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Abstract 

Properly treating uncertainty is critical for robust system sizing of nearly/net zero 

energy buildings (ZEBs). To treat uncertainty, the conventional method conducts Monte 

Carlo simulations for thousands of possible design options, which inevitably leads to 

computation load that is heavy or even impossible to handle. In order to reduce the 

number of Monte Carlo simulations, this study proposes a response-surface-model-

based system sizing method. The response surface models of design criteria (i.e., the 

annual energy match ratio, self-consumption ratio and initial investment) are 

established based on Monte Carlo simulations for 29 specific design points which are 

determined by Box-Behnken design. With the response surface models, the overall 

performances (i.e., the weighted performance of the design criteria) of all design 

options (i.e., sizing combinations of photovoltaic, wind turbine and electric storage) are 

evaluated, and the design option with the maximal overall performance is finally 
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selected. Cases studies with 1331 design options have validated the proposed method 

for 10,000 randomly produced decision scenarios (i.e., users’ preferences to the design 

criteria). The results show that the established response surface models reasonably 

predict the design criteria with errors no greater than 3.5% at a cumulative probability 

of 95%. The proposed method reduces the number of Monte Carlos simulations by 

97.8%, and robustly sorts out top 1.1% design options in expectation. With the largely 

reduced Monte Carlo simulations and high overall performance of the selected design 

option, the proposed method provides a practical and efficient means for system sizing 

of nearly/net ZEBs under uncertainty. 

Keywords: Response surface model; Monte Carlo simulation; System sizing; Zero 

energy building; Uncertainty 

1. Introduction 

Nearly/net zero energy buildings (ZEBs) remain as promising solutions to the 

increasing energy and environment problems [1, 2]. Buildings account for about 40% 

primary energy and 24% CO2 emission worldwide [3]. Nearly/net ZEBs are 

characterized by a high degree of energy autonomy [4, 5]. With reduced energy 

consumption by energy efficient technologies (e.g., ground source heat pumps [6, 7] 

and thermal driven cooling systems [8]), nearly/net ZEBs are configured with the 

renewable energy system to achieve a targeted annual energy match ratio (AEMR) [9, 

10]. By definition, AEMR is the ratio of annual energy generation from the renewable 

energy system to annual energy consumption of buildings [11, 12]. AEMR of a net ZEB 

is targeted at 100%, and that of a nearly ZEB is allowed to be less than 100% but larger 

than the minimal value stipulated by the policy [13, 14]. 

When designing a nearly/net ZEB, it is challenging to properly size the renewable 

energy system with multiple and mutually contradictory design criteria [14, 15]. Design 
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optimization of the renewable energy system stands as one of the major concerns in the 

field of nearly/net ZEBs [14]. While an under-sized renewable energy system fails to 

fulfill the requirements on AEMR [16], an over-sized renewable energy system leads 

to an unnecessary increase in its initial investment. Meanwhile, a properly sized 

renewable energy system is supposed to minimize the grid stress caused by the energy 

interaction between the nearly/net ZEBs and grid [17, 18]. Due to the intermittent and 

fluctuant renewable energy generation and building energy consumption, nearly/net 

ZEBs dynamically export the surplus energy generation to the grid and import the 

complementary energy from the grid. To mitigate the grid stress, the renewable energy 

system is desired to be sized with a high self-consumption ratio (SCR) [18, 19]. SCR is 

the percentage of the annual renewable energy generation consumed directly by the 

nearly/net ZEBs [20, 21]. A smaller size of the renewable energy generation device 

could elevate SCR, but decrease AEMR, and a larger size of the renewable energy 

storage device could elevate SCR, but increase the initial investment. 

Common methods size the renewable energy system for nearly/net ZEBs in a 

deterministic manner [22, 23]. Firstly, the building energy generation and consumption 

are estimated under the worst scenario or standard scenario with a safety factor [24]. 

Thus, the building energy generation is under-estimated and the building energy 

consumption is over-estimated. Secondly, the renewable energy system is sized based 

on the under-estimated building energy generation and over-estimated building energy 

consumption. As a result, the renewable energy system is commonly oversized, with 

unnecessarily high initial investment and a low SCR [24, 25]. On the other hand, the 

building energy generation and consumption are vulnerable to uncertainties associated 

with weather, building physical properties and etc. [26, 27]. Due to these uncertainties, 

the actual performance of a nearly/net ZEB sized from the deterministic methods could 

deviate significantly from the designed performance [28, 29]. For example, the real 

operation of an occupied ZEB in China was reported by Zhou et al [30] that the annual 
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energy consumption was larger than the designed value by 30.9% and the annual energy 

generation was smaller than the designed value by 36.8%. Attia et al. [31] 

comprehensively analyzed the present situations of seven European countries and 

pointed out that the treatment of uncertainty was a future challenge for the design of 

nearly/net ZEBs. 

To address the problems above, the multi-criteria system sizing method for nearly/net 

ZEBs under uncertainty was proposed by Zhang et al. [16] and Sun et al. [29]. The 

multiple design criteria were weighted according to users’ preference. Uncertainties in 

the physical, design and scenario parameters were treated with Monte Carlo simulations. 

An improvement of 44% in the overall performance by the optimization was reported 

[16]. This method was further improved by Yu et al. [32] to achieve a user-defined 

confidence level of the designed performance. Also, Lu et al. [15] quantified the actual 

performance of a nearly/net ZEB in different years under uncertainty with Monte Carlo 

simulations, and identified the relationship between the probability to achieve the actual 

performance and designed AEMR. These methods could comprehensively make trade-

offs among the conflicting design criteria and harvest robust design. However, they 

faced a limitation of excessive computation load due to the large number of Monte 

Carlo simulations [33]. Monte Carlo simulations are the main technology used to treat 

uncertainty in the field of building energy [34, 35]. To achieve the robust design of 

nearly/net ZEBs, existing methods conducted Monte Carlos simulations for thousands 

of design options [15, 16, 29]. For instance, Lu et al. [15] repeated 500-years Monte 

Carlo simulations for 2457 different design options of the renewable energy system. 

That is, the annual energy consumption and generation simulations of the nearly/net 

ZEB were repeated by 1,228,500 times (i.e., 500×2457).  

To reduce the number of Monte Carlo simulations for nearly/net ZEB design under 

uncertainty, this paper proposes a response-surface–model-based system sizing method. 

The response surface methodology is an easy-to-use meta-modeling technique, which 
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can identify the relationship between a design response and a set of design parameters 

based on a limited number of controlled experiments/simulations [36, 37]. The 

identified relationship (i.e., the response surface model) reveals the effects of the design 

parameters on the design response. So that the design parameters could be optimally 

determined to achieve the most desirable design response, requiring no more 

experiments/simulations. The response surface methodology has been applied to the 

building environment design for indoor air quality and thermal comfort, such as the 

design of natural ventilation [38, 39], underfloor air distribution [40], impinging jet 

ventilation [41] and other mechanical ventilation modes [42, 43]. The response surface 

methodology has also been employed to model the building energy consumption for 

improved energy efficiency, including passive retrofit optimization [44], window 

geometry optimization [45], exergy optimization of the cooling tower [46] and optimal 

control of the variable refrigerant flow system [47]). However, it is unknown whether 

the response surface methodology could function satisfactorily for nearly/net ZEBs, 

due to the increased complexities from interactions among the renewable energy system, 

building energy consumption system and grid [14]. Kneifel et al. [48] reported that it 

was challenging for the meta-models to accurately predict the energy performances of 

nearly/net ZEBs without considering the uncertainty. Moreover, uncertainty analysis 

also contributes to the complexities of nearly/net ZEB design [29], which further 

challenges the application of the response surface methodology. 

In this study, the response surface methodology will be employed to identify the 

relationship between the size of the renewable energy system (including photovoltaic 

(PV), wind turbine (WT) and electric storages [16, 32]) and each design criterion (i.e., 

AEMR, SCR and initial investment [16]). With the response surface models, the overall 

performances (i.e., the weighted performance of AEMR, SCR and initial investment) 

of all the design options are calculated for decision making purposes. The establishment 

of the response surface models requires Monte Carlo simulations for only 29 specific 
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design points. As a consequence, the proposed method largely reduces the number of 

Monte Carlo simulations, when compared with the conventional method conducting 

Monte Carlo simulations for thousands of design options [16, 29].  

With the largely reduced Monte Carlo simulations, the primary concern of the proposed 

response-surface-model-based system sizing method is that whether it can sort out the 

design option with high overall performance. This study first introduces and explains 

the proposed response-surface-model-based system sizing method for nearly/net ZEBs 

under uncertainty (Section 2). Case studies are then conducted to demonstrate the 

effectiveness and robustness of the proposed method in sorting out the design option 

with high overall performance (Section 3). The case studies consider 10,000 decision 

scenarios (i.e., users’ preferences to the design criteria). The users’ preferences in 

practice can significantly affect the overall performance of the finally selected design 

option [25]. Thus, different users’ preferences should be taken into consideration to 

ensure the robustness of the proposed method. Lastly, several application issues of the 

proposed method are discussed in Section 4.  

There are two main contributions of this study. (1) The response surface methodology 

is confirmed to work satisfactorily for the energy performances of nearly/net ZEBs. 

Compared with other meta-modeling techniques (e.g., the one used in Reference [48]), 

the response surface methodology can generate more accurate meta-models requiring 

fewer data due to the utilization of the methods of Design of Experiment [50]. The 

effectiveness of the response surface methodology needs to be tested for different 

applications. Many studies are focusing on testing the response surface methodology 

for a specific application (e.g., modeling the thermal environment of natural ventilation 

[39], displacement ventilation [40], impinging jet ventilation [41] and task/ambient air 

conditioning system [51]). This is the first time for the response surface methodology 

to be tested for the energy performances of nearly/net ZEBs. (2) This study proposes a 

method which can substantially reduce the number of Monte Carlo simulations and 
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robustly sort out the optimal design option. Existing methods [15, 16, 29] for the robust 

system sizing of nearly/net ZEBs conducted Monte Carlos simulations for thousands of 

design options, leading to computational load that is heavy or even impossible to handle 

for practical applications. The proposed method conducts Monte Carlos simulations 

only for 29 specific design points. Thus, this study provides a practical and efficient 

means for system sizing of nearly/net ZEBs under uncertainty. 

2. Methodology 

2.1 Overview of proposed response-surface-model-based system sizing method 

Figure 1 shows the proposed response-surface-model-based system sizing method for 

nearly/net ZEBs under uncertainty. It includes three main parts: (1) to determine the 

design points using Box-Behnken design; (2) to calculate the response values of each 

design criterion for the determined design points by running Monte Carlo simulations; 

and (3) to establish the response surface model for each design criterion based on the 

calculated response values, and to evaluate the overall performances of all design 

options for the decision making using the established response surface models.  

The response surface model is a polynomial regression model representing the 

relationship between the design criteria and the design parameters (Equation 1 with 

second order) [36]. The coefficients (𝛽𝑜 , 𝛽𝑝 ,  𝛽𝑝𝑝 and  𝛽𝑝𝑞 ) in Equation 1 can be 

identified by the multiple regression technique. To increase the accuracy of the response 

surface models, the collinearity of the design points needs to be reduced. The 

collinearity can be reduced by increasing the orthogonality of the design points with 

Design of Experiment methods [39, 41]. As one of the most widely used Design of 

Experiment methods, Box-Behnken design is employed in this study [38, 46]. Design 

Expert software can be directly used to make the response surface modeling user-

friendly [52].  
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𝑦 = 𝛽𝑜 +∑𝛽𝑝𝑥𝑝 +∑𝛽𝑝𝑝𝑥𝑝
2 +∑∑𝛽𝑝𝑞𝑥𝑝𝑥𝑞

𝑘

𝑞>𝑖

𝑘

𝑝=1

𝑘

𝑝=1

𝑘

𝑝=1

                 (1)[36] 

where 𝑦 is the response parameter (i.e., the design criterion) or the transformation of 

the response parameter (e.g., transformation of natural log and square root [52, 53]); 𝛽𝑜, 

𝛽𝑝 ,  𝛽𝑝𝑝 and  𝛽𝑝𝑞  are the coefficients; 𝑥𝑝  and 𝑥𝑞  are the 𝑝𝑡ℎ  and 𝑞𝑡ℎ  design 

parameters respectively, and totally there are 𝑘 different design parameters. 
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Fig.1. Schematic diagram of response-surface-model-based system sizing method for 

nearly/net ZEBs under uncertainty. 

2.2 Design points determination using Box-Behnken design   

Design points for establishing response models are selected from the design space and 

the allocated confidence levels. In this study, the renewable energy system consists of 
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PV and WT and electric storage [32]. Sizes of PV and WT are selected according to 

building annual energy demand (𝐷𝑎 𝑘𝑊ℎ) and renewable energy generation percentage 

of PV (𝛾 %) (Equations 2 and 3) [16]. The energy generation percentage of PV is 

defined as a ratio of the energy generated annually by PV to the annual energy 

generation of the building. Hence, the design space of PV and WT is determined by all 

combinations of the annual energy demand and energy generation percentage of PV 

(i.e., n1 × n2  in Figure 1). The lower and upper limits of the annual energy demand 

(𝐷𝑚𝑖𝑛
𝑎  𝑘𝑊ℎ, 𝐷𝑚𝑎𝑥

𝑎  𝑘𝑊ℎ) can be identified either based on the statistical characteristics 

of the annual energy demand (Equations 4 and 5) [42] or using the worst scenario 

method [16]. The electric storage is sized to achieve short-term grid independence (e.g., 

from several hours to days), and its size is suggested to be equivalent to one to three 

times of the daily energy demand [54-56]. In order to cover the recommended sizing 

range, the design space of the electric storage is set to from one half of the daily energy 

demand to four times of the daily energy demand. The confidence level (𝑙 %) means 

the cumulative probability to achieve the designed performance in a selected criterion. 

The confidence level is limited within 50~100%. 

𝑆𝑃𝑉 =
𝛾 𝐷𝑎 

𝐺𝑃𝑉
𝑎                                                        (2)[16] 

𝑆𝑊𝑇 =
(1 − 𝛾)𝐷𝑎 

𝐺𝑊𝑇
𝑎                                                (3)[16] 

where 𝐷𝑎  ( 𝑘𝑊ℎ)  is the annual energy demand of the nearly/net ZEB; 𝐺𝑃𝑉
𝑎  

(𝑘𝑊ℎ/𝑚2) and 𝐺𝑊𝑇
𝑎  (𝑘𝑊ℎ/𝑘𝑊) are the annual energy generation from PV of one 

square meter and WT with a rated power of one kilowatt respectively; 𝛾 (%) is the 

energy generation percentage of PV; 𝑆𝑃𝑉 (𝑚2) and 𝑆𝑊𝑇 (𝑘𝑊) are the area of PV and 

rated power of WT respectively. 

𝐷𝑚𝑎𝑥
𝑎 = 𝜇𝐷𝑎 + 𝑐𝜎𝐷𝑎                                                 (4)[42] 

𝐷𝑚𝑖𝑛
𝑎 = 𝜇𝐷𝑎 − 𝑐𝜎𝐷𝑎                                                 (5)[42] 

where 𝐷𝑚𝑖𝑛
𝑎  (𝑘𝑊ℎ) and 𝐷𝑚𝑎𝑥

𝑎  (𝑘𝑊ℎ) are the minimal and maximal values of the 

annual energy demand of a nearly/net ZEB respectively; 𝜇𝐷𝑎 (𝑘𝑊ℎ) and 𝜎𝐷𝑎 (𝑘𝑊ℎ) 
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are the mean value and standard deviation of the annual energy demand distribution 

respectively; 𝑐 is a constant. 

To determine the design points, the Box-Behnken design is used. First, all design 

parameters are coded into -1~1 (Equation 6), and three levels for each design parameter 

are defined: -1 for low level, 0 for medium level and 1 for high level. Then, Box-

Behnken design determines the design points in a way to avoid extreme design 

conditions where all the design parameters are at high/low levels simultaneously. For 

instance, Figure 2 shows the geometry of Box-Behnken design with three design 

parameters (𝑋1，𝑋2 and 𝑋3) [41]. The design points are selected at each edge and the 

central point rather than the corners, because the corners represent extreme conditions. 

The number of design points using Box-Behnken design is determined by the number 

of design parameters and repetitive number of the central design point (Equation 7). 

The central design point is repeated to account for errors caused by the 

experiments/simulations [36]. 

�̅� =
2(𝑥 − 𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1                                                (6)[52] 

where �̅� is the coded value (i.e., normalized value) of the design parameter; 𝑥 is the 

original value of the design parameter; 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimal and maximal 

original values of the design parameter. 

𝑁 = 2𝑘(𝑘 − 1) + 𝐶                                                  (7)[52] 

where 𝐶 is the repetitive number of the central design point; 𝑘 is the number of the 

design parameters; and 𝑁  is the number of the design points determined by Box-

Behnken design. 
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Fig.2. Demonstration of design point determination using Box-Behnken design: 

geometry of design points with three design parameters. 

2.3 Monte Carlo simulations for response values of design criteria 

The response values of the design criteria for the design points from Box-Behnken 

design (Section 2.2) are calculated based on 400-year Monte Carlo simulations [16]. 

Monte Carlo simulations are employed to produce the hourly building energy 

generation and consumption, as three types of input parameter uncertainties are 

considered (Table 1). Physical parameters refer to physical properties of building 

materials. Design parameters refer to pre-set working conditions during the planning 

process. Scenario parameters refer to real-time operations [57]. The scenario 

parameters of wind velocity and solar radiation are the primary sources of uncertainty 

for WT energy generation and PV energy generation respectively [59]. Wind velocity 

and solar radiation are quantified to follow Rayleigh distribution [60] (simplified from 

Weibull distribution [61]) and normal distribution [62] respectively. Parameter 

uncertainties associated with the building energy consumption are quantified using 

statistical distributions as presented in Table 1. Truncation and rounding are conducted 

to make the parameters from the statistical distributions realistic [29]. Since Monte 
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Carlo simulations have been widely used to treat the uncertainty for the robust design 

of buildings [33], the detailed process of Monte Carlo simulations are not given in this 

study but can be found in References [16, 29]. 

Table 1. Parameter-uncertainty distributions affecting building energy consumption. 

Uncertainty 

type 
Parameter 

Distribution 

type 

Base 

value 
Distribution 

Physical 

parameters  

[29, 63, 64] 

U value of window  

(kJ/(hm2K)) 

Normal 

distribution 
8.17 N (8.17, 0.42) 

Internal shading 

coefficient 

Normal 

distribution 
0.5 N(0.5, 0.12) 

External shading 

coefficient 

Normal 

distribution 
0.2 N(0.2, 0.052) 

Internal conductive heat 

transfer rate (kJ/(hm2K))  

Normal 

distribution 
11 N(11, 0.52) 

External conductive heat 

transfer rate (kJ/(hm2K)) 

Triangular 

distribution 
68.4 T(43.2, 68.4, 82.8) 

Design 

parameters 

[29, 64, 65] 

Occupant number 
Normal 

distribution 
16 N (16, 22) 

Computer number 
Normal 

distribution 
16 N (16, 32) 

Light ratio 
Normal 

distribution 
1 N (1, 0.22) 

Infiltration (ACH) 
Normal 

distribution 
0.2 N (0.2, 0.052) 

Ventilation (ACH) 
Normal 

distribution 
10 N (10, 0.52) 

Scenario 

parameters 

[29, 66, 67] 

Ambient temperature (℃) 
Normal 

distribution 
TMY N (TMY, 0.01TMY2) 

Ambient relative humidity 

(%) 

Normal 

distribution 
TMY N (TMY, 0.01TMY2) 

Note: ACH is air change per hour [25]; TMY represents hourly data from the typical 

meteorology year; the base values are from Reference [29].  

The design criteria of nearly/net ZEBs include AEMR, SCR and initial investment of 

the renewable energy system [11, 16]. Equations 8 and 9 describe the calculations of 
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AEMR and SCR of the 𝑗𝑡ℎ  year from the hourly building energy generation and 

consumption respectively. A confidence level is used to describe the cumulative 

probability of achieving the designed performance in a selected criterion during the 

400-year Monte Carlo simulations. For instance, an AEMR with a value of AEMR𝑙 

and a confidence level of 𝑙 means that the cumulative probability for AEMR of 400-

year Monte Carlo simulations to be larger than the value of AEMR𝑙 is 𝑙 (Figure 3). 

The initial investment is calculated by Equation 10 [32].  

𝐴𝐸𝑀𝑅𝑗 =
∑ (𝑃𝑜𝑤𝑃𝑉,𝑖𝑗+𝑃𝑜𝑤𝑊𝑇,𝑖𝑗)
8760𝑗
𝑖=8760(𝑗−1)+1

∑ 𝑃𝑜𝑤𝑐𝑜𝑛,𝑖𝑗
8760𝑗
𝑖=8760(𝑗−1)+1

× 100%               (8)[16] 

𝑆𝐶𝑅𝑗 =
∑ (𝑃𝑜𝑤𝑃𝑉,𝑖𝑗+𝑃𝑜𝑤𝑊𝑇,𝑖𝑗-∆𝐸𝑆𝑖𝑗-𝐸𝐼𝑖𝑗)
8760𝑗
𝑖=8760(𝑗−1)+1

∑ (𝑃𝑜𝑤𝑃𝑉,𝑖𝑗+𝑃𝑜𝑤𝑊𝑇,𝑖𝑗)
8760𝑗
𝑖=8760(𝑗−1)+1

× 100%        (9)[21] 

where 𝐴𝐸𝑀𝑅 (%) is the annual energy match ratio; 𝐸𝐼 (kW) is the energy exporting 

to the grid (𝐸𝐼 > 0); 𝑃𝑜𝑤𝑃𝑉 (𝑘𝑊) and 𝑃𝑜𝑤𝑊𝑇 (𝑘𝑊) are the hourly-average power 

generation from installed PV and WT respectively; 𝑆𝐶𝑅 (%) is the self-consumption 

ratio; ∆ES (𝑘𝑊) is the variation of stored electricity in the electric storage, and larger 

than zero when the stored electricity increases; subscripts 𝑖 and 𝑗 are 𝑖𝑡ℎ hour and 

𝑗𝑡ℎ year respectively. 

𝐼𝐼 = 𝜌𝑃𝑉𝑆𝑃𝑉 + 𝜌𝑊𝑇𝑆𝑊𝑇 + 𝜌𝐸𝑆𝑆𝐸𝑆                                   (10)[32] 

where 𝐼𝐼 (𝐻𝐾𝐷) is the initial investment of the renewable energy system; 𝑆𝐸𝑆 (𝑘𝑊ℎ), 

𝑆𝑃𝑉 (𝑚2) and 𝑆𝑊𝑇 (𝑘𝑊) are the capacity of the electric storage, area of PV and rated 

power of WT respectively; 𝜌𝐸𝑆  (𝐻𝐾𝐷/𝑘𝑊ℎ), 𝜌𝑃𝑉  (𝐻𝐾𝐷/𝑚2) and  𝜌𝑊𝑇  (𝐻𝐾𝐷/

𝑘𝑊) are the unit price of the electric storage, PV and WT respectively. 
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Fig.3. Usage demonstration of confidence level: AEMR determination with a specific 

confidence level. 

2.4 Response surface modeling of design criteria and decision making 

Response surface models of AEMR and SCR (Equation 1) are established based on the 

determined design points (Section 2.2) and corresponding response values from Monte 

Carlo simulations (Section 2.3). The least square method is used to identify the 

coefficients in Equation 1 for AEMR and SCR, and the backward elimination procedure 

is used to enhance the data fit by reducing insignificant terms [39, 68]. Firstly, a full 

model including all terms in Equation 1 is established by multiple regression analysis 

with the least square method. Then, the partial probability values (P-value) of included 

terms are estimated by ANOVA (i.e., Analysis of Variance) tests. Lastly, the terms with 

P-values higher than 0.05 (indicating statistically insignificant terms) are removed. The 

quality of the response surface models can be evaluated by comparison with Monte 

Carlo simulations for the design points which are not involved in the model 

establishment [36]. The initial investment is assumed to be determined by the size of 

the renewable energy system [32]. Thus the response surface model of the initial 

investment is the same as Equation 10. 

Distribution of AEMR of a specific 

design option from repetitive Monte 

Carlo simulations

𝐴𝐸𝑀𝑅𝑙  of a specific design option with 

confidence level of 𝑙.P
ro

b
ab

il
it

y 
(%

)

  Cumulative probability function

Annual energy match ratio (AEMR) (%)

  (AEMR>𝐴𝐸𝑀𝑅𝑙)= 𝑙

𝐴𝐸𝑀𝑅𝑙
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The response-surface-model-based decision making is as follows. Firstly, for all design 

options of the renewable energy system from the design space (i.e., n1 × n2 × n3 in 

Figure 1), the values of AEMR (Γ1), SCR (Γ2) and initial investment (Γ3) are calculated 

using the obtained response surface models and user-defined confidence levels. 

Secondly, the user-defined constraints (i.e., lower/upper limits) on each design criterion 

are used to exclude the design options failing to meet the constraints, by determining 

the corresponding overall performance as zero. Thirdly, values of design criteria of the 

remaining design options are normalized as Equation 11, and the overall performances 

are evaluated with user-defined weighting factors (Equation 12) [16, 69]. Lastly, the 

design option with the maximal overall performance is selected as the optimal one.  

𝛤′ =
𝛤 − 𝛤𝑙𝑒𝑎𝑠𝑡

𝛤𝑚𝑜𝑠𝑡 − 𝛤𝑙𝑒𝑎𝑠𝑡
 × 100%                                         (11)[16] 

where 𝛤′ is the normalized value of a design criterion; 𝛤 is the value of a design 

criterion; 𝛤𝑙𝑒𝑎𝑠𝑡 and 𝛤𝑚𝑜𝑠𝑡 are the worst and best performance respectively. 

Γ𝑜𝑣𝑒𝑟𝑎𝑙𝑙
′ = 𝛼1𝛤1

′+𝛼2𝛤2
′+𝛼3𝛤3

′                                          (12)[16] 

where Γ𝑜𝑣𝑒𝑟𝑎𝑙𝑙
′  is the overall performance of a specific design option; 𝛤1

′, 𝛤2
′ and 𝛤3

′ 

are the normalized value of AEMR, SCR and initial investment respectively; 𝛼1, 𝛼2 

and 𝛼3  are the weighting factors assigned to AEMR, SCR, and initial investment 

respectively, and their sum is one. 

3. Case studies 

3.1 Simulation models of the nearly/net ZEB 

TRNSYS [70] is used to establish the simulation platform for a nearly/net ZEB (Figure 

4). This simulation platform has been used for several studies of the design of nearly/net 

ZEBs [16, 29, 32]. Here, for readability, the simulation models are briefly described as 

follows, and more detailed descriptions are given by References [16, 29, 32]. The 

nearly/net ZEB is a ten-storey academic building (Type 56) located in subtropical Hong 

Kong. Each storey is configured with two identical classrooms (7.6 m × 6 m × 3 m). 

One room has one west-facing window of 4 m × 1.5 m, and is equipped with 16 
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computers with a nominal power of 140 W of each, and eight halogen lights with a 

rated power of 55 W/m2 of each. Sixteen occupants stay in the room from 6 am to 10 

pm. To provide a satisfactory indoor environment, the room temperature and relative 

humidity are set at 25℃ and 50% respectively [71, 72]. The infiltration rate is assumed 

to be 0.2 ACH. Other main parameters of the building model are listed in Table 1. 

  

Fig.4. Schematic diagram of the nearly/net ZEB [16, 29, 32]. 

The hourly-average power generation from PV (Type 562) and WT (Type 90) are 

estimated by Equations 13 and 14 respectively [70]. Key parameters of PV and WT 

models are summarized in Table 2. 

𝑃𝑜𝑤𝑃𝑉 = 𝑆𝑝𝑣 × 𝜏𝑛 × 𝛼𝑛 × (𝐼𝐴𝑀) × 𝐼𝑇 × 𝜂                         (13)[29] 

where 𝐼𝐴𝑀  is the overall incidence angle modifier; 𝐼𝑇  (𝑘𝑊/𝑚2 ) is the solar 

radiation; 𝑃𝑜𝑤𝑃𝑉 (𝑘𝑊) is the hourly-average power generation from the installed PV; 

𝑆𝑝𝑣 (m2) is the PV area; 𝛼𝑛 and 𝜏𝑛 are the absorptance coefficient and transmittance 

coefficient respectively of the solar radiation normal to PV; and 𝜂  is the overall 

efficiency of PV. 

𝑃𝑜𝑤𝑊𝑇 = 𝑆𝑊𝑇 × 𝐶𝑝 × 𝜌 × 𝐴𝑅 × 𝑣
3                               (14)[29] 

where 𝐴𝑅 (𝑚2) is the rotor area; 𝐶𝑝 (𝑚2/𝑠2) is the function of the axial induction 

factor; 𝑃𝑜𝑤𝑊𝑇 (𝑘𝑊) is the hourly-average power generation from the installed WT; 
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𝑆𝑊𝑇 is the rated power of WT; 𝜌 (𝑘𝑔/𝑚3) is the air density; and 𝑣 (𝑚/𝑠) is the free 

stream wind speed. 

 

 

 

Table 2. Key parameters used in TRNSYS for PV and WT [16, 29, 70]. 

Renewable energy Parameter Value Unit 

PV  
(Type 562) 

Back resistance 1 hm2K/kJ 

Top emissivity 0.9 - 

Back emissivity 0.9 - 

Absorptance 0.9 – 

Refractive index 1.526 – 

Cover conductivity 5.04 kJ/(hmK) 

Cover thickness 0.00635 m 

Extinction coefficient 4 m-1 

WT 
(Type 90) 

Site elevation 0 m 

Data collection height 30 m 

Turbine power loss 15 % 

Rated power 20 kW 

 

The electric storage is operated as follows (Equations 15 to 18 [32]). The surplus energy 

generation is first stored in the electric storage. After the energy storage is fully charged, 

the rest electricity is exported to the grid. Conversely, the insufficient energy generation 

is first complemented by the stored electricity. After the energy storage is fully 

discharged, the rest energy is imported from the grid.  

∆𝐸𝑆𝑖 = {
min(𝑆𝐸𝑆 − 𝐸𝑆𝑠𝑡𝑜𝑟𝑒,𝑖,  𝑃𝑜𝑤𝑚𝑖𝑠)               𝑖𝑓 𝑃𝑜𝑤𝑚𝑖𝑠 ≥ 0

max(−𝐸𝑆𝑠𝑡𝑜𝑟𝑒,𝑖,  𝑃𝑜𝑤𝑚𝑖𝑠)                      𝑖𝑓 𝑃𝑜𝑤𝑚𝑖𝑠 < 0
            (15)[32] 
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𝐸𝑆𝑠𝑡𝑜𝑟𝑒,𝑖 = ∑ ∆𝐸𝑆𝑛

𝑖−1

𝑛=1

                                                    (16)[32] 

 𝑃𝑜𝑤𝑚𝑖𝑠 = 𝑃𝑜𝑤𝑃𝑉,𝑖+𝑃𝑜𝑤𝑊𝑇,𝑖 − 𝑃𝑜𝑤𝑐𝑜𝑛,𝑖                                   (17)[32] 

𝐸𝐼𝑖 =  𝑃𝑜𝑤𝑚𝑖𝑠 − ∆𝐸𝑆𝑖                                                  (18)[32] 

where 𝐸𝐼 (kW) is the energy interaction between the nearly/net ZEB and grid, and an 

𝐸𝐼 larger than zero means exporting energy; 𝐸𝑆𝑠𝑡𝑜𝑟𝑒 (kWh)  is the electricity stored; 

𝑃𝑜𝑤𝑐𝑜𝑛  is the building hourly-average power consumption;  𝑃𝑜𝑤𝑚𝑖𝑠  (kW) is the 

mismatch between the building hourly-average power generation and consumption, and 

a  𝑃𝑜𝑤𝑚𝑖𝑠 larger than zero means the energy generation is surplus; 𝑃𝑜𝑤𝑃𝑉 (kW) and 

𝑃𝑜𝑤𝑊𝑇 (kW) are the building hourly-average power generation from installed PV and 

WT respectively; 𝑆𝐸𝑆 (kWh) is the capacity of the electric storage; ∆𝐸𝑆 (kW) is the 

variation of stored electricity, and a ∆𝐸𝑆 larger than zero means charging electricity; 

subscripts 𝑖 and 𝑛 are the 𝑖𝑡ℎ and 𝑛𝑡ℎ hour respectively.  

Energy consumption components of the HVAC system mainly include a water-cooled 

chiller (Equation 19), pumps of the cooling water loop and primary and secondary 

chilled water loops (Equation 20) and fans used in the cooling tower and for room 

ventilation (Equation 21) [70]. Key parameters of the HVAC model are summarized in 

Table 3, which are the optimal design results for the studied building from Reference 

[25]. 

𝑃𝑜𝑤𝑐𝑜𝑛,𝑐ℎ𝑖 =
𝐹𝐹𝐿𝑃 × 𝑄𝑐
𝐶𝑂𝑃𝑛𝑜𝑚

                                               (19)[70] 

where 𝐶𝑂𝑃𝑛𝑜𝑚 is the nominal COP of chiller; 𝐹𝐹𝐿𝑃 is the fraction of full load power 

[25]; 𝑃𝑜𝑤𝑐𝑜𝑛,𝑐ℎ𝑖 (𝑘𝑊) is the hourly-average power consumption of chiller; 𝑄𝑐 (𝑘𝑊) 

is the cooling capacity of chiller. 

𝑃𝑜𝑤𝑐𝑜𝑛,𝑝𝑢𝑚 =
 �̇�𝑤𝑎𝑡 × ∆𝑃𝑤𝑎𝑡
𝜂𝑝𝑢𝑚 × 𝜌𝑤𝑎𝑡

                                       (20)[25] 

where 𝑃𝑜𝑤𝑐on,𝑝𝑢𝑚  (𝑘𝑊) is the hourly-average power consumption of pumps; �̇�𝑤𝑎𝑡 

(𝑘𝑔/𝑠) is the water flow rate; 𝜂𝑝𝑢𝑚  is the pump efficiency; 𝜌𝑤𝑎𝑡  (𝑘𝑔/𝑚3) is the 

water density;  ∆𝑃𝑤𝑎𝑡 (𝑃𝑎) is the pressure drop of water flow. 

𝑃𝑜𝑤𝑐𝑜𝑛,𝑓𝑎𝑛 =
�̇� 𝑎𝑖𝑟 × ∆𝑃𝑎𝑖𝑟
𝜂𝑓𝑎𝑛×𝜌𝑎𝑖𝑟

                                          (21)[25] 
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where 𝑃𝑜𝑤𝑐𝑜𝑛,𝑓𝑎𝑛  (𝑘𝑊 ) is the hourly-average power consumption of fans; �̇�𝑎𝑖𝑟 

(kg/s) is the air flow rate;  𝜂𝑓𝑎𝑛 is the fan efficiency; 𝜌𝑎𝑖𝑟 (𝑘𝑔/𝑚3)  is the air density; 

∆𝑃𝑎𝑖𝑟  (𝑃𝑎) is the pressure drop of air flow. 

 

 

 

 

 

Table 3. Key parameters used in TRNSYS for HVAC model [25, 70]. 

Components  Parameter Value Unit 

Chiller 

(Type 666) 

Rated capacity 195.91 kW 

Rated COP 5.02 - 

CHW set point temperature 7 ℃  

Variable speed Pump  

(Type 741 ) 

Rated flow rate 33200 kg/hr 

Overall pump efficiency 0.6 - 

Motor efficiency 0.9 - 

Constant speed Pump  

(Type 742 ) 

Inlet fluid flow rate 33200 kg/hr 

Overall pump efficiency 0.6 - 

Motor efficiency 0.9 - 

Pressure drop 100 kPa 

Cooling tower 

(Type 510) 

 

Rated fan power 18450 kJ/hr 

Design fluid flow rate 55300 kg/hr 

Design air flow rate 42600 kg/hr 

Design inlet fluid temperature 32 ℃  

Design outlet fluid temperature 29 ℃  

Design ambient air temperature 35 ℃  

 Design wet bulb temperature 25 ℃  

Ventilation fan 

(Type 744 ) 

Rated power 7800 kJ/hr 

Rated flow rate 77100 kg/hr 

Inlet air humidity  50% - 
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3.2 Determination of design points 

Using the ZEB model (Section 3.1), the maximal and minimal annual energy demands 

are determined as 283,313 𝑘𝑊ℎ and 263,516 𝑘𝑊ℎ respectively (calculated from 

Equations 4 and 5 with 3 times of the standard deviation respectively). The annual 

energy generation from PV of one square meter and WT of one kilowatt rated power 

are 151 𝑘𝑊ℎ and 569 𝑘𝑊ℎ respectively (calculated in a manner similar to Equation 

5). The daily energy demand is 1793 𝑘𝑊ℎ (calculated in a manner similar to Equation 

4), and thus the minimal and maximal sizes of the electric storage are set to be 897 𝑘𝑊ℎ 

and 7172 𝑘𝑊ℎ respectively. The design points determined by Box-Behnken design 

are presented in Table 4. The central design point is repeated for five times as the default 

in Design Expert 8.0. There are totally 29 design points (Equation 7).  

 

Table 4. Design points from Box-Behnken design and corresponding sizes of PV, WT 

and electric storage and confidence level. 

Design 

points 
𝐷𝑎̅̅ ̅̅  

(coded) 

 𝛾 ̅̅ ̅ 
(coded) 

𝐷𝑑̅̅ ̅̅  
(coded) 

 𝑙 ̅ 
(coded) 

PV  

(𝑚2) 
WT  

(𝑘𝑊)  

Electric 

 storage  

(𝑘𝑊ℎ) 

Confidence 

level 

(%) 

1 0 0 0 0 904 240 4034 75 

2 1 -1 0 0 0 498 4034 75 

3 0 1 1 0 1809 0 7172 75 

4 0 0 -1 1 904 240 897 100 

5 0 -1 0 1 0 481 4034 100 

6 0 -1 0 -1 0 481 4034 50 

7 0 0 0 0 904 240 4034 75 

8 1 0 0 -1 937 249 4034 50 

9 0 -1 -1 0 0 481 897 75 

10 0 0 1 1 904 240 7172 100 

11 -1 0 1 0 872 232 7172 75 

12 0 0 0 0 904 240 4034 75 

13 1 0 1 0 937 249 7172 75 

14 -1 1 0 0 1743 0 4034 75 

15 1 0 -1 0 937 249 897 75 
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Note: 𝐷𝑎̅̅ ̅̅  is the coded annual energy demand (Equation 6);  𝛾 ̅̅ ̅ is the coded energy 

generation percentage of PV; 𝐷𝑑̅̅ ̅̅  is the coded daily energy demand;  𝑙 ̅ is the coded 

confidence level. 

3.3 Development and validation of response surface models 

Equation 22 shows the response surface model of AEMR. The p-values of AEMR 

model and its terms are less than 0.0001, indicating that they are statistically significant. 

The predicted 𝑅2  of 0.9998 is in reasonable agreement with the adjusted 𝑅2  of 

0.9999. The actual AEMR of the 29 design points runs from 1.3% to 106.9% (Figure 

5(a)), which is calculated from Monte Carlo simulations (Section 2.3). The lower 

AEMR is produced when the energy is generated mainly by PV (i.e., 𝛾 =100%) and 

the required confidence level is high (e.g., 𝑙 =100%), due to the more intermittent and 

uncertain energy generation of PV compared with WT [16]. The deviation between the 

AEMR predicted by Equation 22 and the actual one is within -0.6%~0.6%. The mean 

absolute deviation is 0.16%. Equation 23 gives the response surface model of SCR. The 

p-values of SCR model and its terms are less than 0.039, indicating that they are 

statistically significant. The predicted 𝑅2 of 0.9693 is also in reasonable agreement 

with the adjusted 𝑅2 of 0.9869. The actual SCR of the 29 design points runs from 69.1% 

to 100% (Figure 5(b)), which is calculated by Monte Carlo simulations (Section 2.3). 

The smaller variation range of SCR compared with that of AEMR demonstrates the 

16 0 1 -1 0 1809 0 897 75 

17 0 1 0 -1 1809 0 4034 50 

18 -1 0 0 -1 872 232 4034 50 

19 1 1 0 0 1874 0 4034 75 

20 -1 0 0 1 872 232 4034 100 

21 -1 0 -1 0 872 232 897 75 

22 -1 -1 0 0 0 463 4034 75 

23 0 -1 1 0 0 481 7172 75 

24 0 0 1 -1 904 240 7172 50 

25 1 0 0 1 937 249 4034 100 

26 0 1 0 1 1809 0 4034 100 

27 0 0 -1 -1 904 240 897 50 

28 0 0 0 0 904 240 4034 75 

29 0 0 0 0 904 240 4034 75 
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effectiveness of the electric storage for mitigating the imbalance between the building 

energy generation and consumption. The deviation between SCR predicted by Equation 

23 and the actual one is within -2.0%~2.0%. The mean absolute deviation is 0.63%.  

𝐴𝐸𝑀R=1.88𝐷𝑎̅̅ ̅̅ -50.65�̅�-1.40𝑙-̅1.84𝐷𝑎̅̅ ̅̅ �̅�+1.38�̅�𝑙-̅0.84𝑙2̅+52.25              (22) 

SCR=11.10 �̅�+3.87𝐷𝑑̅̅ ̅̅ -1.79 �̅�-3.32 �̅�𝐷𝑑̅̅ ̅̅ +1.08 �̅�𝑙-̅6.19 �̅�2-2.12 𝐷𝑑̅̅ ̅̅̅2
-1.33 �̅�2+96.24   (23) 

where 𝐴𝐸𝑀R (%) is the annual energy match ratio; SCR (%) is the self-consumption 

ratio; 𝐷𝑎̅̅ ̅̅  is the coded annual energy demand; 𝐷𝑑̅̅ ̅̅  is the coded daily energy demand; 

 𝑙 ̅ is the coded confidence level;  𝛾 ̅̅ ̅ is the coded energy generation percentage of PV. 

 

Note: The 29 design points are used for establishment of response surface models.  

Fig.5. Deviations between values predicted by response surface models and actual 

values calculated by Monte Carlo simulations: (a) Annual energy match ratio 

(AEMR) and (b) self-consumption ratio (SCR).  

The response surface models are validated further by compared with the actual results 

of design points independent from the model establishment. 1296 different design 

points are selected (i.e., 1296 combinations of six different annual energy demands, six 

different energy generation percentages of PV, six different daily energy demands and 

six different confidence levels). The six annual energy demands (𝐷𝑎̅̅ ̅̅  kWh) increase 

from the minimal annual energy demand (i.e., 𝐷𝑚𝑖𝑛
𝑎  kWh) to the maximal one (i.e., 
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𝐷𝑚𝑎𝑥
𝑎  kWh) with an equal interval of 20%. So do the six energy generation percentages 

of PV ( 𝛾 ̅̅ ̅ %), six daily energy demands (𝐷𝑑̅̅ ̅̅  kWh) and six confidence levels ( 𝑙 ̅ %). 

The 1296 design points are filtered that AEMR and SCR should be larger than 20% and 

50% respectively, and 1080 design points remain. An excessively small AEMR is far 

beyond the requirements of a nearly/net ZEB and an excessively small SCR led to 

heavy grid stress [1, 19].  

Figure 6 shows that both the predicted AEMR and SCR of the 1080 design points are 

almost of the diagonal function of y = x with the actual values. This indicates that the 

predicted values of AEMR and SCR from the response surface models are quite close 

to the actual values. Moreover, Figure 7 shows the histogram and cumulative 

probability of the discrepancy between the predicted and actual values (Equation 24). 

The absolute discrepancy of AEMR is less than 1.5% with a cumulative probability of 

95%. The expected value of the absolute discrepancy is 0.6%. With regards to SCR, the 

absolute discrepancy is less than 3.5% with a cumulative probability of 95%, and is 1.2% 

in expectation. Therefore, the response surface models of AEMR and SCR are credible. 

Discrepancy =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
× 100%             (24)[8] 

where 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 is from the proposed method; 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 is calculated 

by Monte Carlo simulations. 
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Note: The included 1080 design points are not involved in the establishment of the 

response surface models.  

Fig.6. Comparisons between values predicted by response surface models and actual 

values calculated by Monte Carlo simulations: (a) Annual energy match ratio 

(AEMR) and (b) self-consumption ratio (SCR).  

 

 

Note: The included 1080 design points are not involved in the establishment of the 

response surface models; the discrepancy is calculated by Equation 24. 

Fig.7. Histogram and cumulative probability of discrepancy between values predicted 

by response surface models and actual values calculated by Monte Carlo 

simulations: (a) Annual energy match ratio (AEMR) and (b) self-consumption 

ratio (SCR).  

3.4 Validation of proposed method for system sizing 

Due to the discrepancies between the predicted AEMR and SCR by the response surface 

models and the actual values calculated by Monte Carlo simulations (Figures 5-7), the 

overall performances of the design options calculated by the proposed method might 

deviate from the actual overall performances calculated by Monte Carlo simulations. 
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As a result, the proposed method might not sort out the optimal design option. The 

overall performance (Equation 12) of the selected design option by the proposed 

method and that of the optimal design option are firstly compared. 1331 different design 

options are considered (11 different sizes of PV, WT and the electric storage 

respectively with an equal interval of 10% from the minimal value to the maximal value, 

i.e., n1 = n2 = n3 = 11 in Figure 1). Therefore, compared with conducting Monte 

Carlos simulations for all design options, the proposed method reduces the number of 

Monte Carlo simulations by 97.8% (from 1331 to 29). 

10,000 different decision scenarios are included. That is, 10,000 different combinations 

of users’ preferences towards the confidence levels, constraints and weighting factors 

of AEMR, SCR and initial investment. The users’ preferences are randomly produced 

with a uniform distribution. The confidence levels are limited within 50%~100% 

considering the robustness of the selected design option [15, 32]. The constraints are 

that AEMR is larger than 50%~100% [15] and SCR is larger than 60%~80% [17, 19]. 

For all the 10,000 decision scenarios, the overall performance of the selected design 

option by the proposed method is quite similar to that of the optimal design option, with 

almost a diagonal function of y = x between them (Figure 8(a)). This can be explained 

by the credible response surface models (Section 3.3). Figure 8(b) shows that the 

discrepancy of overall performances (Equation 24) between the selected design option 

by the proposed method and the optimal design option is -2.0% in expectation, and 

larger than -8.7% with a cumulative probability of 95%. In other words, the overall 

performance of the proposed method is slightly deteriorated by 2.0% in expectation, 

and the overall performance deterioration is less than 8.7% with a cumulative 

probability of 95%.  
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Note: Overall performance discrepancy is the calculated by Equation 24, and 10,000 

different decision scenarios are considered. 

Fig.8. (a) Comparisons of overall performances and (b) histogram and cumulative 

probability of overall performance discrepancy: Design option selected by 

proposed method and actual optimal design option. 

The rank of selected design option by the proposed method among the 1331 different 

design options is further investigated for the 10,000 different decision scenarios (Figure 

9). Rank 0% indicates that the selected design option by the proposed method is the 

best one among the 1331 design options. It is seen that the proposed method can sort 

out top 1.1% design option in expectation, and top 5.6% design option with a 

cumulative probability of 95%. Therefore, the proposed method largely reduces the 

number of Monte Caro simulations by 97.8% (from 1331 to 29), and robustly sorts out 

the optimal design option in the statistical sense.  
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Note: Rank 0% indicates that the selected design option by the proposed method is the 

best one among the 1331 design options, and 10,000 different decision scenarios are 

considered. 

Fig.9. Rank of design option selected by proposed method.  

4. Discussion 

This study also supports the usage of the proposed method for sizing the energy 

consumption system (e.g., HVAC [32]) for nearly/net ZEBs. The proposed method 

could accurately predict AEMR and SCR based on the building energy generation and 

consumption (Section 3.3), indicating that the proposed method could accurately 

predict the building energy consumption. The accurately predicted building energy 
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the buildings without import/export of energy from/to the grid.  

The overall performance of the proposed method could be enhanced further by 

improving the accuracy of response surface models. The accuracy of the response 

surface models could be increased by optimizing the Design of Experiment methods. 

In this study, only Box-Behnken design is considered. There are many other methods 

for Design of Experiment, e.g., central composite design and spacing filling design [39, 

74]. Optimizing the Design of Experiment methods could optimally determine the 

design points to obtain response surface models with the highest accuracy [39]. The 

performance of Design of Experiment methods may vary among research areas [36], 

and the optimal Design of Experiment method for ZEBs needs to be identified in future.  

In real applications, the detailed processes of the proposed method should be followed 

(Section 3). It is noted that the design criteria considered in this study are the most 

widely used ones for nearly/net ZEBs, but other design criteria might be included (e.g., 

embodied energy balance and CO2 emission balance regarding the life cycle 

performance [4, 75]). Furthermore, the statistical distributions of parameters in Table 1 

can be replaced by the specific data of the real application if available. The parameter 

uncertainties included in this study cover most of those significantly affecting the 

building energy generation and consumption [16, 25, 29, 56-67], but more parameter 

uncertainties (e.g., capacity degradation and cooling loss of HVAC [76]) can also be 

incorporated if they are of particular concerns in the future applications.  

5. Conclusions 

This study proposes a response-surface-model-based system sizing method for 

nearly/net ZEBs under uncertainty. Firstly, response surface models of the design 

criteria are established based on Monte Carlo simulations for 29 design points. The 

design criteria include AEMR, SCR and initial investment, and the 29 design points are 
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determined by Box-Behnken design. Secondly, using the established response surface 

models, the overall performances (i.e., the weighted performance of design criteria) of 

all design options are evaluated. Finally, the design option with the maximal overall 

performance is selected as the optimal one. Without the proposed method, Monte Carlo 

simulations are required for thousands of possible design options to identify the optimal 

design option, which leads to computational load that is heavy or even impossible to 

handle in practice. Thus, the proposed method can substantially reduce the number of 

Monte Carlo simulations.  

Cases studies on the sizing of PV, WT and electricity storage for a nearly/net ZEB show 

that the established response surface models of AEMR and SCR are fairly close to the 

actual values calculated by Monte Carlo simulations. The errors in the predicted AEMR 

and SCR by the response surface models are 0.6% and 1.2% in expectation respectively. 

The validated response surface models are used to evaluate the overall performances of 

1331 design options of PV, WT and electric storage under 10,000 decision scenarios 

(i.e., users’ preferences to the confidence levels, constraints and weighting factors of 

AEMR, SCR and initial investment). The proposed method significantly reduces the 

Monte Carlo simulations by 97.8%, and robustly sorts out top 5.6% design option with 

a cumulative probability of 95% and top 1.1% design option in expectation.  

With the significantly reduced Monte Carlo simulations and high rank of the selected 

design option, the proposed method provides system designers a practical and efficient 

means for system sizing of nearly/net ZEBs under uncertainty.  
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