SOUNDSCAPE ASSESSMENT OF A MONUMENTAL PLACE: A METHODOLOGY BASED ON THE PERCEPTION OF DOMINANT SOUNDS

Germán Pérez-Martínez^a, Antonio J. Torija^b, Diego P. Ruiz^a

^a Information Technology and Communication Research Center (CITIC-UGR), Applied Physics Department, Faculty of Sciences, University of Granada, Spain.

^b ISVR, University of Southampton, Highfield Campus, SO17 1BJ Southampton, UK.

Tel: +34 958 244 161

Fax: +34 958 243 214

E-mail: gperez@ugr.es; A.J.Martinez@soton.ac.uk; druiz@ugr.es

Highlights

- Perception of a given soundscape is driven by the subjectively dominant sounds.
- Proposed methodology is implemented in the Alhambra monumental complex.
- Pleasant dominant sounds are highly correlated with the reported soundscape quality.
- The most influential subjective attributes are those related to quiet natural environments.

SOUNDSCAPE ASSESSMENT OF A MONUMENTAL PLACE: A METHODOLOGY BASED ON THE PERCEPTION OF DOMINANT SOUNDS 3

4 **ABSTRACT**

Some monumental sites have unique soundscapes that deserve to be managed not only by their 5 6 tourist and cultural value, but also for enhancing the visitors' overall impression. These sites can include a multitude of sound sources within a variety of different locations with geometrically 7 different spaces in size and shape, so that the soundscape assessment could be quite challenging. 8 The hypothesis of this study is that regardless of the complexity of sound sources comprising a 9 given acoustic environment, the perceived soundscape quality is driven primarily by the 10 11 evaluation of the subjectively dominant sounds. This hypothesis was tested in a field study conducted in a monumental site with historical relevance located in a semi-natural environment 12 (the Alhambra of Granada, Spain). The main finding was that, for a given location, the higher 13 the percentage of visitors reporting a pleasant sound as dominant, the higher the reported 14 soundscape quality and overall impression. Moreover, it was found that: (i) the sounds of birds, 15 16 water and visitors (voices and footsteps) are the sounds primarily reported as dominant, (ii) the throngs of visitors (human sounds) negatively affect the soundscape quality, (iii) natural sounds 17 increase the reported pleasantness, especially water sounds, which significantly improve the 18 perceived soundscape quality. The practical implication is that, with appropriate information on 19 subjectively dominant sound sources to prioritize corrective actions, soundscape management 20 and its enhancement will require much less time and operational effort than other options for 21 soundscape assessment based on the use of extensive questionnaires. 22

23

24 1. INTRODUCTION

25

44

value. These monuments can be large area enclosures (e.g. Angkor kingdom, Cambodia) or be 26 27 limited to unique elements in the landscape (e.g. obelisk in Buenos Aires, Argentina). 28 Monuments of great historical and cultural importance usually become symbols in cities, areas or 29 more extensively of countries, becoming places of great interest and touristic value that receive millions of visitors every year. Furthermore, these monuments can be located in the urban area or 30 in semi-natural or natural areas, which clearly influence the experiences linked to the landscape 31 32 or environment of the visitor. Our field study has been carried out in the monumental space of historical relevance as is the case of the Alhambra of Granada in Spain (hereinafter referred to as 33 the Alhambra), taken as a representative case study of the proposed methodology for soundscape 34 assessment. This is a monumental space located in a semi-natural area (with little influence of 35 urban noise compared to parks or green areas in the city of Granada), whose surroundings 36 suggest to the visitors to contemplate, walk, rest, and even relax during their visit. This medieval 37 38 citadel, declared a World Heritage Site in 1984, is the most visited monument in Spain 39 nowadays.

Monuments are constructions/works sharing an artistic, archaeological, historical or similar

The term "soundscape" has been recently updated (ISO 12913-1, 2014) as the "acoustic *environment as perceived or experienced and/or understood by a person or people, in context*".
The context is therefore a key factor for understanding the perception of a certain acoustic
environment, so that it should be included in the soundscape assessment process (Brown, Kang,

45 studies in a variety of environments (contexts), such as urban parks (e.g., Liu, Kang, Behm, &

& Gjestland, 2011; Hong & Jeon, 2015). Several works have addressed soundscape perception

46 Luo, 2014), urban squares (e.g. Yang & Kang, 2005), natural areas (e.g. Miller, 2008), rural

areas (e.g. Lee, Hong, & Jeon, 2014), and indoor locations (e.g. Mackrill, Cain, & Jennings, 47 2013). While not receiving as much focus there has been some attention paid to historic sites in 48 some research (e.g. Barrigón Morillas, Gómez Escobar, & Rey Gozalo, 2013). 49 50 Traditionally, aesthetic beauty has been one of the main attractions of historical monuments. Nasar (1989) identified the aesthetic quality as an important dimension in the perception of the 51 52 environment, where the pleasure and beauty represent the most influential dimension in the environmental assessment. But, the assessment of a given environment requires a 53 multidisciplinary approach, and sound plays an essential role (Mace, Bell, & Loomis, 1999; 54 Southworth, 1969; Yang & Kang, 2005). A good quality of the soundscape can improve human 55 well-being and offer a more comfortable experience, while allowing to connect the visitors with 56 their environment (Jeon, Lee, Hong, & Cabrera, 2011; Nilsson et al., 2012), enhancing their 57 overall impression. In this context, good planning and design of the soundscape as another piece 58 of the overall landscape of historical places would undoubtedly help maintain their aesthetic, 59 natural, and cultural qualities, whether expected or existing (Kang et al., 2016). 60 The soundscape of a given location represents both the acoustic environment as perceived by 61 people and the total inventory of sounds present at such a location (Brown et al., 2011). Kuwano 62 et al. (2002) stated that an acoustic environment is perceived as a collection of individual sounds. 63 This means that the evaluation of a given acoustic environment requires the identification of the 64 individual sounds (Jeon et al., 2011; Kang, 2011; Liu, Kang, Luo, & Behm, 2013; Szeremeta & 65 Zannin, 2009). Also, other authors (Axelsson, Nilsson, & Berglund, 2010; Davies et al., 2013; 66 Matsinos et al., 2008) have suggested that the identification of subjectively dominant sounds is a 67 crucial feature for soundscape classification. The type of sounds present in these historic 68 monumental sites depends on its location (urban, natural or semi-natural environment), as well as 69

on its own sounds (sounds coming from the visitors or the characteristic sounds, e.g. water
sources). In this sense, the soundscape evaluation depends on the personal preferences to the
existing sounds, its loudness and other factors, such as the socio/demographic characteristics (Yu
& Kang, 2010), so that the evaluation of their soundscape could become a challenge.

74 In monumental areas with great tourist inflow, the noise caused by the visitors tends to be a 75 frequent sound. The perception of human sounds has been widely studied in urban environments, where these sounds have been found to have a either a neutral (e.g. Nilsson & Berglund, 2006; 76 Yang & Kang, 2005) or positive (e.g. Szeremeta & Zannin, 2009) effect; but also in natural 77 spaces where the reduction of human-related sounds enhanced the feeling of soundscape 78 peacefulness and pleasantness (Axelsson et al., 2010; S. Kaplan, 1995; Ulrich et al., 1991). 79 Moreover, monumental and historical sites with adjacent green areas (as in our case study) are 80 sometimes characterized by sound sources, such as birds or water fountains. Aesthetic and sound 81 features of water have been well acknowledged as an important element of the urban 82 environment (Axelsson, Nilsson, Hellström, & Lundén, 2014; Burmil, Daniel, & Hetherington, 83 1999; Whalley, 1988). Water fountains have been found to mask undesirable sounds, thus 84 85 improving the reported soundscape quality in urban environments (Jeon et al., 2010; You et al., 2010). All these sources emit with a variety of sound levels, thus generating an environmental 86 sound that influences the perception of the soundscape. 87

Based on these ideas, the hypothesis underlying the present study is that the soundscape quality
of historic monumental sites is driven mainly by the evaluation of subjectively dominant sounds.
This paper analyses and discusses the extent to which the dominant sounds affect both the
subjective quality and other attributes of the soundscape in context. Therefore, this paper

92 proposes and develops a methodology for assessing soundscapes based on the perception of93 subjectively dominant sounds.

94 2. METHODOLOGY AND DATA COLLECTION

95 This section describes the study area, the data-collection methodology, and how the most96 representative locations of the Alhambra were selected and then assessed.

97 2.1 STUDY AREA

A series of soundwalks conducted to explore the study area and ensure the selection of a 98 representative sample of the different soundscapes of the Alhambra. It emerged that the 99 100 Alhambra includes a great diversity of spaces both visually and acoustically. Three descriptive categories of sounds can be found: natural sounds, human sounds (voices and footsteps), and 101 102 technological sounds. The first two categories of sounds are present in most parts of the monumental complex, while the third one appears in a few locations, such as the case of the 103 walled perimeter and its towers (which are the most exposed to the city of Granada). Its 104 geographical situation and its shape establish a natural barrier for the unwanted sounds coming 105 from the city, e.g. traffic, construction, and restoration works. Figure 1 shows the spatial area 106 107 comprising the Alhambra and its adjacent spaces: the Alhambra woodland, the city of Granada and the nearby rural areas. 108

109 INSERT FIGURE 1 HERE

110 The sounds of water constitute one of the main features of the Alhambra, still present in a large 111 portion of the grounds. This can be found in many forms; (burbling water, water jets, cascading 112 water, channels, and even a river below the monument). Figure 2 shows some visual examples. The sound of the birds is also very present in most areas of the Alhambra thanks to the adjacent green areas (Alhambra woodland and rural areas) and the vegetation and gardens that exist in its interior space (see Figure 1). Human sounds are also characteristic, due to the number of visitors each year (2,474,231 visits in 2015). This diversity makes this monument a good case study for illustrating the hypothesis of this research.

118 INSERT FIGURE 2 HERE

119 2.2 SELECTION CRITERIA FOR SAMPLING LOCATIONS

As mentioned in the previous section, the exploratory study based on a series of soundwalks also 120 121 aimed to ensure the selection of a representative sample of the different soundscapes in the study area. This exploratory study was undertaken for one week, both when the monument was open 122 (8:00 am - 8:00 pm) and closed (7:00 am - 8:00 am and 8:00 pm - 9:30 pm) to the public. The 123 difference between open and closed hours allowed the investigation of the potential influence of 124 125 human voices as well as their masking effect. During the closed hours, the environment was 126 dominated by natural sounds with the exception of the Alcazaba area, the walled perimeter, and 127 the towers, which are more exposed to the noise coming from the city. During the open hours, the soundwalks enabled the identification of the locations most likely to be crowded. 128

The study area includes all the open for visit spaces of the Alhambra, which are classified in 5 large areas referred to as the Alcazaba, the Nasrid Palaces, Palace of Charles V (Carlos V), the Alhambra Alta, and the Generalife. Figure 3 shows the 5 areas comprising the Alhambra site, the 19 selected locations in this research and the main water sound sources near the selected locations. Table 1 also shows a brief description of each location, including general information about the characteristics and type of the existing sound sources as well as the typology of thespace and its location within each area.

136 INSERT FIGURE 3 HERE

In the five areas of the Alhambra, three categories of spaces were identified: courtyards (*patios*),outdoor spaces, and indoor spaces.

- (i) Courtyards: Locations 1, 2, 4, 5, 7, 13, and 14. These *patios* have gardens ranging in size between 105 m² and 595 m². These locations are characterized by having water
 sounds coming from fountains, with the exception of location 14 (which although having a small bubbling fountain, the sound coming from it was negligible). There is vegetation only in locations 4, 5, 7, and 13. Locations 1, 4, and 7 have scenic views of the city.
- (ii) Outdoor spaces: Locations, 3, 6, 8, 9, 11, 12, 15, 16, 17, and 19. These wide spaces
 can be subdivided into two types. The first type are lookouts near the walled
 perimeter with scenic views of the city and the Alhambra (locations 3, 11, and 16).
 The second type includes gardens with lush vegetation, benches for the visitors, and
- the presence of water sounds (with the exception of locations 8, 15, and 19).
- 150 (iii) Indoor spaces: Locations 10 and 18. These are small rooms (132 and 64 m^2 ,
- respectively) open to the outside, i.e. sound coming from outside can be clearly heard.Location 18 has a fountain.
- 153 INSERT TABLE 1 HERE
- 154 Once the 19 locations were selected, the specific data-collection points were determined taking 155 into account the following: (i) The data-collection point had to be located on the visitor tour and

near benches (when available), which were used by the participants to rest and contemplate the
sounds in the environment; (ii) The data-collection point represented the overall soundscape, i.e.
all the existing sounds (in such location) could clearly be heard. For instance, at a site with a
loud fountain, the data-collection point was chosen to record not only the water sound, but also
all the other sounds present, in agreement with the criteria i and ii specified above.

161 2.3 DATA COLLECTION

Four hundred visitors at random were asked to take part in the subjective assessment of the 162 monument complex via on-site questionnaires (June-July 2014). Any uncompleted questionnaire 163 were discarded; in this case, 15 were discarded, leaving 385 valid questionnaires corresponding 164 to the 19 locations, with a minimum of 20 questionnaires per location. All the participants, 171 165 males and 214 females, 16-66 years of age (average 31), were informed about the voluntary 166 167 character of the study before taking part. Then, they were guided to the assessment point where they filled in the questionnaire. Other socio-demographic data of the participants, such as their 168 education level (primary, secondary and higher level) or residential status (spanish or non-169 spanish) were also collected in the questionnaire. 170

The questionnaire used for subjectively assessing the soundscape was composed of 3 mainsections:

173 (i) In the first section, the participants were asked to report the sounds they heard (i.e.

identified sounds). Each sound identified was evaluated in terms of how pleasant it was
perceived at that time and in that context, using a five-point scale, in which 1 was
"unpleasant" and 5 was "pleasant". Moreover, the participants were asked whether they
perceived a subjectively dominant sound in the soundscape, and if so, which.

178 (ii) In the second section, the participants assessed the quality of the soundscape, the

179

180

181

perceived loudness, the quality of the visual environment and the overall impression using a visual-analogue scale, with the left-hand end equal to 0 (none) and the right-hand end equal to 10 (greatest).

In the third section a set of 12 semantic attributes were evaluated using a visual-analogue
scale from 0 to 10. Thus, the participants used this scale (0 was "totally disagree" and 10
was "totally agree") to indicate their degree of agreement with each subjective attribute
for the soundscape. The subjective attributes were: pleasant, acute, calm, varied, near,
natural, comfortable, relaxed, steady, usual, reverberant, and smooth.

The questionnaire, and especially the semantic attributes chosen, was based on previous studies
(Axelsson et al., 2014; Jeon, Lee, You, & Kang, 2012; Nilsson & Berglund, 2006; Yang & Kang,
2005; Hall, Irwin, Edmondson-Jones, Phillips, & Poxon, 2013; Jeon et al., 2011; Kang & Zhang,
2010; Raimbault, 2006), Those attributes covering the positive aspects of the soundscape were
chosen, as well as those related to spatial, temporal, or variety of sound sources.

Although an analysis based on sound level measurements was not the main objective of this 192 research, sound levels (dBA) were also recorded in order to obtain a guidance of the physical 193 sound levels at each location. To accomplish this, 3 binaural recordings (Squadriga I recorder 194 and BHS I headset / microphone unit) were made at each location. The sound-level of each 195 acoustical measure was calculated as the averaged equivalent-energy sound-pressure level of the 196 left and right channels during a measuring time interval enough to ensure sound level indicator 197 stability ($L_{Aeq,5min}$). Finally, an energy averaging of the 3 acoustic measurements in each 198 location was performed in order to obtain a sound-level value (dBA) representative of each 199 location. 200

201	Both subjective and	acoustical dat	a were collected	at each	location for	19	days	during
-----	---------------------	----------------	------------------	---------	--------------	----	------	--------

summertime. After consultation with the Alhambra staff, a peak time interval from 10:00 am to

- 203 12:00 pm was selected. In this time interval, both the visitor flow and the environmental
- 204 conditions such as lighting, temperature, etc. remained practically stable between days, (data
- supplied by the National Agency of Meteorology, Granada-Cartuja
- 206 stationhttps://sede.aemet.gob.es).

207 **3. RESULTS**

208 3.1 IDENTIFICATION AND DESCRIPTIVE ASSESSMENT OF SOUNDS

In each location, the participants identified and then evaluated all the sounds they were able to hear. Figure 4 shows the list of sounds identified and the percentage of participants identifying each sound source. Note that the sounds identified by a percentage of participants less than 1% are omitted. Figure 5 shows the subjective assessment of each individual sound (in terms of pleasantness) for the entire set of locations. The data were labeled as: "1 and 2" unpleasant, "3" neutral, and "4 and 5" pleasant.

215 INSERT FIGURE 4 HERE

In the overall set of locations selected, the participants identified 15 different sounds, three of
which (people talking, birds, and water) were identified by more than 50% of the participants
(Figure 4). The sound generated by people was the sound most frequently identified, given the
crowds of visitors present each day. The sound of the birds was the second most frequently
identified sound, since the walled and landscaped areas of the Alhambra woodland surrounding
the monument act as refuges for many species of birds. The sound of water occupied third place,
as water is present throughout the Alhambra in many forms (as described above).

223 INSERT FIGURE 5 HERE

The vast majority of the technological sounds such as urban road traffic (85% of participants), air

traffic (78%), construction works (75%), Walkie-Talkies (used by Alhambra security personal)

or photo cameras (66%), were evaluated by a high percentage of respondents as unpleasant, with

the exception of sounds coming from church bells that were considered pleasant (64%). Human

voices, such as the humans speaking, and the sound of footsteps were also evaluated by the

229 majority as unpleasant (55% and 50% respectively), although a high percentage also evaluated

them as neutral (44% and 33% respectively).

231 Meanwhile, natural sounds, such as those coming from water (84%), birds (66%), wind (66%),

and the leaves of the trees (62%) were evaluated as pleasant. However, other natural sounds such

as dogs (57%) and frogs (71%) were evaluated as unpleasant, although the results are not

conclusive since they were identified by a reduced proportion of participants.

235 3.2 SUBJECTIVELY DOMINANT SOUNDS

Figure 6 shows the percentage of participants reporting the identifying sound as subjectively dominant. Again the identified sounds most frequently reported as subjectively dominant were those of people, water, and birds, well above the other sounds (identified by 90% of visitors). Among the identified sounds, the water sounds were the most frequently reported as subjectively dominant, followed by people and birds sounds. This implied that, despite that the people sounds were the most frequently identified (Figure 4), the water sounds were reported as most relevant in terms of subjective dominance.

243 INSERT FIGURE 6 HERE

An acoustic environment consists of different types of sounds, each sound contributing of different ways to the overall perceived loudness. When a sound is considered subjectively dominant, it usually assumes greater relevance in terms of perceived loudness than other sounds heard in this place. In this sense and from our results, it appears appropriate to consider the dominant sounds as an important descriptor within the evaluation of the quality of the soundscape within their context.

250 3.3 RELATIONSHIP BETWEEN DOMINANT SOUNDS AND OTHER REPORTED251 INDICATORS

252 In an effort to validate the research hypothesis, a correlation analysis was performed between the subjectively dominant sounds and the reported soundscape quality. The relationship between the 253 subjectively dominant sounds and the reported loudness, reported visual quality, the reported 254 overall impression, and sound-levels (dBA) was also studied. For the purposes of the subsequent 255 analyses, and because it is a dichotomy problem (i.e. either pleasant or unpleasant sounds), only 256 subjectively dominant sounds evaluated as pleasant (water, birds, wind, and cicadas), and 257 consequently contributing to a positive soundscape, were considered. Table 2 shows, for each of 258 the 19 studied locations, the percentage of participants reporting any pleasant sound as 259 subjectively dominant, and the average value of the reported loudness, soundscape quality, visual 260 quality, overall impression, and sound-levels (dBA). As shown in Table 2, soundscape-quality 261 scores were lower than those for visual quality and overall impression at all locations, and the 262 scores of visual quality were higher than the overall impression in almost all locations. 263

264 INSERT TABLE 2 HERE

From Table 2 it is worth noting that although 100% of the participants reported pleasant sounds 265 as subjectively dominant in location 2, the score of the soundscape quality (6.3 points) was not 266 comparable with that of other locations that reported a similar percentage. For example, in 267 locations 4, 7, 13, 16 and 17, between 90% and 100% of the participants reported pleasant 268 sounds as subjectively dominant, and accordingly these locations obtained soundscape quality 269 scores between 7 and 8 points, as expected. This fact could be explained by two factors: the 270 271 typology of pleasant sounds that were identified as subjectively dominant in localization 2 and 272 the perceived loudness in that location. The highest perceived loudness was reported in this location (see Table 2), and here the bird sounds (identified as subjectively dominant by 95% of 273 274 participants) was perceived as less pleasant (3.3 points on a scale ranging from 1 to 5) than the sound of birds in other locations, for example in location 12 was scored as 4.2 points (1-5 scale). 275 This difference was due to the species of birds that frequent location 2. This will be further 276 277 discussed in Section IV.

278 Table 3 shows the Pearson's correlation coefficients between the percentage of participants reporting a pleasant sound as subjectively dominant and the average value of the reported 279 280 loudness, soundscape quality, visual quality, overall impression, and sounds-levels (dBA). 281 Before the Pearson's correlation analysis was conducted, the normality of the data was checked 282 using the Kolmogorov-Smirnov test. The percentage of participants reporting a pleasant sound as subjectively dominant is highly correlated with the reported soundscape quality and overall 283 impression, supporting the hypothesis that the soundscape quality is driven by the sounds 284 perceived as subjectively dominant, and therefore that those sounds play a key role in the 285 soundscape quality assessment. Also noteworthy is the fairly good correlation between the 286 percentage of participants reporting a pleasant sound as subjectively dominant and the reported 287

visual quality. This might be interpreted as the configuration of spaces also determine the type of sounds in them, since places with abundant vegetation and water fountains or waterfalls are usually linked with both pleasant dominant sounds and good visual quality. In addition, it can be observed that sound level shows a good correlation with the perceived loudness, but not with the other descriptors, including soundscape quality. This result suggests that the evaluation of soundscapes cannot be addressed only considering measured sound levels, but other factors such as the perception of dominant sounds (as proposed in this work) have to be taken into account.

295 INSERT TABLE 3 HERE

296 3.4 SOUNDSCAPE ASSESSMENT AS A FUNCTION OF THE SUBJECTIVELY297 DOMINANT SOUNDS

For further analysis of the influence of the subjectively dominant sounds on the soundscape 298 299 quality and on the 12 semantic attributes, the set of locations were classified on the basis of the subjectively dominant sound. Note that a subjectively dominant sound was assigned to a given 300 location where at least 50% of the participants considered such a sound as dominant in the 301 location. Three groups of locations were set: (i) people - people sounds as dominant (locations 302 303 10, 15, 18, and 19), (ii) water – water sounds as dominant (locations 4, 5, 6, 7, 9, 13, 16, and 17), 304 and (iii) birds – birds sounds as dominant (locations 2, 3, 11, 12, and 14). Locations 1 and 8 305 cannot be reliably classified as corresponding to any group.

After each case was assigned to a group (people, water or birds), a Kruskal-Wallis test was
applied to check for significant differences in the soundscape quality and 12 attributes among the
3 groups. For variables where significant differences were found, a Mann-Whitney test was
applied in order to conduct pairwise comparisons for significant differences between the groups

310 "people", "water", and "birds" (see Table 4). The Kruskal-Wallis tests show significant differences between the three groups for the soundscape quality and the subjective attributes 311 "pleasant", "near", "natural", "comfortable", "relaxed", "steady", "usual", and "smooth". For all 312 other subjective attributes, "acute", "calm", "varied" and "reverberant" no significant differences 313 were found. In addition, the same test was used to analyze the effects of socio-demographic 314 factors on the soundscape quality assessment for the three groups of locations. The analyzed 315 factors were: age (divided into 5 ranges: 16-20, 21-30, 31-40, 41-50, 51-66), gender (male and 316 317 female); education (primary, secondary and higher level) and residential status (Spanish and non-Spanish). The test did not show significant differences for any of the mentioned factors (p-318 319 value> 0.05), suggesting that these socio-demographic factors did not affect the assessment of 320 the soundscape quality in this specific context.

321 INSERT TABLE 4 HERE

322 INSERT FIGURE 7 HERE

Figure 7 lists the average values of the reported soundscape quality and the 12 subjective 323 324 attributes for the grouped locations with people, water, and birds sounds as subjectively dominant. Table 4 and Figure 7 show that the group subjectively dominated by the water sounds 325 scores significantly higher than do the group subjectively dominated by people sounds in the 326 attributes related to the positive aspects of the soundscape, i.e. "pleasant", "natural", 327 "comfortable", "relaxed", and "smooth", and also in those describing sensations related spatial 328 and temporal variation of the sound, i.e. "near" and "steady". The group dominated by the birds 329 330 sounds also scores significantly higher than do the group dominated by the people sounds in the 331 attributes related to the positive aspects of the soundscape, i.e. "pleasant", "natural",

"comfortable", "relaxed", but do not in those describing sensations related to the spatial and 332 temporal variation of the sound. The group dominated by the people sounds only scores 333 significantly higher than do group dominated by the water sounds in the attribute "usual", which 334 relates to the commonness of the sounds. Therefore, those locations where the people sounds 335 were subjectively dominant receive the lowest scores in all positive aspects of the soundscape. 336 The group dominated by the water sounds scores significantly higher than do the group 337 338 dominated by birds sounds in the attributes related to the positive aspects of the soundscape, i.e. 339 "pleasant", "natural", "relaxed", and "smooth", and also in those describing sensations related spatial and temporal variation of the sound, i.e. "near" and "steady". Also the average 340 341 soundscape quality shows statistically significant differences, reaching the highest score in the locations dominated by the sounds of water, followed by the locations dominated by birds and 342 finally those dominated by the people. 343

Moreover, the correlations between the quality of the soundscape and the 12 attributes were analyzed. It should be noted that the average values of the 19 locations were used in this analysis. Spearman's coefficients were calculated between soundscape quality and subjective attributes (Table 5).

348 INSERT TABLE 5 HERE

As can be seen, the soundscape quality correlates well with the attributes "pleasant", "natural", "comfortable", and "relaxed", which refer to the positive aspects of the soundscape. The attributes "steady" and "smooth" shows a lower correlation. The attribute "usual" shows a significant negative correlation with the soundscape quality. In addition, the attribute "calm" has a low correlation (compared to the other attributes), while "acute", "varied", "near", and
"reverberant" appear not to be correlated with the reported soundscape quality.

355 4. DISCUSSION

356 On the basis of the results found in the preceding section, the following can be inferred:

a) Relationship between the reported quality of the soundscape and the subjectively dominant sounds

The different types of sounds identified in the Alhambra monumental complex were reduced to 6 359 types of subjectively dominant sounds (see Figure 4 and 5). The percentage of participants that 360 reported pleasant sounds as subjectively dominant was highly correlated with the reported 361 quality of the soundscape quality and the overall impression of the visitor (see Table 3). In the 362 case study of the Alhambra complex, 3 of these 6 types of subjectively dominant sounds were 363 strongly relevant in assessing the soundscape (water, birds, and people), since the 90% of the 364 365 visitors reported one of these sounds as subjectively dominant. The results showed that Figure 7 366 and Table 4 support the assumption that the reported quality of the soundscape and their subjective attributes are strongly affected by the type of sounds that dominate that site. 367

The categorical variable "dominant sounds" was previously used by other authors in order to establish relationships with some specific attributes to the soundscape. For example, Axelsson et al. (2010) found that the soundscape dominated by technological sounds had a negative correlation with pleasantness, while human and natural sounds correlated positively with eventfulness and pleasantness, respectively. Matsinos et al. (2008) also studied dominant sound categories and the effect of the local landscape characteristics on sound perception. They showed that the combination of the visual landscape information and its acoustic profile enhances ourperception and understanding of our environment.

376 The results presented in this paper corroborate the importance of the subjectively dominant 377 sounds for the assessment of the soundscape quality, justifying the use of perception of dominant sounds for managing the soundscape quality. It should be noted that the use of dominant sounds 378 379 not only allows the estimation of the soundscape quality, but also might provide key information for the management and conservation of soundscapes, i.e. in terms of what sounds should be 380 conserved/promoted and what sounds should be avoided/reduced; or what are the constraint 381 factors ("positive" perceived or "negative" perceived dominant sounds) for improving 382 soundscape quality. Such information concerning sound quality is valuable and useful for 383 technicians responsible for managing and conserving public places. 384

b) Quality of the soundscape and subjective attributes in terms of dominant sounds

386 The score of the reported soundscape quality significantly worsened when the human sounds are subjectively dominant (i.e. reported as subjectively dominant by more than 50% of respondents) 387 388 compared to when water or birds sounds are. In this case, the attributes "pleasant", "natural", "comfortable", "relaxed", and "steady" also score poorly (Figure 7, Table 4). The aural presence 389 of crowds in certain locations (10, 15, 18 and 19) deteriorated the soundscape quality. This result 390 could be related to the visitor expectations of the specified use to that place. Carles et al. (1999) 391 found that natural or natural-urban environments with presence of natural sounds are particularly 392 sensitive to human sounds, and it is suggested the need to preserve those unique soundscapes, 393 394 especially when they are protected spaces, cultural landscapes, parks and green areas. In this

sense, Kogan et al. (2017) suggested that human sounds are usually described as annoying inspaces used for walking or resting when their level tends to mask other natural sounds.

397 This study suggests that, in the context of monumental or historical sites of great tourist interest 398 (of the same type of our study case as defined in the introduction section), the human sounds 399 affect the soundscape quality mainly by masking pleasant or relaxing sounds. In fact, in some 400 cases, the respondents were extremely negative toward the attitude of the other visitors, clearly expressing their annoyance and discomfort with statements such as "this is not an amusement 401 park". These comments agreed with the evaluation of the human sounds in this context (Figure 5 402 and 7), suggesting that at monumental or historical sites of great tourist interest (and so widely 403 visited along with many people), crowds can disturb the soundscape for many visitors. 404 405 Furthermore, in these type of areas where this research is focus on visitors could expect a natural and relaxing environment where they can seek cognitive restoration (R. Kaplan & Kaplan, 1989). 406 Thus, human sounds can feel intrusive, upsetting visitor tranquility. This agrees with Iglesias 407 Merchan et al. (2014), who found remarkable soundscape degradation due to voices of visitors in 408 409 a national park, where the reported annoyance due to the visitors themselves was even 410 considered as high as the annoyance caused by airplanes overhead or road traffic nearby.

Whenever water sounds predominated (i.e. the water sound was reported as subjectively
dominant by more than 50% of the respondents) the reported soundscape quality significantly
raises its scores compared to environments where the human or birds sounds were reported as
dominant. The attributes "pleasant", "near", "natural", "comfortable", "relaxed", "steady", and
"smooth" also achieve good scores (Figure 7, Table 4). In the context under study, water sounds
have a clearly positive effect, as established by different authors (e.g. Axelsson et al., 2014;
Carles et al., 1999; Pheasant et al., 2008; Torija et al., 2013).

In locations where bird sounds were reported to be subjectively dominant by more than 50% of 418 the respondents, the value of reported soundscape quality, and of the attributes "pleasant", 419 "natural, "comfortable", and "relaxed" (positive aspects of the soundscape) is found to be 420 significantly higher than in locations where people sounds were reported as dominant. However, 421 in locations with birds sounds subjectively dominating, the value of reported soundscape quality, 422 and of the attributes "pleasant", "near", "natural", "comfortable", "relaxed", "steady", and 423 424 "smooth" is significantly lower than in locations with water sounds reported as subjectively 425 dominant. This seems to indicate that, although birds sounds are widely acknowledged as positive and valued (cf. Carles et al., 1999; Hao, Kang, & Wörtche, 2016; Pilcher, Newman, & 426 427 Manning, 2008), in the context under study water sounds are more appreciated for improving the soundscape quality. It is interesting to note that at location 2, the perception of bird sounds varied 428 with respect to the perception of birds from other locations. As commented before, this 429 430 difference was due to the bird species appearing in this location. Birds living in the plasterwork edge of location 2 (common swift) generate a scratchy chirp (loud and acute sound) which was 431 considered less pleasant than softer and melodic birdsongs or chirpings of species common in 432 other spaces, such as the blackbird, nightingale, or chaffinch. In the period of the assessment, 433 there was a conservation program in the Alhambra intended to move these species toward 434 outlying areas of the Nasrid Palaces since they were considered to be disturbing. 435

436 c) Relationship between the soundscape quality and the subjective attributes evaluated

The reported soundscape quality strongly correlates with the attribute "pleasant" (Table 5),
perhaps because this adjective refers to an emotion or feeling by which individuals assess the
environmental sounds in terms of pleasure (Aletta, Kang, & Axelsson, 2016; Axelsson et al.,
2010). Similarly, the soundscape quality refers to how appropriate the soundscape is and the

amount of pleasure it stirs in the visitor. The soundscape quality, experienced in the context of
the monumental site under study, strongly depends on the attributes "relaxed", "natural", and
"comfortable" (Table 5), which are characteristic of natural spaces free from loud traffic noises.

444 A high Spearman's correlation is found between the reported soundscape quality and the attributes "smooth" and "steady", which refer to the temporal variation of loudness, and (Table 445 446 5), indicating that they are somehow influential in the composition of the overall soundscapequality concept. The attribute "usual" also shows a significant negative correlation, suggesting 447 that unusual or unexpected sounds in monumental spaces can be attractive for visitors and 448 thereby improve the soundscape quality. The attribute "calm" do not strongly correlate with 449 soundscape quality (compared to the above mentioned attributes) perhaps because this attribute 450 is considered to concern loudness perception, and wherever the natural sounds and/or human 451 voices physically dominate, this possible indicator of soundscape quality tends to be unreliable. 452

The attributes "near", "reverberant", "acute", and "varied", which are related to the spatial sensations and the variety of the sounds in the space, correlates poorly with the reported soundscape quality. This result is in line with Jeon et al. (2011), who analyzed the attribute "reverberant" in terms of preference and determined that this attribute is not a good indicator in an urban soundscape and that it plays a minor role in social preference for soundscapes.

458 5. CONCLUSIONS

Monumental and historical sites have remarkable tourist and cultural interest and host millions of
visitors every year. The assessment and management of soundscapes at these places and related
areas is important in order to foster a better visitor experience. As a representative case of these

sites, a field study was conducted in the Alhambra of Granada, which is characterized by a richdiversity of spaces and well as a variety of sound sources.

The procedure followed for soundscape assessment was follows: firstly, the sounds present at the 464 465 scene were analyzed, focusing on the sounds reported as subjectively dominant. The percentage of visitors reporting a pleasant sound as dominant shows a high correlation with the reported 466 quality and the overall impression of the visitor. Then, based on these results, the different 467 locations of the monumental complex were classified according to their dominant sounds (3 468 dominant sounds in this case study). In a third step, several comparisons were made between 469 470 them to draw conclusions. The results clearly show that the reported subjective attributes of a specific soundscape were affected by the type of sound that dominated at each location. 471

These results support the research hypothesis that the perception of a given soundscape is driven by the evaluation of the subjectively dominant sounds. Therefore, this research suggests the use of this variable to simplify the soundscape assessment procedure, and thus reducing the operational time and effort required to accomplish this task. This is important for managing soundscapes, since, for instance, for the improvement of a given soundscape, the subjectively dominant sounds should first be identified, and then, specific actions can be implemented to eliminate or reduce those perceived as negative and to promote those perceived as positive.

479 Finally, some other specific conclusions can be drawn from this work:

480 (i) The most influential subjective attributes of soundscape quality are those related to
481 quiet natural environments, i.e. "pleasant", "relaxed", "natural", and "comfortable".
482 The attribute "calm" was not always associated with good soundscape quality due to
483 the importance of the origin of the sound (i.e. natural or man-made sounds).

484	(ii)	The presence of crowds has a clearly negative impact. When human sounds were
485		identified as subjectively dominant by more than 50% of the respondents, the quality
486		of the soundscape was significantly reduced. This type of soundscapes should then be
487		managed by avoiding crowds and controlling people flux in these areas.
488	(iii)	Natural sounds were usually evaluated as positive, except in certain cases where
489		unpleasant bird sounds dominate the sound environment. The identification of water
490		sounds as subjectively dominant was highly related to positive soundscape quality.
491		The same trend was also found when bird sounds dominated, but with a weaker
492		effect.

References

- Aletta, F., Kang, J., & Axelsson, Ö. (2016). Soundscape descriptors and a conceptual framework for developing predictive soundscape models. *Landscape and Urban Planning*, 149, 65–74. http://doi.org/10.1016/j.landurbplan.2016.02.001
- Axelsson, Ö., Nilsson, M. E., & Berglund, B. (2010). A principal components model of soundscape perception. *The Journal of the Acoustical Society of America*, 128(5), 2836– 2846. http://dx.doi.org/10.1121/1.3493436
- Axelsson, Ö., Nilsson, M. E., Hellström, B., & Lundén, P. (2014). A field experiment on the impact of sounds from a jet-and-basin fountain on soundscape quality in an urban park. *Landscape and Urban Planning*, 123(0), 49–60. http://dx.doi.org/10.1016/j.landurbplan.2013.12.005
- Barrigón Morillas, J. M., Gómez Escobar, V., & Rey Gozalo, G. (2013). Noise source analyses in the acoustical environment of the medieval centre of Cáceres (Spain). *Applied Acoustics*, 74(4), 526–534. http://doi.org/10.1016/j.apacoust.2012.10.001
- Brown, A. L., Kang, J., & Gjestland, T. (2011). Towards standardization in soundscape preference assessment. *Applied Acoustics*, 72(6), 387–392. http://dx.doi.org/10.1016/j.apacoust.2011.01.001
- Burmil, S., Daniel, T. C., & Hetherington, J. D. (1999). Human values and perceptions of water in arid landscapes. *Landscape and Urban Planning*, *44*(2–3), 99–109. http://dx.doi.org/10.1016/S0169-2046(99)00007-9
- Carles, J. L., Barrio, I. L., & de Lucio, J. V. (1999). Sound influence on landscape values. *Landscape and Urban Planning*, 43(4), 191–200. http://dx.doi.org/10.1016/S0169-2046(98)00112-1
- Davies, W. J., Adams, M. D., Bruce, N. S., Cain, R., Carlyle, A., Cusack, P., ... Poxon, J. (2013). Perception of soundscapes: An interdisciplinary approach. *Applied Acoustics*, 74(2), 224–231. http://doi.org/10.1016/j.apacoust.2012.05.010
- Hall, D. A., Irwin, A., Edmondson-Jones, M., Phillips, S., & Poxon, J. E. W. (2013). An exploratory evaluation of perceptual, psychoacoustic and acoustical properties of urban soundscapes. *Applied Acoustics*, 74(2), 248–254. http://dx.doi.org/10.1016/j.apacoust.2011.03.006
- Hao, Y., Kang, J., & Wörtche, H. (2016). Assessment of the masking effects of birdsong on the road traffic noise environment. *The Journal of the Acoustical Society of America*, 140(2). http://dx.doi.org/10.1121/1.4960570
- Hong, J. Y., & Jeon, J. Y. (2015). Influence of urban contexts on soundscape perceptions: A structural equation modeling approach. *Landscape and Urban Planning*, 141, 78–87. http://doi.org/10.1016/j.landurbplan.2015.05.004
- Iglesias Merchan, C., Diaz-Balteiro, L., & Soliño, M. (2014). Noise pollution in national parks: Soundscape and economic valuation. *Landscape and Urban Planning*, *123*, 1–9.

http://doi.org/10.1016/j.landurbplan.2013.11.006

- International Organization for Standardization. (2014). ISO 12913-1:2014 acoustics soundscape—part 1: definition and conceptual framework. Geneva: ISO.
- Jeon, J. Y., Lee, P. J., Hong, J. Y., & Cabrera, D. (2011). Non-auditory factors affecting urban soundscape evaluation. *The Journal of the Acoustical Society of America*, *130*(6), 3761–3770. http://dx.doi.org/10.1121/1.3652902
- Jeon, J. Y., Lee, P. J., You, J., & Kang, J. (2010). Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds. *The Journal of the Acoustical Society of America*, 127(3), 1357–1366. http://dx.doi.org/10.1121/1.3298437
- Jeon, J. Y., Lee, P. J., You, J., & Kang, J. (2012). Acoustical characteristics of water sounds for soundscape enhancement in urban open spaces. *The Journal of the Acoustical Society of America*, 131(3), 2101–2109. http://dx.doi.org/10.1121/1.3298437
- Kang, J. (2011). Noise Management: Soundscape Approach. *Encyclopedia of Environmental Health*, 174–184. http://dx.doi.org/10.1016/B978-0-444-52272-6.00260-9
- Kang, J., Aletta, F., Gjestland, T. T., Brown, L. A., Botteldooren, D., Schulte-Fortkamp, B., ... Lavia, L. (2016). Ten questions on the soundscapes of the built environment. *Building and Environment*, 108, 284–294. http://doi.org/10.1016/j.buildenv.2016.08.011
- Kang, J., & Zhang, M. (2010). Semantic differential analysis of the soundscape in urban open public spaces. *Building and Environment*, 45(1), 150–157. http://dx.doi.org/10.1016/j.buildenv.2009.05.014
- Kaplan, S. (1995). The restorative benefits of nature: Toward an integrative framework. *Journal* of Environmental Psychology, 15(3), 169–182. http://doi.org/10.1016/0272-4944(95)90001-2
- Kaplan, R., & Kaplan, S. (1989). *The experience of nature: A psychological perspective*. Cambridge: University Press Cambridge.
- Kogan, P., Turra, B., Arenas, J. P., & Hinalaf, M. (2017). A comprehensive methodology for the multidimensional and synchronic data collecting in soundscape. *Science of The Total Environment*, 580, 1068–1077. http://doi.org/10.1016/j.scitotenv.2016.12.061
- Kuwano, S., Seiichiro, N., Kato, T., & Hellbrueck, J. (2002). Memory of the loudness of sounds and its relation to overall impression. In *Forum Acusticum*, Seville, Spain.
- Lee, P. J., Hong, J. Y., & Jeon, J. Y. (2014). Assessment of rural soundscapes with high-speed train noise. *The Science of the Total Environment*, 482–483, 432–9. http://doi.org/10.1016/j.scitotenv.2013.07.026
- Liu, J., Kang, J., Behm, H., & Luo, T. (2014). Effects of landscape on soundscape perception: Soundwalks in city parks. *Landscape and Urban Planning*, 123(0), 30–40. http://dx.doi.org/10.1016/j.landurbplan.2013.12.003

- Liu, J., Kang, J., Luo, T., & Behm, H. (2013). Landscape effects on soundscape experience in city parks. *Science of The Total Environment*, 454–455(0), 474–481. http://dx.doi.org/10.1016/j.scitotenv.2013.03.038
- Mace, B.L., Bell, P.A., & Loomis, R.J. (1999). Aesthetic, Affective, and Cognitive Effects of Noise on Natural Landscape Assessment. Society & Natural Resources, 12(3), 225–242. http://doi.org/10.1080/089419299279713
- Mackrill, J., Cain, R., & Jennings, P. (2013). Experiencing the hospital ward soundscape: Towards a model. *Journal of Environmental Psychology*, *36*(0), 1–8. http://dx.doi.org/10.1016/j.jenvp.2013.06.004
- Matsinos, Y. G., Mazaris, A. D., Papadimitriou, K. D., Mniestris, A., Hatzigiannidis, G., Maioglou, D., & Pantis, J. D. (2008). Spatio-temporal variability in human and natural sounds in a rural landscape. *Landscape Ecology*, 23(8), 945–959.
- Miller, N. P. (2008). US National Parks and management of park soundscapes: A review. *Applied Acoustics*, 69(2), 77–92. http://dx.doi.org/10.1016/j.apacoust.2007.04.008
- Nasar, J. L. (1989). Public Places and Spaces. In I. Altman & E. H. Zube (Eds.), *Perception, cognition, and evaluation of urban places* (pp. 31–56). Boston, MA: Springer US. http://doi.org/10.1007/978-1-4684-5601-1_3
- Nilsson, M. E., & Berglund, B. (2006). Soundscape quality in suburban green areas and city parks. *Acta Acustica United with Acustica*, 92(6), 903–911.
- Nilsson, M. E., Jeon, J. Y., Rådsten-Ekman, M., Axelsson, Ö., Hong, J. Y., & Jang, H. S. (2012). A soundwalk study on the relationship between soundscape and overall quality of urban outdoor places. *The Journal of the Acoustical Society of America*, *131*(4), 3474. http://doi.org/10.1121/1.4709105
- Pheasant, R., Horoshenkov, K., Watts, G., & Barrett, B. (2008). The acoustic and visual factors influencing the construction of tranquil space in urban and rural environments tranquil spaces-quiet places? *The Journal of the Acoustical Society of America*, *123*(3), 1446–1457. http://dx.doi.org/10.1121/1.2831735
- Pilcher, E. J., Newman, P., & Manning, R. E. (2008). Understanding and Managing Experiential Aspects of Soundscapes at Muir Woods National Monument. *Environmental Management*, 43(3), 425–435. http://doi.org/10.1007/s00267-008-9224-1
- Raimbault, M. (2006). Qualitative judgements of urban soundscapes: Questionning questionnaires and semantic scales. *Acta Acustica United with Acustica*, 92(6), 929–937.
- Southworth, M. (1969). The Sonic Environment of Cities. *Environment and Behavior*, 1(1), 49–70. http://dx.doi.org/10.1177/001391656900100104
- Szeremeta, B., & Zannin, P. H. T. (2009). Analysis and evaluation of soundscapes in public parks through interviews and measurement of noise. *Science of The Total Environment*, 407(24), 6143–6149. http://dx.doi.org/10.1016/j.scitotenv.2009.08.039

- Torija, A. J., Ruiz, D. P., & Ramos-Ridao, A. F. (2013). Application of a methodology for categorizing and differentiating urban soundscapes using acoustical descriptors and semantic-differential attributes. *Journal of the Acoustical Society of America*, 134(1), 791-802. http://dx.doi.org/10.1121/1.4807804
- Ulrich, R. S., Simons, R. F., Losito, B. D., Fiorito, E., Miles, M. A., & Zelson, M. (1991). Stress recovery during exposure to natural and urban environments. *Journal of Environmental Psychology*, 11(3), 201–230. http://doi.org/10.1016/S0272-4944(05)80184-7
- Whalley, J. M. (1988). Water in the landscape. *Landscape and Urban Planning*, *16*(1–2), 145–162. http://doi.org/10.1016/0169-2046(88)90040-0
- Yang, W., & Kang, J. (2005). Soundscape and sound preferences in urban squares: a case study in Sheffield. Journal of Urban Design, 10(1), 61–80. http://dx.doi.org/10.1080/13574800500062395
- You, J., Lee, P. J., & Jeon, J. Y. (2010). Evaluating water sounds to improve the soundscape of urban areas affected by traffic noise. *Noise Control Engineering Journal*, *58*(5), 477–483.
- Yu, L., & Kang, J. (2010). Factors influencing the sound preference in urban open spaces. *Applied Acoustics*, 71(7), 622–633. http://dx.doi.org/10.1016/j.apacoust.2010.02.005

List of Tables

Table 1. Selected locations for data collection, and the most characteristic sound sources and area in the Alhambra complex (http://www.alhambra-patronato.es). Traffic: traffic sounds; Water: water sources, including falling and flowing water; Birds: sounds of birds; People: sounds from crowds.

Table 2. Percentage of participants reporting a pleasant sound as subjectively dominant and average value for the subjective questions "soundscape quality", "visual quality", "overall impression", "reported loudness" and "sound-levels (dBA)" in each of the 19 locations.

Table 3. Pearson's correlation (Pearson's r) between the percentage of participants reporting a pleasant sound as subjectively dominant and average value for the subjective questions "soundscape quality", "visual quality", "overall impression", "reported loudness" and "sound-levels (dBA)".

Table 4. Results (p-value) of the Kruskal-Wallis test (comparisons between the groups "people", "water", and "birds") and Mann-Whitney U test (pairwise comparisons people-water, people-birds, and water-birds).

Table 5. Spearman's correlation (Spearman's Rho) between the reported quality of the soundscape and subjective attributes.

Table	1
-------	---

No.	Location	Traffic	Birds	Water	People	Type of Space	Area
1	Patio de la Reja	Yes	Yes	Fountain	Yes	Courtyard	Nasrid Palaces
2	Patio de los Leones	No	Yes	Fountain	Yes	Courtyard	Nasrid Palaces
3	Torre del Cubo	Yes	Yes	Water Flowing	No	Outdoor Space	Alcazaba
4	Jardín de los Adarves	Yes	Yes	Fountain	No	Courtyard	Alcazaba
5	Patio de Lindaraja	No	No	Fountain	Yes	Courtyard	Nasrid Palaces
6	Partal	No	Yes	Water Flowing	Yes	Outdoor Space	Alhambra Alta
7	Patio de la Acequia	No	No	Fountain	Yes	Courtyard	Generalife
8	Jardines de la Medina	No	Yes	No	No	Outdoor Space	Alhambra Alta
9	Jardines Bajos	No	Yes	Fountain	No	Outdoor Space	Generalife
10	Salón de Embajadores	No	No	No	Yes	Indoor Space	Nasrid Palaces
11	Torre de la Vela	Yes	Yes	No	No	Outdoor Space	Alcazaba
12	Entrance to Generalife	No	Yes	Waterfalls	No	Outdoor Space	Generalife
13	Patio de la Sultana	No	Yes	Fountain	No	Courtyard	Generalife
14	Cuarto Dorado	No	No	No	Yes	Courtyard	Nasrid Palaces
15	Entrance to la Medina	Yes	Yes	No	No	Outdoor Space	Alhambra Alta
16	Torre de las Infantas	No	Yes	Waterfalls	No	Outdoor Space	Alhambra Alta
17	Jardines Altos	No	No	Fountain	Yes	Outdoor Space	Generalife
18	Sala de Dos Hermanas	No	No	Fountain	Yes	Indoor Space	Nasrid Palaces
19	Las Placetas	No	Yes	No	Yes	Outdoor Space	Carlos V

Table 2

No.	% Participants reporting a pleasant sounds as subjectively dominant	Soundscape quality	Overall impression	Visual quality	Reported loudness	Sound-levels (dBA)
1	55.0	6.9	8.1	8.8	4.6	64.5
2	100.0	6.3	7.9	8.8	6.1	68.3
3	70.0	7.4	8.5	9.1	3.0	57.0
4	100.0	7.5	8.8	8.8	4.8	51.0
5	70.0	7.6	8.4	8.8	4.6	61.0
6	72.7	6.8	7.7	7.8	4.6	60.4
7	95.0	7.1	8.7	8.9	5.3	67.5
8	71.4	7.0	8.3	8.8	4.1	50.8
9	85.0	7.4	8.3	8.8	3.5	49.3
10	0.0	5.0	7.3	8.5	5.1	55.2
11	52.4	6.1	8.4	9.1	3.8	53.0
12	85.0	7.5	8.8	9.1	4.1	58.8
13	90.0	7.4	8.5	8.3	5.4	67.1
14	50.0	5.9	7.8	8.1	5.4	65.3
15	30.0	6.6	7.6	7.8	3.1	49.6
16	90.0	8.0	9.0	8.7	3.2	48.3
17	90.5	7.0	8.4	8.6	5.0	62.7
18	40.0	6.3	7.5	8.4	4.6	62.6
19	5.0	4.4	6.3	6.7	4.3	58.4

Table 3

	% Participants reporting a pleasant sounds as subjectively dominant	Soundscape quality	Overall impression	Visual quality	Reported loudness	Sound- levels (dBA)
% Participants reporting a						
pleasant sounds as subjectively dominant	1	-	-	-	-	-
Soundscape quality	0.811**	1	-	-	-	-
Overall impression	0.818**	0.889**	1	-	-	-
Visual quality	0.578**	0.626**	0.815**	1	-	-
Reported loudness	0.153	-0.267	-0.140	-0.055	1	-
Sound-levels (dBA)	0.151	-0.138	-0.114	-0.051	0.775**	1

**p-value < 0.01

Table	4
-------	---

	People-Water-Birds	People-Water	People-Birds	Water-Birds
Quality	< 0.01*	< 0.01*	< 0.01*	< 0.01*
Pleasant	< 0.01*	< 0.01*	< 0.01*	< 0.01*
Acute	0.19	-	-	-
Calm	0.75	-	-	-
Varied	0.98	-	-	-
Near	< 0.01*	< 0.01*	0.22	< 0.01*
Natural	< 0.01*	< 0.01*	< 0.01*	< 0.01*
Comfortable	< 0.01*	< 0.01*	< 0.05*	0.06
Relaxed	< 0.01*	< 0.01*	< 0.05*	< 0.01*
Steady	< 0.01*	< 0.01*	0.09	< 0.01*
Usual	< 0.05*	< 0.05*	0.06	0.91
Reverberant	0.37	-	-	-
Smooth	< 0.05*	< 0.05*	0.85	< 0.01*

* Statistically significant differences

Table 5

Pleasant	Calm	Natural	Comfortable	Relaxed	Steady
0.900 **	0.498*	0.589**	0.765**	0.791**	0.581**
Smooth	Acute	Varied	Near	Reverberant	Usual
0.637**	0.0.56	0.140	0.082	0.005	-0.466*

*p-value < 0,05, **p-value < 0,01

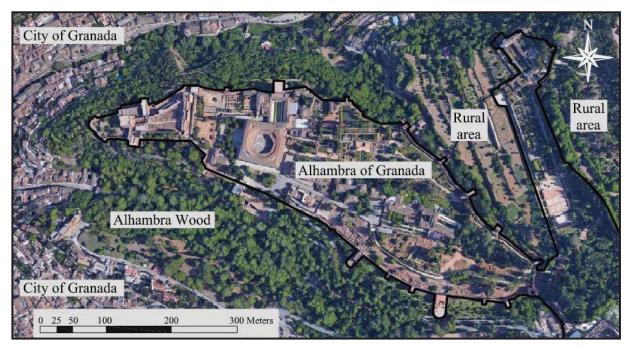


Figure 1. General view of the Alhambra monumental space and their adjacent areas.

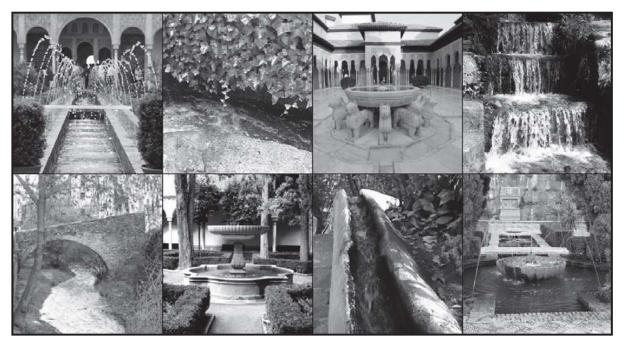


Figure 2. Representation of the diversity of water sound sources present in the Alhambra of Granada

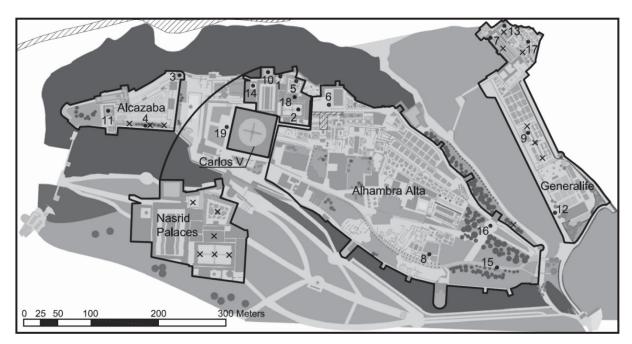


Figure 3. View of the areas within the Alhambra monumental site (see also Table 1) and selected points for data collection. It is also included those water sound sources influencing the selected measuring points. "x" stands for point sound sources (waterfall, fountains etc.), scratched areas stand for surface water sound sources (rivers, irrigation ditches, etc.).

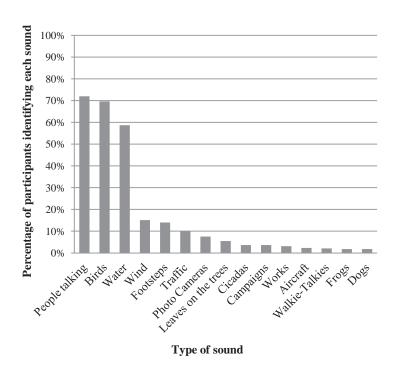


Figure 4. Set of sound sources identified and percentage of participants identifying each sound source.

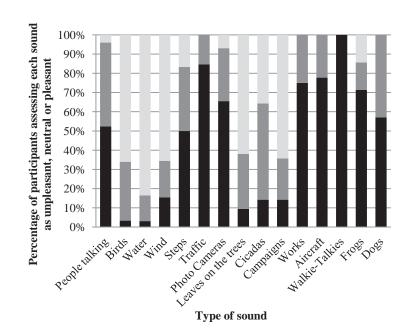


Figure 5. Subjective evaluation of the individual sounds. The segments of the bars represent the proportion of people who rated the sources as "unpleasant" (black), "neutral" (dark gray), and "pleasant" (light gray).

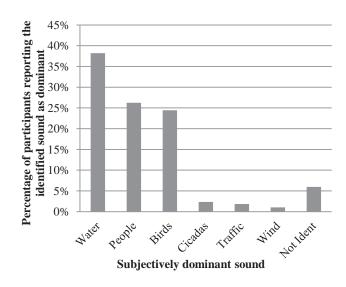


Figure 6. Percentage of participants reporting the identified sound as subjectively dominant. "Not Ident" is the percentage of participants who do not choose any sound as subjectively dominant in a given place.

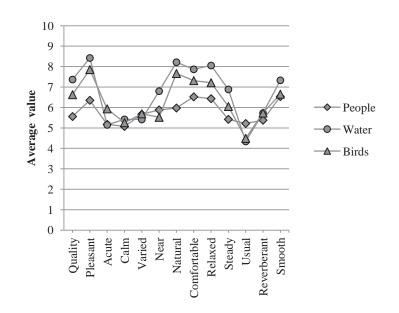


Figure 7. Average value of the reported soundscape quality and subjective attributes for the group of locations dominated by the sounds "people", "water", and "birds".

Acknowledgments

This work has been supported by the "Ministerio de Economía y Competitividad" of Spain under project TEC2012-38883-C02-02 and CEI-BIOTIC Granada under Project P_CP_27. The authors thank the funding of the EU through the European Regional Development Funds (ERDF) and the "Patronato de la Alhambra" for supporting this research. It is also acknowledged the financial support of the "Ministerio de Educación" of Spain under PFU grant AP2012-6117.