes related to oxidative 

stress. Base pair sequences for the target genes were downloaded in FASTA format. Base 

pair sequences were inputted into PRIMER3 with the parameters for product size range  

 of 100-150bp and TM of 55-60°C. See Table 2 for primer sequences.  

 

Table 2- Primers designed for the study of the effect of oxidative stress on Sodalis glossinidius 

Enzyme/Protein 
Primer 

Name 

Forward/Reverse 

F/R 
Primer Sequence (s) 

Product 

Size (bp) 

Annealing 

Temperature (°C) 

DNA gyrase A GyrA F GTCTCCGAGGTAAGCATCGT 117 59 

  R ATCGTCGTCATCGACCTGTT  59 

Catalase Cat1 F CAGGGTAACTGGGATGTGGT 119 59 

  R GGGGATTTCAGATTCGTCGC  59 

Superoxide Dimutase SodA F ACGCTACCTTCCCTGCTTTA 120 59 

  R CAAGGCGCCATTGGTGTTAT  59 

Peroxiredoxin OxyR5 F TATCCGCGACCTCAAGTTGT 120 59 

  R TTCTCTTCCAGGCGCTGAAT  59 

N-acetylglucosamine 

deacetylase 
1pxC F TGAGGAGCTTAACAGTGCCA 112 59 

  R GAAATCGAGCGTAAAGCCGT  59 

 
 

RNA extraction 

After day 7, RNA was extracted from three samples of each concentration of hydrogen 

peroxide containing Sodalis glossinidius through the Qiagen RNeasy Mini Kit, following the 

manufacturer’s instructions. Extracted RNA samples were tested for yield and quantity using 

Nanodrop equipment. 
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cDNA synthesis and qPCR of samples 

RNA samples were converted into cDNA using the Qiagen QuantiTect Reverse Transcription 

Kit, following the manufacturer’s instructions. The cDNA was then prepped for qPCR via the 

Qiagen QuantiTect SYBR Green RT-PCR kit following manufacturer’s instruction based on the 

use of the Qiagen Rotor-Gene Q. 

Viability of S. glossinidius and S. praecaptivus within Galleria mellonella larva (waxworm) 

Galleria mellonella stock (purchased from Amazon) was stored at approximately 4°C in low-

light conditions until required. 

OD measurements at 600nm were taken from established liquid cultures of S. glossinidius 

and S. praecaptivus and diluted with sterile phosphate-buffered saline (PBS) solution to 

make a 1ml inoculum of each at an OD of 1.0. 5μL of each respective inoculum was injected 

into the right proleg of the waxworm (Harding et al., 2013). This was repeated until there 

were 20 worms; 10 of each inoculated with either S. glossinidius or S. praecaptivus. Two 

groups of Galleria mellonella were used as negative controls; 10 worms were injected with 

PBS solution; 10 worms were not injected. The worms were incubated without food at 25°C 

within Petri dishes over 7 days. 

Live and dead Galleria larva, as well as larva that had begun to pupate from the two infected 

and two control groups were extracted from the Petri dish and homogenized using a pipette 

tip within 2ml micro centrifuge tubes containing 1ml sterile PBS solution. The homogenate 

was vortexed and 500µl of each homogenate was inoculated into 4.5ml of Schneider’s 

Insect Medium and left to incubate for 24 hours at 25°C. 

60µL of each sample was used to check for bacterial cell viability via colony forming units via 

the Miles Misra method. 

DNA was extracted from the samples infected with Sodalis species and both control groups 

via the ZymoResearch Quick DNATM Miniprep Plus Kit, following the manufacturer’s 

instruction regarding bacterial cells.   

The extracted DNA was then specifically amplified through Polymerase Chain Reaction 

(PCR), using a reaction mixture of Bioline Mitaq Red and primers to amplify the groEL gene 

of Sodalis glossinidius (forward primer 5’- CCA AAG CTA TCG CTC AGG TAG G-3’, reverse 
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primer 5’-TTC TTT GCC CAC TTT CGC CAT A-3’, taken from Matthews, PhD thesis, 2005). The 

PCR products were then analysed through gel electrophoresis run on a 1.5% v/v agarose gel 

and external 16S sequencing. DNA extracted from Sodalis praecaptivus was also sent for 

16Ssequencing ( primer sequences: 515FB - 5'-GTG YCA GCM GCC GCG GTA A-3' (Caporaso 

et al., 2011; Parada, Needham and Fuhrman, 2016) and 806R - 5'-GGA CTA CNV GGG TWT 

CTA AT-3' (Apprill et al., 2015). 

Results 

 Growth dynamics of Sodalis species within various laboratory media 

Table 3- Table of OD600 and c.f.u.ml-1 of Sodalis species within different growth media after 5 days incubation 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 3, both Sodalis species exhibited growth within all laboratory media except for 

malt extract broth. The growth of S. glossinidius is slower in comparison to S. praecaptivus 

in all media used over the five-day incubation period. From Table 3, it is shown that that 

there is no difference in growth based on the optical density measurements between the 

different media for either species. Colony forming units were obtained from S. praecaptivus 

except from the brain-heart infusion broth and malt extract broth. It was not possible to 

obtain colony forming units from S. glossinidius due to culturing issues to be discussed. 

 

Media Sch M9 LB BHI MH ISo TSB NB MEB 

OD6oo 

S. glossinidius (Day 0) 

0.088 0.016 0.021 0.013 0.060 0.010 0.023 0.012 N/A 

OD6oo 

S. glossinidius (Day 5) 

0.266 0.252 0.400 0.344 0.140 0.057 0.359 0.028 N/A 

c.f.u. µl-1 

S. glossinidius (Day 0) 

N/A N/A N/A N/A N/A N/A N/A N/A N/A 

c.f.u. µl-1 

S. glossinidius (Day 5) 

N/A N/A N/A N/A N/A N/A N/A N/A N/A 

OD600 

S.praecaptivus (Day 0) 

0.058 0.062 0.046 0.065 0.056 0.078 0.047 0.630 N/A 

OD600 

S.praecaptivus (Day 5) 

2.84 2.93 2.67 2.77 3.04 3.12 2.74 2.56 N/A 

c.f.u. µl-1 

S.praecaptivus (Day 0) 

1.2 x 108 1.4 x 108 2.2 x 108 3.3 x 108 6.7 x 107 1.3 x 108 1.6 x 108 7.0 x 108 N/A 

c.f.u. µl-1 

S.praecaptivus (Day 5) 

4.5 x 106 3.3 x 106 4.2 x 106 N/A 3.8 x 106 1.0 x 107 6.2 x 107 3.5 x 106 N/A 
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 Culture dynamics of Sodalis species under oxidative stress 

 

The qPCR of S. glossinidius showed no quantitative expression of any of the genes selected 

for, including the housekeeping gene GyrA. 

Optical density measurements and cell viability counts for Sodalis glossinidius were 

unavailable due to culturing issues to be discussed. 

 Antimicrobial susceptibility of Sodalis species 

 

 Table 4- Antmicrobial susceptibility data from anitimicrobial disc diffusion assay vs five common antibiotics 

 

 

 

 

 

 

 

Antibiotics are shown to have an effect on Sodalis praecaptivus; it appears to be the most 

resistant to penicillin G and the least resistant to meropenem. It was not possible to obtain 

antimicrobial resistance data from Sodalis glossinidius due to culturing issues. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Antibiotic Average Inhibition Zone Diameter (mm) Average Inhibition Zone Diameter (mm) 

Sodalis glossinidius Sodalis praecaptivus 

Penicillin G (10µg) N/A 26 

Meropenem (10µg) N/A 51 

Linezolid (10µg) N/A 33 

Ceftazidme (30µg) N/A 23 

Sulphamethoxazole (25µg) N/A 37 
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3.4 Viability of Sodalis species within Galleria mellonella 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 5- Gel electrophoresis (1.5% agarose, 5µl gel red) of Galleria mellonella homogenates that were inoculated with 
Sodalis glossinidius 

 

Cell viability counts were unable to be obtained from the homogenates of Galleria 

mellonella inoculated with Sodalis glossinidius and Sodalis praecaptivus as individual 

colonies were not visible for the count.  The upper range for colony forming units for both 

Sodalis species from the homogenates was ~107 c.f.u. ml-1. 

Gel electrophoresis was inconclusive, there are no visible bands of DNA, including the 

positive control for S. glossinidius and negative water control. 

16S sequencing of the samples revealed there was no Sodalis species present within Galleria 

mellonella after the week of incubation. 

Hyperladder  
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 Sequences for Staphylococcus species and Enterococcus casseliflavus were found in the 

samples meant to contain Sodalis glossinidius and Sodalis praecaptivus. 
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Discussion 

The aim of this thesis was to establish Sodalis glossinidius as a reliable laboratory model of 

insect endosymbiosis via comparative phenotypic experimentation involving Sodalis 

praecaptivus and ultimately provide the framework for the in vitro study of the other 

cultivable endosymbionts. As the result show, not enough data was collected on the 

phenotypic capabilities of Sodalis glossinidius due to complications during the project, and 

thus it has been not feasible to discuss the difference in phenotypic ability between the two 

Sodalis species. Challenges in consistent axenic culture of S. glossinidius have occurred over 

the duration of the experiment. One of the largest barriers to progression in this study was 

the repeated contamination of bacterial cultures of Sodalis glossinidius with contaminant 

species. While there have been some instances of axenic cultivation, the presence of 

contaminant species and the lack of competitive characteristics on the part of S. glossinidius 

has created several setbacks. Some cultures of S. praecaptivus were also affected. Proper 

aseptic technique and increased countermeasures such as implementation of UV light, 

utliisation of Class II laminar flow hood during inoculation and the liberal use of sterilizing 

agents such as ethanol and Chemgene on all surfaces, equipment and containers had 

minimal impact on the rate of contamination.  Possible solutions to this issue would involve 

the application of selective media and the use of antibiotics and antifungals through 

experimentation as an added precaution against contamination. 

There was a lack in consistency in cultivation of S. glossinidius from stock aliquots and 

existing cultures within the culture media.  During experimentation, S. glosssinidius was 

erratic in its growth dynamics; it is well-established that S. glossinidus grows optimally on 

agar plates supplemented with blood and under microaerophilic conditions (Matthews et al, 

2006), yet on several occasions, S. glossinidius exhibited no growth under these conditions. 
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There were similar problems within liquid culture where S. glossinidius struggled to grow in 

liquid culture media such as Schneider’s Insect Medium where there had been no prior 

issue.  A plausible reason to this occurring has been discussed by Sridhar and Steele-

Mortimer (2016). They suggest that there can be inherent variance within growth media, 

especially in less chemically defined media can affect bacterial interaction.  The exploration 

the culture dynamics of Sodalis through inoculation in various media was in the attempt to 

understand what key components Sodalis species would require to produce a chemically 

defined media suitable for axenic culture. A recent paper utilised  in silico modelling and 

refinement of a previously published genome metabolic model to  generate an  entirely 

defined growth media dubbed ‘SMG11’ which was reported to cause an endpoint increase 

the growth of S. glossinidius (Hall et al., 2019) .  Some of the major findings by Hall et al. 

(2019) were that S. glossinidius is dependent on N-acetyl-D-glucosamine (GlcNAC) as a 

primary carbon source, that the thiamine produced by the tsetse is important in the 

production of biomass and L-glutamate is essential in its TCA cycle.  SMG11 is comprised of 

M9 minimal media supplemented with the aforementioned nutrients alongside others. 

Further experimentation involving the use of the aforementioned SMG11 or the generation 

of a similar  defined media supplemented with GlcNAC, L-glutamate, thiamine and other 

essential nutrients specific to S. glossinidius should improve the consistency in which S. 

glossinidius  can be established and maintained in liquid culture and thus advocate the use 

of metabolomics in the generation of tailored growth media for the study of other bacterial 

endosymbionts. 

In regards to experimental design, the use of Galleria mellonella larva within the experiment 

was interesting but in future experimentation, the use of other ex vivo models should be 

explored. Galleria mellonella larva are quite frequently used as models for in vivo toxicology 
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and pathogenicity of prominent bacterial and fungal human pathogens (Cook and McArthur, 

2013).  There are several key reasons for the popularity; there are low in cost and 

commercially available, they can be inoculated with relative ease and generate results 

typically within 24-48 hours (Kavanagh et al., 2018). Galleria mellonella larva, however has 

been described as not be suitable for some microbial species. Based on the sequencing 

results provided from the inoculated larva, the maintenance of Sodalis species within 

Galleria mellonella appears to be not possible, or at the very least, difficult. One possible 

explanation for this, in terms of Sodalis glossinidius, is the larva’s lack of an exoskeleton. The 

primary carbon source for S. glossinidius is N-acetyl-d-glucosamine (GlcNAc) (Dale and 

Welburn, 2001) and it can be obtained by the breakdown of the chitin (polymerized GlcNAC) 

within the exoskeleton of the tsetse fly via the enzyme b-N-acetylglucosaminidase (Dale and 

Maudlin, 1999). 

The use of a model that possesses a chitinous exoskeleton with more similarity to the tsetse 

fly should be considered in an expansion of the experiment. The most obvious choice would 

be another commonly used model within research, Drosophila melanogaster. The reasons 

behind the use of Drosophila melanogaster as a model organism is similar to that of Galleria 

mellonella; its care and cultivation within laboratories is not resource intensive, it has a 

short generation time (~10 days), and high fecundity and is amenable to genetic 

modification (Jennings, 2011).   

There has been some investigation into the infection within the midgut of Drosophila with 

Sodalis glossinidius (Stevens, unpublished). Stevens found that there was no successful 

establishment of Sodalis glossinidius and suggested two plausible barriers to successful 

Sodalis infection; the alkalinity of the Drosophila midgut and competitive pressure from the    

commensal and transient bacteria within the Drosophila (Buchon, Broderick and Lemaitre, 
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2013). The use of axenic Drosophila would be ideal in further experimentation into infection 

with Sodalis species (Stevens, unpublished). Another change in the experimental design 

would be the use of the microdilution broth method over the disc diffusion assay for 

antibiotic susceptibility testing within Sodalis species.  The disc diffusion method was 

chosen due to the immediate availability within the laboratory and the ease of and set-up. 

The disc diffusion assay does provide visual, qualitative data of the effect of antibiotics via 

the zone of inhibition. The assay, however, is better suited for clinically relevant bacterial 

species. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) database 

from which minimum inhibitory concentration (MIC) are ascertained from the diameter of 

the zone of inhibition does not have standards for Sodalis species.  

Some of the appeal of the broth microdilution method for determining antibiotic 

susceptibility is like that of disc diffusion in terms of cost and accessibility.  The largest 

advantage to this method is the ability to determine MICs quantitatively relative to the 

microorganism being studied; this is useful due to the lack of comparative research available 

in antibiotic susceptibility of endosymbionts. The broth microdilution method allows for the 

testing of multiple antibiotics at a wider range of concentrations that can be easily modified 

during experimentation to accurately pinpoint the breakpoint MIC. The other advantage to 

microdilution method is the use of microtiter plates; they are more practical in terms of 

storage of samples, the generation of replicates and often, the results founds can be 

analysed via laboratory equipment (i.e. plate reader). 

The discovery of antimicrobial resistant properties of S. glossinidius would be useful in the 

determination of a selective marker for positive identification of the bacteria and mitigation 

of the contamination issues faced. The potential of antimicrobial resistance expression in S. 

glossinidius would be a point for further exploration. S. glossinidius, as previously 
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mentioned, is in the process of pseudogene accumulation and genome reduction for 

adaptation to its host and as such, it would be unlikely that it would possess active genes for 

antimicrobial resistance.  S. glossinidius does still possess genes for transcription and 

translation and possesses a plasmid (pSG1) which contains homologous regions to that of 

conjugative transfer pilus genes (Toh et al.,2006) which implies conjugation is possible.  

Horizontal gene transfer is thought to be a leading cause of the increase of antibiotic 

resistance (Gyles and Boerlin, 2013).  In further experimentation, it would be intriguing to 

attempt to confer antibiotic resistance to S. glossinidius via conjugation or transformation 

through resistance genes carried on plasmids. 

The difficulties associated with the research is highlighted by the challenges in establishing 

Sodalis glossinidius in consistent culture, but the experimental design of the project still 

holds some merit for innovation in how insect endosymbiont studies will advance and 

progress. The ability to understand how Sodalis glossinidius to react to oxidative stress, the 

natural defense mechanism of the tsetse fly against infection (Hao, Kasumba and Aksoy, 

2003) would give some insight on whether endosymbionts retain the ability to protect 
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against their host defenses, and in terms, of paratransgenesis and vector control,  defense 

mechanisms of other insect species (e.g. Figure 5, in axenic culture).   

 

Figure 6- Plot of time (x) vs sequencing reads and OD600 (y) for the growth (grey area) of Sodalis glossinidius under no 
specific oxidative stress. The plot shows the expression of 7 genes related to activity under oxidative stress, provided by my 
supervisor Ian Goodhead 

 

The application of using in vivo models such as Galleria mellonella or Drosophila 

melanogaster previously mentioned offers the opportunity to explore the concept of 

bacterial endosymbiont’s viability – and the associated responses, both from a Sodalis and 

host-perspective - as part of vector control strategies for diseases such as HAT.  

The core concept behind this thesis is that emphasis into the phenotypic capabilities of 

bacterial endosymbionts, especially those have the ability to be culture in vitro, is required 

to advance the state of research into insect-bacteria. There are experimental techniques 

that are made accessible to the research of insect endosymbionts through the ability to 

culture said endosymbionts in vitro.  The experimental evolution of bacterial endosymbionts 

would provide the ability to further understand their existing phenotypes, but also induce 

genomic and phenotypic change in real-time. Experimental evolution is the investigation of 
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evolutionary process through an experimental population and the conditions implemented 

on said population by the experimenter (Kawecki et al., 2012). Experimental evolution has 

been utilised in various studies to understand evolutionary dynamics through the 

application of various manipulations to the environment the subject is exposed to, typically 

over an extended period.  The most notable experimental evolution is the long-term 

Escherichia coli evolutionary experiment, spearheaded by Richard Lenski. This still on-going 

experiment tracked the genomic and phenotypic changes in 12 identical populations of 

asexual E. coli from. Over the duration of the experiment, Lenski and his team observed 

several interesting changes within the 12 populations; an increased growth rate in present 

populations in comparison to the ancestral strain (Lenski, 2003), a general  increase in 

fitness from (Wiser, Ribeck and Lenski, 2013) and the ability of one population to grow 

aerobically on citrate, a trait  previously unseen in E. coli (Blount, Borland and Lenski, 2008).  

There has been some research into applying experimental evolution into the study of 

animal-microbe interactions. (Gibson et al., 2015) co-evolved Caenorhabditis elegans and 

the virulent bacterial parasite Serratia marcescens. They found that after 20 generations of 

co-evolution, C. elegans exhibited an increase in fecundity when allowed to exist and evolve 

in the presence of each other, leading to a reduction in previously established antagonism 

between the two. There have been some studies that utilised experimental evolution to 

understand insect-microbe interaction regarding the advantages in immunity granted by 

some endosymbionts. One such study explored the three-way interaction between 

Drosophila melanogaster, Drosophila C virus and Wolbachia which confers resistance to the 

virus to its host (Martinez et al., 2016). They found that after nine generations of selection 

(infection of flies that were either harbouring or lacking in Wolbachia with Drosophila C), 

while resistance had increased within all populations, the frequency of an allele with effects 
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on resistance to Drosophila C was reduced in flies harbouring Wolbachia. This suggested 

that defensive endosymbiont presence can lead to a dependence and negatively impact the 

evolution of host’s resistance genes (Martinez et al., 2016). 

Experimental evolution has been shown to be able the bridge the theoretical predictions 

provided by genomic data and empirical testing (Hoang, Morran and Gerardo, 2016) and its 

application  towards the establishment of  Sodalis species as laboratory models of 

symbionts would greatly improve our understanding of phenotypic ability of Sodalis species. 

The experimental methods described in the thesis (media testing, oxidative stress testing, 

antimicrobial susceptibility and viability within an experimental host) can be adapted in line 

with experimental evolution. The addition of these and other variables such as pH over a 

longer experimental period and across populations of Sodalis species will apply selective 

pressure which emulates the conditions experienced by primary and secondary symbionts 

within their host both bacterial species in the aim of inducing genomic changes within a 

laboratory setting. The successful establishment of this system would serve as a proxy for 

the adaptations that symbionts undergo as they move closer to symbiotic living and 

congruence with their host. 

Conclusion 

The in vitro study of the secondary endosymbiont Sodalis glossinidius and its relative, 

Sodalis praecaptivus has been difficult but the continuation of research into establishment 

of these, or similar, bacterial species as research models is necessary to further the 

understanding behind host-bacterial symbiont interactions. The advancement of genomic 

and molecular techniques has provided a lot of data in terms of the potential roles of 

symbionts and their adaptations to symbiotic existence, however the data presented can be 

described as hypothetical in nature. The implementation of phenotypic research through in 
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vitro culture of available symbionts through experimental evolution methods alongside 

current sequencing strategies will form a better picture and progress our knowledge of 

evolutionary mechanisms that underpin host-microbe interaction.  
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