
1 
 

Quantifying the domestic building fabric ‘performance gap’ 

Dr David Johnston BEng (Hons), MSc PhD*, Dominic Miles-Shenton BSc (Hons), 

David Farmer BSc (Hons) 

Centre for the Built Environment, Leeds Sustainability Institute, Leeds Beckett University, 

The Northern Terrace, Queen Square Court, Leeds, LS2 8AJ, UK. 

* D.Johnston@leedsmet.ac.uk 01138127638 

 

Abstract 

In the UK, there is mounting evidence that the measured in situ performance of the building 

fabric in new build dwellings can be greater than that predicted, resulting in a significant 

building fabric ‘performance gap’. This paper presents the coheating test results from 25 

new build dwellings built to Part L1A 2006 or better. Whilst the total number of dwellings 

reported here is small, the results suggest that a substantial ‘performance gap’ can exist 

between the predicted and measured performance of the building fabric, with the measured 

whole building U-value being just over 1.6 times greater than that predicted. This is likely 

to have significant implications in terms of the energy use and CO2 emissions attributable to 

these dwellings in-use.  

Practical application 

This paper describes an aggregate approach (coheating test) that has been applied to a small 

sample of dwellings to quantify the size of the ‘performance gap’. The results suggest that 

this ‘gap’ can be large (> 100%) and can vary depending upon form and construction type. 

The results also illustrate the importance of developing a larger, more representative whole 

dwelling heat loss dataset. This could be used by industry to apply a suitable performance 
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factor1 to the nominal performance of new build that accounts for the ‘performance gap’. 

This factor could be specific to form and main construction type. 

1. Introduction 

In the UK, as in most industrialised countries, the domestic sector is a significant 

contributor to national energy use and CO2 emissions. Currently, there are over 27 million 

dwellings in the UK(1) accounting for just less than 30% of the UK’s total CO2 emissions(2). 

Therefore, if we are to mitigate the effects of climate change and achieve the UK 

Government’s target of an 80% reduction in national CO2 emissions by 2050 based on 1990 

levels(3), then significant reductions in the carbon emissions from dwellings, both new build 

and existing, will be required(4, 5, & 6). 

One factor that can have a considerable impact on the energy use and CO2 emissions from 

dwellings is the performance of the building fabric. Traditionally, the performance of the 

building fabric in new dwellings has been taken for granted. This is despite the fact that 

fabric performance is rarely understood or tested in the field. However, in recent years 

mounting field evidence has revealed that the measured in situ performance of the building 

fabric in new build dwellings cannot be taken from granted and can be much greater than 

that predicted. For instance, work undertaken by Hens et al.(7) andDoran(8) found that the U 

values achieved in practice are often much higher than those calculated. Similarly, recent 

work undertaken by Leeds Metropolitan University on whole dwelling heat loss found that 

there can be a considerable gap between the measured and the predicted performance of the 

building fabric(9). This difference between the measured and the predicted performance is 

commonly referred to as the building fabric ‘performance gap’. In some cases, differences 

between the measured and predicted performance of the building fabric of more than 100% 

                                                      
1 The performance factor would be applied to the predicted heat loss coefficient to ensure, with a high degree of 
probability, that any given dwelling form and construction type would meet a defined minimum level of fabric 
thermal performance (heat loss coefficient). 
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have been measured(9 & 10). Clearly, performance differences at this order of magnitude will 

have a significant impact on the dwellings associated energy use and CO2 emissions, and it 

is highly probable that they could also have a detrimental impact on occupant thermal 

comfort.  

Traditionally, dwellings in the UK have had very slow replacement cycles and long 

physical lifetimes, and this generally tends to be the same for the building fabric. 

Consequently by 2050, it is estimated that around 80-85% of the dwellings that we will live 

in are already built and are standing today(11 & 12). Therefore, it is crucial that we are not 

only able to quantify the performance of the building fabric in both new and existing 

dwellings as built, but in doing so, take the opportunities that arise to improve our 

understanding of fabric performance under real life conditions and the factors that influence 

this performance. Otherwise, there is a very real risk that we will leave a legacy of poorly 

performing new and existing dwellings for generations to come. As we currently have very 

limited knowledge about the thermal performance of the building fabric in either new or 

existing dwellings, acquiring such knowledge is justified on the grounds that it will enable 

informed policy and technical decisions to be made regarding whether technical 

improvements should be made to the thermal performance of the building fabric in 

dwellings. 

It is also important to realise that the building fabric is just one of a number of complex 

interrelated factors that influence the overall performance of a new or existing dwelling. 

Other factors include the performance of the various building services installed within the 

dwelling (space heating, water heating, ventilation, lights and appliances), occupancy and 

the energy supply system. In addition, the external environment also has an important 

influence on the building fabric, the building services and the occupants. This will be 

increasingly important in the future as the external conditions in which the dwelling is 

subject to alter in response to climate change. 
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2. Measuring building fabric performance 

A wide range of tools and techniques are available that can be used to measure and quantify 

the performance of various aspects of the building fabric once constructed. These can be 

separated into two distinct categories: aggregate techniques and disaggregate techniques. 

Aggregate techniques measure the heat loss from the dwelling in totality (both fabric and 

background ventilation heat loss). However, if these techniques are used in isolation, it is 

not possible to disaggregate heat loss into all of its constituent components (individual 

fabric elements and background ventilation heat loss). Disaggregate techniques, on the 

other hand, measure the heat loss attributable to a particular aspect of the building fabric, 

such as the U-value of a wall. Although it is possible to aggregate the results from various 

different disaggregated techniques together, it is often difficult to replicate the results 

obtained from using an aggregate technique, as it is only practically possible to undertake 

measurements from a limited proportion of the total building fabric surface area,. 

Consequently, the measurements obtained may not be representative of the element of 

fabric as a whole.  

Examples of each of these techniques are as follows: 

 Aggregate methods – Coheating test, Primary and Secondary Terms-Analysis and 

Renormalization (PSTAR)(13) and Quick U-value of buildings (QUB)(14). 

 Disaggregate methods – Pressurisation testing, leakage detection, tracer gas 

measurement, cavity temperature measurement, differential pressure measurement, 

heat flux measurement, infra-red thermal imaging and air flow measurement. 

2.1 Coheating test 
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One technique that has gained significant attention in recent years is the coheating test. The 

coheating test is an aggregate quasi-steady state2 method that is capable of measuring and 

quantifying the in situ whole dwelling heat loss (both fabric and background ventilation) of 

an unoccupied dwelling. It is one of only a few aggregate methods that are currently 

capable of being deployed in the field to measure whole dwelling heat loss. Other methods 

include the PSTAR method(13), or the QUB method(14), which is currently under 

development. Of all of these methods, the coheating test is the technique that has been most 

extensively deployed and developed in the UK; it was a key component of the Post 

Construction and Early Occupation studies that were undertaken as part of the Technology 

Strategy Board’s recent Building Performance Evaluation Programme(15). 

The coheating test method test is not a new concept. It was originally proposed by 

Socolow(16) and then subsequently developed by Sonderegger et al(17). and Sonderegger & 

Modera(18) in the late 1970’s in North America. At this time, it involved simultaneously 

providing space heating to a dwelling using two different heating systems; the installed 

heating system and portable electric resistance heaters, hence the name ‘coheating’. Since 

its development, the application of coheating in the UK has been limited, with only a few 

documented instances of its use in the 1980’s and early 1990’s (see Siviour(19), Everett(20) 

and Bell & Lowe(21)). However, the situation in the UK has changed significantly within the 

last decade or so, as the method has seen significant development and application by Leeds 

Metropolitan University (see Wingfield et al(22)  and Johnston et al.(23)). Nowadays, the term 

‘coheating’ is more of a misnomer, as the Leeds Metropolitan University version of the test 

method no longer requires the dwellings to be ‘coheated’. 

A coheating test involves heating the inside of an unoccupied dwelling electrically, usually 

using thermostatically controlled electric resistance point heaters, to an artificially induced 

                                                      
2 It is quasi-steady state in the sense that the internal environment is controlled so that it is in a steady state 
condition, whilst the external environment varies dynamically. 
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mean elevated internal temperature over a specific period of time. To minimise the amount 

of accelerated shrinkage and drying that may potentially occur within the building fabric, 

the mean elevated internal temperature should be set so that it is within the expected range 

of temperatures that would normally occur when the building was occupied. It is also 

advantageous to set the test temperature towards the upper end of this range, so as to 

maximize the temperature difference between inside and outside and thus drive heat flow 

through the building fabric. On this basis, the recommended mean elevated internal 

temperature used in the UK is 25°C. The period of time taken to undertake the test can vary 

enormously, and is highly dependent upon the external environmental conditions present 

during the test, but typically ranges from 1 to 3 weeks once the building fabric has become 

thermally saturated. The external environmental conditions also determine the time of year 

that coheating tests can be undertaken. Tests are normally undertaken during the heating 

season, usually between the months of October/November to March/April, so that a 

sufficient value of ΔT between the internal and external environment (generally 10°C or 

more) can be maintained throughout the test. This gives a 6 month test window in total. 

Whilst the dwelling is being artificially heated during the coheating test, a number of 

parameters are measured. These parameters include: total electrical energy input to the 

dwelling, internal temperatures and relative humidity in all of the habitable rooms and 

circulation areas, and various external climatic conditions (temperature, humidity, South-

facing solar radiation, wind speed, wind direction and rainfall). By measuring the total daily 

electrical energy input (in Watts) that is required to maintain the artificially induced mean 

elevated internal temperature, the daily heat input (in Watts) to the dwelling can be 

determined. The heat loss coefficient for the dwelling can then be calculated by plotting the 

daily heat input (in Watts) against the daily mean difference in temperature (in Kelvin) 

between the inside and outside of the dwelling (ΔT). The resulting slope of the plot gives 

the raw uncorrected heat loss coefficient in W/K. This provides a measure of the 
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instantaneous rate of heat loss from the whole dwelling per Kelvin. The uncorrected raw 

data can then be corrected using multiple linear regression analysis techniques to take 

account of effects such as solar radiation. An example of a plot using the multiple linear 

regression analysis method to account for solar radiation is illustrated in Figure 1. 

 

Figure 1 An example of the multiple linear regression method of analysis that accounts for 

the effect of solar radiation on the test data. 

Details of the equipment required to undertake a coheating test and the test procedure can 

be found within Johnston et al.(23). 

It is also important to realise that there are a number of uncertainties associated with 

undertaking a coheating test that may potentially introduce bias into the test results. These 

uncertainties may result in an underestimate or overestimate of the dwellings HLC and the 

resulting ‘performance gap’. Areas of uncertainty include those that are related to the 

measurement of various parameters during the test, those related to the external 

environmental conditions (for instance, solar radiation, wind speed and wind direction) and 

the building fabric (thermal mass and the moisture content of building materials), and those 

related to the method that is used to analyse the test results. Unfortunately, as a complex 

interplay exists between some of these uncertainties, it is very difficult to establish the 

impact that each individual uncertainty is likely to have on the coheating test result. As a 

consequence, very little research has been undertaken on the uncertainties associated with 

coheating testing. One of the few authors to have investigated some of the uncertainties 

associated with a number of the external environmental conditions is Stamp(24). Recent 

work undertaken by Stamp(24) investigated the effect of thermal mass and solar radiation on 

a test dwelling using simulated coheating tests, coupled with a limited amount of in situ 
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measured data. He concluded that in heavyweight, highly glazed dwellings, the HLC may 

be underestimated when there are high levels of incident solar radiation.  

Other unpublished work undertaken by the Centre for the Built Environment (CeBE) Group 

at Leeds Beckett University has adopted an alternative approach to dealing with a number 

of the issues associated with uncertainty. Tests undertaken in the field on the same dwelling 

by the same team almost 3 years apart revealed little difference in the measured HLC 

(132.9W/K in January 2010 compared to 133.8W/K in December 2013). In addition, 

coheating tests undertaken on a dwelling located within a controlled environment (test 

chamber) under three separate ΔT’s revealed little difference in measured HLC (224.8W/K, 

222.9W/K and 222.2W/K  at ΔT’s of 10.9°C, 16.2°C and 20.6°C, respectively). All of these 

tests give a degree of reassurance in the results obtained from the coheating test 

methodology. However, it is recognised that the areas of uncertainty associated with 

undertaking a coheating test are currently poorly understood and require further research. 

3. Quantifying the size of the fabric ‘performance gap’ 

In order to be able to quantify the size of the fabric ‘performance gap’, an analysis of all of 

the new build coheating tests that reside within the Centre for the Built Environment 

(CeBE) at Leeds Beckett University’s coheating testing database has been undertaken. This 

database contains information on both new and existing dwellings and is one of the largest 

and most comprehensive sources of coheating test data in the UK. In terms of new 

dwellings, it contains data on 38 coheating tests that have been undertaken on 25 separate 

dwellings of different age, size, type and construction, all of which were built to meet the 

requirements of the Building Regulations Part L1A 2006(25) or better, and most of which 

were tested by the same team. In a number of cases, multiple coheating tests have been 

undertaken on the same dwelling in order to test the effectiveness of a particular fabric 
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intervention. Details of a number of specific projects that are contained within this database 

can be obtained from http://www.leedsbeckett.ac.uk/as/cebe/. 

It should be noted that the number of new build dwellings contained within the Leeds 

Metropolitan University coheating database is only small and the dwellings contained 

within it are not necessarily the result of random sampling. Consequently, any results 

obtained from the database may not necessarily be representative of the UK housing stock 

as a whole. In fact, as a significant proportion of the dwellings contained within the 

database were built to exceed the fabric requirements of Part L1A 2006, the database is 

likely to be biased towards dwellings that were designed to have higher levels of fabric 

performance than that which is required for compliance purposes alone. 

Details of the dwellings included in the analysis are contained within Table 1. Only those 

tests undertaken on a dwelling prior to any interventions have been included in this 

analysis, resulting in 25 test results in total. As can be seen from Table 1, the dwellings 

tested vary considerably in terms of their size, built form and main external wall 

construction technique, but broadly encompass the main construction techniques and 

dwelling forms found within England and Wales. The notable exception to this is the 

exclusion of any apartments within the database. The reason for this is that apartments are 

intrinsically very difficult to test using the coheating method due to the large number of 

party elements. 

The coheating test results for all 25 new build dwellings are illustrated in Figure 2. For 

comparative purposes, the measured heat loss coefficient (HLC) obtained from the 

coheating test has been compared against the predicted steady state HLC. The predicted 

steady state HLC is an informed estimate based upon what was actually built, observed and 

measured on-site and comprises both a fabric and background ventilation HLC. In general, 

it is not the same at the design intent HLC that is used for compliance purposes. The fabric 
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HLC has been calculated from the measured survey data, plane element U-values and 

information on the heat losses attributable to thermal bridging. The background ventilation 

HLC has been approximatedfrom the mean air leakage rate of the dwelling using the simple 

n50/20 ‘rule of thumb’26 , coupled with data on the number of sides of the dwelling that are 

sheltered. The results illustrate that the dwellings contained within the database not only 

varied considerably in terms of their predicted and measured performance, but more 

importantly the measured performance exceeded the predicted performance in all of the 

dwellings. Interestingly, in the majority of the dwellings tested, the difference or ‘gap’ 

between the measured and steady state predicted whole house HLC is considerable. Despite 

this, it is encouraging to note that given the uncertainties associated with the coheating test 

method, the size of the ‘gap’ measured for dwellings 23, 24 and 25 can effectively be 

considered to be negligible, thus the in situ performance of the building fabric associated 

with these dwellings is performing pretty much as predicted. 

 

Figure 2 Measured versus predicted steady state HLC of the LeedsMet new build coheating 

database. 

The predicted steady state HLC has also been plotted against the measured HLC and a 

simple linear regression analysis performed to establish the relationship between these two 

parameters (see Figure 3). Analysis of the data indicates that there is a significant ‘gap’ 

between the predicted and measured values, with the measured HLC being almost 1½ times 

the steady state predicted HLC. However, the value of r2 obtained from the linear 

regression model is low (0.61), probably due to a combination of factors that include: the 

size and non-random nature of the sample, uncertainties associated with the measured 

coheating data and any bias introduced due to the analysis technique. Despite this, the scale 

of this ‘gap’, signified by the grey shaded area in Figure 3, is alarming and is likely to have 
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significant implications in terms of the energy and CO2 emissions attributable to these 

dwellings in-use. 

 

Figure 3 Predicted steady state HLC plotted against measured HLC of the LeedsMet 

coheating database. 

Closer analysis of the coheating data illustrates the size of the ‘gap’ in percentage terms 

that exists between the measured and predicted steady state performance (see Figure 4). As 

Figure 4 shows, the size of the ‘gap’ varies considerably, from just over 6% for dwelling 25 

to just under 140% for dwelling 18. On average, the size of the ‘gap’ in percentage terms is 

50%. However, use of such a metric tends to unfairly penalise those dwellings that have a 

very low predicted steady state HLC to begin with, such as dwellings 23, 24 and 25, In such 

dwellings, any observed difference between the measured and the predicted performance, 

even if it is only very small in absolute terms, will tend to appear to be disproportionately 

large in percentage terms. Such a metric also tends to mask differences in dwelling size, 

shape, form, complexity and construction type, so any conclusions drawn from using this 

metric need to be treated with caution. 

 

Figure 4: Difference in measured HLC as a percentage of the predicted steady state HLC of 

the LeedsMet coheating database. 

A more appropriate metric to use to compare the measured versus the predicted steady state 

performance of the dwellings would be to use mean whole building U-value, as it 

normalises the results based upon on the external heat loss area. However, by using such a 

metric it is recognised that in doing so, the background ventilation HLC is not included 

within this metric. Utilising such a metric is still deemed to be appropriate as the 
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background ventilation HLC in both the predicted steady state and measured HLC are the 

same, as both have been calculated based upon the results of pressurisation tests that were 

undertaken immediately prior to and following the coheating test. However, other 

important factors that may have an influence on the overall performance of the building 

fabric are still ignored, such as dwelling shape and level of complexity. 

If the predicted steady state mean whole building U-values are compared to the measured 

mean whole building U-values (see Figure 5 and Figure 6), it is apparent that a very wide 

range of performance was measured for the tested dwellings, with the range of measured 

whole building U-values being much greater than the predicted range. The mean whole 

building U-values that were measured ranged from 0.18 to 0.98 W/m2K, with a median of 

0.58 W/m2K and an interquartile range of 0.22 W/m2K, whilst the predicted steady state 

whole building U-values ranged from 0.17 to 0.52 W/m2K, with a median of 0.34 W/m2K 

and a an interquartile range of 0.12 W/m2K.  

 

Figure 5 Measured versus predicted steady state whole building U-value of the LeedsMet 

new build coheating database. 

 

Figure 6 Frequency distribution of whole building U-value of the LeedsMet new build 

coheating database. 

A simple linear regression analysis has also been undertaken to establish the relationship 

between the predicted and measured whole building U-value (see Figure 7). Analysis of the 

data indicates that the measured whole building U-value is just over 1.6 times the steady 

state predicted whole building U-value. However, the value of r2 obtained from the 

regression analysis is very low (0.31). Again, the poor fit of the regression model is most 
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probably due to the size and non-random nature of the sample. If this data is also analysed 

in terms of dwelling form and main external wall construction type (see Figures 8 and 9), a 

number of interesting trends become apparent. Analysis of the data in terms of dwelling 

form3 suggests that detached dwellings tend to perform much better than the other dwelling 

forms, with mid-terraced dwellings, on the whole, performing significantly worse than any 

other dwelling form. This is more than likely attributable to the fact that all of the mid-

terraced dwellings tested contained a party wall cavity and the majority of these dwellings 

were tested prior to the implementation of the Building Regulations Part L1A 2010(27), 

which for the first time addressed the heat losses attributable to the party wall bypass(28). As 

all of the mid-terraced dwellings tested contained two party cavity walls, the heat loss 

would be proportionately greater in these dwellings than other dwelling forms of equivalent 

size, as the party wall4 can be one of the most dominant heat loss areas in such dwellings. It 

is highly probable that since the introduction of Part L1A 2010, the heat losses associated 

with mid-terraced dwellings, and other dwellings that contain a party cavity wall, will have 

reduced. 

If the data is analysed with respect to the main external wall type, timber-frame and SIPS 

dwellings tend to outperform the other construction types by a considerable margin. The 

worst performing external wall construction type appears to be partial fill masonry. Part of 

the reason for this may be related to the susceptibility of this construction method to 

workmanship and assembly issues. For instance, if the partial fill boards are not fully taped 

and the boards are not fitted flush to the outer face of the inner blockwork leaf, then there is 

the potential for thermal bypassing and wind washing which will result in a degradation of 

the in situ U-value. 

                                                      
3 Semi-detached and end-terraced dwellings have been combined as thermally they behave as if they are the same 
dwelling form. 
4 It is recognised that not all party walls have cavities, so not all party walls will be susceptible to the party wall 
bypass. 



14 
 

 

Figure 7 Predicted versus measured whole building U-value of the LeedsMet coheating 

database. 

 

Figure 8 Predicted versus whole building U-value by main dwelling form.  

 

Figure 9 Predicted versus whole building U-value by main external wall construction. 

Conclusions 

The coheating test results from 25 new build dwellings that were built to meet or exceed 

Part L1A 2006 have been analysed in order to quantify the size of building fabric 

‘performance gap’. Although it has only been possible to make a number of qualitative 

comments regarding the coheating test results, due to the small and non-random nature of 

the dwellings tested, the results indicate that a very wide range of fabric performance exists 

within the UK and the measured fabric performance exceeded the predicted performance in 

all of the dwellings, resulting in a building fabric ‘performance gap’. More importantly, in 

the majority of the dwellings tested, the size of the ‘performance gap’ was considerable. If 

a simple linear regression analysis is undertaken on the aggregate data, the measured HLC 

is almost 1½ times the steady state predicted HLC. This will have significant implications 

in terms of the energy and CO2 emissions attributable to these dwellings in-use. 

Even when the coheating test data is normalised to account for varying dwelling size, using 

whole building U-value, a significant building fabric ‘performance gap’ exists, with the 

measured whole building U-value being just over 1.6 times that predicted. Closer analysis 

of the data suggests that the size of the ‘performance gap’ varies depending upon the 
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dwelling form and the main external wall construction types. The poorest performing 

dwelling form is mid-terraced dwellings, which tend to have a much larger ‘performance 

gap’ than all of the other dwelling forms. The reason for this is most likely to be 

attributable to the additional heat losses associated with the party wall bypass, which had 

not been addressed by Part L of the Building Regulations when the majority of these 

dwellings were constructed. In terms of construction type, the worst performing 

construction form is partial fill masonry, which can be particularly susceptible to thermal 

bypassing and wind washing if it is not assembled correctly or if the levels of workmanship 

are poor. 

If one also considers that the sample of dwellings tested is likely to be biased towards 

dwellings that have a higher fabric performance than is the norm for new build dwellings, 

then the results are even more significant, as the size of the ‘performance gap’ for new 

build speculative housing may be even greater than that documented within this paper. 

However, some of this additional ‘gap’ will be counteracted by the fact that the party wall 

thermal bypass has since been addressed in the Building Regulations. 

The results also illustrate the importance of undertaking a large-scale testing programme to 

produce a much larger, more representative and ultimately more powerful dataset. This 

dataset could be used by industry to apply suitable tolerances to new build dwellings that 

account for the ‘performance gap’, which are specific to form and construction type. 
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Table 1: Size, built form and main construction type of the tested dwellings.  

 Main external wall construction Built form Gross floor area (m2) 

Dwelling 1 partial fill masonry detached 167.5 

Dwelling 2 full-fill masonry detached 108.9 

Dwelling 3 partial fill masonry end-terrace 101.0 

Dwelling 4 timber-frame semi-detached 86.7 

Dwelling 5 other detached bungalow 157.0 

Dwelling 6 partial fill masonry end-terrace 102.2 

Dwelling 7 thin joint masonry detached 151.8 

Dwelling 8 full-fill masonry end-terrace 107.5 

Dwelling 9 timber-frame semi-detached 86.4 

Dwelling 10 timber-frame SIPS panel end-terrace 117.0 

Dwelling 11 timber-frame SIPS panel detached 154.5 

Dwelling 12 partial fill masonry end- terrace 83.4 

Dwelling 13 full-fill masonry end-terrace 141.0 

Dwelling 14 thin joint masonry semi-detached 90.4 

Dwelling 15 full-fill masonry semi-detached 92.6 

Dwelling 16 full-fill masonry semi-detached 92.6 

Dwelling 17 full-fill masonry mid-terrace 137.0 

Dwelling 18 partial fill masonry mid-terrace 83.4 

Dwelling 19 full-fill masonry mid-terrace 
106.0 

Dwelling 20 full-fill masonry semi-detached 
73.0 

Dwelling 21 full-fill masonry semi-detached 73.0 

Dwelling 22 full-fill masonry semi-detached 73.0 

Dwelling 23 timber-frame SIPS panel end-terrace 66.1 

Dwelling 24 full-fill masonry end-terrace 64.6 

Dwelling 25 timber-frame SIPS panel mid-terrace 65.7 
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Figure 1 An example of the multiple linear regression method of analysis that accounts for 

the effect of solar radiation on the test data. 
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Figure 2 Measured versus predicted steady state HLC of the Leeds Beckett new build 

coheating database. 

  



23 
 

Figure 3 Predicted steady state HLC plotted against measured HLC of the Leeds Beckett 

coheating database. 
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Figure 4 Difference in measured HLC as a percentage of the predicted steady state HLC of 

the Leeds Beckett coheating database. 
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Figure 5 Measured versus predicted steady state whole building U-value of the Leeds 

Beckett new build coheating database. 
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Figure 6 Frequency distribution of whole building U-value of the Leeds Beckett new build 
coheating database. 
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Figure 7 Predicted versus measured whole building U-value of the Leeds Beckett coheating 

database. 
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Figure 8 Predicted versus whole building U-value by main dwelling form.  
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Figure 9 Predicted versus whole building U-value by main external wall construction. 


