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Abstract

The deleterious effects of anthropogenic noise on animal communication are nowadays recognised, not only in urban environ-
ments but also in terrestrial habitats and along coasts and in open waters. Yet, the assessment of short- and long-term exposure
consequences of anthropogenic noise in marine organisms remains challenging, especially in fish and invertebrates. Males of the
Mediterranean damselfish Chromis chromis vocalise and perform visual displays (multimodal communication) to attract mates.
The frequency-range of courtship vocalisations overlaps with low-frequency noise generated by maritime activities, resulting in
a reduced detection distance among conspecifics. We quantified the number of courtship-related visual displays performed by
males living in areas with different levels of maritime traffic. We also tried to manipulate ambient noise in the field to test male
short-term response to increased noise levels. Males living in busier areas (near to a harbour) performed significantly more visual
displays than those living in less congested areas. When exposed to artificially-increased ambient noise level (playback of boat
noise), males did not adjust the number of visual displays accordingly. Yet, we note how assessing the actual effect of maritime
traffic in marine populations in their natural environments is particularly difficult, as the effects of boat noise cannot be easily
disentangled from a variety of other intrinsic or environmental factors, discussed in the paper. We thus present suggestions to
obtain more robust analyses of variations of courtship behaviours in territorial fishes. We hope this will facilitate a further
understanding of the potential long-term effects of anthropogenic noise, whose analyses should be prioritised in the context of
environmental impact assessment, resource management and biodiversity conservation.
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Introduction focus is broadening from an initial concern targeted
mainly to marine mammals (Weilgart 2007; Southall
et al. 2008; Ellison et al. 2011; Miller et al. 2015),
investigations on acoustic behaviours of aquatic organ-
isms in general and the detrimental effects of man-
made noise in particular remain challenging in marine
and freshwater ecosystems (Lobel et al. 2010; Bolgan
et al. 2016; Mickle & Higgs 2017; Hasan et al. 2018;
Linke et al. 2018). Studies on the effects of anthropo-
genic noise on invertebrates are scant (Wale et al. 2013;
Williams et al. 2015; Aguilar de Soto 2016; André et al.
2016; Tidau & Briffa 2016) and more research is also
needed on fish (see the recent review by Popper &
Hawkins 2019), especially on wild populations in nat-
ural habitat, which is extremely difficult (Slabbekoorn
2016). Finally, as in many behavioural responses

Coastal and offshore human activities often lead to local
increments of ambient noise levels, polluting the marine
soundscape (Slabbekoorn et al. 2010; Radford et al.
2014; Whitfield & Becker 2014; Dooling et al. 2015;
Hawkins & Popper 2018; Putland et al. 2018). To
better understand the short and long-term effects of
marine acoustic pollution, not only at the individual
but also at the population and ecosystem level (Kunc
et al. 2016; Nabe-Nielsen et al. 2018), more under-
water acoustic ecological studies should be performed
(Slabbekoorn et al. 2010; Brumm 2014; Radford et al.
2014; Slabbekoorn 2016). Indeed, even though these
topics are gaining interest and conservation relevance
(Williams et al. 2015; Aguilar de Soto et al. 2016;
Greggor et al. 2016; Gordon et al. 2018), and the
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(Siegenthaler et al. 2018), a certain level of plasticity to
address anthropogenic noise is expected not only at the
interspecific and interpopulation level, but also at the
intrapopulation level based on inter and intra-
individual variability and time of exposure (Radford
et al. 2015; Harding et al. 2018).

In light of the results obtained from studies per-
formed in terrestrial environments (e.g., Barber et al.
2009; Francis & Barber 2013), researchers suggest
that similar effects should be expected in aquatic envir-
onments, especially with regards to fishes (Dooling
et al. 2015). However, caution should be taken,
given the differences existing between terrestrial and
aquatic media in terms of physical properties
(McGregor et al. 2013) and the different adaptations
to sound detection and acoustic communication in
different taxa (Wong 2014). Even when sound pollu-
tion affects fish communication, the main question is
“how much does it matter” (Brumm 2014)? In other
words: can fish respond in a phenotypically plastic way
to noise stressors? How and how well can fish adjust
their communication in response to anthropogenic
impacts? Can short-term effects, at the individual
level, impact population dynamics in the long term?

In the water, anthropogenic noise can be generated
intentionally, for example to prevent harmful interac-
tions between marine mammals and fishery activities
(Waples et al. 2013) or during seismic studies (Popper
et al. 2005) and sonar applications (Hildebrand
2009). More often, noise is the by-product of various
activities, including wind farm plants (Wahlberg &
Westerberg 2005), underwater explosions, pile-
driving operations (Haelters et al. 2013) or, most
commonly, maritime traffic (Popper & Hastings
2009). Noise generated by ships and boats mainly
falls in the lower frequency range of the acoustic spec-
trum (1-1000 Hz) which is also the range at which all
fish studied to date are able to hear (<50 to
1000-1500 Hz; Popper 2003; Popper & Fay 2011;
Radford et al. 2014; Popper & Hawkins 2019) even
though some fish reach 4000-8000 Hz (Lobel et al.
2010; Ladich & Fay 2013).

Fish use sounds (production and/or detection) in
multiple ways (Bass & Ladich 2008; Ladich 2013;
Popper & Hawkins 2019): specific sounds can be
used during migrations and as directional orientation
clues for larvae to settle (Tolimieri et al. 2004) but
mostly sounds are received and produced to acquire
and transmit information. Many fish species actively
produce sounds to communicate the presence of pre-
dators or food to their conspecifics (Bessey &
Heithaus 2013), during aggressive behaviours
(Millot et al. 2011), to defend their territories
(Myrberg 1997; Pereira et al. 2014) and to attract
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mates: indeed, a very important context during which
teleosts vocalise is courtship (e.g., Amorim & Neves
2007; Parmentier et al. 2010; Amorim et al. 2012;
Maruska et al. 2012; Casaretto et al. 2015).

Given its vocal behaviours, the family Pomacentridae
(damselfishes) has been an interesting study system for
acoustic studies (Myrberg & Spires 1972; Mann &
Lobel 1997; Amorim 2006; Kasumyan 2008; Ladich
2013; Weimann et al. 2018), in coral reefs (ILobel et al.
2010; Parmentier et al. 2010; Fakan & McCormick
2019) and in the Mediterranean (Picciulin et al. 2002,
2010; Codarin et al. 2009; Bracciali et al. 2012).
Damselfishes are an abundant component of coral
and rocky reefs, where they play a key role in the trophic
functioning of the ecosystem (Bracciali et al. 2012;
Pinnegar 2018). Chromis chromis Linnaeus, 1758, is
the only native pomacentrid in the Mediterranean Sea
(Allen 1991); it is a small damselfish commonly found
in shoals near rocky reefs or above seagrass meadows at
depths between 3 and 30 m (Quignard & Pras 1986).
Mediterranean damselfish are characterised by loca-
lised spawning areas and habitat use. Their life history
traits include the production of benthic eggs and short-
lived pelagic larvae (18-19 days; Raventdés &
Macpherson 2001). These features and the marked
territoriality of adults are expected to favour population
isolation and geographic genetic structure (Domingues
et al. 2005). During the summer, males colonise nests
and guard them until the end of the reproductive sea-
son. They court females by vocalising and performing
specific behavioural patterns, i.e., signal jumps (“the
male swims rapidly upwards for 1-3 m before rotating
downwards and returning to the nest”; Laglbauer et al.
2017) as visual displays, in order to receive egg deposi-
tion (Picciulin et al. 2002, 2010 and references therein).
The frequency range of their vocalisations overlaps with
low frequency noise generated by boats and ships,
resulting in a marked reduction (up to 100 times) of
the detection distance among conspecifics (Mann &
Lobel 1997; Codarin et al. 2009; Wysocki et al. 2009).

This study aimed to investigate variations in the
courtship strategies of the Mediterranean damselfish
in three different areas in Sicily, Italy. Literature sug-
gests that the high levels of ambient noise (sensu
Hildebrand 2009: “the sound field against which sig-
nals must be detected”) caused by navigation make it
more difficult for females to hear male vocalisations
(Codarin et al. 2009). Thus, we predicted that males
living in a more congested (thus possibly noisier) envir-
onment would on average perform more visual displays
(VD; signal jumps) to overcome the loss of efficiency of
vocal cues, adjusting from a multimodal acoustic and
visual communication to a mainly visual display
(Partan 2017). To explore the role of short-term
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behavioural plasticity in accounting for the patterns
observed, we also tested whether a relative change in
courtship strategy (visual displays vs vocal cues) would
occur after a few hours of increased ambient noise level
in populations not normally exposed to high levels of
boat/ship noise. This observational study performed on
wild individuals in their natural habitat provides initial
evidence on the evolutionary adaptation and beha-
vioural flexibility of fish communication in different
areas. A more robust analysis should be performed
with acoustic recordings of the vocalizations and
hydrophones able to record sound pressure levels com-
bined with particle velocity levels as well as sound
exposure levels (Spiga et al. 2012). We thus highlight
the challenges for pure behavioural ecologists and evo-
lutionary biologists to master fast-evolving technologies
and suggest a stronger collaboration from the planning
stage of projects with acousticians for a more effective
characterization of the soundscape and recording of
animal vocalizations (see also Popper & Hawkins
2019).

Materials and methods
Study areas

Behavioural observations were performed along the
Sicilian coast, Italy, in summer 2011 and 2012.
Three areas characterised by different maritime traffic
(used as proxy of possible different ambient noise
levels) were identified as study sites (Figure 1). The
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first area (A) was located just outside the main com-
mercial harbour of Palermo, the fifth largest city in
Italy. The intense maritime traffic was due to commer-
cial ships, cruise ships, as well as smaller boats used for
various purposes around the dock areas (see http://
www.marinetraffic.com/it/ais/details/ports/635/Italy_
port:PALERMO). Two smaller docks were also pre-
sent in proximity of the main harbour, one hosting
several sailing and motor boats (also affecting ambient
noise levels; Haviland-Howell et al. 2007) and the
other used as a shelter for small fishing boats.
The second area, Zingaro (B) was located between
two small harbours (the distance between the sam-
pling area and each of the two harbours was approxi-
mately 10 km) mostly accessed by recreational boats.
The third area (C) was located in a zone where boat
traffic is prohibited (Vendicari Nature Reserve). Even
though long-term records were not registered, due to
logistics, the traffic data should represent the average
situation for each area (but we are aware of changes on
short term — e.g., weekends vs week days, days vs
night). “Marine roads” (i.e., shipping routes; Pirotta
et al. 2019) and maritime traffic can be used as
a “quick and dirty” metric to identify more acousti-
cally impacted areas. Having classified the three areas
on the basis of traffic data (Figure 1), background/
ambient noise was measured during each behavioural
recording session (see details below) using an uncali-
brated hydrophone (H2a-XLR, operational frequency
range 10 Hz —100 KHz, sensitivity —180dB re: 1V/
pPa, Aquarian Audio Products, Washington, USA)

Figure 1. Global shipping density map of Sicily, Italy as recorded by Maritime Traffic (https://www.marinetraffic.com/). Traffic density is
colour coded, moving from low to high traffic (from blue to red). The sampling sites are identified in the map. Imagery©2015

TerraMetrics; Map data ©2015 Google.
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suspended from a boat (3 m deep), connected to
a digital recorder (DR-100mkKkII, recording at
48 KHz 24-bit, Tascam Teac Professional, USA).
Gain settings at all locations were kept constant. The
methodology used solely relies on sound pressure
levels, without including analyses of particle motion
and velocity component (Radford et al. 2012). Also,
the methodology used cannot discriminate the overall
background noise in more specific components, such
as biological noise (produced by organisms), influ-
ences of currents and sediment type, and traffic noise
(Robinson et al. 2014; Nedelec et al. 2015).
Nevertheless, the measurements obtained, combined
with traffic data, can be used as a proxy of in-situ noise.

Experimental set-up

Two types of experiments (one observational and one
manipulative) were performed to assess the difference
in courtship strategies performed by nesting males in
different areas. In the first phase, data were collected in
the three selected sites (A, B, C). Subsequently,
a manipulative field experiment was conducted to
assess whether nesting males from the natural reserve
of Vendicari (C) were able to adjust their courtship
strategy when the ambient noise level was artificially
increased with playback of boat noise (D).
Behavioural observations - The three study sites
(5-12 m from the coast) were reached by boat and
the nesting areas (7-12 m deep) were identified by
scuba diving. Video cameras (XTC-200, Midland,
China) were installed in front of nests, at a distance
of 80-120 cm. Cameras recorded the interactions
occurring around the nests between 9:00 am and
11:30 am, in sunny conditions. During that time
the hydrophone was activated, to match visual beha-
viours with background noise. Courtship behaviours
were monitored in this way for a total of 47 focal
males (20 in A, 15 in B and 12 in C).
Manipulative observation - In order to alter the
background noise in the natural reserve (C), a sound
track was prepared recording the noise generated by
several boats and ships transiting in the commercial
harbour of Palermo with the same hydrophone and
digital recorder used throughout the behavioural
observations. These recordings were pooled to cre-
ate a 5-min noise track using the software Audacity
2.0.0 (http://audacity.sourceforge.net/). This track
was reproduced underwater in Vendicari Nature
Reserve using a sound generating system composed
by an underwater speaker (LL916C, Lubell Labs,
Ohio, USA), an amplifier (HPB-210, Monacor,
UK) and a music player, all powered by two 12
Volts 12000 mAh batteries. The underwater speaker

Behavioural responses in a congested sea 507

was hung 3 m deep from the boat and the 5-min
noise track was played continuously for 1 h to let the
damselfish colony acclimate to the new disturbance.
After this period, behavioural videos and ambient
noise were recorded as described in the previous
section, while the noise-generating system was play-
ing. The courtship behaviour of the focal males from
the observational study was used as the control to
this experiment. Thus, videos were monitored for 19
focal males (12 in C and 7 in D).

A total of 54 videos (approximately 81 h of obser-
vation in total) were recorded among the three study
sites (A, B, C) and the manipulative treatment (D,
artificial noise given by playback of boat noise).

Behavioural analyses

An ethogram was prepared using the detailed descrip-
tion of C. chromis behaviour by Verginella et al. (1999),
grouping all described behaviours in three main cate-
gories: courtship related visual displays (VD; Figure 2);
mating (MT: time spent by a pair, male and female, in
the nest while spawning); non courtship related beha-
viours (NC: all other behaviours, ranging from cleaning
the nest to feeding). The time spent by the focal male
outside of the camera view (OV) was also taken into
account. From the original recording session (approxi-
mately 90 min long) the initial and final parts were
removed to minimise the possible disturbance created
by the diver accessing the cameras and the scoring was
focused on the central 75 min of the recordings. Each
video was scored in full length to determine the number
of VD performed and the amount of time spent in M T,
NC and OV. Then, each focal male was assigned to
either the “parental care” (number of VD and MT
equal to zero) or “courtship” (number of VD and/or
MT greater than zero) groups. The latter group was the
focus of the analyses. Because of the slightly asynchro-
nous reproductive cycles among individuals within the
same colony, the majority of the males were in parental
care, so the available data on courtship behaviours was
reduced. Videos were scored using the software
JWatcher 1.0 (Blumstein & Daniel 2007). For standar-
disation purposes, the number of visual displays
per hour (VD * h™) was quantified considering only
the time spent by focal males in sight of the camera view
(i.e., VD * (total time in min — out of site in min) ™"
*60).

Damselfish abundance analyses

Damselfish abundance (number of individuals
within the colony) varied across populations.
Chromis chromis are well known to be very abundant
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Figure 2. Signal jump (the most common courtship-related visual display performed by Chromis chromis) sequential snapshots. Nesting
male leaps toward a female (a, b), performs an arching movement (c, d) and goes back to his nest (e, f).

in the Mediterranean Sea (Pinnegar 2018). The
variability in adult density across study sites might
affect the reproductive behaviour of the fish (Soucy
& Travis 2003). At the end of randomly chosen
sampling sessions, video recordings (n = 6 for A,
n = 3 for B, n = 2 for C) were used to estimate
relative fish abundance. The diver, while floating at
the centre of sampling area, collected a 360° panora-
mic video-recording of approximately 30 s (Colin
et al. 2003). Three random snapshots from each
recording were used to count the number of damsel-
fish using the software Image] 1.46r (Schneider
et al. 2012). The three abundance values from
each observation were averaged and this value was
associated to the behavioural observations obtained
during the same sampling session. For the beha-
vioural observations during which abundance values
were not collected we used the average value of the
corresponding study area.

Ambient noise analyses

Ambient noise levels were estimated for each of the
three areas (A, B, C) and for the manipulative treat-
ment (D). For each one, ten 1-min subsample tracks
were randomly selected from the recordings col-
lected in the field and equivalent continuous sound
level (L.q) were estimated for the one-third octave
band centre frequencies (1/3 OBCF) 100, 125, 160,
200, 250, 315, 400, 500 and 630 Hz, the range at

which the Mediterranean damselfish hear and voca-
lise (Wysocki et al. 2009; Picciulin et al. 2010).
Subsample tracks were generated with Audacity,
and L., values were estimated using MATLAB
(Brandt et al. 2011). Variability in ambient noise
level between A, B and C and between C and
D was compared by examining mean L.y for each
narrowband and 95% C.I. All sound tracks were
also visualised using the R packages seewave
(Sueur et al. 2008) and tuneR, following Villanueva-
Rivera et al. (2011).

Statistical analyses

Average L., and 95% confidence intervals (C.I.)
were calculated for each frequency narrowband
and for each treatment. The difference in the num-
ber of VD * h™! performed by focal males between
A (n=12), B (n=06)and C (n = 4) were investi-
gated. Also, visual displays were compared between
the manipulative treatment D (n = 6) and C (n = 4).
For this purpose, two generalised linear models
(GLM) were fitted to the data (software R 2.13;
R Core Team 2018). Due to data overdispersion,
a GLM with a negative-binomial distribution and
log link function was employed (O’Hara & Kotze
2010). The rate of visual displays (VD * h™!) was
the response variable and area/treatment the inde-
pendent variable. Due to marked differences in
terms of number of individuals in each colony,



relative abundance estimates were included as
a covariate in the GLM and visualised and inter-
preted using the effect display (“effects” package in
R; Fox & Hong 2009).

Due to the use of three areas, we do not have
enough independent replicates to statistically infer
differences due to nautical traffic (Hurlbert 1984;
Jordan 2018; Lazic et al. 2018). Nevertheless, we
offer a biological interpretation (Davies & Gray
2015) for behavioural differences among sites, dis-
cussing the various factors potentially involved
(including boat traffic and corresponding noise).

Results
Ambient noise

The differences in noise level among the four areas/
treatments were empirically quantified (Table I). As
expected, due to the prohibition of boat traffic, the
Vendicari Nature Reserve (C) was the area with
lower noise levels, while Zingaro (B), surprisingly,
exhibited overlap with the noisy harbour of Palermo
(A) across most frequency intervals, and even
proved to be “louder” at 400-630 Hz (Figure 3).
In the manipulative treatment (D), the noise-
generating system was successful in increasing the
ambient noise to levels similar to the ones recorded
in A (Table I; Figure 3).

Behavioural responses

During the field observations, the abundance of
individuals per colony varied across the three
areas (Figure 4(a—c)). A negative relationship was
found between conspecific abundance and the rate
of visual displays (z = —2.204, P = 0.0275; Figure
4(d)), thus abundance needed to be incorporated
in the analyses. Nesting males from the three study
areas (A, B and C) showed different numbers of
VD per hour (Figure 5(a); mean and 95% C.I.,
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back transformed from logarithmic to linear scale:
A = 2709 [15.2, 51.1], B = 13.3 [4.7, 37.4],
C = 5.3 [1.6, 17.1]). Specifically, a significant dif-
ference was found when comparing A and C: males
in the area near the main commercial harbour of
Palermo performed significantly more VD than
males in the natural reserve (z = 2.786,
P = 0.0053). No significant difference was found
between B and the other two areas (B vs C,
z = 1.121, P = 0.2622; B vs A, z = 1.227,
P = 0.2197). After being subjected to an artificially
increased ambient noise level (manipulative treat-
ment with playback of boat noise, D), nesting
males from C did not change their VD
(z = —-0.215, P = 0.829; Figure 5(b)). Note that
in this case damselfish abundance was not used as
a covariate, as the two treatments (C and D)
occurred in the same study area (Vendicari).

Discussion
Measuring underwater sounds: lesson learned

This observational study was performed to investi-
gate variations in courtship strategies used by male
damselfish to attract females to their nests, in differ-
ent areas, in the field. Acoustic recordings for fish
vocalization in open water are methodologically chal-
lenging (Benoit-Bird & Lawson 2016; Slabbekoorn
2016) and often ecologists do not have easy access to
the correct instruments or the required expertise
from acousticians, from the early planning stages of
the experiment. As the techniques advance and allow
more relevant underwater measurements (e.g., from
sound pressure to particle motion and sound expo-
sure levels; Radford et al. 2012; Spiga et al. 2012;
Hawkins & Popper 2018; Popper & Hawkins 2019)
not only can we use eco-acoustic (Sueur & Farina
2015) to monitor biodiversity (Pieretti et al. 2017;
Akamatsu et al. 2018; Doray et al. 2018; Linke et al.
2018; Gibb et al. 2019) and the effects of

Table I. Relative dB uncalibrated ambient noise level (mean, with 95% C.I. in brackets) for each 1/3 OBCF tested for the three study sites
and the manipulative treatment. dB values were normalised by setting ‘0’ as the highest value reported.

1/3 OBCF Palermo (A) Zingaro (B) Vendicari (C) Vendicari (D)

100 -7 (-12, -2) -5 (12, 2) -19 (=20, -17) -13 (-18, -8)
125 -10 (-15, =5) -6 (-13, 1) -22 (=23, —21) -13 (-18, -9)
160 -12 (=16, =7) -6 (-11, -1) 22 (24, —20) -12 (-17, =7)
200 -12 (-16, -8) -7 (-11, -2) -20 (21, -18) -16 (21, -12)
250 -12 (16, —8) -6 (=11, -1) -20 (=21, -19) -14 (=19, -9)
315 -12 (=15, -9) -5 (=10, 0) -20 (=21, —20) -10 (=16, =5)
400 -13 (-17, —9) -5 (-9, 0) -21 (=22, —20) -14 (-18, —9)
500 -13 (=17, -10) -3 (-8, 1) -20 (=21, -19) -8 (13, =3)
630 -11 (=15, =7) 0 (=5, 5) -17 (18, —-17) 0 (=6, 6)
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Figure 3. Examples of selected spectrograms and oscillograms of the three study areas caracherised by different level of noise: a) Palermo;
b) Zingaro; ¢) Vendicari; and d) the artificially altered area Vendicari. These are representative (most common visual representation) of the

sound recorded in the different areas.

o

Number of visual displays per hour
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Figure 4. (a-c) Examples of snapshots of the number of individuals in the colonies in the three study locations: a) Palermo; b) Zingaro; c)
Vendicari. (d) Effect of number of individuals in the colony on the number of visual displays (mean and 95% C.1.) performed by focal

nesting males (plotted with the effect display in R).

anthropogenic influences on its distribution, but also
we can perform evolutionary and behavioural ecolo-
gical studies on the effect of noise pollution (Benoit-
Bird & Lawson 2016) and move from the individual
to the population and ecosystem level (Kunc et al.
2016; Nabe-Nielsen et al. 2018; Lowerre-Barbieri
et al. 2019). In this study, a lack of calibration of

the hydrophone (as sometime still reported in litera-
ture; Merchant et al. 2015) and the difficulty to
record fish vocalizations, resulted in proxy values for
ambient noise and the impossibility to analyse male
calls. A more multidisciplinary framework to connect
ecologists with acousticians should be encouraged to
produce stronger analyses.
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Figure 5. (a) Number of VD * h-1 (back-transformed to linear
scale and adjusted for abundance of individuals within the col-
ony) performed by focal nesting males (mean and 95% C.IL.) in
the three areas, Palermo (A); Zingaro (B); Vendicari (C). (b)
Number of VD * h-1 (back-transformed to linear scale) per-
formed by focal nesting males for the two treatments (C and D)
in Vendicari (mean and 95% C.I.).

A comparison of sites characterised by differing levels of
boat traffic

We can hypothesize that, when vocalisations fail to
attract females to the nest (because of the masking
effect of anthropogenic noise), males possibly rely
more on visual displays, which are not affected by
ambient noise (Neenan et al. 2016). Such
a multimodal shift from acoustic to visual signalling
has been described in a variety of other animals, includ-
ing frogs, birds and mammals (Caldart et al. 2016;
Partan 2017) and reported in fish (under lab condi-
tions; de Jong et al. 2018). In this observational study,
a statistically significant difference between two of the
three areas under investigation was recorded. Male
damselfish from the Palermo commercial harbour (A)
performed more courtship-related visual displays (over
five times) than individuals from a natural reserve (C).
One measured difference between these two sites is
ambient noise (which reflects boat traffic).
Interestingly, the other area (B), where maritime traffic
is considerably less prevalent and less regular than in
Palermo harbour, presented a different overall
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soundscape. By listening to the recordings collected in
B, and by looking at the spectrograms of the sound files
(Figure 3), it is reasonable to assume that this result was
due to a high baseline noise of non-anthropogenic ori-
gin (such as the biophony produced by snapping
shrimps, family Alpheidae; Radford et al. 2010;
Nedelec et al. 2015; Pieretti et al. 2017; Putland et al.
2017; audio files in supplementary material). Snapping
shrimp produce a very broad frequency spectrum, with
a low frequency start and mean peak levels between 2
and 5 kHz but up to 200 kHz and beyond (Au & Banks
1998). They are colonial and defend territories (e.g.,
Ferguson & Cleary 2001), so their sound might be
prevalent in some areas but not others. Visual courtship
behaviours, in B, were intermediate on average but not
statistically different from either A or C. Significant
differences might not have been detected due to the
great inter-individual variability, typical of animal beha-
viour (Dall et al. 2012; Siegenthaler et al. 2018): when
comparing two situations extremely different from one
another (at least in terms of noise), as A and C, despite
individual variability we can still detect significant dif-
ferences; this is not the case for intermediate situations,
as B. Biological components (e.g., the sound produced
by snapping shrimp) should interfere less than anthro-
pogenic sounds with acoustic signalling, since during
evolutionary time different taxa have utilised different
“acoustic windows” (at different frequencies), to avoid
interspecific  acoustic overlapping (Brumm &
Slabbekoorn 2005; Lugli 2010; Radford et al. 2014;
Ruppé et al. 2015).

Despite the most evident difference among the three
sites being maritime traffic, other biological and envir-
onmental factors might have played an important role
in the trade-off between a more visual or vocal strategy.
An increase in visual displays was the hypothesised
response to the masking of vocal cues, but a visual
strategy can also be risky if detected by predators.
Presence and abundance of predators were not assessed
in this study; nevertheless the high noise area is likely to
be the one with the lowest presence of natural predators
of C. chromis while the low noise area, being a natural
reserve, is likely to be also the area with highest biodi-
versity and higher presence of natural predators (Madin
et al. 2015). The observed reduction of visual displays
in the latter might not only depend on the low noise
level but also on predation pressure (birds and piscivor-
ous fishes; Pinnegar 2018). Moreover, while the males
are performing their visual displays (signal jumps), nest
predators (i.e., egg eating predators such as the ornate
wrasse Thalassoma pavo; Milazzo et al. 2006) might
take advantage of the absence of the male from the
nest to attack the eggs. Thus, visually conspicuous dis-
plays might pose a higher risk for nesting males
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employing them, making predation pressure another
likely explanation for the difference in courtship strat-
egy observed between areas characterised by different
levels of maritime traffic.

The high number of individuals in one colony
seemed to play a role in the investment in visual
displays. High abundance of conspecific means
high presence of females (thus possibly reduced
effort to attract them to the nest) as well as higher
presence of sneakers (Picciulin et al. 2004;
Mascolino et al. 2016), conspecific males who can
“sneak” in another male’s nest to release sperm
while the female is spawning, parasitically fertilising
eggs at the expenses of the nesting male. The visual
display is a signal that both females (the intended
target) and sneakers (the opportunistic receiver) can
detect. Again, it is important to underline that noise
is not the only driver able to modulate courtship
behaviours. In this study, damselfish abundance
was included in the analyses, but predation was
not, and these two factors seem to play a combined
role in other fish species, where in the presence of
predators, sneakers were chased less than in the
absence of predators (Jarvi-Laturi et al. 2011).

Visual displays might not be effective in turbid
water. Even though turbidity was not measured, the
most turbid area of the study was the noisier, Palermo
(Mascolino personal observation; see also Figure 4(a—
¢)), where more visual displays were recorded. Studies
on visual communication in fishes have focused on
colouration and colour perception and indeed turbid-
ity can mask this important signal to attract females
(Seechausen et al. 1997). Nevertheless, colour is not
important in C. chromis mate choice, and at the low
distances at which C. chromis interact, movement can
still be easily detected.

Given the limitations associated with the methodol-
ogy adopted to collect data, the fact that acoustic voca-
lisations produced by male C. chromis were not
recorded and the potential interaction of multiple fac-
tors, our results might not be conclusive. Still, on the
basis of our evidence it is reasonable to infer that boat
traffic, with the concomitant anthropogenic noise, is
one of the drivers of the differences seen in the three
areas.

Short-term plasticity in response to increased noise levels

When faced with artificially increased ambient noise
(D), focal nesting males accustomed to a low-noise
environment were not able to adjust their courtship
strategy to the new noisier condition after one-hour
acclimation and they did not increase their number of
visual displays. This result suggests the absence of

short-term plasticity. Behavioural plasticity can facili-
tate the adjustment to anthropogenic pressures or
environmental changes. For instance, male guppies
are able to quickly adjust their mating behaviour from
visual courtship displays in higher light conditions to
a sneaky mating strategy under low light and visibility
conditions (Chapman et al. 2009). In our case a lack of
short-term immediate behavioural flexibility might
result in more durable adaptive changes in the long
term (Swaddle et al. 2015; Harding et al. 2018). Also,
a recent study on Pomacentrus amboinensis juveniles
(Holmes et al. 2017) showed a short response of fish
to small boat noise (20 min only) before fish resume
normal behaviours: the used one-hour acclimation time
might have allowed a desensitization of the fish by the
beginning of the recordings (but this would not be the
case if the vocalization would be masked and males had
to rely more on visual displays). Collectively, our find-
ings suggest that courtship behaviour in C. chromis may
be a locally adapted complex trait, shaped by long-term
(multi-generational) exposure to ambient noise levels.
The visual vs vocalisation trade-off may represent an
important biocomplexity that allows individuals to
attain optimal reproductive success in divergent noise
environments.

In many species, differential fitness of “courtship
genotypes” may be an important factor to be consid-
ered for population viability and management, similar
to life history traits, such as growth and maturation,
which are more commonly considered in a fishery per-
spective (van Wijk et al. 2013). Molecular studies can
offer the framework to address this aspect more in
detail. In this regards, C. chromus is typically charac-
terised by localised habitat use and marked territoriality
as well as a relatively short pelagic larval stage (Raventos
& Macpherson 2001). Domingues et al. (2005)
detected a certain extent of genetic structure among
C. chromis population across the Mediterranean Sea,
but small-scale empirical evidence for substructure
and demographic independence in this species is miss-
ing. The two populations from Palermo and Zingaro
are characterised by reduced genetic connectivity:
a high degree of population structure was recorded
(Fst = 0.024, 95% BootStrap C.I. 0.02, 0.03), despite
being separated by only 70 Km of coastline. If ambient
noise proves to select for certain traits over others (i.e.,
visual display s vocalisation), it is reasonable to infer
that anthropogenic noise-induced evolutionary change
will be particularly rapid in sedentary species with low
dispersal.

Male C. chromis use both visual and acoustic dis-
plays to communicate with conspecifics and attract
mates (Picciulin et al. 2010). In particular, female
reproductive responses are triggered by both visual



and auditory stimuli and this multimodal commu-
nication is quite common in fishes (Brumm &
Slabbekoorn 2005; Bolgan et al. 2013; Pedroso
et al. 2013). The fact that there might be the possi-
bility to modulate the signalling modality (Radford
et al. 2014 and references therein) has been consid-
ered as a potential mitigation of the disturbance
produced by anthropogenic noise, thus minimizing
fitness consequences (Brumm 2014). On the other
hand, the two modes of communication could be
complementary more than redundant, as seen in
gobies (Torricelli et al. 1986) and the effects of
anthropogenic stressors could affect more beha-
viours at once (McLaughlin & Kunc 2015).
Indeed, the dynamics of multiple signalling are com-
plex (Bro-Jergensen 2010) and it makes sense that
they would evolve in heterogeneous environments,
such as the soundscape of coastal areas (Nedelec
et al. 2015).

Furthermore, anthropogenic noise could have an
effect, not only on adult damselfish, but also on
juveniles: it has been shown that juveniles of other
pomacentrid species are able to use acoustic cues to
discriminate among habitats and to be guided dur-
ing the homing process (Radford et al. 2011). This
mechanism seems to be plastic (Simpson et al.
2010) and can be affected by boat noise (Holles
et al. 2013). Considering that all fish studied to
date are able to hear and that maritime traffic is
a frequent, widespread phenomenon at a global
scale, it can be expected that every-day human activ-
ities could have a pervasive impact on ecological and
evolutionary processes of coastal fish species.

Conclusions

There is an increased awareness of the detrimental
impact of anthropogenic noise on biodiversity, at
multiple levels (Francis & Barber 2013; Shannon
et al. 2016). Recent studies have targeted fitness
effects (McGregor et al. 2013), especially in birds
(e.g., Halfwerk et al. 2011) and marine mammals
(e.g., New et al. 2014). This is one of few field
studies observing different behaviours of fish in dif-
ferent areas characterised by different boat traffic
and thus noise levels. The overall preliminary find-
ings of this study suggest that investment in visual
versus acoustic displays can be affected by ambient
noise levels. The association between courtship
behaviour and anthropogenic noise does not appear
to have short-term plasticity and may result from
local adaptation (Swaddle et al. 2015); hence ambi-
ent noise may represent a key factor in conservation
biology and environmental management, not only in
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relation to short-term disruption, but also as
a potential driver of evolutionary change.

Our results suggest that underwater noise pollu-
tion could significantly impact the evolutionary tra-
jectories of marine organisms’ communication
systems at local scales. More specific studies should
be designed to assess this more in detail
(Underwood 2000): our analysis has pointed out
a variety of other possible factors (including preda-
tor pressure, population density, water turbidity,
courtship genotypes) that can affect changes in
courtship displays from acoustic to visual, in the
field.

There is still relatively little understanding of
the ecological responses of marine organisms to
the increase in ambient sound (Slabbekoorn et al.
2010; Kunc et al. 2016) and this preliminary
investigation paves the way towards filling this
gap together with other studies on the same spe-
cies (Codarin et al. 2009; Picciulin et al. 2010;
Bracciali et al. 2012). However, the potential
long-term effects of these processes warrant an
increased awareness in the context of environ-
mental impact assessment and resource manage-
ment. Special concern should be given to marine
protected areas where noise mitigation strategies,
such as navigation-speed restrictions or rerouting
of shipping lanes (as suggested by Merchant et al.
2012), and specific guidelines (Popper & Hawkins
2019) are overall necessary to ensure the protec-
tion of ecological/evolutionary processes.
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