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21 Abstract

22 Several industry leaders and governmental agencies are currently investigating the use of 

23 Unmanned Aerial Vehicles (UAVs), or ‘drones’ as commonly known, for an ever-growing 

24 number of applications from blue light services to parcel delivery.  For the specific case of the 

25 delivery sector, drones can alleviate road space usage and also lead to reductions in CO2 and 

26 air pollution emissions, compared to traditional diesel-powered vehicles.  However, due to their 

27 unconventional acoustic characteristics and operational manoeuvres, it is uncertain how 

28 communities will respond to drone operations.  Noise has been suggested as a major barrier to 

29 public acceptance of drone operations in urban areas.  In this paper, a series of audio-visual 

30 scenarios were created to investigate the effects of drone noise on the reported loudness, 

31 annoyance and pleasantness of seven different types of urban soundscapes.  In soundscapes 

32 highly impacted by road traffic noise, the presence of drone noise lead to small changes in the 

33 perceived loudness, annoyance and pleasantness.  In soundscapes with reduced road traffic 

34 noise, the participants reported a significantly higher perceived loudness and annoyance and a 

35 lower pleasantness with the presence of the same drone noise.  For instance, the reported 

36 annoyance increased from 2.3±0.8 (without drone noise) to 6.8±0.3 (with drone noise), in an 

37 11-point scale (0-not at all, 10-extremely).  Based on these results, the concentration of drone 

38 operations along flight paths through busy roads might aid in the mitigation of the overall 

39 community noise impact caused by drones.

40 Keywords: Drone Noise; Road Traffic Noise; Urban Soundscape; Audio-Visual Effects; 

41 Listening Experiments.
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45 1. Introduction

46 Due to the significant advancement on electrical power, battery and autonomous 

47 systems technology, the applications of Unmanned Aerial Vehicles (UAV), or ‘drones’ as 

48 commonly known, seem unlimited (Dorling et al., 2017). An ever-growing number of 

49 applications are currently under investigation in sectors such as construction, surveillance and 

50 parcel delivery (Yoo et al., 2018). With the continuous increase in consumer demand and cost 

51 and time savings in mind, several companies such as Amazon, UPS, Google, and Wal-Mart are 

52 testing multi-rotor UAV for delivering small packages or groceries (Alphabet, 2017; BI 

53 Intelligence, 2016; Rose, 2013; Vanian, 2017).  

54 The need for reducing greenhouse gas emissions has led to a significant interest in 

55 electric propulsion for air vehicles (Schäfer et al., 2019).  From the customers’ perspective, 

56 drone delivery is perceived as more environmentally friendly than delivery by truck, which 

57 makes it more appealing for customers who care about the environment (Yoo et al., 2018).  

58 Figliozzi (2017) states that UAVs are significantly more efficient for reducing carbon dioxide 

59 equivalent emissions than typical diesel delivery vehicles. Several authors suggest that in 

60 service zones close to the depot, a deployed UAV based delivery can reduce greenhouse gas 

61 and other environmental impacts compared to conventional diesel delivery trucks (Figliozzi, 

62 2017; Goodchild and Toy, 2018; Koitwanit, 2018; Stolaroff et al., 2018).

63 However, UAV sounds have been found more annoying than sounds of delivery road 

64 vehicles (Christian and Cabell, 2017). Although the authors highlighted the uncertainty as to 

65 whether the differences in annoyance were due to the particular UAV manoeuvres measured 

66 (i.e. farther/slower than for road vehicles measurements) or qualitative differences between 

67 UAV and road traffic sounds, Christian and Cabell (2017) found an offset of 5.6 dB between 

68 UAV and road vehicles. This means that UAV sounds 5.6 dB lower in A-weighted Sound 
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69 Exposure Level (SEL) than road vehicles sounds were reported equally annoying as the latter 

70 ones.

71 The noise generated by UAVs does not qualitatively resemble the noise of conventional 

72 aircraft (Cabell et al., 2016; Christian and Cabell, 2017; Torija et al., 2019b; Zawodny et al., 

73 2016); also, compared to contemporary aircraft, UAVs will operate much closer to the public. 

74 This is why there is an important uncertainty as to how the public will react to UAV noise.  

75 What is clear is that, if not appropriately addressed, noise issues might put at risk the expansion 

76 of the UAV sector in urban areas (Theodore, 2018). 

77 This paper is aimed to investigate the noise impact of UAV operations in urban 

78 soundscapes. The specific objectives of this research are: (1) Evaluate the impact of the noise 

79 generated by the hover of a small quadcopter on the reported loudness, annoyance and 

80 pleasantness of different urban soundscapes. (2) Assess the influence of the overall sound level, 

81 particular acoustics characteristics of the quadcopter (Cabell et al., 2016; Christian and Cabell, 

82 2017; Torija et al., 2019b; Zawodny et al., 2016) and non-acoustic factors such as visual scene 

83 (Liu et al., 2014; Ren and Kang, 2015; Viollon et al., 2002) on the perception of soundscapes 

84 with a hovering UAV. (3) Discuss the effect of ambient road traffic noise in masking UAV 

85 noise as a potential action for mitigating the noise impact of UAV operations in urban 

86 environments.

87 Aural-visual scenarios were created to investigate the effects of the noise of a small 

88 quadcopter hover on the perception of seven urban soundscapes with varying sound level 

89 (LAeq), and with varying sound sources. The soundscapes evaluated include sites at varying 

90 distances from traffic roads (i.e. 5 m, 50 m and 150 m away) and a park with no influence of 

91 road traffic and dominant sounds from birds and a water stream. In order to assess the combined 

92 effect of road traffic (at varying levels) and drone noise on soundscape perception, the 
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93 recordings were carried out in open spaces both alongside a busy traffic junction in city centre 

94 and a busy road in the surroundings of the city.  The selection of these two areas was to include 

95 traffic under typical urban conditions, and also more fluid/high speed traffic.  A combination 

96 of audio and visual techniques was implemented to create a series of scenarios simulating the 

97 operation of a small quadcopter hover in the different urban spaces tested. These audio-visual 

98 scenarios provided realistic experiences to the participants of the experiments, allowing more 

99 accurate information about the reactions to this novel noise source (Maffei et al., 2013, Ruotolo 

100 et al., 2013). The perception of the overall environment is multisensory in its very nature, and 

101 both audio and visual factors have been found highly influential in the reported annoyance of 

102 transportation systems (Jiang and Kang, 2016; Jiang and Kang, 2017) and wind farms (Schäffer 

103 et al., 2019; Szychowska et al., 2018).

104  This paper is structured as follows: Section 2 explains the acquisition of audio-visual 

105 signals, describes the equipment, stimuli and methodology used for the development of 

106 experiments, and introduces the data analysis techniques used; In Section 3 and 4 the 

107 experimental results are presented and discussed respectively.

108

109 2. Material and methods

110 2.1. Data collection

111 The stimuli used in the experiment reported in this paper contain audio and panoramic 

112 video signals, which were extracted from a series of indoors and outdoors recordings. Audio-

113 visual recordings were made to capture representative samples of soundscapes with different 

114 influence of road traffic noise (see Table 1). Due to the current legislation in the UK1, 

1 Civil Aviation Authority (CAA) Air Navigation Order 2016, specifically Article 241 (endangering the safety of 
any person or property), Article 94 (small unmanned aircraft) and Article 95 (small unmanned surveillance 
aircraft).
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115 forbidding flying drones at least 50 m away from people and property, the audio-visual signals 

116 of a small quadcopter were recorded in an anechoic chamber, used for aircraft noise and 

117 aeroacoustics research. These audio-visual signals were combined with the audio-visual signals 

118 recorded outdoors to generate the stimuli used in the experiment (described below). This 

119 approach also allowed the analysis of the effects of exactly the same audio-visual drone 

120 stimulus on different urban soundscapes.

121 2.1.1. Outdoors recordings

122 Fig. 1 shows the (audio-visual) field recording locations in the two areas selected in the 

123 city of Southampton (UK).

124

125

126 Figure 1. Audio-visual recording sites.

127 A panoramic camera (Ricoh Theta V) was used to record a high-quality 360° video (30 

128 fps @ 3840 x 1920 pixels or 4K resolution with a data-rate of 56 Mbps; audio bit rate of 96 
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129 kbps, audio sample rate of 48.000kHz; MPEG-4 type) in the seven locations selected: 4 in the 

130 Common park at varying distances (see Fig. 1) from a busy road with fluid/high speed traffic, 

131 and 3 in a park located in the city centre of Southampton (UK) at varying distances (see Fig. 

132 1) from a busy traffic junction (with pulsed-flow traffic conditions typical of urban areas).  The 

133 audio signals at these locations were recorded via four Micro Electrical-Mechanical System 

134 (MEMS) microphones integrated into the panoramic camera to independently record sound 

135 from four different directions. These four microphones are arranged as a tetrahedron to get 1st 

136 Ambisonic audio in A-format. Then the A-format audio was transferred to B-format using 

137 Ricoh Theta software.  MEMS are stable and reliable small size microphones with low power 

138 consumption.  MEMS has an excellent stability across a wide temperature range, and a 

139 consistent flat frequency response in the audio frequencies range (especially good at low 

140 frequencies) (Lewis and Moss, 2013). 

141 A calibrated class 1 sound meter (Brüel & Kjær 2260 Investigator) was also used to 

142 measure the A-weighed sound pressure levels (LAeq) at the site during the recording. The 

143 panoramic camera was placed on a tripod at a height of 1.6m from the ground while the sound 

144 meter was placed at a height of 1.2m from the ground. Fig. 2 shows a picture of one of the 

145 recording sites (location L1).
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146  

147 Figure 2. Picture of the recording site in location L1.

148 2.1.2. Anechoic recordings

149 The recordings of a small quadcopter (DJI Phantom 3 Standard) were carried out in the 

150 Anechoic Doak Laboratory at the Institute of Sound and Vibration Research (ISVR).  This 

151 specific model has a full weight (battery and propellers included) of 1216 g, the max rpm of 

152 the propellers is about 7500 and the max load is 2.3 kg (including its own weight).  This type 

153 of drone is a representative small consumer-level vehicle very promising to be used in 

154 construction inspection, surveillance, parcel delivery and traffic control.  The quadcopter was 

155 fixed to a stand at a distance of 1.8 m above the ground such that only the four rotor blades 

156 could move. The same panoramic camera (with a four-channel built-in microphone) used in 

157 the recordings outdoors was placed on another tripod at a height of 1.6m from the ground and 

158 0.75 m away from the tripod of the quadcopter. To ease the combination of the panoramic 

159 visual signals of the drone and soundscapes recorded, a 3m × 6m green cloth screen was fix 

160 behind the quadcopter.  To avoid sound reflection effects on the recorded audio signals, a green 

161 screen with high acoustic permeability was selected. During the measurements in the anechoic 

162 chamber no effect of the green screen was observed in the recorded sound levels.  A picture 
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163 and schematic diagram of the recording setup are shown in Fig. 3. During the recordings, the 

164 quadcopter was operated at full power.

165

166 Figure 3. Picture and schematic diagram of the measurement setup at the Anechoic Doak 

167 Laboratory at the Institute of Sound and Vibration Research (ISVR).

168 2.2. Stimuli

169 Two types of stimuli were used in this experiment, i.e. audio only (part 1 of the 

170 experiment) and panoramic video with the same audio signals of part 1 (part 3 of the 

171 experiment).  The results of part 2 are not considered in this paper, as they fall out of its scope 

172 (see Section 2.3.3).

173 2.2.1. Processing of the audio signals

174 A 15 s video excerpt with steady sound level to capture the ambient sound 

175 representative of each of the seven locations was selected from the each of the original 

176 panoramic video recordings. A 15 s video excerpt of the panoramic video recorded in the 

177 anechoic chamber with the drone operating at full power was also selected.  The audio signals 

178 recorded in the field and in the anechoic chamber were extracted using the FFmpeg 

179 Import/Export library of the audio edit software Audacity (v 2.3.0). 
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180 One of the objectives of this research is to assess the perception of urban soundscapes 

181 with a small drone hover and different road traffic sound levels.  The underlying hypothesis is 

182 that road traffic noise can mask drone noise, and then mitigate the adverse effects of drone 

183 flyovers. The focus of this research is in the differences in the frequency spectra between road 

184 traffic and drone noise (see Fig. 14).  For the sake of comparison between participants’ 

185 responses, and in order to find conclusions statistically valid, it was required that all 

186 participants received exactly the same sound signal (i.e. sound level, frequency content, etc.) 

187 regardless of the movement of their head. For this reason, a monophonic headphone 

188 reproduction was preferred to other spatial audio techniques. In the stimuli simulating a drone 

189 hover presented to the participants, the small quadcopter is fixed in a steady position, with the 

190 other sound sources in the background.  Spatial cues increase immersion and plausibility of 

191 sound scenes, and so, several spatial audio reproduction techniques have been proposed and 

192 tested to be applied in soundscape research (Hong, et al., 2019; Lam, et al., 2019).  However, 

193 the spatial aspects of soundscapes are not within the scope of this research.

194 As described above, the four-channel signal was recorded as a 1st order A-Format 

195 ambisonic, and then processed to 1st order B-Format. The monophonic signals used in the 

196 experiment was the W channel signal, which is a scaled version of the sound pressure at the 

197 centre of the microphone array as seen by an omnidirectional pressure microphone.

198 The sound levels (LAeq,15s) recorded in the field for each 15 s audio except are shown in 

199 Table 1.  Three LAeq,15s (i.e. 70, 60 and 55 dBA) were selected both to provide a wide range of 

200 sound levels and as representative of the different urban soundscapes recorded. The same sound 

201 levels, 70, 60 and 55 dBA, were assigned to the recorded locations with similar distances to 

202 road traffic, to investigate whether the different traffic patterns (e.g. urban vs. road traffic) 

203 might have effects on the results.  Similarly, the location in the park, dominated by water and 

204 birds sounds, was set to 55 dBA to investigate the effect of natural sounds vs. distant 
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205 background road traffic noise.  The sound level (i.e. LAeq,15s) of each 15 s audio except recorded 

206 in the field was adjusted in amplitude, using audacity software, to the corresponding target 

207 sound levels shown in Table 1 (see LAeq,15s (dBA) after adjustment in amplitude row). The 

208 sound levels of the ‘ambient plus drone’ stimuli (see LAeq,15s (dBA) after adjustment in 

209 amplitude (‘ambient plus drone’ sounds) row) are the result of the energetic sum of the LAeq,15s 

210 (dBA) after adjustment in amplitude of each soundscape tested (see LAeq,15s (dBA) after 

211 adjustment in amplitude row) and the LAeq,15s (dBA) after adjustment in amplitude of the drone 

212 (i.e. LAeq,15s =65 dBA).

213 The headphone reproduction was calibrated in sound pressure level using an artificial 

214 ear (Brüel & Kjær 4153 Artificial Ear) coupled to a class 1 sound level meter (Brüel & Kjær 

215 2260 Investigator), to the corresponding sound levels shown in Table 1 (LAeq,15s (dBA) after 

216 adjustment in amplitude and LAeq,15s (dBA) after adjustment in amplitude (‘ambient plus drone’ 

217 sounds) rows),without altering neither temporal nor spectral characteristics. 

218

219 Table 1  

220 Sound level (LAeq,15s) for each 15 s audio excerpt.

Key L1 L2 L3 L4 L5 L6 L7 Drone
LAeq,15s (dBA) 
as recorded in 

the field
69.8 57.5 51.3 65.2 59.0 52.6 48.9 n.a.

LAeq,15s (dBA) 
after 

adjustment in 
amplitude

70.0 60.0 55.0 70.0 60.0 55.0 55.0 65.0

LAeq,15s (dBA) 
after 

adjustment in 
amplitude 

(‘ambient plus 
drone’ sounds)

71.2 66.2 65.4 71.2 66.2 65.4 65.4 n.a.
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221

222 The sound level (LAeq,15s) of the quadcopter was set at 65 dBA.  This sound level was 

223 chosen on the basis of the results of a measurement campaign carried out by Cabell et al (2016) 

224 for a series of small quadcopters and hexacopters.  Cabell et al (2016) found the sound level of 

225 small quadcopters at 15 m from the microphone ranging between 65 and 70 dBA. In the 

226 research presented in this paper it was assumed that a hovering altitude of 15-20 m is 

227 reasonable, and therefore, 65 dBA was selected as a representative sound exposure to a small 

228 quadcopter.

229 The ‘ambient plus drone’ audio signals were created by combining with audacity 

230 software each of the seven field recorded 15 s excerpt and the 15 s drone audio signal recorded 

231 in the anechoic chamber.  This resulted in fourteen audio signals (seven with ‘ambient’ sounds 

232 and seven with ‘ambient plus drone’ sounds) as the stimuli for this experiment.

233 2.2.2. Processing of the panoramic video signals

234 A series of panoramic videos simulating representative scenarios of all the seven urban 

235 soundscapes recorded were used as stimuli in the experiment. Altogether, 14 scenarios were 

236 assessed by the participants: the seven original urban soundscapes recorded, and the same 

237 seven urban soundscapes with the addition of a small quadcopter hover. The panoramic video 

238 of the quadcopter recorded in the anechoic chamber, with green screen background, was keyed 

239 out and added onto each of the seven recorded urban soundscapes using a video effects 

240 software, i.e. Adobe After Effect CC 2017. In this step, the videos were muted and the 

241 corresponding calibrated audio signals (see Section 2.2.1) were imported (see Fig. 4). 

242 Therefore, exactly the same sounds were presented to the participants in parts 1 and 3 of the 

243 experiment.  Before the experiments, the experimenters checked that the reproduced levels in 
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244 parts 1 and 3 were identical using an artificial ear coupled to a class 1 sound level meter (see 

245 Section 2.2.1).

246  Fig. 5 displays a picture of the viewer’s perspective for one of the locations tested 

247 (location L4), without and with the drone hover.  In each of the seven panoramic videos 

248 produced for the ‘ambient plus drone’ scenarios, the drone was simulated in a fixed position 

249 (i.e. hover) showing fully operational propellers rotating at full power (see above max rpm). 

250
251 Figure 4. Overview of the processing to create the audio-visual stimuli with the quadcopter 

252 hover.
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253

254
255
256 Figure 5. Viewer’s perspective for the location L4, without (top) and with the quadcopter 

257 hover (bottom).

258 2.3. Listening experiments

259 2.3.1. Participants

260 The listening tests were undertaken by 30 healthy participants (16 males and 14 

261 females) aged between 21 and 59 years old (mean age = 30.5, standard deviation = 9.2, 57% 

262 between 20 and 29 years old, 31% between 30 and 39 years old, 6% between 40 and 49 years 

263 old, and 6% between 50 and 59 years old) who were recruited by email within university. A 

264 thank you gift of £10 for taking part was used to incentivize participation in the listening tests. 

265 Prior to participating in the listening test, each participant was required to confirm normal 
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266 hearing ability and asked to fill out a consent form. This experiment was approved by the Ethics 

267 and Research committee of the University of Southampton.

268 2.3.2. Equipment for the presentation of stimuli

269 The hardware setup used for the experiments consisted of a powerful desktop computer 

270 (Intel Core i7-2600 CPU @3.40GHz, 16.0 GB RAM, 64-bit Windows 10 Operating System) 

271 with a high-performance graphics card (NVIDIA GeForce GTX 1080), a USB 

272 DAC/headphone amplifier (Audioquest, DragonFly Red v1.2), a pair of open back headphones 

273 (AKG K-501), and a Facebook Oculus Rift S virtual reality head-mounted-display (VR HMD).

274 The order of play was generated by the experimenters before each experiment using a 

275 random order generator software (i.e. The Hat Deluxe) to eliminate memory bias from prior 

276 judgments. In the first part, the audio stimuli were presented by the experimenter using the 

277 media player software VLC media player v3.0.6. In the third part, the participants were 

278 instructed to play back themselves the panoramic audio-visual stimuli using the VR video 

279 player DeoVR Video Player v5.8. Note that, as mentioned above, the second part of the 

280 experiments is not included in this paper. The volume level control on the desktop was blocked, 

281 so the reproduced sound levels were not altered after calibration. The tests were carried out in 

282 a very quiet environment (i.e. a small anechoic chamber at ISVR), with no interference from 

283 outside in order to avoid distractions.  The background sound level in this small anechoic 

284 chamber was 15.1 dBA.

285 2.3.3. Experimental procedure

286 This paper reports the results of two out of three parts of a listening experiment.  As 

287 described above, in the first and third parts of the experiment, only audio signals and audio-

288 visual signals respectively simulating a drone hover in seven urban scenes were presented to 

289 the participants.  In the second part of the experiment, a series of drone, road vehicles and 
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290 aircraft sounds were played back, and the participants were requested to rank them by order of 

291 preference using a methodology developed by Torija et al. (2019a).  The objective of this 

292 second part (of 40-min duration) was to compare subjective perception of drone flyovers with 

293 aircraft flyovers and road vehicles pass-byes.  The data gathered in this second part are not 

294 included in the paper, as it falls out of its scope.

295 The experiments involved a series of assessment tasks, where the participants reported 

296 their perception of loudness, annoyance and pleasantness induced by the sounds they heard 

297 (first part) or the panoramic videos they heard and watched (third part), using an 11-point scale 

298 (0-not at all, 10-extremely). In each part, i.e. only audio and audio plus panoramic video, 14 

299 15-second stimuli were rated, with a 20-second break in between.

300 Panoramic video recordings and VR HMD were the stimuli and equipment chosen to 

301 present the participants with the different scenarios to be evaluated.  A VR HMD provides 

302 important operational benefits compared to other reproduction equipment, such as big screens.  

303 Further, a panoramic video recording enables a better representation and simulation of the 

304 locations under study.  The use of both panoramic video recordings and VR HMD made the 

305 participants more intuitively and better understand the scenarios presented.

306 For the sake of comparison and statistical validity, all the participants were advised to 

307 look at front in order to focus on the area where the drone hover was simulated.  During the 

308 20-second break the participants reported their answers, and then rested and waited for the next 

309 stimulus.  The stimuli were presented (and rated) only once, in a random order. Before the start 

310 of the first part of the experiment, several audio samples were presented to the participants; 

311 similarly, before the start of the third part, several audio-visual samples were presented to the 

312 participants. The objective was to make the participants familiar with the tasks requested during 

313 the experiment (including the subjective ratings), and also with the equipment used. 
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314 Specifically, audio samples of different loudness were used to instruct the participants in the 

315 rating using the 11-point scale, and panoramic video samples were used for the participants to 

316 learn how to use the VR video player. After the completion of the experiment, in an informal 

317 chat, the participants were inquired as to their views on both the experimental design and the 

318 audio/audio plus visual stimuli they heard/heard and watched.

319 In the first part, the participants reported their responses in a paper questionnaire 

320 provided. In the third part, as the participants were wearing the VR HMD, they reported orally 

321 their rates after each stimulus, and it was the experimenter who wrote down their answers in a 

322 paper questionnaire.  

323 Considering the training/introduction, experiment and debrief, the duration of each part 

324 1 and 3 was 20 min. Altogether, including the three parts of the experiment (second one not 

325 reported in this paper), the average total duration of the experiment was 1 hour and 20 min.

326 2.4. Data Analysis

327 The analysis of the influence of the overall sound level, particular acoustics 

328 characteristics of the quadcopter and non-acoustic factors such as visual scene on soundscape 

329 perception was addressed using multilevel modelling. Multilevel linear models (also known as 

330 mixed models) are a suitable approach to take into account individual responses of participants, 

331 as it is assumed that regression parameters (i.e. intercept and slopes) vary randomly across 

332 participants (Hox, 2010). As every participant might have a different interpretation of the rating 

333 scale, leading to different regression parameters, multilevel linear modelling was assumed an 

334 accurate approach to investigate the contribution of each acoustic and non-acoustic factors to 

335 the perception of the soundscapes tested. All the statistical analyses were carried out with the 

336 statistical package IBM SPSS Statistics 25.
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338 3. Results

339 3.1. Perception of urban soundscapes with a hovering drone

340 Fig. 6 shows the perceived loudness reported by the participants of the listening 

341 experiments for the seven urban locations tested, with and without the presence of the noise 

342 generated by a small quadcopter hover (e.g.  L1 vs. L1D), also differentiating between the cases 

343 with and without visual stimuli.  In locations L1 and L4, the closest to road traffic, the presence 

344 of drone noise has a limited effect with an increase in reported loudness of 9% and 15% (L4 

345 and L1 respectively).  As the distance from the road traffic increases, and therefore the ambient 

346 sound level decreases, the effect of drone noise in reported loudness also increases, from 46% 

347 in L5 to 99% in L3.  The highest increase in reported loudness is observed in location L7 (park 

348 with water and birds sounds), where the reported loudness with drone noise is 2.2 times the 

349 one reported for the typical ambient sound. The visual stimuli seem not to have a clear effect 

350 on the reported loudness. In locations with high ambient sound levels, i.e. L1 and L4, the 

351 reported loudness decreases with visual stimuli. However, in the locations with low ambient 

352 sound levels, the reported loudness is slightly higher with visual stimuli.
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353

354 Figure 6. Reported loudness in each of the seven urban soundscapes evaluated without and 

355 with the noise generated by the drone hover (e.g. L1 vs. L1D), and without and with 

356 panoramic video.

357 In Fig. 7, it is shown the reported annoyance for the seven urban locations tested for the 

358 conditions with and without noise of a small quadcopter hover, and with and without visual 

359 stimuli. The reported annoyance increases between 24% and 28% (locations L4 and L1 

360 respectively) with the presence of drone noise in locations with high ambient road traffic noise.  

361 In locations with little influence of road traffic noise, and consequently low ambient sound 

362 levels, significant increases in the reported annoyance are observed with the presence of drone 

363 noise.  In these locations the increase in reported annoyance with drone noise ranges between 

364 2.3 (locations L2 and L5) and 6.3 (location L7) times the reported annoyance for ambient noise. 

365 In fact, the median value of the reported annoyance in all the urban locations tested was about 

366 7 (in a 11-point scale from 0 to 10) with drone noise, regardless the overall sound levels.  
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367 Comparing the responses with and without visual stimuli, the reported annoyance is slightly 

368 lower with visual stimuli in all the urban locations (8% lower than without visual stimuli).

369
370 Figure 7. Reported annoyance in each of the seven urban soundscapes evaluated without and 

371 with the noise generated by the drone hover (e.g. L1 vs. L1D), and without and with 

372 panoramic video.

373 Fig. 8 shows the reported pleasantness for the seven urban locations tested with and 

374 without noise generated by a small quadcopter hover, and also with and without visual stimuli. 

375 The reported pleasantness, with and without drone noise, in locations with high road traffic 

376 noise is similar, i.e. median = 0.8 and 1.5 with and without drone noise respectively.  In 

377 locations with reduced influence of road traffic noise, and also water and birds sounds (location 

378 L7), the reported pleasantness without drone noise is significantly higher than with drone noise.  

379 In these locations, the reported pleasantness without drone noise is from 2.9 (location L5) to 

380 4.0 (location L7) times higher than with drone noise. The influence of the visual stimuli is 

381 observed to have a larger influence than in the previous two cases (i.e. reported loudness and 
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382 annoyance). Comparing the responses with and without visual stimuli, the reported 

383 pleasantness is notably higher with visual stimuli in all the urban locations (47% higher than 

384 without visual stimuli).

385

386 Figure 8. Reported pleasantness in each of the seven urban soundscapes evaluated without 

387 and with the noise generated by the drone hover (e.g. L1 vs. L1D), and without and with 

388 panoramic video.

389 Table 2

390 Results of the related-samples Friedman’s two-way analysis of variance by ranks.  It is shown 

391 the pairwise comparisons with statistically significant differences (p<0.05) between the 

392 conditions: C1 (‘ambient’, ‘only audio’), C2 (‘ambient plus drone’, ‘only audio’), C3 

393 (‘ambient’, ‘audio plus video’) and C4 (‘ambient plus drone’, ‘audio plus video’).

L1
Pairwise Comparisons Reported Loudness Reported Annoyance Reported Pleasantness
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C1-C2 p<0.05 p<0.05
C1-C3 p<0.05
C2-C4 p<0.05
C3-C4 p<0.05

L2
Pairwise Comparisons Reported Loudness Reported Annoyance Reported Pleasantness

C1-C2 p<0.05 p<0.05 p<0.05
C1-C3
C2-C4 p<0.05
C3-C4 p<0.05 p<0.05 p<0.05

L3
Pairwise Comparisons Reported Loudness Reported Annoyance Reported Pleasantness

C1-C2 p<0.05 p<0.05 p<0.05
C1-C3
C2-C4
C3-C4 p<0.05 p<0.05 p<0.05

L4
Pairwise Comparisons Reported Loudness Reported Annoyance Reported Pleasantness

C1-C2
C1-C3 p<0.05
C2-C4 p<0.05
C3-C4 p<0.05

L5
Pairwise Comparisons Reported Loudness Reported Annoyance Reported Pleasantness

C1-C2 p<0.05 p<0.05 p<0.05
C1-C3
C2-C4
C3-C4 p<0.05 p<0.05 p<0.05

L6
Pairwise Comparisons Reported Loudness Reported Annoyance Reported Pleasantness

C1-C2 p<0.05 p<0.05 p<0.05
C1-C3
C2-C4
C3-C4 p<0.05 p<0.05 p<0.05

L7
Pairwise Comparisons Reported Loudness Reported Annoyance Reported Pleasantness

C1-C2 p<0.05 p<0.05 p<0.05
C1-C3
C2-C4
C3-C4 p<0.05 p<0.05 p<0.05

394

395 A Friedman’s two-way analysis of variance by ranks was conducted to investigate 

396 whether there are statistically significant differences, in the responses of the participants about 

397 perceived loudness, annoyance and pleasantness, between four conditions: C1 (‘ambient’, 

398 ‘only audio)’, C2 (‘ambient plus drone’, ‘only audio’), C3 (‘ambient’, ‘audio plus video’) and 

399 C4 (‘ambient plus drone’, ‘audio plus video’). As shown in Table 2, in locations with little 
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400 influence of road traffic noise (i.e. L2, L3, L5, L6 and L7) there are statistically significant 

401 differences (p<0.05) in the reported loudness, annoyance and pleasantness between the 

402 conditions ‘with drone and ‘without drone’ noise, both without and with visual stimuli. In 

403 location L1 (by the side of a busy road), statistically significant differences in the reported 

404 loudness and annoyance are observed between the conditions ‘with drone’ and ‘without drone’ 

405 noise, with only audio stimuli; and statistically significant differences in the reported 

406 annoyance between the conditions ‘with drone’ and ‘without drone’ noise, with audio plus 

407 visual stimuli. In location L4 (by the side of a street with busy traffic), statistically significant 

408 differences in the reported annoyance are observed between the conditions ‘with drone’ and 

409 ‘without drone’ noise, with audio plus visual stimuli. In locations L1 and L4, statistically 

410 significant differences in the reported pleasantness are also observed between the conditions 

411 ‘only audio stimuli’ and ‘audio plus visual stimuli’, both with only ‘ambient’ noise and with 

412 ‘ambient plus drone’ noise. As described above, in these locations, the perceived pleasantness 

413 reported by the participants with visual stimuli is notably higher than with only audio stimuli.

414 3.2. Relationship between LAeq and subjective ratings for urban soundscapes with a 

415 drone hover

416 The sound levels (LAeq) set for each of the seven urban location tested, with and without 

417 drone noise (14 scenarios in total), range from 55 dBA to 71.2 dBA (see Table 1). The 

418 relationship between LAeq and reported loudness, annoyance and pleasantness for the whole set 

419 of urban soundscape scenarios evaluated is shown in Figs. 9 and 10. The values of reported 

420 loudness, annoyance and pleasantness displayed in Figs. 9 and 10 for each scenario evaluated 

421 correspond to the median value calculated from all participants’ responses.  

422 Fig. 9 shows the relationship between LAeq and reported loudness (top), annoyance 

423 (middle) and pleasantness (bottom) for the conditions ‘only audio’ (circles) and ‘audio plus 
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424 video’ (triangles).  As observed in Fig. 9 – top, the slope (i.e. s = Δ subjective rating / Δ LAeq) 

425 in the relationship LAeq vs. reported loudness is similar for both condition ‘only audio stimuli’ 

426 (s = 0.30) and condition ‘audio plus visual stimuli’ (s = 0.27).  For the relationship LAeq vs. 

427 reported annoyance (Fig. 9 – middle), the slopes of both conditions (i.e. ‘only audio’ and ‘audio 

428 plus video’) are almost the same (s = 0.37 and 0.35). However, in this case an offset of 1.2 dB 

429 is observed between both conditions, i.e. for a given value of reported annoyance, the LAeq of 

430 the condition ‘audio plus visual stimuli’ is 1.2 dB higher than for the condition ‘only audio 

431 stimuli’. For the relationship LAeq vs. reported pleasantness (Fig. 9 – bottom), the slope is 

432 similar for both condition ‘only audio stimuli’ (s = -0.34) and condition ‘audio plus visual 

433 stimuli’ (s = -0.38). An offset of 3.9 dB is observed between both conditions, i.e. for a given 

434 value of reported pleasantness, the LAeq of the condition ‘audio plus visual stimuli’ is 3.9 dB 

435 higher than for the condition audio stimuli. This significant offset seems to indicate (as 

436 described above in Section 3.1) that the visual stimuli influence the perceived pleasantness.
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439
440 Figure 9. LAeq vs. reported loudness (top), annoyance (middle) and pleasantness (bottom) for 

441 the conditions ‘only audio’ (circles) and ‘audio plus video’ (triangles).

442 The relationship between LAeq and reported loudness (top), annoyance (middle) and 

443 pleasantness (bottom) for the conditions ‘ambient’ (triangles) and ‘ambient plus drone’ 

444 (circles) is shown in Fig. 10. Fig. 10 – top, i.e. relationship between LAeq vs. reported loudness, 

445 shows that the slope for the condition ‘ambient plus drone’ is higher (s = 0.34) than for the 

446 condition ‘ambient’ (i.e. without drone) (s = 0.27). For both conditions, the responses on 

447 perceived loudness seem mainly driven by LAeq. The relationship between LAeq vs. reported 

448 annoyance (Fig. 10 – middle), seems mainly driven by LAeq for the condition ‘ambient’ (s = 

449 0.26).  However, for the condition ‘ambient plus drone’, the reported annoyance is about 7 in 

450 all locations regardless of the LAeq. If we assume that the relationship between annoyance and 

451 LAeq is approximately linear in the sound level range between 50 dBA and 75 dBA, the 
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452 difference between two curves at the 65 dBA reach about 2 units, yielding a difference of 6 dB 

453 equivalent. This suggests that the participants’ responses on perceived annoyance are highly 

454 influenced by acoustics factors, other than sound level, particularly characteristic of small 

455 quadcopter noise (Cabell et al., 2016; Christian and Cabell, 2017; Torija et al., 2019b; Zawodny 

456 et al., 2016), or non-acoustics factors such as visual scene (Jiang and Kang, 2016; Jiang and 

457 Kang, 2017; Schäffer et al., 2019; Szychowska et al., 2018) and expectation (Bruce and Davies, 

458 2014; Perez-Martinez et al., 2018). Fig. 10 – bottom shows that the relationship between LAeq 

459 vs. reported pleasantness seems also driven by LAeq for the condition ‘ambient’ (s = -0.32). As 

460 for the case of reported annoyance, the participants’ responses on perceived pleasantness for 

461 the condition ‘ambient with drone’ seems highly influenced by acoustics or non-acoustics 

462 factors associated to drone noise. In Fig. 10 – bottom, it is also observed a higher degree of 

463 variability in the responses on perceived pleasantness, which might be due to the effect of 

464 visual stimuli on the reported pleasantness, as described above (Section 3.1).

1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593



28

465

466

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652



29

467
468 Figure 10. LAeq vs. reported loudness (top), annoyance (middle) and pleasantness (bottom) for 

469 the conditions ‘ambient’ (triangles) and ‘ambient plus drone’ (circles).

470 3.3. Importance of acoustics and non-acoustics factors of drone noise on urban 

471 soundscapes perception

472 The importance of each factor, i.e. LAeq, drone noise source and visual scene, on the 

473 reported loudness, annoyance and pleasantness was evaluated using a “one-off” approach. In 

474 this approach, the importance of each factor is assessed based on model accuracy when 

475 removing it from the analysis (Boucher et al., 2019). Three multilevel linear regression models 

476 were tested, M1 (fixed intercept, fixed slopes), M2 (fixed intercept, variable slopes) and M3 

477 (variable intercept, variable slopes). The variable parameters in models M2 and M3 represent 

478 random effects.  Based on models’ results, it is first observed that participant is a significant 

479 factor, and after participant is taken into account, reported loudness, annoyance and 
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480 pleasantness are more accurately estimated. Thus, with all three parameters included, the 

481 conditional R2-value increases from model M1 to M3, for the three subjective ratings 

482 considered: R2 = 0.54 (M1), 0.76 (M2), 0.80 (M3); R2 = 0.60 (M1), 0.83 (M2), 0.84 (M3); and 

483 R2 = 0.59 (M1), 0.76 (M2), 0.78 (M3), for reported loudness, annoyance and pleasantness 

484 respectively.

485

486 Figure 11. Reduction in conditional R2 when subtracting LAeq, drone and video factors from 

487 the multilevel linear regression models M1 (fixed intercept, fixed slopes), M2 (fixed 

488 intercept, variable slopes) and M3 (variable intercept, variable slopes) for estimating the 

489 reported loudness.
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490

491 Figure 12. Reduction in conditional R2 when subtracting LAeq, drone and video factors from 

492 the multilevel linear regression models M1 (fixed intercept, fixed slopes), M2 (fixed 

493 intercept, variable slopes) and M3 (variable intercept, variable slopes) for estimating the 

494 reported annoyance.
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495

496 Figure 13. Reduction in conditional R2 when subtracting LAeq, drone and video factors from 

497 the multilevel linear regression models M1 (fixed intercept, fixed slopes), M2 (fixed 

498 intercept, variable slopes) and M3 (variable intercept, variable slopes) for estimating the 

499 reported pleasantness.

500 As shown in Fig. 11, and in line with Fig. 9 – top, the estimation of the perceived 

501 loudness, as reported by the participants, is highly determined by LAeq (reduction in R2 between 

502 0.36 and 0.41). The estimation of reported annoyance is equally determined by the factors LAeq 

503 (reduction in R2 between 0.15 and 0.19) and drone noise source (reduction in R2 between 0.11 

504 and 0.17) (Fig. 12). As described above (see Fig. 9 – middle), this finding confirms that 

505 participants’ responses on perceived annoyance are also greatly influenced by acoustics (other 

506 than sound level) or non-acoustics factors associated to a small quadcopter noise source. Fig. 

507 13 shows that LAeq primarily determines the reported pleasantness (reduction in R2 between 

508 0.23 and 0.26).  However, the factors drone noise source and, especially, visual stimuli 
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509 (reduction in R2 between 0.05 and 0.07) influence the participants’ responses on perceived 

510 pleasantness.

511

512 4. Discussion

513 4.1. Influence of visual scenes on soundscape perception

514 Several authors (Hong et al., 2017; Puyana-Romero et al., 2017; Viollon et al., 2002) 

515 have confirmed the influence of visual scenes on soundscape perception. In the results 

516 presented in this paper (see Section 3.1), it is observed a decrease of the reported annoyance, 

517 in all urban scenarios tested, when visual stimuli is also presented. The use of visual stimuli 

518 leads also to a clear increase in the reported pleasantness, although statistically significant 

519 differences were only found in the noisiest locations (L1 and L4). In these locations, with high 

520 influence of road traffic noise, the visual scene modifies the soundscape perception towards an 

521 increase in perceived pleasantness (Pheasant et at., 2010). The human perception is 

522 multisensory by its very nature (Cassidy, 1997; Iachini et al., 2009; Pheasant et al., 2010), and 

523 therefore bi-modal stimuli (i.e. aural and visual) are essential for a full characterisation of 

524 soundscapes (Pheasant et al., 2010). Taking into account audio-visual interaction factors has 

525 been found to improve the reliability of studies evaluating the perception of soundscapes 

526 (Maffei et al., 2013, Ruotolo et al., 2013).  

527 4.2. Combined effects of road traffic and drone noise

528 In locations with reduced influence of road traffic, statistically significant differences 

529 (p < 0.05) in reported loudness, annoyance and pleasantness are found between soundscapes 

530 with and without the noise of a small quadcopter hover (Table 2). In these locations, the 

531 presence of drone noise lead to significant increases in the reported annoyance and loudness, 

532 and significant decreases in reported pleasantness. Statistically significant differences in the 
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533 perceived annoyance, reported by the participants, between soundscapes with and without 

534 drone noise are found in all locations tested. However, in the locations closest to road traffic 

535 (L1 and L4), the increase in reported annoyance with drone noise is very reduced, i.e. only 

536 about 1.3 times higher than without drone noise. In locations with little influence of road traffic 

537 noise (L2, L3, L5, L6 and L7), the reported annoyance with drone noise is up to 6.4 times 

538 higher than without drone noise.
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541
542 Figure 14. Frequency spectra (A-weighted Sound Pressure Level (dBA, re 20μPa)) measured 

543 in locations L1 (top), L2 (middle) and L3 (bottom), without (dotted line) and with (solid line) 

544 noise of the small quadcopter.

545 The overall sound level (LAeq) is the primary factor in determining the reported loudness 

546 for both soundscapes with and without drone noise (see Section 3.3). In determining reported 

547 annoyance for soundscapes with drone noise, the factor drone noise source is as important as 

548 LAeq (see Fig. 12). In determining reported pleasantness for soundscapes with drone noise, LAeq 

549 is the primary factor, but factor drone noise source, and especially visual factor influence the 

550 participants’ responses. In Sections 3.2 and 3.3, it is hypothesised that the participants’ 

551 responses on perceived annoyance and pleasantness for soundscapes with drone noise might 

552 be highly influenced by acoustics factors particularly characteristic of a small drone 

553 (quadcopter). The noise generated by a small quadcopter is mainly tonal in character, with a 
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554 series of tones at harmonics of the blade passing frequency (BPF) of the rotors distributed 

555 across the frequency spectrum, and with a significant content in high frequency content 

556 consequence of the operation of the electric motors (Cabell et al., 2016; Torija et al., 2019b). 

557 Both the tonal and high frequency content are of significant importance for the subjective 

558 response to aircraft noise (Torija et. al, 2019a). Neither the tonality nor the very high frequency 

559 (above 4000 Hz) noise are taken into account in the LAeq metric, which might be the reason of 

560 its poor performance in assessing the reported annoyance (and pleasantness) of soundscapes 

561 with drone noise (see Fig. 10). As shown in Fig. 14, in locations close to a road (Fig. 14 – top), 

562 the road traffic noise masks the noise generated by the small quadcopter, with the exception of 

563 the very high frequency noise. Under outdoor conditions, with flyovers at a particular altitude 

564 (e.g. 15-30 m and up to 100 m (Christian and Cabell, 2017)), the very high frequency noise is 

565 rapidly attenuated by atmospheric absorption. At locations further away from road traffic, with 

566 lower levels of road traffic noise, the tonal and high frequency content of the small quadcopter 

567 becomes more dominant (Fig. 14 – middle and bottom). Under these conditions, and assuming 

568 a linear relationship between the subjective ratings evaluated and LAeq, the participants’ 

569 responses (on perceived annoyance and pleasantness) are mainly driven by the noise features 

570 of the small quadcopter, and are almost independent of the overall LAeq in the location. In these 

571 locations, the perceived annoyance is reported as high as in locations with higher overall LAeq 

572 (see Fig. 10 – middle). 

573 These results suggest that, notwithstanding the potential safety issues, the development 

574 of corridors along busy roads for drone fleets to operate might reduce the overall community 

575 noise impact in urban areas. This will also avoid the disturbance of (urban) quiet areas (Iglesias-

576 Merchan et al., 2015).
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577
578 Figure 15. Changes in the subjective ratings loudness (squares), annoyance (circles) and 

579 pleasantness (triangles), and in the LAeq without and with the noise generated by the drone 

580 hover, in the seven locations tested.

581 As seen in Fig. 15, the change in the reported loudness, annoyance and pleasantness 

582 between the soundscapes without and with drone noise is highly correlated with the increase 

583 of LAeq generated by the small quadcopter over the ambient noise. Moreover, Fig. 15 shows 

584 that for all the locations tested, the increase in reported annoyance with drone noise is higher 

585 than the increase in reported loudness, which also suggests the influence of the tonal and high 

586 frequency content of drone noise (in addition to loudness) on the participants’ responses.  

587 In Sections 3.2 and 3.3, it is also hypothesised that the responses on perceived 

588 annoyance might be influenced by non-acoustics factors associated to the drone noise source. 

589 Although this research does not provide enough evidence to test this hypothesis, the 
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590 participants’ responses on perceived loudness and annoyance in location L7 (park without 

591 influence of road traffic, dominated by birds and water sounds) seem to suggest some influence 

592 of non-acoustics factors. Thus, in Fig. 15, the increase in reported annoyance and decrease in 

593 reported pleasantness with drone noise is notably higher and lesser, respectively, compared to 

594 the increase/decrease in locations with similar ΔLAeq.  In this location, there is probably an 

595 expectation of tranquility and relaxation, and the presence of drone noise is more penalised 

596 (Pheasant et al., 2008). 

597 4.3. Constrains and limitations

598 The design of this research was carefully planned to investigate the perception of the 

599 same drone operation (a small quadcopter hover) on several urban soundscapes with a varying 

600 level of road traffic noise (and varying sound sources).  The underlying hypothesis is that road 

601 traffic could mask drone noise, and thus corridors for drone fleets might be defined along road 

602 infrastructure to alleviate the noise impact of residents. A single drone was used in this 

603 research, a small quadcopter, whose size and characteristics resemble with drones currently 

604 under investigation for several applications from parcel delivery to surveillance.  The focus of 

605 this research is the changes in sound level and frequency spectral when a drone operation is 

606 introduced in a typical urban soundscape. To simplify the achievement of this objective, a 

607 hover operation was selected, with the drone in a fixed position working at full power.  Under 

608 these conditions, the influence of varying operational regimes, doppler effect and atmospheric 

609 absorption was avoided, and only the drone sound emission was assessed. As no drone 

610 movement was simulated, and the focus was on a steady positioned drone with other sources 

611 in the background, the experimenters decided to use a monophonic signal to present stimuli to 

612 the participants.  
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613 The findings of this paper refer to a drone hover with a steady frequency spectrum.  

614 Under flyover conditions, or with significant influence of atmospheric disturbances such as 

615 wind gusts, the flight control system varying rotor rotational speeds to maintain vehicle 

616 stability will create an unsteady acoustic signature (Cabell et al., 2016; Torija et al., 2019b).  

617 Furthermore, during the landing and take-off maneuvers, the changes in power setting and rotor 

618 rotational speeds will change sound directivity and frequency spectra.  Both the unsteadiness 

619 of the acoustic signature and the changes in directivity and frequency spectra are likely to affect 

620 the audibility of the drone noise, and therefore, might alter the road traffic noise vs. drone noise 

621 combination effects described above.     

622 Under the assumption of a linear relationship between the subjective ratings evaluated 

623 and LAeq, Fig. 10 suggests that the annoyance and pleasantness reported by the participants are 

624 mainly driven by the noise features of the small quadcopter.  The comparison between drone 

625 noise and other transportation noise at the same sound level (LAeq) will provide further insight 

626 into the effects of the particular noise features of drones on sound perception.

627 After the main principles of the effects of drone noise are understood (as described in 

628 this paper), further investigation on the effects of drones operating in (a wider diversity of) 

629 urban environments on the perceived soundscape would require the simulation of flyovers (and 

630 take-off and landing maneuvers) to account for both emission and propagation factors.  A wider 

631 range of drones would need to be assessed, accounting for differences in size, power, and 

632 configuration (fixed wing vs. multicopter).   From the soundscape perception point of view, 

633 the use of spatial reproduction techniques (e.g. headphone-based First-Order-Ambisonic 

634 (FOA) tracked binaural or FOA 2D speaker arrays), would allow the immersion and 

635 plausibility of simulations with moving sources (Hong, et al., 2019; Lam, et al., 2019).  As 

636 masking is a complex phenomenon influenced by not only sound levels and frequency, but also 

637 spatial cues (Cerwén et al., 2017), the use of spatial audio reproduction techniques would 
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638 increase the fidelity of simulations with combined road traffic and drone noise sources, 

639 allowing a more refine evaluation of the masking capabilities of road traffic.

640

641 5. Conclusions

642 This research represents a first approach to quantify the effect on urban soundscapes of 

643 introducing drone operations.  The paper presents the results of a series of experiments aimed 

644 to investigate the effects of drone noise on a diversity of urban soundscapes. An audio-visual 

645 recording of a small quadcopter, recorded in an anechoic aeroacoustics laboratory, was added 

646 to audio-visual recordings taken in seven urban locations of different type. Both audio and 

647 audio plus panoramic video stimuli (using VR techniques) were presented to a series of 

648 participants, who were asked to report their perceived loudness, annoyance and pleasantness 

649 for each one. The soundscapes of the seven locations evaluated differed in the influence of road 

650 traffic noise. In locations close to busy roads, road traffic noise seems to mask the noise 

651 generated by the small quadcopter (with the exception of very high frequency noise). In these 

652 locations, the reported annoyance for the soundscapes with drone noise is only 1.3 times higher 

653 than without drone noise. In locations with little influence of road traffic noise, the specific 

654 characteristics of drone noise (i.e. series of tones at harmonics of rotors’ BPF and high 

655 frequency noise) dominate the soundscape. In these locations, the participants reported a 

656 perceived annoyance with drone noise up to 6.4 times higher than without drone noise. In these 

657 locations with low influence of road traffic noise, the reported annoyance was about 7 (scale 

658 from 0 to 10) with drone noise, regardless the overall LAeq in the location. These results have 

659 two main implications: (1) The annoyance reported for the soundscape with the drone present 

660 was highly influenced by the particular characteristics of drone noise. The descriptor LAeq does 

661 not account for the particular noise features of drone noise, so novel metrics will be required 
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662 for providing an effective assessment of drone noise impact in urban settings. (2) 

663 Notwithstanding any potential safety issue, the operation of drone fleets through corridors 

664 along busy roads might significantly mitigate the increase of community noise impact caused.

665 The use of panoramic video had little influence on the responses on perceived loudness. 

666 However, the reported annoyance and pleasantness of the soundscapes tested with panoramic 

667 visual stimuli were notably different than with only audio stimuli. As previous studies suggest, 

668 the simulation of audio-visual scenes can aid a more accurate assessment of the noise impact 

669 of transportation systems on urban soundscapes.

670 The results presented in this paper should be taken with caution, as only one quadcopter 

671 model in a fixed position is assessed. This single drone noise condition was enough for the 

672 purposes of this paper, as the emphasis was to assess the noise impact of the same drone noise 

673 in different urban soundscapes, with varying influence of road traffic. However, in future 

674 research, a variety of flyover maneuvers (with different airspeed and altitude) of a wider range 

675 of drones will be investigated for a more comprehensive analysis of drone noise impact on 

676 urban areas.  Further work will investigate different conditions with visual cues, where the 

677 drone is visible, partly visible and not visible, also taking into account different distances (i.e. 

678 flyover altitudes).

679
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686 Supplementary material

687 The data (including audio and panoramic visual stimuli) used for this research will be 

688 provided by the authors upon request.
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