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ABSTRACT  Similarity transformation and Hirota bilinearization are deployed to derive exact bright and dark ultrashort 

one- and two-similariton solutions of a nonautonomous cubic-quintic nonlinear Schrödinger equation. Such wave packets 

may emerge when group-velocity dispersion and cubic-quintic self-phase modulations are balanced by Raman self-frequency 

shift in the presence of an external harmonic trap and linear gain or loss.  The solutions presented here can be used to 

investigate the compression, amplification and interaction phenomena associated with bright and dark similaritons in 

inhomogeneous fiber systems. Furthermore, the dynamics of the characteristic parameters of the similaritons are studied 

analytically, and similariton stability in a distributed system is tested through extensive computations. As an example 

application, the tunneling behavior of bright and dark similaritons through cascade dispersion barriers and dispersion wells on 

an exponential background is investigated, and some interesting novel features are uncovered which are expected to facilitate 

the control of bright and dark ultrashort similariton in experimental scenarios. 
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1. Introduction 

Optical similaritons originate from the interplay between group-velocity dispersion (GVD), nonlinearity and linear 

gain/loss in optical fiber lasers [1]. These waves can preserve their overall shapes during propagation by adjusting their 

amplitudes and widths to accommodate gradual longitudinal variations in system parameters [1-3]. Much attention in 

the optics literature has been paid to similaritons in fiber lasers [3-7] and amplifiers [8,9], dispersion-decreasing fibers 

[10-12], and tapered inhomogeneous nonlinear waveguides [13-18]. Generic theoretical models governing the 

dynamics of similaritons tend to be based on the well-known nonlinear Schrödinger (NLS) equation [1,2].  However, 

for systems supporting high-intensity ultrashort pulses, higher-order nonlinear effects can come into play such as the 

host medium’s quintic response and also the Raman self-frequency shift. To accommodate these additional 

contributions to wave propagation, the nonautonomous cubic-quintic nonlinear Schrödinger (C-QNLS) equation is 

proposed in non-dimensional form [19-21]  
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where z  and t  are the normalized propagation distance and the retarded time, respectively, and ( , )u z t  is the complex 

slowly-varying envelope of the electric field.  The functions ( )z , ( )z  and ( )z  modulate the GVD, cubic and quintic 

nonlinearities, respectively, while ( )p z  denotes the external harmonic potential, ( )z  accounts for retarded Raman 

shifting, and ( )z  parametrizes the gain or loss. 
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Equation (1) is of interest across several branches of modern research including plasma physics, Bose-Einstein 

condensates, and particularly nonlinear fiber optics [19-22].  Simplified versions, where one or more terms are 

neglected, have been studied previously in the contexts of control, tunneling and compression of bright, dark, kink and 

anti-kink similaritons [10, 11, 19, 21].  But in the most general regime – when the terms modelling quintic nonlinearity, 

an external potential and the Raman effect are all retained – there arise some key issues that have not yet been 

addressed in the literature.  Fundamentally, there is the central question of solution existence: finding multi-similaritons 

of nonautonomous systems such as Eq. (1) presents somewhat greater theoretical complexity than in the simpler cases 

considered to date. And should such waves exist, their stability across a wide parameter space and the tunneling 

characteristics of two interacting similaritons passing through cascade barriers and wells  need to be investigated. 

Motivated by these issues, this paper considers Eq. (1) in full and seeks its nonautonomous bright and dark one- and 

two-similariton solutions. In Section 2, the bright families are derived by deploying similarity transformations while the 

derivation of dark families requires an additional level of analysis by using Hirota’s bilinearization method. The 

parameter dynamics and the stability discussion of the obtained similaritons are also presented. As a candidate 

application, the tunneling features of the novel similaritons passing through dispersion barriers (DBs) and dispersion 

wells (DWs) are explored in Section 3. Finally, we summarize results and draw conclusions in Section 4. 

2. Ultrashort nonautonomous similariton solutions 

In the absence of the harmonic-potential and Raman-shift terms in Eq. (1), Ref. [23] presented bright one- and two-

similariton solutions for the constant-coefficient C-QNLS equation. Our general analytical approach, then, involves 

establishing a one-to-one correspondence between Eq. (1) and its constant-coefficient counterpart through similarity 

transformations. However, to our best of our knowledge, dark similariton solutions for both constant- and variable-

coefficient C-QNLS equations remain unknown; moreover, we cannot obtain dark similaritons for Eq. (1) by the 

similarity transformation technique alone. Rather, dark one- and two-similariton solutions of Eq. (1) will be sought by 

using Hirota’s bilinearization method in combination with a similarity transformation. 

2.1. Bright similariton solutions 

To obtain exact bright similariton solutions for Eq. (1), we begin by introducing the similarity transformation 

       ( , ) ( ) ( ( ), ( , ))exp ( , ) ,u z t z Z z T z t i z t  
                 (2) 

where ( , )T z t is a similarity variable, and ( )z  and ( )Z z represent the amplitude and the effective propagation distance, 

respectively. By substituting ansatz (2) into Eq. (1), one can arrive at a constant-coefficient C-QNLS equation which 

also possesses a Raman-shift term (this model is known as the Kundu-Eckhaus equation [20, 23]) such that 
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4 = ( ) t za z T Z  . Meanwhile, we can obtain the following 

constraint relations:  
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where 2 0 1
0

( ) ( ) exp 2 ( ) 2 ( )
z

w z a z w s ds a z   
   . Since we are looking to solve Eq. (1) by first solving Eq. (3), the 

formulation of the similariton solutions to Eq. (1) will evidently also be bound by constraints (4a)–(4c); these relations 

inherently capture the z -dependence of the coefficients in Eq. (1).  After some calculations, it can be shown that the 

parameters of the similaritons are given by 
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where 0t , 0w
 
and 0Z  denote the initial values of the corresponding parameters at 0z  , respectively.  Without loss of 

generality, here we set 0 0t  , 0 0Z  , and 0 1w  . Thus, based on the solutions to Eq. (3) [23], one can derive the bright 

one- and two-similariton solutions to Eq. (1) by deploying the parameters defined in Eqs. (5a)–(5c) but subject to the 

additional condition 22 ( ) ( ) ( ) 0z z z    . The bright one-similariton solution satisfying Eq. (1) can now be expressed 

in the form 

 1- 1( , ) ( ) ( , )exp ( , )bright brightu z t z z t i z t   ,                                                                 (6) 

where 
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In addition, the bright two-similariton solution can be expressed in the form 



 2- 2( , ) ( ) ( , )exp ( , )bright brightu z t z z t i z t   ,                                                               (8) 

where 

2

3
2 2

4

2
( , ) exp

( )
bright

GG a
z t i dt

F a w z F


 
   
 
 
 ,                                                     (9a) 

1 1 2 2 1 1 2 2 1 2( , ) exp( ) exp( ) exp( ) exp( )G z t m m            
,                              (9b) 

* * *

1 2 0 1 2 0 1 1

2 2 1 2

exp( )exp( ) exp( )exp( ) e( , ) 1

xp(

xp( )exp( )

exp( )exp( )) exp( )e

F z t        

   

   

  

 
,                      (9c) 

2
2 1 2 1 22

1 2 1 2 2

1 1 1 2 2 1

( )

8 ( )

r r i i

r r r i i

k k ik ika
m m

a k k k ik ik


  


  
,                                                        (9d) 

2
2 1 2 1 22

2 2 1 2 2

1 2 1 2 2 1

( )

8 ( )

r r i i

r r r i i

k k ik ika
m m

a k k k ik ik


  


  
,                                                        (9e) 

2 2

2

2( ) ( )
( , ) ( ) ( 1,2)

( ) 2 ( )

jr ji jic

j jr ji

k k i kt t z z
z t k ik i dz j

w z w z




 
    ,                                    (9f) 

2

( ) ( )
( , ) 2 2 ( 1,2)

( ) ( )

c

j jr ji

t t z z
z t k k dz j

w z w z





   ,                                                (9g) 

 
*

2 1 2
0 2

1 1 2 1 2

exp
2 ( )r r i i

a m m

a k k ik ik
 

  
,  

*

2 2 2
2 2

1 2

exp
8 r

a m m

a k
  ,                                                (9h) 

 
2 2 2 22

1 2 1 2 1 22

2 2 2 2 2

1 1 2 1 2 1 2

[( ) ( ) ]
exp

16 [( ) ( ) ]

r r i i

r r r r i i

m m k k k ka

a k k k k k k


  


  
.                                                    (9k) 

Here, jm , jrk  and jik ( 1,2)j    are arbitrary real constants. The two-similariton solution (8) is, in essence, a nonlinear 

superposition of two one-similariton solutions (6).  It can be seen from Eqs. (4) and (5) that the pulse width ( )w z , the 

central position (time shift) ( ),ct z  and the amplitude ( )z  all depend explicitly on ( )z , ( )z  and ( )p z . Moreover, 

constraints (4a)–(4c) imply that the one- and two- similariton solutions derived here exist as the result of a complicated 

interplay between all the intrinsic physical processes captured within Eq. (1) and the external potential. 

2.2. Dark similariton solutions 

In order to seek exact dark similaritons of Eq. (1), we first solve Eq. (3) using Hirota’s bilinear method and then 

generate the desired solutions by applying the inverse similarity transformation obtained from (2).  Our analysis begins 

by assuming the following decomposition for the field ( , )z t  [23, 24]: 
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where   is a real constant, ( , )g g z t  is a complex function and ( , )f f z t  is a real function. After substituting 

ansatz (10) into Eq. (3), one finds that under the condition
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where the bilinear operators 
zD and 

tD  are defined as [24] 
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In Hirota’s method, ( , )g z t  and ( , )f z t  are expanded according to [23] 
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where ( 0,1,2,... ,...)jg j n  and ( 1,2,... ,...)kf k n  are assumed to be differentiable functions of z  and t . Theoretically, 

the n-similariton solution may be derived by truncating expansions (13a) and (13b) at the ng  and nf   terms. For the 

one-similariton solution, it follows that 0 1(1 )g g g   and 11f f  ; these expressions are then substituted into bilinear 

forms (11a) and (11b) and the ensuing hierarchy of equations solved sequentially. After extensive calculations, we 

arrive at the exact dark one-similariton solution of Eq
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To tackle the two-similariton case, expansions (13a) and (13b) are truncated at 
0 1 2(1 )g g g g    and 

1 21f f f   .  

Then, following a similar lengthy analytical procedure, we obtain the desired exact dark two-similariton solution of Eq. 

(1): 
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Here,   is a complex constant while  , b , jd , jh , jr , j  ( 1,2)j   are real constants. From inspection of the two 

square-root expressions in Eq. (17f), one can deduce the constraint ranges of 1h , 2h , 1a  and 2a to be  

2 *

1 2 12h a a   and 
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2 2 12h a a  , 1 2 0a a  .                                                       (18) 

Since the same similarity transformation (2) has been retained in both our analyses [converting (variable-coefficient) 

Eq. (1) into (constant-coefficient) Eq. (3)], constraint relations (4a)–(4c) derived for bright similaritons must also hold 



true for dark similaritons. Thus dark similaritons, like their bright counterparts, exist as a result of the balance between 

the effects of GVD, cubic and quintic nonlinearities, the Raman shift, and the external potential.  

2.3. Properties of similariton solutions 

It can be seen from inspection of solutions (6), (8), (14) and (16) that the width, amplitude, central position (time 

shift) and chirp of similaritons are described by the functions ( )w z , ( )z , ( )ct z  and ( )C z , respectively. All four of those 

characteristic parameters depend directly upon ( )z  and ( )z . Here we consider the evolution of the characteristic 

parameters of bright and dark similaritons in a typical exponentially-distributed system defined by 
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From inspection of Eqs. (20a)–(20d), it is clear that the characteristic parameters depend explicitly on the propagation 

distance and also on the GVD and cubic-nonlinearity distributions. In particular, the amplitude ( )z  and width ( )w z  

depend upon 1 1   and there are hence three different cases to consider.  (i) When 
1 1  , the width and amplitude of  

 

Fig.1. The dynamics of (a) pulse width ( )w z , (b) amplitude ( )z , (c) time shift ( )ct z and (d) linear chirp ( )C z  of the similaritons for 

different dispersion and nonlinearity parameters.  Here the parameters are 0 0.2  , 0 0.04  , 1 1a  , 2 1a  . 



the similaritons are both invariant throughout propagation (which is reminiscent of soliton behavior).  (ii) For 
1 1  , 

the width decreases exponentially with z while the amplitude increases commensurately (this result indicates that pulse 

compression can be achieved).  (iii) For 
1 1  , the opposite features occur (the width increases exponentially and the 

amplitude decays). Variations in width and amplitude are shown in Figs. 1(a) and 1(b), respectively, with the 

corresponding time shifts ( )ct z  and chirps ( )C z  shown in Figs. 1(c) and 1(d).  From solutions (6) and (14), it can be 

seen that bright and dark one-similaritons have the same linear chirp given in Eq. (20d), but they exhibit different time 

shifts, denoted by ( )brightT z  and ( )darkT z , as follows: 
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   Figures 2 shows the evolution of bright and dark similaritons with invariant and amplified intensities; the chosen 

parameters are 1 1m i  , 1 1k  , 1 1a  , 2 1a  , 0 0.2  , 0 0.05   for the bright similariton and 1 i   , 1  , 1 1h   , 

1 0.55a  , 2 0.15a   , 0 0.2  , 0 -0.02   for the dark similariton.  When 
1 1  , both waves retain an invariant profile  

 

Fig.2. The propagation of bright similariton (6) and dark similariton (14) with the parameters (a) and (c) 1 1 0.01   ; (b) and (d)

1 0.02  , 1 0.01  . The other parameters are specified in the text. The numerical evolution of the similaritons under amplitude fluctuation 

[(e) and (g)] and perturbation of white noise [(f) and (h)], where the parameters are the same as in (a) and (c), correspondingly. The insets 

are the comparison of numerical [blue circle (dot) lines] and exact profiles (red solid lines) at z 40 . 
 

 [panes 2(a) and 2(c)] while for 1 1 
 
they are compressed and amplified upon propagation [panes 2(b) and 2(d)]. The 

properties of these bright and dark similaritons predicted from analysis have been verified by direct numerical 



integration of Eq. (1), as shown in the insets of Figs. 2(a)–(d), where simulation results agree extremely well with the 

exact solutions after propagating a distance of 40 dispersion lengths. Furthermore, we have numerically investigated 

the stability of bright and dark similaritons against background fluctuations through two distinct classes of perturbed 

initial-value problems: firstly, by distorting the injected pulse shapes directly (where the similariton initial condition 

has only 95% of the amplitude required by the exact solution) and, secondly, by adding a 10% level of a Gaussian 

white noise to the initial condition. From the evolution of the similaritons shown in Figs. 2(e)–2(h), we infer that both 

bright and dark similaritons can be robust under finite perturbations. 

Solutions (8) and (16) can be used to study the interaction and tunneling properties of bright and dark two-similaritons 

in inhomogeneous systems that include, simultaneously, the higher-order effects of quintic nonlinearity, Raman 

shifting, and an external harmonic trap.  As an example application, we now investigate cascade tunneling of two-

similaritons in systems comprising sech
2
-shaped DBs or DWs.  Some interesting features emerge that have, to the best 

of our knowledge, not been reported in the literature. 

3. The cascade tunneling effects of the interacting similaritons 

The phenomenon of soliton tunneling, first predicted by Newell [25] over four decades ago, has been the subject of 

intense research in a wide range of nonlinear systems [26-32].  For completeness, we now highlight some key results 

in the tunneling literature.  Serkin et al. [26] considered soliton fission reaction in organic thin films, while G. Y. Yang 

(G. Y.) et al. [28] investigated the cascade compression of solitons in dispersion-decreasing fiber with nonlinear multi-

barriers. R. C. Yang et al. [29] studied the tunneling, compression and splitting of spatial solitons in an optical lattice 

[29], Zhang et al. have demonstrated the controllable compression of spatial solitons passing through nonlinear 

(diffractive) potential barriers (wells) [30], and Marest et al. observed the longitudinal soliton tunneling process in an 

axially inhomogeneous fiber [31].  More recently, the tunneling aspects of nonautonomous solitons and similaritons 

have been investigated from different viewpoints [33-38].  Wang et al. considered similaritons crossing nonlinear 

barriers with a range of heights [33], Dai et al. investigated bright and dark similariton tunneling based on coupled 

NLS equations in a birefringent fiber [34], Jia et al. reported the spectral characteristics of chirped nonautonomous 

soliton through periodic barriers (wells) [35], and Mani Rajan et al. studied nonautonomous solitons and similaritons 

in tapered graded-index nonlinear waveguides in the context of soliton compression and management [36-38]. 

 To date, few works have addressed the cascade tunneling effects of interacting multi-similaritons in inhomogeneous 

fiber systems when all the higher-order terms in Eq. (1) are retained.  As an application of similaritons (8) and (16), 

we focus on bright and dark two-similaritons for two different interaction regimes. As our solutions exist only under 

the balance of GVD, cubic and quintic nonlinearity, Raman shifting and harmonic trapping, their tunneling 

characteristics in the presence of cascade DBs or DWs might reasonably be expected to exhibit novel features. 

We consider a distributed fiber system with cascade DBs or DWs on an exponential background [28]: 
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0 1( ) exp( )z z    .                                                                       (22b) 

The summation in Eq. (22a) prescribes an array of n identical sech
2
-shaped dispersion profiles with inverse width   

centered on positions 0jz z
 
(j = 1, 2, 3, …, n). These constituents correspond to DBs of height 2  (when 2 0  ) or to 

DWs of depth 2  (when 2 0  ). In this distributed system (22), the harmonic-potential coefficient ( )p z  can then be 

determined from constraint relation (4a). In the special case of no barriers or wells (i.e., 2 0  ), system (22) reduces to 

system (19). For that purely-exponential regime, two different interaction scenarios are shown in Fig. 3 [parameters: 

1 0.01  , 
1 0.01  , (a) 

0 0.1  , 
0 0.02  , 

1 0.05m  , 
2 0.05m  , 1 1.8 0.95k i  , 2 1.8 0.95k i   , 

1 0.65a   and 

2 0.15a  ; (b)
0 0.1  , 

0 0.2   , 1  , 
2 1h   ,

1 2.95s  ,  0 . 1 i   , 
2 2.5s  , 

1 0.88h  , 
1 1a   and 

2 0.55a   ; (c)

0 0.2  , 
0 0.1  , 

1 1m i  , 
2 1m i  , 

1 1k  , 
2 1.1k   , 

1 1a   and 
2 1a  ; (d) 

0 0.2  , 
0 0.01   , 1  , 

2 1h   , 

1 2.95s  , 1 i   , 
2 0s  , 

1 1h  , 
1 0.55a   and 

2 0.15a   ]. Both bright and dark two-similaritons preserve their 

initial velocities after an elastic collision [panes 3(a) and 3(b)] or in the absence of a collision they may propagate with 

same velocity forming ‘parallel stripes’ in the  ,t z  plane [see panes 3(c) and 3(d)].  The interaction of the similaritons 

can thus be controlled by selecting appropriate system and solution parameters. 

 

Fig. 3. The interaction scenarios of bright and dark two-similaritons in system (22) with 2 0  .  (a) 0 0.1  , 0 0.02  ; (b) 0 0.1  , 

0 0.2   ; (c) 0 0.2  , 0 0.1  ; (d) 0 0.2  , 0 0.01   . 

3.1. The tunneling of two parallel similaritons 

   We now consider the more general case of system (22), when 2 0  . Figure 4 presents the tunneling behavior of the 

parallel transmission of bright and dark two-similaritons (8) and (16) passing through the cascade DBs and DWs for 

3n  .  On the one hand, it can be seen that as two parallel (i.e., equal-velocity) bright similaritons pass through DBs, 

they tend to repel each other [repulsion is accompanied by decaying amplitudes and broadening pulse widths; see pane 

4(a1)].  On the other hand, the same waves passing through DWs tend to attract each other [attraction is accompanied 

by pulse compression and the forming of two distinct peaks; see pane 4(b1)].  In a similar manner, besides the 

tunneling features of the amplitude and pulse width, two parallel dark similaritons also repel each other when passing 

through DBs and attract each other when passing through DWs [panes 4(c1) and 4(d1), respectively]. Meanwhile, the 

background wave of the two dark similaritons deforms into valley across each DB and into a ridge across each DW. 



Corresponding to Figs. 4(a1) –4(d1), Figs. 4(a2)–4(d2) depict the pulse distributions of bright and dark two-similaritons 

at different transmission positions.  Both solution families can recover their original shapes after passing through the 

cascade DBs and DWs.  Moreover, when traversing these obstructions, the pulse shapes are cascade compressed and 

the background-wave deformation into valleys and ridges becomes more pronounced. This implies that one may 

control the interaction of two-similariton and achieve the desired compression factor with careful design of cascade 

DBs and DWs. 

 

Fig. 4. The tunneling behavior of two parallel similaritons passing through the cascade DBs with 2 =0.4  and DWs with 2 0.4   . Bright 

similaritons through (a1) DBs and (b1) DWs; Dark similaritons through (c1) DBs and (d1) DWs, respectively. (a2)-(d2) are the pulse 

distributions at different transmission positions with 01 5z  , 03 10z   and 20L  , corresponding to (a1)-(d1), respectively. The other 

parameters are the same as in Fig. 3.
 

3.2. The tunneling of two-similaritons in elastic collision 

Figure 5 displays the tunneling behavior of bright and dark two-similaritons (8) and (16) in an elastic collision 

passing through cascade DBs and DWs given in (22) with 4n  . Both bright and dark two-similaritons undergo mutual 

repulsion or mutual attraction depending upon whether the DBs are positioned before or after the collision site [panes 

5(a1) and 5(ac)]. When these similaritons tunnel through cascade DWs, the repulsion-attraction features are clearly 

reversed [panes 5(b1) and 5(d1)]. Comparing panes 5(a1)–5(d1), it can be seen that the similariton with slower velocity 

accelerates abruptly while the other one with faster velocity decelerates abruptly when passing through cascade DBs 

[panes 5(a1) and 5(c1)], which can result in repulsions before and attractions after the collision. When both bright and 

dark similaritons tunnel through the cascade DWs [panes 5(a1) and 5(c1)], they follow the reverse rules that results in 

repulsions before and attractions after the collision. As in the case of parallel transmission (see Fig. 4), both bright and 



dark two-similaritons undergoing an elastic collision can recover their initial shapes after passing through DBs and 

DWs. Moreover, both bright and dark two-similaritons can be either broadened or compressed during cascade tunneling 

which is evident from the corresponding pulse distributions in time [panes 5(a2)–5(d2)]. These results imply that the 

tunneling characteristics of bright and dark two-similaritons provide a way to realize the compression, amplification 

and interaction control of these novel families of nonlinear waves. 

 

Fig. 5. The tunneling behavior of bright and dark two-similaritons in elastic collision passing through cascade DBs and DWs. Bright 

similaritons through (a1) DBs with 2 =0.3  and (b1) DWs with 2 0.6   .  Dark similaritons through (c1) DBs with 2 =0.6 and (d1) DWs 

with 2 0.6   , respectively. Panes (a2)-(d2) are the corresponding pulse distributions at different transmission positions with (a2) 01 0z  , 

04 20z  , 30L  ; (b2) 01 3z   , 04 25z  , 30L  ; (c2) and (d2) 01 8z   , 04 15z  , 20L  , respectively. The other parameters are the 

same as in Fig.3. 

4. Conclusions 

We have derived exact bright and dark ultrashort one- and two-similariton solutions for a variable-coefficient C-

QNLS equation that accommodates, for the first time, quintic nonlinearity, the Raman self-frequency shift, and an 

external harmonic potential. The key mathematical techniques deployed throughout have been similarity 

transformations in combination with Hirota bilinearization.  Crucially, these novel solutions can be used to predict the 

compression, amplification and interaction properties of bright and dark similaritons in generic inhomogeneous systems.  

We have studied analytically the variations in the characteristic parameters of the similaritons, and numerically 

investigated their stability in an exponentially-distributed system.  Our results show that the compression and 

amplification of similaritons can be realized and controlled by choosing appropriate system parameters.  Moreover, 



both bright and dark similaritons appear to be stable against finite perturbations such as amplitude fluctuations and the 

addition of white noise. 

Tunneling phenomena exhibited by interacting similaritons passing through cascade DBs and DWs have been studied 

in some detail. It was found that when tunneling through localized dispersive obstructions (in addition to smooth 

changes in amplitude and width), bright and dark similaritons can exhibit very similar features. Two parallel 

similaritons (i.e., with equal velocities) repel each other at the position of a DB and attract each other at the position of 

a DW. While two-similaritons undergoing an elastic collision exhibit mutual repulsion when a DB is positioned before 

the collision site, and mutual attraction when a DB is positioned after the collision site; the reverse is true when the 

DBs are replaced with DWs. These results reveal that the tunneling behavior of bright and dark two-similaritons is 

potentially useful for realizing the compression, amplification and interaction control of multi-similariton waves. 
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