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Abstract

Dynamic sub-structuring (DS) is the procedure by which the passive properties (i.e. frequency response functions)
of an assembled structure are predicted from those of its constituent sub-structures. In this paper we are concerned
with the propagation of correlated uncertainty through such a prediction. In this work a first-order covariance based
propagation framework is derived based on the primal and dual formulations of the sub-structuring problem and the
complex bivariate description of FRF uncertainty. The proposed framework is valid also in the case of sub-structure
decoupling, since the underlying equations are of an identical form. The present paper extends previous work into
a more general framework by accounting for the presence of correlated uncertainty. This is important as recent
work has demonstrated that the neglect inter-FRF correlation (i.e. the correlated uncertainty associated with impact-
based FRF measurements) can lead to large errors in uncertainty estimates. Efficient algorithms are introduced for
implementation of the proposed framework. Results are compared against Monte-Carlo simulations and shown to
be in good agreement for both correlated, uncorrelated and mixed uncertainty. These results further illustrate that
the neglect of inter-FRF correlation, when physically present, can lead to large over-estimations in the uncertainty of
coupled structures. This result justifies use of the proposed framework.

Keywords: Uncertainty propagation, dynamic sub-structuring, operator uncertainty, frequency response functions,
structural dynamics

1. Introduction

Dynamic sub-structuring ( DS) is the procedure by which the passive properties (i.e. frequency response functions)
of an assembled structure are predicted from those of its constituent sub-structures [1].1

Dynamic sub-structuring procedures are routinely employed to predict and/or analyse the dynamics of complex
built-up structures, for example, in aerospace and automotive applications. Often, these structures are designed so as
to conform to strict limits, be it to avoid structural fatigue and failure, or to promote passenger comfort. If such limits
are to be met with confidence it is essential that reliable estimates of uncertainty are available. To this end, we are
concerned with the propagation of uncertainty through DS procedures.

As a topic of research, DS has received considerable attention over the past 5 decades, a comprehensive review
of which may be found in [1]. Similarly, the field of structural dynamic uncertainty is vast (see [2, 3, 4] for notable
review papers and special issues). The intersection of these two fields however, the study of uncertainty in DS, is
comparatively sparse.

The propagation of uncertainty in the context of DS was previously considered in [5] under the assumption of
uncorrelated sub-structure uncertainty. In [6] the same authors use a similar approach to investigate the propagation of
uncertainty in the context of substructure decoupling. Although effective in estimating the uncertainty in coupled (or
uncoupled) FRFs based on the presence of additive noise, in practice there exists an additional source of uncertainty
due to human error in the measurement procedure, referred to here as operator uncertainty. It was shown by Meggitt
[7] that if the excitation position of a measured frequency response function (FRF) is considered as a random variable

1More recently, DS procedures have been used also to decouple structures, thus obtaining their free interface dynamics.
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(i.e. to model the inaccuracy in excitation position when performing impact-based FRF measurements), then there
exists a correlation between FRFs of shared excitation (i.e. within each column of an FRF matrix). It was further
shown that this inter-FRF correlation influences greatly the propagation of uncertainty through a matrix inversion.
This is of particular relevance to DS where matrix inversions are an essential step. It is the influence of operator
uncertainty, or correlated uncertainty in general, in the context of DS that motivates this work.

Note that, although operator uncertainty is the most likely origin, inter-FRF correlations are also introduced when
the notion of ensemble uncertainty is considered. For an ensemble of nominally identical sub-structures, for example
those coming off a production line, the uncertainty present due to manufacturing tolerances will likely generate inter-
FRF correlations, since the underlying uncertainty is shared among all degrees of freedom (DoFs). For example,
uncertainty in the distribution of mass across nominally identical plate-like structures will introduce a correlation
between any two FRFs as they are governed by the same underlying uncertainty through the dynamics of the structure.
The proposed framework remains valid in this context as it does not depend upon the source of correlation, only that
it may be described through an appropriate covariance matrix.

Acknowledging the notion of ensemble uncertainty, Kammer and Krattiger [8] considered the propagation of
sub-structure uncertainty onto an assembled structure for the purpose of test-analysis correlation metrics (i.e. some
comparison between experimental and numerical predictions [9]). The authors adopted a complex description of un-
certainty, utilising the complex covariance and relation matrices (in the present paper an alternate bivariate description
of complex uncertainty is used). Whilst sub-structure uncertainty is defined generally, such that any inter-FRF cor-
relations are accounted for, the propagation is formulated in the modal domain using a Craig Bampton Component
Mode Synthesis approach. As such, its application to directly measured FRFs is not straightforward.

In the present paper we consider sub-structure uncertainty directly in terms of their measured (or modelled) FRFs.
The proposed framework complements recent work by Meggitt et al. [10], where a framework was established for
estimating the uncertainty of inversely determined blocked forces. Blocked forces are often used to prescribe the
operational loading of an active sub-structure, for example a vibration source, such that the operational response of
an assembled structure can be predicted [11], for example, in the construction of a Virtual Acoustic Prototype (VAP)
[12]. The framework proposed herein, alongside that of [10], would provide the necessary tools to accurately estimate
the uncertainty in an operational response prediction of a complex built-up structure.

The experimental uncertainty associated with measured FRFs may be categorised as either measurement or op-
erator based [10]. Measurement uncertainty is typically of an aleatory nature and describes the cumulative effect of
noise sources in the measurement signal path and computational post processing, for example, external disturbances,
thermo-electrical noise, sampling error, finite precision, etc. Measurement uncertainty is typically considered to be of
an uncorrelated nature. Operator uncertainty may be regarded epistemic and describes the effect of human error in the
measurement procedure, for example, inconsistent location and/or orientation of applied forces during the measure-
ment of FRFs. In [7] it was shown that operator uncertainty is of a correlated nature. An appropriate framework must
be capable of propagating uncertainty of both forms.

Further to the experimental uncertainty associated with measured FRFs, DS procedures are subject to ‘model
uncertainty’. Model uncertainties are those that arise when an approximate model is used to describe the physical
problem, for example, assuming sub-structure linearity and/or time invariance which is not realised in practice [10].
The most likely origin of model uncertainty, in the context of DS, is the neglect (or misplacement) of important DoFs
when characterising a sub-structure’s interface dynamics. Incomplete interface descriptions are often encountered in
practice due to the experimental challenges associated with measuring rotational and in-plane DoFs. Recent works,
however, have begun to acknowledge this difficulty and propose techniques that avoid the need to apply/measure
troublesome excitations/responses [13, 14, 15, 16, 17]. Although a potentially significant factor, the influence of
model uncertainty, and its propagation, in the context of DS, is considered beyond the scope of this work. The
present paper will focus instead on the propagation of experimental FRF uncertainty.

The presence of measurement uncertainty in measured FRFs is often modelled in the form,

Ymeas = Y + ε (1)

where Y represents the underlying true FRF and ε an additive noise that describes the associated measurement un-
certainty. It is typically assumed that ε has zero mean. The nature of its correlation varies among the literature. In
general, it is assumed that elements of ε are uncorrelated with one another, but that there may exist a correlation
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between the real and imaginary components of a given element. In [18, 19] it was assumed that the real and imagi-
nary components were uncorrelated and shared the same variance. In [20, 5] real and imaginary components where
assumed uncorrelated, but of different variance. Others have treated the uncertainty more generally by allowing not
only a different variance for real and imaginary components, but a covariance between them [21, 22].

In [7] it was shown that an additional form of uncertainty is present due to variability in the excitation position of
measured FRFs. Referred to as operator uncertainty, conceptually it may be modelled in the form,

Ymeas = Y(a0 + a) (2)

where Y() represents an FRF function whose argument a0 + a represents the excitation position. In this description,
a0 corresponds to the intended excitation position and a the random deviation about this position due to human error.
Such an uncertainty leads to a correlation between elements of the FRF matrix that share an excitation (i.e. within a
column) the magnitude of which is dependent upon the dynamics of the structure and the accuracy of the experimenter.
Whilst the presence of such correlated uncertainty has been acknowledged in previous work [5], its influence on the
estimation of uncertainty was not considered.

It is the aim of this paper to provide a general uncertainty propagation framework that encompasses both measure-
ment (uncorrelated) and operator (correlated) based uncertainty,

Ymeas = Y(a0 + a) + ε. (3)

This will be achieved by considering both the primal and dual formulations of the DS problem and applying a complex
bivariate form of the law of error propagation (a first order covariance based propagation). This will lead to a set of
equations that relate the uncertainty present in the uncoupled sub-structure FRF matrices to that of the coupled FRF
matrix.

The remainder of this paper will be organised as follows. Section 2 will begin by introducing the bivariate de-
scription of complex uncertainty adopted in this work. Section 3 will go on to re-introduce the primal DS procedure
for coupling structural elements. Following this, section 4 will focus on the derivation of appropriate uncertainty
propagation formulae, before the problem of efficient numerical implementation is addressed in section 5. Section
6 will then demonstrate the proposed framework as part of a numerical study. Finally, section 7 will summarize the
main findings of this work and draw some concluding remarks.

2. Treatment of Complex Uncertainty

The FRFs typically encountered in experimental structural dynamics are complex quantities, acquired through
the ratio of Fourier transformed input and output signals [23]. Typical examples include accelerance, mobility and
receptance, which are given as the ratio of acceleration, velocity and displacement, respectively, to an applied force
[24].

Assuming a two parameter elliptical distribution (e.g. Gaussian), the statistical properties of a complex random
variable (RV), H ∈ C, such as an FRF, may be described generally using the bivariate variance-covariance matrix2

[25, 26, 21, 22, 19] ,

ΣH =

[
σ<(H)<(H) σ<(H)=(H)
σ=(H)<(H) σ=(H)=(H)

]
(4)

where, σ<(H)<(H) is the variance of the real part of H, σ=(H)=(H) is the variance of the imaginary part of H, and
σ=(H)<(H) = σ<(H)=(H) is the covariance between them. Given two random variables, A and B, their covariance (or
variance in the case that A = B) is given by,

σAB =
1
P

P∑
i

(Ai − E[A]) (Bi − E[B]) (5)

2hereafter we will use the term covariance matrix generally to describe both covariance and variance-covariance matrices
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where, subscript i indicates the ith measurement of said variable, P is the total number of measurements taken, and
E[] is the expectation operator. Equation 4 may readily be extended to describe the covariance between complex RVs,

ΣH1H2 =

[
σ<(H1)<(H2) σ<(H1)=(H2)
σ=(H1)<(H2) σ=(H1)=(H2)

]
. (6)

Consequently, the uncertainty of a measured FRF matrix, H ∈ CN×M , is completely described, assuming that its
elements follow a multivariate normal distribution, by the bivariate covariance matrix ΣH ∈ R2NM×2NM . Results
supporting this assumption have been published in [7], where the correlated bivariate nature of impact based FRFs
was shown experimentally.

To estimate ΣH, each measurement DoF must be excited repeatedly such that a series of P measurements are
made. The user must then decide at what point in the preceding analysis to estimate the statistical properties of the
data. As an example, one may consider the complex Fourier spectra of the input and output signals as the initial
RVs and determine their associated covariance matrices. To acquire the covariance matrix of an FRF the Fourier
spectra uncertainty must be propagated through the H1 (or H2) estimator function. Alternatively, one may consider
the FRF itself as the RV and determine the bivariate FRF covariance matrix directly, thus avoiding the need to perform
additional uncertainty propagations (the authors find this approach the most practical). This may be beneficial as each
propagation stage incurs an additional uncertainty on the basis that linearity of the propagation function is assumed
(see Appendix A). In this work it will be assumed that an appropriate FRF covariance matrix has been determined by
whatever means (see for example Appendix A of [7]).

When dealing with the uncertainty of complex quantities it is important to note that these are typically represented
in terms of their magnitude and phase, as opposed to their real and imaginary components. As such, it would be
beneficial to provide some measure of the total variability in the complex quantity. Two common measures are the
total dispersion (sum of variances) and the generalised variance (determinant of covariance matrix) [27]. Alternatively,
the law of error propagation may be used to relate the uncertainty of an absolute value to that of the real and imaginary
components,

σ2
|H| =

(
<(H)√

<(H)2+=(H)2

=(H)√
<(H)2+=(H)2

) [
σ<(H)<(H) σ<(H)=(H)
σ=(H)<(H) σ=(H)=(H)

] 
<(H)√

<(H)2+=(H)2

=(H)√
<(H)2+=(H)2

 . (7)

A similar procedure may be used to determine the uncertainty in phase angle, ∠H = tan−1
(
=(H)
<(H)

)
, although care must

be taken so as to ensure the correct quadrant of the complex plane is considered. The above procedure would be
necessary if, for example, uncertainty bounds were required on the absolute value (and/or phase) of a measured FRF.

Whilst the above provides a general description of complex uncertainty, the FRF literature has often assumed
that ΣH = diag(σ<(H)<(H), σ=(H)=(H)) and that ΣH1H2 = 0, that is, the uncertainties are uncorrelated. It was shown
in [7], however, that this assumption is invalid in the presence of operator uncertainty and can lead to large errors
when propagating uncertainty through matrix inversions. A general treatment of complex uncertainty must therefore
acknowledge the potential correlation between FRFs.

3. Dynamic Sub-structuring - Primal Formulation

Before considering the propagation of uncertainty, we will briefly reintroduce some general DS theory.
The mathematical coupling of structural elements can be performed in a variety of ways (i.e. using primal, dual or

hybrid formulations). Although differing in their implementation, the underlying physics are the same. In any case,
one must satisfy two conditions between all pairs of coupling DoFs; compatibility and equilibrium. Compatibility
states that the relative motion (i.e. displacement, velocity, acceleration) between any two coupling DoFs is 0, i.e.
v1 = v2, where v1 and v2 are the collocated boundary velocities of sub-structure 1 and 2, respectively. Equilibrium
further states that the forces applied to pairs of coupling DoFs are equal and opposite, i.e. g1 = −g2.

In section 4 we will focus on the primal formulation of the DS problem (for its mathematical simplicity) and derive
an uncertainty propagation framework (a dual formulation of the propagation framework is also provided in section
4.2). For completeness, we will reintroduce the primal formulation below. For an account of the dual formulation the
reader is referred to [1].

4
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The equations of motion for P uncoupled sub-structures may be expressed in a block diagonalised form as,

[Z]v = f + g (8)

where, [Z] is the block diagonal impedance matrix of the P uncoupled sub-structures, v is the corresponding block
vector of velocities, f is the block vector of applied forces, and g the block vector of coupling interface forces,

[Z] =


Z(1)

Z(2)

. . .

Z(P)

 , v =


v(1)

v(2)

...
v(P)

 , f =


f(1)

f(2)

...
f(P)

 , g =


g(1)

g(2)

...
g(P)

 . (9)

The rigid coupling of any two sub-structures is governed by the conditions of compatibility and equilibrium. These
may be expressed generally in the form,

Bv = 0, (10)

and
LTg = 0, (11)

respectively, where B and L represent signed and unsigned Boolean matrices, respectively. Together, equations (8)-
(11) are referred to as the three field formulation, and may be solved in a primal or dual manner [1].

The primal solution involves the definition of a unique set of boundary DoFs that belong to the coupled assembly.
The condition of compatibility is consequently expressed in the form,

v = LvC, (12)

where vC is the velocity of the coupled assembly. Substitution of equation (12) and (11) into equation (8) leads to an
expression for the coupled assembly in the form,

YC =
(
LZLT

)−1
(13)

where Z is determined from the inverted block diagonal mobility matrix, Z = Y−1. The above procedure amounts to
the summation of impedance matrices of the appropriate dimensions. It is in this way that Finite Element (FE) models
are typically assembled. Equation 13 represents the function through which we will propagate uncertainty. In the
following section we will derive the appropriate formulae for propagating uncertainty in the uncoupled FRF matrix,
Y, onto the coupled FRF matrix, YC.

Note that equation 13 may be used in reverse, i.e. to decouple one sub-structure from another. This is achieved
by simply adding the negative impedance of the residual sub-structure (i.e. the portion of the assembly left once the
unknown sub-structure has been removed) to the coupled assembly [28]. For example, the free source FRF YS of a
coupled source-receiver assembly is given by

YS =

(
L

[
ZC 0
0 −ZR

]
LT

)−1

(14)

where ZC is the coupled assembly impedance and −ZR is the negative receiver impedance. A similar procedure may
be performed using the dual formation [28, 29].

As the coupling and decoupling equations are of an identical form, bar the negative impedance, the propagation of
uncertainty discussed in the following section will be applicable to both cases. For clarity however, we will consider
the coupling case only.

4. Uncertainty Propagation in Dynamic Sub-structuring

In deriving a general framework for the propagation of uncertainty in DS one must not only acknowledge the
potential influence of inter-FRF correlations in the uncoupled FRF matrices, but also provide an estimate of the

5
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correlations present between elements of the predicted (coupled) FRF matrix. The quantity of interest is the bivariate
covariance matrix,

ΣYCij,YClm =

[
σ<(YCi j)<(YClm) σ<(YCi j)=(YClm)
σ=(YCi j)<(YClk) σ=(YCi j)=(YClm)

]
. (15)

The bivariate covariance matrix ΣYCij,YClm describes generally the statistical relation between the real and imaginary
components of any two elements in the coupled FRF matrix YC. In this form we are able to estimate the inter-FRF
correlation in YC as a result of the uncertainty in Y. Such correlations may be important if the coupled FRFs are to
be used in some form of predictive model, for example a VAP.

Assuming that there exists no correlation between the uncoupled sub-structures (this is a fair assumption as they
are measured independently) the uncertainty present in Y (i.e. the block diagonal uncoupled FRF matrix) may be
described by the covariance matrix ΣY ,

ΣY =


ΣY(1) 0 0 0

0 ΣY(2) 0 0

0 0
. . . 0

0 0 0 ΣY(P)

 (16)

where each sub-structure covariance matrix ΣY(P) is of the form,

ΣY(P) =



ΣY11,Y11 · · · ΣY11,YN1 ΣY11,Y12 · · · ΣY11,YN2 · · · ΣY11,Y1N · · · ΣY11,YNN

...
. . .

...
...

. . .
... · · ·

...
. . .

...
ΣYN1,Y11 · · · ΣYN1,YN1 ΣYN1,Y12 · · · ΣYN1,YN2 · · · ΣYN1,Y1N · · · ΣYN1,YNN

ΣY12,Y11 · · · ΣY12,YN1 ΣY12,Y12 · · · ΣY12,YN2 · · · ΣY12,Y1N · · · ΣY12,YNN

...
. . .

...
...

. . .
... · · ·

...
. . .

...
ΣYN2,Y11 · · · ΣYN2,YN1 ΣYN2,Y12 · · · ΣYN2,YN2 · · · ΣYN2,Y1N · · · ΣYN2,YNN

...
...

...
...

...
...

. . .
...

...
...

ΣY1N ,Y11 · · · ΣY1N ,YN1 ΣY1N ,Y12 · · · ΣY1N ,YN2 · · · ΣY1N ,Y1N · · · ΣY1N ,YNN

...
. . .

...
...

. . .
... · · ·

...
. . .

...
ΣYNN ,Y11 · · · ΣYNN ,YN1 ΣYNN ,Y12 · · · ΣYNN ,YN2 · · · ΣYNN ,Y1N · · · ΣYNN ,YNN



(17)

with

ΣYij,Ylm =

[
σ<(Yi j)<(Ylm) σ<(Yi j)=(Ylm)
σ=(Yi j)<(Ylm) σ=(Yi j)=(Ylm)

]
. (18)

Note that, although the above covariance matrix will be beneficial in interpreting the uncertainty propagation formu-
lae, an alternative form is used when implementing the framework numerically (see section 5.3).

Recall that the block diagonal structure of ΣY is due to the uncorrelated nature of any two sub-structures. Similarly,
ΣY(P) will likely possess a block diagonal structure since, under the assumption that correlation only exists between
FRFs of shared excitation, ΣYij,Ylm will equal 0 for j , m. Furthermore, it is worth noting that the above covariance
matrices are readily available from standard measurement data, and require no additional experimental work. It is
however necessary that the FRFs corresponding to each individual excitation are recorded alongside their average
(see section 5.3).

As per the law of error propagation (see Appendix A), ΣYCij,YClm and ΣY are related through the Jacobian of the
propagating function such that,

ΣYCij,YClm = JijΣYJT
lm (19)

where Jij is the Jacobian of the i jth element of the coupled FRF matrix YC with respect to each element of the
uncoupled FRF matrix. Note that the law of error propagation is based on a first order Taylor expansion of the
propagation function. The propagation function of interest, i.e. the equations for DS, involve matrix inversions and
are therefore non-linear. Hence, the law of error propagation is valid only for small uncertainty. In the presence of
large uncertainty a more robust approach, for example a Monte-Carlo simulation, may be required.

6



pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

Since we are considering separately the real and imaginary components of the coupled FRF, the Jacobian Jij is
given as a matrix of partial derivatives with respect to the real and imaginary components of each matrix element,

Jij =


∂<(YCi j )

∂<(Y (1)
11 )

∂<(YCi j )

∂=(Y (1)
11 )

· · ·
∂<(YCi j )

∂<(Y (1)
NM )

∂<(YCi j )

∂=(Y (1)
NM )

· · ·
∂<(YCi j )

∂<(Y (P)
11 )

∂<(YCi j )

∂=(Y (P)
11 )

· · ·
∂<(YCi j )

∂<(Y (P)
NM )

∂<(YCi j )

∂=(Y (P)
NM )

∂=(YCi j )

∂<(Y (1)
11 )

∂=(YCi j )

∂=(Y (1)
11 )

· · ·
∂=(YCi j )

∂<(Y (1)
NM )

∂=(YCi j )

∂=(Y (1)
NM )

· · ·
∂=(YCi j )

∂<(Y (P)
11 )

∂=(YCi j )

∂=(Y (P)
11 )

· · ·
∂=(YCi j )

∂<(Y (P)
NM )

∂=(YCi j )

∂=(Y (P)
NM )

 (20)

where YCi j is the i jth element of the coupled FRF matrix, and Y (P)
i j is the i jth element of the uncoupled FRF matrix

belonging to the Pth sub-structure. To proceed further we must evaluate the above Jacobian.

4.1. Jacobian of the Primal Formulation

We will begin by considering the primal formulation of the DS problem, as illustrated in section 3. Section 4.2
we will briefly cover the dual formulation.

We begin by noting that the complex differential of a matrix inverse is given by (see proposition 3.8 of [30]),

dG−1 = −G−1(dG)G−1 (21)

where G ∈ CN×N is a complex square matrix, whose inverse exists. Using equation 21, the complex differential of
YC =

(
LY−1LT

)−1
may be written in the form,

dYC = −
(
LY−1LT

)−1
d
[(

LY−1LT
)] (

LY−1LT
)−1

. (22)

Substituting for the coupled FRF, YC =
(
LY−1LT

)−1
, whilst noting proposition 3.2 of [30], (d (GFG) = G (dF) G

assuming that G is independent of F), the differential is simplified as so,

dYC = −YCLd
[
Y−1

]
LTYC. (23)

Applying again equation 21, the differential takes the form,

dYC = YCLY−1 (dY) Y−1LTYC. (24)

In the above, dYC may be interpreted as the small (complex) change in the coupled FRF matrix, YC, given a small
change dY in the uncoupled FRF matrix, Y. Suppose that the small change in dY is limited to a single entry, say Yst.
In this case, the differential dY may be replaced by the scaled single entry matrix, PstdYst, where Pst is a zero matrix
bar the st entry, whose value is one, and dYst is a scalar differential term. Substitution into equation 24 yields,

dYC =
(
YCLY−1PstY−1LTYC

)
dYst. (25)

Finally, the bracketed term in equation 25 is recognised as the partial derivative of YC with respect to the st element
of Y,

∂YC

∂Yst
= YCLY−1PstY−1LTYC. (26)

The Jacobian in equation 20 is defined in terms of the real and imaginary components of YC and Y. As such,
equation 26 must now be recast in terms of its real and imaginary components.

Noting that the propagation function YC =
(
LY−1LT

)−1
is holomorphic/analytic (i.e. its complex derivative

depends only on Y, and not its conjugate), assuming that its inverse matrices exist, the Cauchy-Riemann relations
apply to its partial derivatives [31]. Consequently, we have that (see Appendix B),

∂<(YCi j)
∂<(Y (P)

st )
∂<(YCi j)
∂=(Y (P)

st )

∂=(YCi j)
∂<(Y (P)

st )
∂=(YCi j)
∂=(Y (P)

st )

 =


<

(
∂YCi j

∂Y (P)
st

)
−=

(
∂YCi j

∂Y (P)
st

)
=

(
∂YCi j

∂Y (P)
st

)
<

(
∂YCi j

∂Y (P)
st

)
 = M

(
YCi:LY−1PstY−1LTYC:j

)
(27)
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where the function M( ) is used to represent the complex matrix mapping operator [26],

M( ) =

[
<( ) −=( )
=( ) <( )

]
(28)

and subscripts i: and :j denote, respectively, the ith row and jth column of the associated matrices. The Jacobian matrix
Jij is then given by,

Jij =

[
M

(
∂YCi j

∂Y (1)
11

)
· · · M

(
∂YCi j

∂Y (1)
NM

)
· · · M

(
∂YCi j

∂Y (P)
11

)
· · · M

(
∂YCi j

∂Y (P)
NM

) ]
. (29)

Together, equations 19, 27 and 29 allow the propagation of complex and correlated uncertainty through a primal
DS procedure.3 Although based on a primal formulation of the DS problem, as was discussed in [5], the proposed
propagation framework is valid for sub-structured FRFs in general, regardless of the way in which they are coupled as
the underlying physics are the same. Nevertheless, if a dual formulation is preferred, the bivariate Jacobian element
of equation 27 may be replaced by that of equation 36. Note that in either case the Jacobians need only evaluated for
the non-zero entries of Y. Similarly, if the covariance matrix of a particular substructure, ΣY(p) , has a block diagonal
structure, those elements with 0 covariance need not be included in the propagation.

For non-square sub-structure matrices (i.e. where additional force/response-only DoFs are included) it is important
to note that the primal formulation presented above is not applicable. In the primal formulation a non-square FRF
matrix would require the inverse operations to be replaced by the pseudo-inverse, whose complex derivative is not
holomorphic. As such the Jacobian derived in equation 29 would no longer be correct. Whilst the propagation
of uncertainty through a pseduo-inverse was demonstrated in [10], the additional term introduced complicates the
formulation of a primal Jacobian (due to the double inversion), and so is not considered in this work. However, noting
that in the dual formulation (see section 4.2) the term BYBT performs a collocation of interface DoFs, the resultant
matrix is by definition square, and thus requires only a standard matrix inversion. In conclusion, the non-square case
cannot be easily handled using the above primal formulation, although it may be treated using the dual formulation.
Hence a corresponding derivation with the dual formulation will now be given.

4.2. Jacobian of the Dual Formulation

In what follows we will derive the bivariate Jacobian element associated with a dual formulation of the DS
problem. This Jacobian must be used in place of the primal formulation leading to equation 27 if non-square FRF
matrices are present.

As per the dual formulation, the coupled FRF is given by,

YC = Y − YBT
(
BYBT

)−1
BY, (30)

where B is a signed Boolean localisation matrix. The details regarding the formulation of equation 30, and the
construction of B can be found in [1].

We are interested in the derivative of equation 30 with respect to the real and imaginary components of each matrix
element. The derivation follows similar steps to that of the primal formulation. We begin by considering the complex
differential of YC in the form,

dYC = dY − d
(
YBT

(
BYBT

)−1
BY

)
. (31)

Application of the chain rule to the second right hand side term, whilst noting proposition 3.2 of [30], (d (GFG) =

G (dF) G assuming that G is independent of F), yields,

dYC = dY −
[
{dY}BT

(
BYBT

)−1
BY + YBT

{
d
(
BYBT

)−1
}

BY + YBT
(
BYBT

)−1
B {dY}

]
. (32)

3A straightforward numerical implementation of this framework is given in section 5.
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Recalling that the complex differential of a matrix inverse is given by dG−1 = −G−1(dG)G−1 [30], the above differ-
ential becomes,

dYC = dY −
[
{dY}BT

(
BYBT

)−1
BY − YBT

(
BYBT

)−1 (
B {dY}BT

) (
BYBT

)−1
BY + YBT

(
BYBT

)−1
B {dY}

]
. (33)

Now, from equation 33 the differential dYC may be interpreted as the small (complex) change in the coupled
mobility matrix, given the small change dY in the uncoupled mobility matrix. Suppose that the small change in dY is
limited to a single entry, say Yst. In such a case, the differential dY may be replaced by the scaled single entry matrix,
PstdYst. Substitution into equation 33 yields,

dYC =

[
Pst − PstBT

(
BYBT

)−1
BY + YBT

(
BYBT

)−1 (
BPstBT

) (
BYBT

)−1
BY − YBT

(
BYBT

)−1
BPst

]
dYst. (34)

The square bracketed term in the above expression represents the complex derivative of the coupled FRF matrix YC,
with respect to the st element of the uncoupled FRF matrix, Yst. The derivative of the i jth element is thus given by,(

∂YC

∂Yst

)
i j

=

[
Pst − PstBT

(
BYBT

)−1
BY + YBT

(
BYBT

)−1
BPstBT

(
BYBT

)−1
BY − YBT

(
BYBT

)−1
BPst

]
i j
. (35)

Noting that the dual formulation (equation 30) is also holomorphic, a bivariate element of its Jacobian is given by,
∂<(YCi j)
∂<(Y (P)

st )
∂<(YCi j)
∂=(Y (P)

st )

∂=(YCi j)
∂<(Y (P)

st )
∂=(YCi j)
∂=(Y (P)

st )

 = M
([

Pst − PstBT
(
BYBT

)−1
BY + YBT

(
BYBT

)−1
BPstBT

(
BYBT

)−1
BY − YBT

(
BYBT

)−1
BPst

]
i j

)
(36)

where M( ) is once again the complex matrix mapping operator. Equation 36 may readily be substituted into equation
19 and 20 to yield an uncertainty propagation framework in terms of the dual formulation. For square FRF matrices,
the above would, in theory, provide an identical propagation of uncertainty as the primal approach presented through
section 4.1.

4.3. Evaluation of the Primal Jacobian - An Algebraic Example

In what follows we will examine the mechanics of the primal Jacobian (equation 26) so as to better understand
the process of uncertainty propagation. To do so we will make use of the simple two sub-structure assembly shown in
figure 1, although the conclusions drawn will apply more generally to assemblies made up of an arbitrary number of
sub-structures.

Figure 1: Schematic of the Source-Receiver assembly used in the algebraic example if the Jacobian construction.

A source (S) and receiver (R) sub-structure are rigidly coupled at two boundary DoFs, labelled 2 and 3. An
additional internal DoF is also included on each sub-structure, labelled 1 and 4, respectively. The uncoupled assembly

9
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impedance matrix is given by,

Z =



ZS 11 ZS 12 ZS 13 0 0 0
ZS 21 ZS 22 ZS 23 0 0 0
ZS 31 ZS 32 ZS 33 0 0 0

0 0 0 ZR22 ZR23 ZR24
0 0 0 ZR32 ZR33 ZR34
0 0 0 ZR42 ZR43 ZR44


= Y−1. (37)

The corresponding Boolean coupling matrix L is,

L =


1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

 . (38)

The mobility of the coupled structure is consequently given by,

YC = Z−1
C =


ZS 11 ZS 12 ZS 13 0
ZS 21 ZS 22 + ZR22 ZS 23 + ZR23 ZR24
ZS 31 ZS 32 + ZR32 ZS 33 + ZR33 ZR34

0 ZR42 ZR43 ZR44


−1

(39)

where it is noted that the (impedance of) internal DoFs (1 and 4) are unaffected by structural coupling (i.e. ZC11 = ZS 11,
ZC12 = ZS 12, ZC13 = ZS 13 and ZC44 = ZR44, ZC42 = ZR42, ZC43 = ZR43, as with their reciprocal values).

Given the above assembly, we are concerned with the evaluation of the Jacobian,

∂YCi j

∂Yst
=

(
YCLY−1PstY−1LTYC

)
i j

(40)

which describes the propagation of uncertainty from the uncoupled FRF element, Yst, onto the coupled FRF, YCi j.
Let us examine equation 40 beginning with the left side product, YCLY−1. The Boolean coupling matrix L, when

pre-multiplying Y−1, enforces equilibrium among the collocated boundary DoFs (2 and 3) such that,


1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1





ZS 11 ZS 12 ZS 13 0 0 0
ZS 21 ZS 22 ZS 23 0 0 0
ZS 31 ZS 32 ZS 33 0 0 0

0 0 0 ZR22 ZR23 ZR24
0 0 0 ZR32 ZR33 ZR34
0 0 0 ZR42 ZR43 ZR44


=


ZS 11 ZS 12 ZS 13 0 0 0
ZS 21 ZS 22 ZS 23 ZR22 ZR23 ZR24
ZS 31 ZS 32 ZS 33 ZR32 ZR33 ZR34

0 0 0 ZR42 ZR43 ZR44

 .
(41)

Given that the impedance of an internal DoF is unaffected by structural coupling (i.e. the columns of LY−1 associated
with internal DoFs are identical to those of Y−1

C ), pre-multiplication by YC will return a matrix whose columns are
either single entry, or non-zero vectors, depending on whether the associated DoF is an internal or boundary one,
respectively. For the example assembly considered pre-multiplication yields,

YC11 YC12 YC13 YC14
YC21 YC22 YC23 YC24
YC31 YC32 YC33 YC34
YC41 YC42 YC43 YC44




ZS 11 ZS 12 ZS 13 0 0 0
ZS 21 ZS 22 ZS 23 ZR22 ZR23 ZR24
ZS 31 ZS 32 ZS 33 ZR32 ZR33 ZR34

0 0 0 ZR42 ZR43 ZR44

 =


1 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 1

 (42)

where ∗ indicates a non-zero value. These non-zero entries arise from the fact that the columns of LY−1 associated
with the boundary DoFs remain uncoupled (see equation 41). The magnitude of the non-zero entries will depend on
the impedance of the associated sub-structure. A stiffer sub-structure will generally lead to greater non-zero values
and consequently an amplification of the propagated uncertainty.
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Following a similar procedure for the right side product, Y−1LTYC, we get,

ZS 11 ZS 12 ZS 13 0
ZS 21 ZS 22 ZS 23 0
ZS 31 ZS 32 ZS 33 0

0 ZR22 ZR23 ZR24
0 ZR32 ZR33 ZR34
0 ZR42 ZR43 ZR44




YC11 YC12 YC13 YC14
YC21 YC22 YC23 YC24
YC31 YC32 YC33 YC34
YC41 YC42 YC43 YC44

 =



1 0 0 0
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 0 1


. (43)

Substituting the above into equation 40, whilst considering all elements of YC, we arrive at,

∂YC

∂Yst
=


1 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 1

 [Pst]



1 0 0 0
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 0 1


. (44)

Equation 44 illustrates how an uncertainty in the st entry of the uncoupled FRF matrix Y propagates onto the each
element of coupled FRF matrix YC.

Noting that the single entry matrix Pst performs an outer product between column s and row t of its left and right
hand matrices, respectively, the structure of the resultant matrix is seen to depend on which uncoupled FRF, Yst, is
considered. By analysing the outer product, given a particular st, we are able to track the uncertainty of an FRF as it
propagates through the DFSS procedure. From this we are able to make the following conclusions.

1) Selection of an internal-internal FRF will lead to an outer product between two single entry vectors. Conse-
quently, the associated uncertainty will not propagate beyond the internal-internal FRF itself. For example, an
uncertainty in YS 11 will propagate according to,

∂YC

∂Y11
=


1 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 1

 [P11]



1 0 0 0
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 0 1


=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (45)

which is non-zero only in the 11 entry, i.e. an uncertainty in YS 11 will influence only YC11.

2) Selection of an internal-boundary FRF will lead to an outer product between a single entry, and a non-zero
vector. The resultant matrix will have a single non-zero row or column (depending on st). Consequently, the
associated uncertainty will propagate through to all FRFs that share the same internal DoF as a response or
excitation (depending on st). For example, an uncertainty in YS 13 will propagate according to,

∂YC

∂Y13
=


1 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 1

 [P13]



1 0 0 0
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 0 1


=


∗ ∗ ∗ ∗

0 0 0 0
0 0 0 0
0 0 0 0

 (46)

where the non-zero entries correspond to: YC11, YC12, YC13 and YC14 (i.e. they share the internal DoF as a
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response position). Similarly, an uncertainty in YS 31 will propagate according to,

∂YC

∂Y31
=


1 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 1

 [P31]



1 0 0 0
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 0 1


=


∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

 (47)

where the non-zero entries correspond to: YC11, YC21, YC31 and YC41 (i.e. they share the internal DoF as an
excitation position).

3) Selection of a boundary-boundary FRF will lead to an outer product between two non-zero vectors. The re-
sultant matrix will be fully populated. Consequently, the associated uncertainty will propagate through to all
FRFs. For example, an uncertainty in YS 23 will propagate according to,

∂YC

∂Y23
=


1 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 1

 [P23]



1 0 0 0
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 0 1


=


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 . (48)

The above results are in agreement with those of Voormeeren et al. [5]. However, the proposed framework (outlined
through section 4) considers not only the propagation of variance in the uncoupled FRFs (as in [5]), but also their
covariance. As such, it is important to consider the necessary conditions under which covariance is propagated.

The variance in an element of the uncoupled FRF matrix is propagated onto the variance of a coupled FRF by the
square of the appropriate Jacobian term. (

∂YCi j

∂Yst

)2

σYstYst → σYCi jYCi j (49)

The covariance between two elements of the uncoupled FRF matrix, on the other hand, is propagated by two different
Jacobian terms, one associated with each of the correlated FRFs.

∂YCi j

∂Yst

∂YCi j

∂Ylm
σYstYlm → σYCi jYCi j (50)

In order for the uncoupled covariance σYstYlm to propagate, both Jacobian terms must be non-zero. As an example, the
covariance between YS 13 and YS 23, σYS 13,YS 23 , which will be non-zero on the basis of operator uncertainty (due to their
shared excitation), will not propagate onto the uncertainty in YC44, as its derivative with respect to YS 13 is 0, ∂YC44

∂YS 13
= 0

(see equation 46). From the above we are able to draw the following conclusions.

1) The covariance between any two uncoupled internal-internal FRFs will only propagate onto the variance of and
the covariance between the same two FRFs on the coupled structure.

2) The covariance between any two uncoupled boundary-boundary FRFs will influence the variance of and the
covariance between all coupled FRFs of the assembled structure.

3) The remaining covariances (i.e between internal-internal, boundary-boundary, and internal-boundary FRFs)
will influence the variance and covariance of the coupled FRFs in different proportions according to the relative
position of the uncoupled FRFs considered.

The above remarks suggest that, if neglected, the presence of inter-FRF correlation in any sub-structure could lead
to an inaccurate estimate of uncertainty in all coupled FRFs. By including such covariance terms in the proposed
framework, we are able to avoid such errors.
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4.4. Additional Remarks

Before proceeding a few more general remarks are warranted. Most importantly, the law of error propagation,
as used in the above formulation, is based on a first order expansion of the propagation function (see Appendix A).
As such, it is valid only in the presence of small levels of uncertainty. For this reason care must be taken in the
vicinity of sharp resonances, where small shifts in frequency can lead to large changes in amplitude. A second order
formulation could be established by extending equations A.3 and A.4 to include second order derivatives (this was
done in [5] for the dual formulation in the case of uncorrelated uncertainty). However, the resultant expressions
become unwieldy. This is particularly so in the presence of operator (i.e correlated) uncertainty, as one cannot neglect
the joint variability between FRF elements. In the presence of large uncertainty it is suggested that a Monte-Carlo
propagation be performed.

Regarding the sensitivity of coupled FRF uncertainty to the dynamics of the uncoupled sub-structures, it was
shown in the above example that stiffer (higher impedance) substructures will tend to contribute more to the overall
uncertainty than less stiff ones (assuming a similar initial uncertainty). This suggests that a greater degree of uncer-
tainty may be tolerated in flexible/resilient components than those stiffer if the aim is to fit within some predefined
level of acceptable uncertainty.

Furthermore, similarly to the formulation presented in [5], from equation 40 it can be seen that the uncertainties
present in the uncoupled FRFs are magnified at resonance (of the coupled assembly) by the outermost FRF terms of
the Jacobian. Further amplification will occur at the maxima regions of the uncoupled sub-structure’s impedance due
to the inverse (uncoupled) FRF term, Y−1. Unlike the resonance amplification, these maxima will differ in frequency
among the entries of Y−1. This amplification is governed according to the matrix Pst, which selects the appropriate row
and column of Y−1. In each case, the presence of low damping will likely lead to a greater propagation of uncertainty.

Also, as discussed in section 3, the proposed framework is valid in a sub-structure decoupling context, as the
Jacobian is of the same form. The only modification required would be the negation of the residual impedance matrix
in the Y−1 term, and the replacement of YC with the appropriate decoupled FRF matrix.

Furthermore, the proposed framework it is not restricted to random or uncertain FRF matrices. For example, if
a deterministic substructure (say from a numerical model) were to be included, its covariance matrix would simply
be the zero matrix, ΣY(Det) = 0. In this case, the proposed framework would estimate the influence of the experimen-
tal uncertainty on the deterministic components of the coupled model. Moreover, there is no requirement that the
covariance matrices used be determined experimentally. If a numerical sub-structure was considered, an appropriate
covariance matrix may be obtained for example, through a Monte-Carlo simulation, if the computational resources
were available.

As a final remark, it is worth considering the size of the resultant expressions obtained when using the proposed
framework. As an example, consider two substructures A and B, each characterised by n DoFs. Their full FRF
matrices will be of dimensions n × n. Consequently, their covariance matrices will each be 2n2 × 2n2. Together, the
uncoupled covariance matrix (obtained by block diagonalising the sub-structure covariance matrices) is of dimensions
4n2 ×4n2. Say that A and B are coupled rigidly at m DoFs using the primal procedure, the coupled assembly would be
characterised by the (2n−m)×(2n−m) FRF matrix, and its uncertainty by a 2(2n−m)2×2(2n−m)2 covariance matrix.
For consistency the Jacobian matrix used in the propagation of uncertainty must be of dimensions 2(2n − m)2 × 4n2.
For a typical case, say n = 5 and m = 4 (e.g. 4 footed vibration source coupled to receiver, with additional remote
DoF retained on each side), the propagation framework would require a Jacobian matrix of dimension 72×100 and an
uncoupled covariance matrix of dimensions 100× 100. Although large by conventional experimental standards, these
matrices are easily handled by modern computers. Furthermore, the only (minimal) additional measurement effort
required in their construction would be to retain results from individual hammer hits (for the estimation of the FRF
covariance) rather than averaging prior to analysis. That said, their construction is potentially highly time consuming
and prone to error. For this reason we are also concerned with efficient and rigorous methods for constructing the
required covariance and Jacobian matrices. This will be the topic of the following section.

5. Numerical Implementation of the Uncertainty Propagation Framework

The primal and dual formulations of DS considered in this work are formulated in the frequency domain. Con-
sequently, a frequency-by-frequency evaluation of uncertainty is performed. For realistic levels of complexity (i.e.
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multiple DoFs per sub-structure), the propagation framework may, if not implemented correctly, take considerable
time to run. To reduce computation effort, and limit the opportunity for coding errors, we are interested in an
efficient and rigorous construction of the primal and dual Jacobian matrices, as represented by equation 27 and 36, re-
spectively. In what follows we will derive concise expressions for the complete Jacobian matrices, which may readily
be implemented into numerical code. The construction of an appropriate covariance matrix will also be discussed.

5.1. Primal Formulation
We begin by recalling the vectorisation operator, vec( ), which stacks the columns of the associated matrix such

that, given A ∈ CN×M , vec(A) = a ∈ CNM×1. Noting lemma 2.11 from [30],

vec(ABC) = (CT ⊗ A)vec(B) (51)

where ⊗ denotes the Kronecker product (see definition 2.6 of [30]), the vectorised complex derivative of YC with
respect to the st element of Y (see equation 26) is given by,

vec
(
YCLY−1PstY−1LTYC

)
=

(
Y−1LTYC

)T
⊗

(
YCLY−1

)
vec(Pst). (52)

The above expression yields a column vector whose entries are the complex derivatives of YC with respect to the st
element of Y only.

Noting that as one cycles through the st elements of Pst, vec(Pst) represents a unit vector whose index increases
with each step. Clearly, by arranging each vec(Pst) as the columns of a matrix we arrive at the identity matrix I. As
such, (

Y−1LTYC
)T
⊗

(
YCLY−1

)
vec(Pst)→

(
Y−1LTYC

)T
⊗

(
YCLY−1

)
. (53)

In doing so, the right hand term in the above equation yields a matrix whose columns represent the derivatives of YC
with respect to each element of Y (including its zero entries). Consequently, the full primal Jacobian matrix is given
by,

J = M
((

Y−1LTYC
)T
⊗

(
YCLY−1

))
(54)

where the complex matrix mapping, M( ), defined in equation 28, is applied element-wise. Finally, the full covari-
ance matrix of the coupled system is given, conveniently, by,

ΣYC = JΣYJT. (55)

Equation 54 and 55 provide a straightforward numerical implementation of the proposed uncertainty propagation
framework. Note that equation 55 requires the covariance matrix ΣY to be constructed such that it is compatible with
the Jacobian matrix J. This will be discussed in section 5.3.

5.2. Dual Formulation
For the dual formulation we note that the vectorised complex derivative (see equation 35) may be written as the

sum of its vectorised terms as follows,

vec
(
Pst − PstBT

(
BYBT

)−1
BY + YBT

(
BYBT

)−1
BPstBT

(
BYBT

)−1
BY − YBT

(
BYBT

)−1
BPst

)
=

vec (Pst) − vec
(
PstBT

(
BYBT

)−1
BY

)
+ vec

(
YBT

(
BYBT

)−1
BPstBT

(
BYBT

)−1
BY

)
− vec

(
YBT

(
BYBT

)−1
BPst

)
.

(56)

Making use of equation 51 (whilst substituting the identity matrix for A and C when required), and following a similar
procedure as with the primal case, we arrive at the full dual Jacobian matrix,

J = M
(
I −

[(
BT

(
BYBT

)−1
BY

)T
⊗ I

]
+

[(
BT

(
BYBT

)−1
BY

)T
⊗ YBT

(
BYBT

)−1
B
]
−

[
I ⊗ YBT

(
BYBT

)−1
B
])

(57)

where the complex matrix mapping is again applied element-wise.
Equation 57 may be used in place of equation 54 to determine the full covariance matrix of the coupled system

based on the dual formulation. Note however, the resultant covariance matrix ΣYC will be larger than that obtained by
the primal method, as the dual formulation retains all DoFs belonging to the uncoupled sub-structures.
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5.3. Uncoupled Covariance Matrix

It is important that the uncoupled covariance matrix ΣY used in the above implementation be consistent with the
Jacobian matrices given by equation 54 and 57. Noting that the Jacobians were obtained by horizontally aligning all
vec(Pst) vectors such that they formed an identity matrix, ΣY must be built by stacking the columns of the uncoupled
FRF matrix Y (including the zero entries), and calculating the associated covariance matrix. As we have assumed
independence between the uncoupled sub-structures, this covariance matrix will be sparse. For large systems the
sub-structure covariance matrices may be calculated separately and their elements assigned appropriately to those of
the uncoupled covariance matrix ΣY.

Given the uncoupled (i.e. block diagonal) FRF matrix, Y, whose columns are each measured E times, a covariance
matrix is obtained by first vectorising, each matrix ‘realisation’ as so,

Ŷ =
[

Mv
(
Vec[Y(1)]

)
Mv

(
Vec[Y(2)]

)
· · · Mv

(
Vec[Y(E)]

) ]
(58)

where the operator,

Mv(A) =

(
<(A)
=(A)

)
(59)

is applied element wise, and Y(E) represents the FRF matrix constructed using the Eth measurement of each column.
The covariance matrix is then calculated using the standard formula,

ΣY =
1
E

[(
Ŷ − E[Ŷ]

) (
Ŷ − E[Ŷ]

)T
]

(60)

where the expectation E[ ] (taken along the columns of Ŷ) is subtracted from each column of the matrix Ŷ. Note
that the covariance matrix obtained via equation 60 will differ from that of equation 16, which was used for its
mathematical convenience.

Under the assumption of operator uncertainty the columns of Y are independent and as such their covariance is
zero. Since relatively few excitations will be applied in practice, these zero elements of ΣY will have some finite
value. These entries may be discarded and set to zero if the user is confident that no external sources of correlation
are present, otherwise they must be retained.

Together, equations 54, 55, 57 and 60 provide an efficient implementation of the proposed propagation framework,
for both primal and dual formulations, accounting for both the complex and correlated nature of the underlying
uncertainty.

6. Numerical Case Study

In this section we will provide a numerical validation of the proposed propagation framework. Shown in figure
2 is a diagrammatic representation of the study considered. Two free-free beams (source and receiver) are coupled
end-to-end such that they form a third (coupled) beam.

Figure 2: Diagrammatic representation of numerical study. Two free-free beams, A and B, are coupled end-to-end. Measurement and operator
uncertainty are modelled using additive noise and randomly distributed excitation positions, respectively. Uncoupled DoFs are labelled as follows;
internal A translation (1), internal A rotation (2), boundary A translation (3), boundary A rotation (4), boundary B translation (5), boundary B
rotation (6), internal B translation (7), and internal B rotation (8). Coupled DoFs are labelled as follows; internal A translation (1), internal A
rotation (2), boundary translation (3), boundary rotation (4), internal B translation (5), internal B rotation (6).
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(a) Example FRF ‘measurement’. Measurement uncertainty - 20dB
SNR.
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(b) DS prediction based on ‘measured’ FRFs. Measurement uncer-
tainty - 20dB SNR.
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(c) Example FRF ‘measurement’. Operator uncertainty - σ2 = 0.02.
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(d) DS prediction based on ‘measured’ FRFs. Operator uncertainty -
σ2 = 0.02.
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(e) Example FRF ‘measurement’. Combined measurement and oper-
ator uncertainty - 20dB SNR and σ2 = 0.02.
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(f) DS prediction based on ‘measured’ FRFs. Combined measurement
and operator uncertainty - 20dB SNR and σ2 = 0.02.

Figure 3: Illustrative examples of measurement and operator uncertainty on the point FRF of the source substructure. A single ’measurement’ is
shown for clarity. Legend description: True (in blue) - the true FRF of uncoupled sub-structure (YS 11), Meas (in orange) - example ‘measurement’
of uncoupled FRF, DS True (in grey) - the true FRF of the sub-structured assembly (YC11), DS Pred (in dashed black) - predicted FRF of the
sub-structured assembly based on averaged ‘measured’ FRFs.

The aim of this study is to estimate the uncertainty in the FRFs of the coupled beam, based on the uncertainty of
the ‘measured’ sub-structure FRFs. An analytical beam model was chosen as (1) it represents a simple system that
exhibits the physical phenomena expected from operator uncertainty and (2) closed form solutions are available which
aid in efficient Monte-Carlo simulations. The measured FRFs are simulated in such a way as to include the effect of
both measurement and operator uncertainty. The uncoupled source and receiver sub-structures each have 4 DoFs: 2
internal, and 2 boundary, as illustrated in figure 2. Their free boundary FRFs matrices are given by YS ∈ C4×4 and
YR ∈ C4×4, respectively. Consequently, the coupled assembly FRF is given by YC ∈ C6×6. The labelling of coupled
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and uncoupled DoFs is provided in the caption of figure 2.
In what follows we will consider 3 scenarios, sub-structuring in: the presence of measurement uncertainty only,

the presence of operator uncertainty only, and in the presence of both measurement and operator uncertainty. Here
measurement uncertainty will be modelled as an additive noise using a time domain noise model with a random
Gaussian distributed amplitude. Operator uncertainty will be modelled by randomly distributing the force and moment
excitation positions (see figure 2) and performing repeated ‘measurements’.

Shown in figure 3a and 3c are illustrative examples of, respectively, measurement and operator uncertainty on a
point FRF of the uncoupled source substructure. Shown in figure 3e is an example of their combined effect. In each
figure the true point FRF is shown in blue and a single ‘measured’ FRF is shown in orange. Shown in figures 3b, 3d
and 3f are, in grey, the sub-structured point FRF predictions based on a set of measured FRFs, and in black the true
coupled FRFs.

Notice that the sub-structured prediction for the coupled FRF in the presence of measurement uncertainty only
is in good agreement with the true FRF. This is because the measurement uncertainty has a zero mean value and, as
such, the expected uncoupled FRFs provide a good estimation of the true uncoupled FRFs. In the presence of operator
uncertainty, however, some noticeable shifts are observed. Whilst it was shown in [7] that for a normally distributed
excitation position (with low variance) operator uncertainty does not introduce any bias, we note that the boundary
DoFs were measured using a half Gaussian distribution (see figure 2). As a result a bias is introduced, the effects of
which are seen in the coupled FRFs of figure 3d and 3f.

In each scenario considered the proposed framework (labelled as LEP for ‘Law of Error Propagation’ in figure
legends) is compared against a Monte-Carlo (MC) simulation, which will be regarded as the baseline truth, since
it implicitly includes the effect of any correlation and non-linearity present in the uncoupled FRFs and propagation
function (i.e equation 13), respectively. The MC simulation involves randomly selecting a subset of measured source
and receiver FRF matrices, from the set of all possible matrices, and repeatedly performing the primal (or dual) DS
procedure. The statistics of the resulting FRF matrices are then analysed and compared against those obtained through
the proposed framework. In the following MC simulations 1000 source and receiver FRF matrices were chosen at
random. To highlight the importance of inter-FRF correlation, in each scenario uncertainty will be propagated with
and without the influence of inter-FRF correlation. In the latter, only the diagonal elements of ΣY are considered.
This assumption is in agreement with many previous works (as discussed in section 1), including the DS uncertainty
framework presented in [5].

6.1. Measurement Uncertainty

We will begin by considering the propagation of measurement uncertainty only. In the absence of a more realistic
model, measurement uncertainty is introduced here via a time domain random noise model with a Gaussian amplitude
distribution,

p(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2 (61)

with zero mean (µ = 0) and variance σ2 = (5 × 10−7)2. For each FRF entry, Yi j, an independent time domain noise
vector, εi j(t), is generated, Fourier transformed and scaled such that the ‘measured’ FRFs have a signal-to-noise ratio
(SNR) of L dB. A suitable scaling is achieved using an energy normalisation formulated as,

εi j(ω) = 10−L/10
∑
ω

Yi j(ω)2 F {εi j(t)}∑
ω F {εi j(t)}2

(62)

where, 10−L/10 is a linear measure of the SNR,
∑
ω Y2

i j is the total energy in the noise free signal, and
∑
ω F {ε(t)}2 is

the total energy in the noise signal, where F {} represents the Fourier transform operator. Each εi j(ω) is assembled to
construct the noise matrix, ε. The measured FRF matrix, Ymeas, is then given by,

Ymeas = Y + ε. (63)

The above is equivalent to adding a frequency independent noise floor to each FRF, which is a reasonable representa-
tion of measurement noise.
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For each sub-structure 10 measured FRF matrices are simulated, from which the expectations, E[Ymeas
S ] ∈ C4×4

and E[Ymeas
R ] ∈ C4×4, are determined, alongside the bivariate covariance matrices ΣYS ∈ R32×32 and ΣYR ∈ R32×32.

Substituting the expected FRFs into the Jacobian, and using equation 19, one can readily estimate the bivariate uncer-
tainty between any two elements of the coupled FRF matrix, ΣYCij,YClm .

Shown in figure 4 are the estimated uncertainties in the coupled point FRF YC11 in the presence of measurement
uncertainty only. In figure 4a are the relative variance estimates of the real component with (orange) and without
(blue) inter-FRF correlation. Also shown is the MC simulation (dashed yellow). Similarly, figure 4b and 4c show
the relative variance of and covariance between, the imaginary and real components, respectively. Note that here we
define the relative covariance as,

RelCov[A, B] =
σAB

E[A]E[B]
. (64)

The agreement observed in figures 4b and 4c suggest that the proposed framework provides an accurate estimate of
the real and imaginary variance, whether or not inter-FRF correlations are considered. This is to be expected since
the measurement uncertainty considered is uncorrelated at the sub-structure level. However, the neglect of inter-FRF
correlation does worsen the estimation of the relative covariance between real and imaginary components, as shown
in figure 4c.

Shown in figure 4d is the (predicted) coupled FRF magnitude (yellow) with the 95% confidence intervals (for an
assumed log normal distribution) associated with the estimated uncertainty with and without the influence of inter-
FRF correlations. The two confidence bounds are almost perfectly overlayed, suggesting that the disagreement in the
relative covariance (figure 4c) has a minimal effect when propagating the estimated uncertainty further through the
magnitude function as per equation 7.
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(a) Relative variance of the real component
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(b) Relative variance of the imaginary component
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(c) Relative covariance between the real and imagainary components
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(d) Coupled FRF magnitude and 95% confidence interval (with and
without inter-FRF correlations)

Figure 4: Bivariate uncertainty estimates in the sub-structured FRF YC11 due to the presence of measurement uncertainty only with an SNR of
20 dB. Legend description: LEP (no correlation) - framework based estimate neglecting the influence of correlation between sub-structure FRFs,
LEP - framework based estimate including all correlations, MC - estimate based on Monte-Carlo simulation. The LEP (no correlation) estimate is
obtained by taking only the diagonal elements of ΣY .
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The use of a log normal distribution for the FRF magnitude was chosen simply as a mean of presenting the results
of figures 4a-4c in a more intuitive way. For a small Gaussian input uncertainty the bivariate output uncertainty of a
sub-structured FRF (as predicted by the proposed framework) remains Gaussian, since we have considered a linear
propagation of uncertainty. Consequently, the range of possible values for the real and imaginary components extend
from −∞ to +∞. The magnitude of the FRF however, is strictly positive, and so a Gaussian distribution is no longer
appropriate. It is for this reason that we have chosen to present the confidence bound using a log normal distribution
(which is strictly positive). The true underlying distribution is more complex however, and is treated analytically in
[32]. Nevertheless, for the purpose of presentation the log normal distribution is considered sufficient here.
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(a) Rotational driving point FRF YC22
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(b) Translational-rotationalal transfer FRF YC23

Figure 5: Coupled FRF magnitude and 95% confidence interval (with and without inter-FRF correlations) for the sub-structured FRFs YC22 (a) and
YC23 (b) due to the presence of measurement uncertainty only with an SNR of 20 dB.

For completeness figure 5 shows the confidence intervals obtained for two other sub-structured FRFs, the driving
point rotational FRF YC22 and the transfer translations-rotational FRF YC23. Again, given the uncorrelated input
uncertainty, the two confidence bounds are in good agreement.

6.2. Operator Uncertainty

Having considered measurement uncertainty above, we will now consider the propagation of operator uncertainty.
To model the effect of operator uncertainty (i.e. the uncertainty in excitation position due to human error) the excitation
position for each DoF is varied randomly according to Gaussian distribution. In the case of the interface DoFs a single
sided Gaussian distribution is used, as illustrated in figure 2. The excitation distributions are centred about the intended
position with the degree of operator uncertainty set by the standard deviation σ = 0.02.4 The measured FRFs thus
take the form,

Ymeas = Y(a0 + a) (65)

where Y() represents an FRF function whose argument a0 + a denotes the excitation position, such that a ∼ N(0, σ2).
For each sub-structure 10 ‘measurements’ are performed at each DoF, from which the expectations, E[Ymeas

S ] ∈
C4×4 and E[Ymeas

R ] ∈ C4×4, are determined, alongside the bivariate covariance matrices ΣYS ∈ R32×32 and ΣYR ∈

R32×32. To estimate the bivariate covariance matrices we note that only the elements of Y that share an excitation
position are correlated. As such, ΣYS ∈ R32×32 and ΣYR ∈ R32×32 are constructed by taking, separately, the columns of
their respective FRF matrices, computing their covariances, and block diagonalising the resulting matrices appropri-
ately [7].

Shown in figure 6 are the estimated uncertainties in the coupled point FRF YC11 in the presence of operator
uncertainty only. In figure 6a are the relative variance estimates of the real component with (orange) and without
(blue) inter-FRF correlation. Also shown is the MC simulation (dashed yellow). Similarly, figure 6b and 6c show

4It should be noted that in a practical scenario the severity of operator uncertainty will vary greatly depending on multiple factors, including:
experience of the experimenter, access to the measurement positions, the local dynamics of the structure, etc. We have chosen σ = 0.02 as a
conservative level of uncertainty in that it corresponds, roughly, to an excitation within ±4cm of the intended position 95% of the time.
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the relative variance of, and the covariance between, the imaginary and real components, respectively. In contrast to
the measurement uncertainty considered above, there are clear discrepancies between the uncertainty estimates with
and without inter-FRF correlation, the former remaining in good agreement with MC simulations. This disagreement
is expected, since the notion of operator uncertainty introduces a correlation between measured FRFs, which is not
propagated when the off-diagonal terms of ΣY are neglected. Agreement between the proposed framework (with inter-
FRF correlation) and MC simulations suggest that a correct propagation of uncertainty has been achieved. However,
some small discrepancies are still observed. These are a result of the linear approximation employed in the law of
error propagation. For a greater level of uncertainty this discrepancy might be expected to increase.

It is interesting to note that the discrepancies due to the neglect of inter-FRF correlation do not appear to coincide
in particular with regions of large relative variance, although they do tend to lead to an over-estimation of uncertainty.
This over-estimation is more clearly observed in figure 6d where the estimated confidence bounds on the coupled
FRF magnitude are shown. It is clear, in this case at least, that the neglect of inter-FRF correlation in the propagation
of uncertainty leads to much a wider confidence bound on the resultant FRF. In practical terms this is interesting as
knowledge of the inter-FRF correlation in the uncoupled sub-structures may be obtained at little additional effort over
and above standard variance estimates, yet its introduction appears to lead to increased confidence in the coupled
FRFs.
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(a) Relative variance of the real component
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(b) Relative variance of the imaginary component
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(c) Relative covariance between the real and imagainary components
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(d) Coupled FRF magnitude and 95% confidence interval (with and
without inter-FRF correlations)

Figure 6: Bivariate uncertainty estimates in the sub-structured FRF YC11 due to the presence of operator uncertainty only with a excitation variance
of σ = 0.02. Legend description: LEP (no correlation) - framework based estimate neglecting the influence of correlation between sub-structure
FRFs, LEP - framework based estimate including all correlations, MC - estimate based on Monte-Carlo simulation. The LEP (no correlation)
estimate is obtained by taking only the diagonal elements of ΣY .

6.3. Combined Uncertainty
Finally, in this section we will consider the propagation of both measurement and operator uncertainty. Each

uncertainty is modelled as described above. The measured FRF matrix is consequently given by,

Ymeas = Y(a0 + a) + ε. (66)
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Shown in figure 7 are the estimated uncertainties in the coupled point FRF YC11 in the presence of both measurement
and operator uncertainty. In figure 7a are the relative variance estimates of the real component with (orange) and
without (blue) inter-FRF correlation. Also shown is the MC simulation (dashed yellow). Similarly, figure 7b and 7c
show the relative variance of, and covariance between, the imaginary and real components, respectively.

The results presented through figure 7 are expected on the basis of figures 4 and 6. It can be seen that in re-
gions dominated by measurement uncertainty, the proposed framework provides an accurate estimation of uncertainty
regardless of whether inter-FRF correlations are considered. This accurate estimation is permeated by regions dom-
inated by operator uncertainty. In these regions inter-FRF correlations are essential for an accurate estimation of
uncertainty.

As in figure 6d, in the presence of both measurement and operator uncertainty figure 7d demonstrates that knowl-
edge of the inter-FRF correlations present can lead to an increased confidence in the predicted FRFs. A similar result
was also obtained in [7] based on experimentally measured FRFs and the propagation of uncertainty through a matrix
inversion. These results support the use of more general treatments of uncertainty, such that inter-FRF correlations
are accounted for.

20 100 500
10−6

10−1

104

Frequency [Hz]

R
el

V
ar

[<
(Y

C
1
1
),
<(

Y
C
1
1
)]

LEP (no correlation) LEP MC

(a) Relative variance of the real component
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(b) Relative variance of the imaginary component

20 100 500
10−6

10−1

104

Frequency [Hz]

R
el

C
ov

[<
(Y

C
1
1
),
=(

Y
C
1
1
)]

(c) Relative covariance between the real and imagainary components
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(d) Coupled FRF magnitude and 95% confidence interval (with and
without inter-FRF correlations)

Figure 7: Bivariate uncertainty estimates in the sub-structured FRF YC11 due to the presence of both measurement (SNR = 20dB) and operator
(σ2 = 0.02) uncertainty. Legend description: LEP (no correlation) - framework based estimate neglecting the influence of correlation between
sub-structure FRFs, LEP - framework based estimate including all correlations, MC - estimate based on Monte-Carlo simulation. The LEP (no
correlation) estimate is obtained by taking only the diagonal elements of ΣY .

The results presented in this section, although of a numerical simulation, are representative of real physical struc-
tures and provide a validation of the proposed framework. It is important to reiterate, however, that the linear covari-
ance propagation considered here is valid only in the presence of small uncertainty, given that the propagation function
is non-linear. For larger levels of uncertainty one may establish a second order propagation framework as was done
in [5], or utilise the MC simulation approach. Nevertheless, the proposed framework may prove useful, for example,
in investigating the contribution of an uncoupled FRF uncertainty to that of the coupled assembly. As an example, in

21



pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

section 6.4 we will consider a benefit analysis/rank ordering of uncertainty for the numerical study considered.

6.4. Benefit Analysis and Rank Ordering
In an industrial setting it may be required that an FRF prediction satisfies some specified level of confidence as

structures are often designed to conform to strict limits. If the uncertainty of a particular FRF exceeds a given limit,
we may wish to improve our confidence in the predicted FRF. Naively, we might repeat all measurements in the hope
that better results are obtained the second time round. This would be inefficient, both practically and financially.
Alternatively, using the uncertainty propagation we may perform a rank ordering (of-sorts) to identify the uncoupled
FRFs that contribute most significantly to the uncertainty of the coupled FRF in question. Having identified the
dominant source(s) of uncertainty, the benefit, in terms of potential uncertainty reduction given the financial/practical
cost, of repeating these FRF measurements may be deliberated.

As an example, in this section we will attempt to identify the dominant source of uncertainty for the boundary-
internal transfer FRF YC35, which relates the translational force at the source-receiver boundary, to the translational
response at the internal receiver DoF (see the caption of figure 2 for DoF labelling). We will consider the case where
both measurement and operator uncertainty are present. To simulate a more realistic scenario, each FRF measurement
(i.e. column of the FRF matrix) is assigned a different level of operator uncertainty, varying between σ = 0.001 and
σ = 0.02.

To identify the dominant source of uncertainty the covariance matrices associated with each column of the mea-
sured FRF matrices are propagated separately. This is achieved by setting all other covariance terms in ΣY to zero
and performing the propagation in the standard way, as per section 4. The source and receiver sub-structures are each
characterised by four DoFs, two internal and two boundary. As such, there are a total of 8 ‘measurements’ whose
uncertainty we wish to propagate.
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Figure 8: Rank ordering of the contributions to σ|YC53 | due to uncoupled sub-structure FRF measurements. In (a) are the true and sub-structured
FRF prediction for |YC53 |. In (b) are the relative variance contributions. The legend entries correspond to the DoF of the measurement, i.e. ‘3’ is
the relative variance contribution due to the uncoupled FRFs measured when exciting DoF 3. DoFs 1, 2 and 8 contributed a negligible amount so
have not been plotted.

Shown in figure 8 are the results of the uncertainty propagation. In figure 8a is the true FRF |YC53| (blue), and its
sub-structured prediction (orange). In figure 8b are the contributions to the uncertainty (relative variance) of |YC53|

due to each of the uncoupled FRF ‘measurements’. Each plot corresponds to the uncertainty contribution arising from
a column of the uncoupled FRF matrix Y. From figure 8b we are able to draw the following conclusions. To improve
confidence about the first (and fourth) resonance we should repeat the measurements at DoFs 4 and 6 (i.e. rotational
boundary excitations). To improve confidence about the third (and fifth) resonance we should repeat the measurements
at DoFs 3 and 5 (i.e. translational boundary excitations). To improve confidence about the second resonance we should
repeat the translational excitation at the internal receiver DoF 7. In fact, figure 8b suggests that repeating the excitation
of DoF 7 would provide the single greatest improvement in the overall uncertainty, particularly in the range of 35-150
Hz. The contributions due to DoFs 1, 2 and 8 were negligible and not shown. This is in agreement with the notion
that the uncertainties related to internal DoFs tend not to propagate so far as boundary DoFs (see section 4.3).

22



pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

pr
e-

pr
in

t pr
e-

pr
in

t

Although of a simple numerical model, the above results illustrate the application of the proposed framework in
the context of a benefit analysis which may be of use in practical situations where we wish to improve our confidence
in a given FRF prediction.

7. Conclusions

This paper has been concerned with the propagation of correlated FRF uncertainty through dynamic sub-structuring
procedures. A covariance based framework is derived for propagating both complex and correlated uncertainty
through primal and dual sub-structuring procedures. By symmetry of the underlying equations, the proposed frame-
work is valid also in the case of sub-structure decoupling.

The framework was largely motived by the notion of operator uncertainty (due to inconsistent force excitations in
FRF measurements) and the inter-FRF correlation that it introduces. In this regard, the proposed framework provides
a more general treatment of uncertainty in DS.

Through an algebraic example the conclusions drawn by Voormeeren et al. [5], regarding the propagation of un-
correlated uncertainty, were substantiated. Using the proposed framework further conclusions were drawn regarding
the propagation and influence of correlated uncertainty. Specifically, it was shown that, if neglected, the presence
of inter-FRF correlation in any uncoupled sub-structure can lead to an incorrect estimation of the uncertainty in all
coupled FRFs. This result was further demonstrated as part of a numerical study, and justifies use of the proposed
framework.

To aid in the efficient implementation of the proposed framework, simplified constructions of both primal and dual
Jacobian matrices were demonstrated. Application of the framework in the context of a benefit analysis/rank ordering
was further illustrated, where dominant sources of uncertainty were identified as part of a numerical study.

The proposed framework has been validated against Monte-Carlo simulations in the presence of measurement
uncertainty (uncorrelated), operator uncertainty (correlated), and a combination thereof. The influence of inter-FRF
correlation was further investigated by neglecting the off-diagonal elements of the uncoupled FRF covariance ma-
trix. Results suggest that the added complexity involved in propagating correlated uncertainty is justified given the
improved confidence in coupled FRFs predictions, which would otherwise be subject to large over-conservative esti-
mates of uncertainty.

As a final remark, the uncertainty framework proposed herein, together with that of [10], provide the necessary
tools to estimate response uncertainty in complex built-up structures whilst under operational conditions, for example,
in the construction of a Virtual Acoustic Prototype, or in a component-based TPA.

Acknowledgements

This work was funded through the EPSRC Research Grant EP/P005489/1 Design by Science.

Appendix A. Law of Error Propagation

In this section we will derive, for completeness, the law of error propagation. We begin by considering the
variables xi and x j, generally, as the outputs of some multi-variable function,

xi = Gi(a1, a2, a3, · · · ) = Gi(a) (A.1)
x j = G j(a1, a2, a3, · · · ) = G j(a). (A.2)

Suppose that we repeatedly measure values of the input variables a, denoting the nth measurement by the subscript
n. It is clear that a small change in the value of a will lead to a small change in the value of the output variables xi and
x j. Assuming that these changes remain small, they may be approximated to first order by a Taylor series expansion.

∆xin =
∂Gi(a)
∂a1

∆a1n +
∂Gi(a)
∂a2

∆a2n + · · · +
∂Gi(a)
∂al

∆aln (A.3)

∆x jn =
∂G j(a)
∂a1

∆a1n +
∂G j(a)
∂a2

∆a2n + · · · +
∂G j(a)
∂am

∆amn (A.4)
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We are interested in determining the covariance between the output variables xi and x j. As such, we begin by multi-
plying together equation A.3 and A.4,

∆xin∆x jn =

∑
l

∂Gi(a)
∂al

∆aln

 ∑
m

∂G j(a)
∂am

∆amn

 . (A.5)

Expanding the brackets,

∆xin∆x jn =
∂Gi(a)
∂a1

∆a1n

∑
m

∂G j(a)
∂am

∆amn

 +
∂Gi(a)
∂a2

∆a2n

∑
m

∂G j(a)
∂am

∆amn

 + · · · +
∂Gi(a)
∂al

∆aln

∑
m

∂G j(a)
∂am

∆amn


(A.6)

and summing over N measurements whilst dividing both sides by 1
N−1 , and noting the covariance relation σalam =

1
N−1

∑N
n ∆aln∆amn , we arrive at,

σxi x j =

M∑
l

∂Gi(a)
∂al

∂G j(a)
∂al

σalal +
∑
m,l

∂Gi(a)
∂al

∂G j(a)
∂am

σalam . (A.7)

The above may be expressed more conveniently in matrix form as,

σxi x j = JiΣaJT
j (A.8)

where,

Ji =
[

∂Gi(a)
∂a1

∂Gi(a)
∂a2

· · ·
∂Gi(a)
∂aM

]
(A.9)

Jj =
[

∂G j(a)
∂a1

∂G j(a)
∂a2

· · ·
∂G j(a)
∂aM

]
(A.10)

are the Jacobians of the functions xi = Gi(a) and x j = G j(a), respectively, and Σa is the variance-covariance matrix of
the input vector a.

Σa =


σa1a1 σa1a2 · · · σa1aM

σa2a1 σa2a2 · · · σa2aM

...
...

. . .
...

σaMa1 σaMa2 · · · σaMaM

 (A.11)

Equations A.8-A.11 describe, generally, the law of error propagation.

Appendix B. Bivariate Derivatives of the Primal Jacobian

The complex differential of the primal formulation is given by,

dYC = YCLY−1PstY−1LTYCdYst. (B.1)

Denoting A = YCLY−1PstY−1LTYC, and taking the real part of dYC,

< (dYC) = < (AdYst) . (B.2)

Recalling that<([a + ib][c + id]) = ac − bd, equation B.2 may be rewritten as,

< (dYC) =
[
<(A)<(dYst) − =(A)=(dYst)

]
. (B.3)

Similarly, recalling that =([a + ib][c + id]) = ad + bc, the imaginary part of differential may be rewritten as,

= (dYC) =
[
<(A)=(dYst) + =(A)<(dYst)

]
. (B.4)
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From equation B.3 and B.4, it is recognised that,

∂<(YC)
∂<(Yst)

= <

(
∂YC

∂Yst

)
,

∂<(YC)
∂=(Yst)

= =

(
−
∂YC

∂Yst

)
,

∂=(YC)
∂<(Yst)

= =

(
∂YC

∂Yst

)
,

∂=(YC)
∂=(Yst)

= <

(
∂YC

∂Yst

)
. (B.5)

The above equations constitute the Cauchy-Riemann relations, and may be summarised by the complex matrix map-
ping operator (see equation 28),

M( ) =

[
<( ) −=( )
=( ) <( )

]
. (B.6)
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