
PROUD: Verifiable Privacy-preserving Outsourced Attribute Based SignCryption
Supporting Access Policy Update for Cloud Assisted IoT Applications

Sana Belguitha,∗, Nesrine Kaanicheb, Mohammad Hammoudehc, Tooska Dargahia

aSchool of Computing, Science and Engineering, University of Salford, Manchester, UK
bDepartment of Computer Science, University of Sheffield, Sheffield, UK

cManchester Metropolitan University, Manchester, UK

Abstract

The ever-growing number of Internet connected devices poses several cybersecurity risks. Most of the exchanged data between the
Internet of Things (IoT) devices are not adequately secured due to resource constraints on IoT devices. Attribute Based
SignCryption (ABSC) is a powerful cryptographic mechanism suitable for distributed environments, providing flexible access
control and data secrecy. However, it imposes high designcryption costs, and does not support access policy update (user
addition/revocation). This paper presents PROUD, an ABSC solution, to securely outsource data designcryption process to edge
servers in order to reduce the computation overhead on the user side. PROUD allows end-users to offload most of the
designcryption overhead to an edge server and verify the correctness of the received partially designcrypted data from the edge
server. Moreover, PROUD provides the access policy update feature with neither involving a proxy-server, nor re-signcrypting the
signcrypted message and re-distributing the users’ secret keys. The access policy update feature in PROUD does not affect the size
of the message received by the end-user which reduces the bandwidth and the storage usage. Our comprehensive theoretical and
experimental analysis prove that PROUD outperforms existing schemes in terms of functionality, communication and computation
overhead.

Keywords: Attribute Based Signcryption, Access Policy Update, Outsourced Designcryption, Cloud Assisted IoT, Privacy,
Confidentiality, Access Control, Anonymous Data Origin Authentication.

1. Introduction

The Internet of Things (IoT) has sparked a significant shift
in all aspects of our lives including business, industry and so-
ciety. Todays availability of low-cost embedded sensors and
actuators offer unprecedented opportunity for interconnecting
smart buildings, factories, vehicles, power grids and other data
infrastructures. The vast volume of connected devices feeding
into networks introduced a wide spectrum of privacy risks and
security vulnerabilities. In such hyper-connected environments,
the identification of a specific object or its owner raises a cru-
cial challenge that affects the system’s security features such as
privacy, confidentiality and access control. While combining
various data sources from different data owners, devices, and
applications enhances service quality and availability, it may
also lead to severe data and privacy leakage, e.g., through data
correlation techniques. For instance, user’s purchase behaviors
might be deduced through a smart card service, a smart home
may disclose which appliances are used and a smart mobility
application may be used to reveal users locations and infer their
preferences.

∗s.belguith@salford.ac.uk
Email addresses: s.belguith@salford.ac.uk (Sana Belguith),

n.kaaniche@sheffield.ac.uk (Nesrine Kaaniche),
m.hammoudeh@mmu.ac.uk (Mohammad Hammoudeh),
t.dargahi@salford.ac.uk (Tooska Dargahi)

Today, consumers’ increased security awareness combined
with regulatory reforms such as the General Data Protection
Regulation (GDPR) calls for new measures to protect personal
data and preserve citizen’s privacy [1]. Often, not all privacy
requirements can be satisfied only by authentication, but sup-
port for data confidentiality at different system levels is an es-
sential property. Recently, the evolution of edge computing
offered new capabilities to secure IoT ecosystems. Outsourc-
ing computationally intensive cryptographic operations to the
cloud offers an opportunity to equip IoT devices with powerful
security solutions. Attribute Based SignCryption (ABSC) is a
powerful cryptographic mechanism that provides data secrecy,
flexible access control to enciphered data as well as data au-
thentication [2, 3]. ABSC is an association of Attribute Based
Encryption (ABE) and Attribute Based Signature (ABS). Us-
ing ABSC techniques, the data owner can encrypt and sign data
w.r.t. an access policy, in only one step, before outsourcing to
an untrusted third party. Data can be recovered only by autho-
rised users whose access rights satisfy the signcryption access
policy.

Attribute based signcryption has many properties that make
it an attractive solution for several security and privacy concerns
in decentralised and distributed architectures. However, in its
standard form, ABSC suffers from severe drawbacks that limit
their application to resource constrained systems. On the one
hand, ABSC techniques incur high designcryption costs due to

Preprint submitted to Elsevier November 10, 2019

the execution of several pairing functions to verify and recover a
plaintext. On the other hand, the update of access policies is not
supported. Thus, the addition/revocation of users needs the re-
signcryption of the signcrypted message and the re-distribution
of users’ secret keys. Please refer to [4] for a comprehensive
survey on ABSC schemes in the cloud environment.

In this paper, we design a verifiable privacy-preserving out-
sourced attribute based signcryption scheme, so-called PROUD,
to support access policy update for cloud assisted IoT applica-
tions without any ciphertext re-signcryption. In PROUD, the
signcrypting entity generates a signcryption of the message,
which includes the signcrypted data combined with additional
components required to perform the access policy update. These
additional components are simply a randomization of the sign-
cryption elements w.r.t. the attributes universe. The cloud server
uses these additional components to update the access policy
on demand with neither designcrypting the data nor re-issuing
users’ secret keys. It is worth mentioning that the end-user will
only receive “eight” elements of the ciphertext as the revoca-
tion/addition of attributes will be executed only on the cloud
side. In other words, the end-user will only receive a constant-
size signcrypted message without having information about the
access policy updates (attribute addition and/or revocation). To
the best of our knowledge, we are the first to propose an ABSC
scheme enabling adding/removing attributes to/from the access
policy in order to add/revoke users with neither involving a
proxy server nor re-signcrypting data. Note that, the policy
update feature has been only proposed in key policy attribute
based encryption [5] and ciphertext policy attribute based en-
cryption [6] which are two encryption schemes, not signcryp-
tion schemes.

PROUD also supports secure delegation of the designcryp-
tion algorithm to a Semi-Trusted Edge Server (STES). STES
can partially designcrypt the signcrypted data1 and forward the
result to the requesting user. This latter can then retrieve the
plaintext by executing low cost mathematical operations. To
achieve a secure delegation, PROUD allows the user to ver-
ify the accuracy of the received partially designcrypted cipher-
text to ensure that it has been honestly generated by the STES.
These features make PROUD useful to be applied in dynamic
environments requiring efficiently adding/removing users. PROUD
ensures low storage and computation costs to suit resource-
constrained end-users, such as in vehicular networks [7], e-
health systems [8] and Publish and Subscribe systems (Pub/Sub) [9,
10].

The contributions of this work are as follows:

1. PROUD provides flexible access control over outsourced
data to remote cloud servers. That is, thanks to the fea-
tures of the attribute based signature, privacy of the sign-
ing data owner is preserved as the derived signature does
neither reveal his identity nor the attributes used during
the signing process.

2. PROUD ensures the privacy-preserving data origin au-
thentication feature, which guarantees that outsourced con-

1For ease of presentation, ciphertext will be used to refer to signcrypted data

tents are uploaded and modified by an authorised data
owner, w.r.t. his granted privileges.

3. PROUD supports access policy update without requiring
cipherext re-signcryption or re-issuing users’ secret keys.
PROUD does not rely on a proxy re-encryption server to
execute policy update procedures.

4. We extend the fixed-size attribute based signcryption scheme
proposed by Belguith et al. [11] to delegate the design-
cryption computation overhead to the STES. This latter
performs most of the designcryption operations without
accessing the plaintext, and returns a partially design-
crypted ciphertext to the intended user. In return, the user
can retrieve the plaintext by executing low cost mathe-
matical operations.

5. PROUD allows the end-user to verify the accuracy of the
partially designcrypted message received from the STES.
This property is referred to as verifiability. Indeed, the
user is able to check that the retrieved plaintext matches
the ciphertext originally requested and downloaded from
the cloud server.

6. Unlike most ABSC techniques, the size of the ciphertext
that the end-user will receive is constant (only eight el-
ements) and independent from the number of attributes
involved in the access policy. Therefore, PROUD gen-
erates a constant-size ciphertext, w.r.t. the end-user, that
reduces bandwidth utilisation and storage costs.

The reminder of the paper is organised as follows: Sec-
tion 2 introduces the problem statement w.r.t. a real-world use
case scenario, i.e., cloud assisted vehicular network, and details
the security requirements that have to be fulfilled by the pro-
posed scheme. In Section 3, a number of closely related ABSC
schemes are reviewed and compared w.r.t. a set of features
namely the support of policy updates and outsourced-decryption
processing. Section 4 details the general architecture and in-
volved actors, gives a general overview of the proposed scheme
and presents the system and security models. Section 6 intro-
duces the concrete construction and details main algorithms and
phases. Section 7 gives a detailed security analysis of PROUD
w.r.t the defined threat model. Finally, a comparative theoretical
analysis of computation and communication costs for PROUD
is discussed in Section 8 before concluding the paper in Sec-
tion 9.

2. Problem Statement

In this section, we present a use-case example, i.e., secure
communication in vehicular networks, to show how our pro-
posal could be used in real-world scenarios. Then, we explain
the main security requirements to be addressed by the proposed
scheme.

2.1. Cloud Assisted Vehicular Networks
During the past decade, attribute based encryption has been

increasingly used to secure communication in vehicular net-
works [12]. Due to its unique features in ensuring fine-grained
access control, ABE has been considered as a good candidate

2

for designing secure and privacy preserving protocols for cloud
assisted vehicular networks as well [13]. More recently, due to
the emergence of autonomous vehicles (AVs), researchers took
advantage of ABE for securing message exchange in AV pla-
tooning2 [14].

As a use-case example we consider a cloud assisted vehic-
ular network in which a message should be exchanged between
an entity (which we call it data owner) and a group of vehicles
(which we call them data users). A security requirement here
would be confidentiality of the exchanged/broadcast message.
Moreover, to ensure that the broadcast messages are genuine,
the receiving vehicles should be able to verify the authenticity
of the messages.

Let us consider a vehicular network composed of several
transport service providers who manage different kinds of ve-
hicles, such as Taxi cabs, buses, and trucks, in a city. Each ve-
hicle could be assigned with a set of attributes used to identify
the type of vehicle and the service provider (e.g., company A or
B). The data owner in our use-case scenario could be a service
provider or a vehicle. For example, a Taxi driver that works for
the company B might need to share conventioneers pickup loca-
tion information with his colleagues. In this scenario, the driver
can broadcast an encrypted message defining an attribute based
access policy (such as 〈Company B〉 AND 〈location x〉) [12].
This will ensure the confidentiality of the exchanged message
and helps in reducing the number of messages to be processed
by those vehicles that do not satisfy the access policy. As an-
other example consider an AV platoon, which could be com-
posed of different vehicle types, such as cars, buses and trucks,
that communicate with each other (i.e., V2V communication)
and with the infrastructure (i.e., V2I communication). The ser-
vice provider A might need to share specific traffic or route in-
formation only with the trucks managed by A. In this case, it
can encrypt the message defining an access policy 〈Company
A 〉 AND 〈vehicle-type truck〉. Therefore, only the trucks that
belong to the company A will be able to decrypt the message.

In both scenarios, the usage of attribute based encryption
will provide confidentiality and fine-grained access control. How-
ever, this would not ensure the authenticity of the message sender.
To solve this issue, in [13] an identity-based sequential aggre-
gate signature is used, while in [14] the message sender uses
symmetric key encryption to sign the messages before encrypt-
ing it by ABE keys. We believe that ABSC could be a promis-
ing solution for our use-case scenario, as researchers [2, 11, 15]
have shown that ABSC is an efficient technique to perform both
encryption and signing at the same time.

Since Onboard Units (OBUs) are generally resource-constr-
ained [13], other challenges in our use-case scenarios would be:
i) the number of exchanged messages, as well as ii) the compu-
tation overhead that is imposed by ABE operations. A solution
for the first issue could be the usage of cloud storage to upload
the encrypted messages instead of broadcasting each message
in the network. For the latter issue, a possible solution would
be the usage of edge servers, e.g., Road Side Units (RSUs), to

2A transportation system which allows vehicles to travel close to each other
with constant speed

perform a part of the computation (which we will explain in
Section 4).

In the following section, we discuss the security and func-
tional requirements that have to be fulfilled by the proposed
mechanism.

2.2. Security Requirements

To design a secure attribute based signcryption scheme that
supports the access policy update, the following requirements
are considered in the design of PROUD:

• flexible fine-grained access control – provides flexible
security policies among dynamic groups of users to the
outsourced data contents.

• data authenticity – ensures that data has been generated
by authorised users.

• data confidentiality – protects the content of the outsourced
data against unauthorised entities.

• privacy – preserves the privacy of data owners and data
users when creating and authenticating or accessing data.

• low processing and storage overheads – incur low com-
putation and storage costs at end-users’ side, mainly con-
sidered as resource-constrained devices.

3. Attribute Based Techniques: Related Work

In this section, we first review ABSC schemes with con-
stant ciphertext size. Then, we present ABSC schemes support-
ing oustourced designcryption before introducing policy update
mechanism applied to attribute based schemes.

3.1. Constant Size Attribute Based Signcryption

Attribute based SignCryption (ABSC) is considered as a
flexible cryptographic primitive that provides confidentiality,
fine-grained access control, data authentication and privacy preser-
vation [16]. As detailed above, data is encrypted and signed
w.r.t. an access policy, in one single logical step, before being
outsourced to an untrusted third party. Afterwards, data con-
tents can be recovered only by authorised users whose access
rights satisfy the access policy embedded in the signcrypted
data.
However, the main drawback of the most proposed ABSC schemes
in the literature is the size of the generated ciphertext that is pro-
portional to the number of attributes used in the access policy;
i.e., the greater number of attributes the bigger ciphertext size.
To address this limitation, several schemes have been proposed
in the literature, which we review some of the prominent and
recent ones that aim to achieve fixed-size ciphertext.

In 2016, Rao et al. designed the first key-policy attribute
based signcryption scheme (KP-ABSC) [17]. The length of the
derived signcrypted message is limited to 6 group elements that
are independent from the size of the access policy, i.e., the num-
ber of attributes included in the access structure.

3

In 2017, a ciphertext policy attribute based signcryption
scheme (CP-ABSC) introduced in [11]. The proposed scheme
supports threshold access policies and constant-size ciphertext
features. Indeed, the data owner signcrypts his data w.r.t. a
defined threshold access policy, before outsourcing to remote
cloud servers. Thus, an authorised end-user is able to both ver-
ify if the received data is uploaded by an authorised data owner,
and decipher the received data content w.r.t. granted privileges.

Later, Rao et al. [18] introduced a CP-ABSC scheme, that
permits to ensure the security of personal health records sharing
among different groups of cloud users. The proposed scheme
exhibits a constant ciphertext size, adapted to several resource-
constrained devices.

Most of the attribute based signcrytion schemes, such as [17,
11, 18, 19], mainly suffer from high designcryption cost. This
is generally due to the intensive mathematical computations and
the complexity of access structures associated with ciphertexts
or users’ private keys. To address this concern, outsourcing
the designcryption process in attribute based singcryption to an
edge server or cloud has been proposed in the literature, which
will be discussed in the following section.

3.2. Outsourcing Attribute Based SignCryption

Outsourcing decryption in ABE has been first introduced by
Green et al. [20]. This technique is based on deriving a public
key form the user’s private key that is shared with a semi-trusted
server. This latter is able to partially decrypt a particular cipher-
text using the generated key. This outsourcing mechanism has
been applied recently to attribute signcryption schemes. For in-
stance, Chen et al. [15] have designed a KP-ABSC scheme that
supports outsourced de-signcryption. In this scheme, the user
shares a transformation key with the cloud server to allow the
partial designcryption of the ciphertext. After receiving the re-
sult from the cloud server, the user proceeds to totally decrypt
the data file. In [21] all the key generation, signing, encryp-
tion, decryption and verification are offloaded to cloud service
providers.

The basic outsourcing techniques applied in the aforemen-
tioned schemes [20, 15] requires the user to fully trust the server
performing the partial decryption. However, a lazy server may
return a previously computed designcrypted ciphertext. To make
outsourcing technique more secure, the verifiability notion has
been introduced in [22]. This concept enables the user to verify
that the partially designcrypted ciphertext has been genuinely
generated from the ciphertext forwarded to a semi-trusted server.
Several ABE schemes supporting decryption outsourcing have
adopted the verifiability technique, e.g., [23, 24, 25]. For in-
stance, in [24], the authors present a multi-authority ciphertext-
policy attribute based encryption scheme that supports the del-
egation of the decryption process to an untrusted server. Their
proposal provides a verifying mechanism enabling users to check
either the partially deciphered content was correctly generated,
based on randomly generated tokens.

Recently, Deng et al. [25] have introduced an ABSC scheme
that supports verifiable outsourced designcryption. The pro-
posed construction enables the end-user to verify the correct-

ness of the partially designcrypted ciphertext relying on some
elements of the ciphertext.

Liu et al. [26] propose a KP-ABSC scheme which ensures
outsourced designcryption. However, in this scheme, the end-
user trusts the edge server and shares his secret keys to enable
this server to partially designcrypt the ciphertext.

None of the aforementioned constructions consider the highly
dynamic aspect of IoT environments, i.e., they do not provide
efficient policy-update mechanisms to support the frequent en-
rolment and revocation of end-users.

3.3. Attribute Based SignCryption supporting Policy Updates
One of the limitations of the current attribute based sign-

cryption techniques is the cost of updating access policies after
generating a ciphertext, i.e., the addition or deletion of attributes
from existing access policies requires re-encrypting data. More-
over, policy update often relies on proxy re-encryption mecha-
nism [27, 28, 26, 29]. The re-encryption process is expensive
in terms of communication cost and is particularly inefficient
when the number of ciphertexts grows. Although some of the
proposed algorithms, such as [26, 29], are capable of revoca-
tion/addition of users, they still require sharing re-encryption
keys with the proxy server which adds extra communication
costs. In [6], attributes can be added or removed efficiently
without sharing re-encryption keys. The first KP-ABE schemes
supporting policy update are recently presented in [5, 30, 31].
Both schemes presented in [6] and [5] enable a cloud server to
update the access policy associated with a ciphertext without
relying on a proxy server to execute re-encryption algorithm
neither re-issuing users’ keys.

Table 1 presents a comparison between PROUD and most
closely related schemes in the literature, in terms of consid-
ered features. It shows the type of attribute based technique
in use, i.e, ciphertext policy or key-policy, as well as the type
of access policy (monotone, or threshold). It also depicts the
support for outsourced decryption, policy update, verifiability
and constant-size ciphertext features. As it can be seen in Ta-
ble 1, PROUD is the only ABSC scheme that covers all the four
considered features. Moreover, PROUD and [11] are the only
threshold ABSC schemes. This feature provides more flexibil-
ity in terms of the number of attributes satisfying the access
policy. In addition, other schemes study the security aspects in
a theoretical framework and overlook the issues related to the
highly dynamic nature of IoT environments.

In this paper, we design a new privacy-preserving protocol,
that supports the requirements listed in Section 2, and we pro-
vide a detailed performance analysis to highlight the advantage
of PROUD compared to the state-of-the-art in terms of process-
ing and storage overheads. As it can be seen in Table 1, PROUD
is actually a CP-ABSC scheme. The reason behind this choice
is that CP-based schemes are more appropriate for access con-
trol applications compared to KP-based schemes [32]. This is
due to the fact that in CP-based schemes the data owner has
more control on deciding the access policy and who can access
the data. However in KP-based schemes the users’ primitives
are associated with the access policy and the data owner only
decides a set of attributes to be associated to the encrypted data.

4

Table 1: Comparison of the PROUD features and the existing ABE/ABSC schemes.
Scheme Type Access Policy Outsourced Decryption Policy Update Verifiability Constant Ciphertext

[2] (2010) CP-ABE Threshold 7 7 7 7

[33] (2012) KP-ABSC Monotone 7 7 7 7

[34] (2015) CP-ABSC Monotone 7 7 7 7

[17] (2016) KP-ABSC Monotone 7 7 7 X
[15] (2016) CP-ABSC Monotone X 7 7 7

[11] (2017) CP-ABSC Threshold 7 7 7 X
[18] (2017) CP-ABSC Monotone 7 7 7 X
[6] (2017) CP-ABE Threshold 7 X 7 X
[26] (2017) CP-ABSC Monotone X 7 X 7

[25] (2018) CP-ABSC Monotone X 7 X X
[29] (2018) CP-ABSC Monotone X 7 X 7

[5] (2018) KP-ABE Monotone 7 X 7 X
[30] (2018) KP-ABE Monotone 7 X 7 X

PROUD CP-ABSC Threshold X X X X

4. PROUD Specification

In this section, we first present PROUD system model, ex-
plaining the involved actors, core building blocks and phases of
the system initialization and usage in Subsection 4.1. We detail
the considered security model in Subsection 4.2.

4.1. System Model

In Figure 1 we show the five core entities of PROUD. We
detail the main responsibility of each actor and the interaction
between different entities in the following.

The main actors of our system model are:

• The Central Trusted Authority (CTA), is considered as
trusted by all the involved entities in our system model.
It is responsible for both deriving entities’ private keys
and initialising the system by public global parameters.

• The Cloud Service Provider (CSP) manages a set of re-
mote servers and data centers and permits to store and
share outsourced data contents among authorised users
w.r.t. their granted privileges. CSP is also responsible of
executing the ciphertext access policy update algorithm
according to the data owner’s recommendations.

• The Semi-Trusted Edge Server (STES) is responsible for
partially decrypting a ciphertext using a transformation
key received from the user. Indeed, the user derives a
couple of public and private transformation keys from his
secret keys. The user shares the public key with STES to
allow the partial decryption of ciphertext, while keeping
secret the private transformation key to be used for the
final local data retrieval.

• The data owner (O) is responsible for defining the deci-
phering access policy. Before outsourcing data to remote
cloud servers, O has to first signcrypt data w.r.t. defined

access policies. In order to ensure the policy update fea-
ture, the data owner generates additional ciphertext com-
ponents which are mainly a randomization of the cipher-
text elements w.r.t. the attributes universe. These addi-
tional components are used by the cloud server to update
the access policy on demand without designcrypting any
ciphertext neither re-issuing any secret keys.

• The data user (U) requests access to the outsourced data.
U delegates a part of designcryption process to the STES.
Specifically, U is responsible for using his secret keys
to derive transformation keys used by the STES to par-
tially designcrypt the ciphertext. Then, U designcrypts
and verifies the partially designcrypted ciphertext that is
received from the STES.

The PROUD scheme is composed of four phases, i.e., SYS INIT,
STORAGE, UPDATE and RETRIEVAL, defined with respect to
seven randomized algorithms detailed in Subsection 4.1.
The SYS INIT phase is executed once by the CTA. It permits to
generate and publish system public parameters to all involved
entities and derives users’ private keys associated to their at-
tributes. The SYS INIT phase is based on two algorithms, de-
noted by Setup and KeyGen.

During the STORAGE phase, the data owner (O) who has al-
ready received a predefined signing access policy (t,Ss), has to
first define the deciphering policy, referred to as Se. To this end,
O has to create a subset Se from the attributes universe U where
|Se|= |Ss|. O chooses a threshold t such that 1≤ t ≤ |Se| to de-
fine the encryption access policy (t,Se). Recall that the encryp-
tion access policy (t,Se) defines which certified attributes (i.e.,
private keys associated to attributes) are needed to be able to de-
cipher the signcrypted content, while the signing policy (t,Ss)
defines the credentials that need to be fulfilled by the signing
data owner. The STORAGE phase includes one randomized al-
gorithm, denoted by SignCrypt, to signcrypt the data content
w.r.t. the access policies (t,Ss) and (t,Se), while pointing out

5

Central Trusted Authority

Cloud Service Provider

Data UsersData Owner

1. Signcrypt data w.r.t to defined access and signing policies

2. Generate ciphertext components for access policy update

5. Update access policy

9. Generate transformation keys

14. Desincrypt the partially designcrypted ciphertext

10.Oustource ciphertext and transformation keys

11. Verify data owner signature

12. Partially designcrypt the cipherext

Semi Trusted Edge Server

13.Return the partially designcrypted ciphertext

Figure 1: PROUD architecture and key interactions between different entities. The data owner takes advantage of cloud servers to share his data with a set of users,
specifying access control policies and signcrypting the data. We consider data users to be resource-constrained IoT devices. The data users delegate a part of data
designcryption to edge servers, which is more powerful than the IoT devices.

either the data content can be updated or not.
The UPDATE phase is executed by the cloud provider, upon the
request of the data owner. It is based on one algorithm, denoted
by Update that supports both the addition and removal of at-
tributes from access policies.
During the RETRIEVAL phase, the user (U) has first to authen-
ticate with the cloud provider and request access to a particular
data content. In this paper, we skip the details of the authenti-
cation process, as several solutions have been already proposed
in the literature which could be used, such as [35, 36]. Once
authenticated, U runs an interactive protocol with the STES,
to recover the original data content. The RETRIEVAL phase
relies on three different algorithms, referred to as Transform,
DesignCryptout and DesignCrypt. Indeed, the data user U ex-
ecutes the Transform algorithm to derive a transformation key,
relying on his private keys that satisfy the encryption access
policy (t,Se) associated to the requested data content. The trans-
formation key is then sent to the STES. This latter performs the
DesignCryptout algorithm and generates a partially decrypted
data content. Finally, based on the partially deciphered data
file, U is able to finalise the designcryption process. Recall that
U can check whether the received partially deciphered content
was correctly generated, thanks to the support of the verifiabil-
ity property.

It is worth mentioning that, in order to reduce the commu-
nication costs, one could consider a scenario in which the data
user delegates the ability of downloading the ciphertext to the

STES. However, the user still needs to download a part of the
ciphertext to be able to check whether the received partially de-
signcrypted content from the STES was correctly generated, to
be compliant with the verifiability property. In addition, the user
has to communicate with the STES to share the transformation
public keys (t pk) required to execute the (DesignCryptout) al-
gorithm.

PROUD involves seven randomized algorithms, w.r.t. four
phases defined respectively as follows:

• SYS INIT phase:

Setup(ξ)→ (pp,msk) – performed by a CTA. Given the
security parameter ξ, this algorithm generates the public
parameters pp and the secret master key msk.

KeyGen(pp,msk, i,Ai)→ ski – run by CTA in order to
generate the private keys of the user i, where i ∈ {O,U}.
It takes as input pp, a user’s attribute set Ai ⊂ U and the
secret master key msk. The KeyGen algorithm returns the
user’s secret key ski w.r.t. Ai.

• STORAGE phase:

SignCrypt(pp,skO,AO,(t,Se),(t,Ss),M)→ Σ – executed
by the data owner. Given the public parameters pp, the
secret key of the data owner skO and their related set of
attributes AO, the access policies (t,Se) and (t,Ss) and the
message M, where M ∈M (i.e., M refers to the message

6

space), the SignCrypt algorithm returns the signcrypted
message Σ.

• UPDATE phase:

Update(pp,Σ, ind,U)→ Σup– runned by a cloud server
upon the demand of the data owner. This algorithm takes
as input pp, a signcrypted message Σ which contains the
set of enciphering attributes Se = {ai}i=1..s where |Se| =
s, an operation indicator ind such that ind may refer to
either attributes’ addition, i.e., ind = add or attributes’ re-
moval, i.e., ind = revoke and U a new set of attributes
where U∩Se = /0 if ind = add or U ⊂ Se if ind = revoke.
This randomized algorithm generates a new/updated sign-
crypted message Σup based on the new encrypting set of
attributes S ′e such as S′e = Se∪U or S′e = Se \U w.r.t. ind
value.

• RETRIEVAL phase:

Transform(pp,skU ,(t,Se))→ tkU – performed by U hav-
ing a set of attributes AU and their related secret keys
skU . Transform takes as input pp, skU and the encryp-
tion access policy (t,Se). It generates the transformation
key tkU = (t pkU , tskU) related to skU , where t pkU and
tskU are the public and private transformation keys re-
spectively.

DesignCryptout(pp, t pkU ,(t,Se),(t,Ss),Σ)→Σpart – is ex-
ecuted by the Semi-Trusted Edge Server (STES). To re-
trieve the partially designcrypted message Σpart , this al-
gorithm takes as input pp, the transformation key t pkU ,
access policies (t,Se) and (t,Ss) and the signcrypted mes-
sage Σ. Note that Σ can be Σup if the Update algorithm
has been executed.

DesignCrypt(tskU ,Σpart)→M – U executes DesignCrypt
to retrieve M. This algorithm takes tskU and the partially
designcrypted message Σpart as input and outputs M.

4.2. Security Model

In this section, we explain the considered attack model based
on which we discuss the security and privacy properties of our
proposed scheme.

• An honest but curious cloud server provider (CSP). CSP
is honest as it generates accurate inputs or outputs, during
the different steps of the protocol, and performs calcula-
tions properly. However, it is curious to gain extra data
from the protocol, such as obtaining credentials/attributes
of a data user, retrieving the plaintext, or distinguishing
the data owner based on the signcrypted content. As
such, we consider the honest but curious attack model
against the confidentiality and privacy requirements w.r.t
adaptive replayable chosen-ciphertext attacks (IND-RCCA2)
(c.f, 4.2.1) and the privacy of the data owner (c.f, 4.2.3).

• An unauthorised data user. This attacker could be a data
user (or an external entity), whose attributes do not sat-
isfy the access policy associated with the ciphertext, or
could be a revoked user. We also consider a set of collud-
ing users on the attributes, who do not satisfy the access
policy associated with the ciphertext and try to merge
their attributes to retrieve the plaintext, in this attack model.
These unauthorised users attempt to designcrypt the con-
tent and access the plaintext. As such, we consider this
attack model against the confidentiality requirements w.r.t
adaptive replayable chosen-ciphertext attacks (IND-RCCA2)
(c.f, 4.2.1).

• A non-authentic data owner. This attacker can be a ma-
licious data owner or an external malicious entity aiming
to sign and upload a non-genuine ciphertext to the CSP
to be shared among users. A non-authentic data owner is
an entity whose attributes do not satisfy the signing pol-
icy associated to the ciphertext. As such, we consider the
non-authentic data owner security model mainly against
the unforgeability requirement considering chosen mes-
sage attacks (CMA) (c.f, 4.2.2).

• A lazy STES. This attacker tries to forge a non-authentic
partial designcryption of a ciphertext, or returns an old
previously computed ciphertext. A lazy STES is also cu-
rious to distinguish the data owner based on the encrypted
content. A security scheme against this attacker should
satisfy verifiability feature (c.f, 4.2.4), and the computa-
tional privacy of the data owner (c.f, 4.2.3).

4.2.1. Confidentiality
The confidentiality property ensures that non-authorised en-

tities cannot decipher a singcrypted -updated- message. As de-
tailed in our attack model, a non-authorized entity can be an
honest but curious CSP or a malicious data user who try to over-
ride their rights to retrieve the plaintext.

For this purpose, we define Expcon f , a security game be-
tween an adversary A and a challenger C . The adversary tries
to decipher a signcrypted message, i.e; to distinguish between
two randomly generated signcrypted messages, without having
sufficient deciphering credentials. In their standard definition,
ABSC schemes are proved to be secure based on Chosen Ci-
phertext Attack (CCA2) security games. For instance, CCA2
is a security game that captures the resistance of a public key
encryption scheme against adversaries. In CCA2, the adver-
sary has access to a decryption oracle, however, this access is
limited until the challenge ciphertext is known. Further details
about these security notions can be found in [37]. However,
CCA2’s definition does not allow any alteration to the cipher-
text which makes CCA2 games not suitable with added func-
tional features such as outsourcing and policy updates. There-
fore, in this security game, we apply the relaxation notion pro-
posed by Canetti et al. [38, 20] called Replayable Chosen Ci-
phertext Attack (RCCA2) which allows minor modifications to
the ciphertext during the game without changing the plaintext in

7

a meaningful way. This newly defined security game has been
already adopted by state of the art ABSC schemes supporting
outsourced designcryption [29, 15] and ABE schemes ensuring
access policy updates [6, 5]. That is, we define a challenger
which is responsible for simulating the system procedures. We
also define an adversary which can query to get the designcryp-
tion of several chosen signcrypted messages. Indeed, Expcon f

starts by an initialisation phase such that A sets a challenge
signing and encrypting access policies, defined as Ψ∗s = (t,S∗s)
and Ψ∗e = (t,S∗e) respectively. Both access policies are then sent
to C , which later generate the public parameters, then forwards
them to A .

Expcon f includes four different phases, such that Phase 1
Queries and Phase 2 Queries can be repeated as many times
as the adversary wants:

Phase 1 Queries – first, C sets an empty table T. Then, A
is able to request the following queries, for each session i:

• Private Key Query – A queries a signcryption attribute
set AA ,i w.r.t. a threshold value ti such that |AA ,i∩S∗e |< ti
and |AA ,i∩S∗s |< ti. Then, C runs the KeyGen algorithm
and forwards skA ,i to the adversary A .

• Transformation Key Query – A queries the secret trans-
formation keys tkA ,i, w.r.t. AA ,i. C searches the entry
(AA ,i,skA ,i, tkA ,i) in table T. It returns the transforma-
tion key if it exists in table T, otherwise C executes the
Transform algorithm to generate tkA ,i and forwards them
to the adversary.

• SignCryption Query – A requests the signcryption of a
message Mi w.r.t. ti, associated to both signing and en-
crypting access policies Ψs,Ψe. Thus, the challenger ex-
ecutes the SignCrypt algorithm and returns a ciphertext
Σi to A .

• DesignCryption Query – A queries the designcryption
of a ciphertext Σi w.r.t. ti and attribute set AA ,i. For this
purpose, C executes the DesignCrypt3 algorithm that re-
turns Mi or a reject symbol ⊥.

Challenge Phase – A forwards to C two randomly selected
equal-length messages M0

∗ and M1
∗ and an attribute set U∗

where U∗∩Se = /0 if ind = add or U∗ ⊂ Se if ind = revoke. The
challenger first chooses a random bit b from {0,1} and derives
the signcryption secret keys skC ,i associated to the challenge ac-
cess policies. Then, he checks if U∗ = /0, so that he derives Σb

∗,
by executing the SignCrypt algorithm. Otherwise, he generates
Σbup

∗ by applying the Update algorithm based on the ind value.

Phase 2 Queries – Having received Σb
∗ or Σ∗bup

, the adver-
sary is allowed to query a polynomial number of queries as in
Phase 1, except that he is unable to request the designcryption

3As C executes both DesignCryptout and DesignCrypt algorithms, we use
DesignCrypt to refer to both algorithms

of the received challenge signcrypted message Σb
∗ or Σ∗bup

.

Guess – during this phase, the adversary A attempts to guess
which message Mi, such that i ∈ {0,1} corresponds to the re-
ceived signcryption Σb

∗ or Σ∗bup
. To do so, A outputs a bit b′

of b and wins the game if b = b′. The advantage of the adver-
sary A in the Expcon f game is defined as AdvA [ExpCon f (1ξ)] =
|Pr[b = b′]− 1

2 |.

Definition 1. PROUD fulfills the confidentiality property by be-
ing indistinguishable against replayable chosen ciphertext at-
tacks (IND-RCCA2) if there is no adversary that can succeed in
the Expcon f security game with non-negligible advantage.

4.2.2. Unforgeability
The unforgeability property ensures that a non-authentic data

owner cannot generate a verifiable correct signature. As de-
tailed in our attack model, a non-authentic data owner can be
a malicious/compromised data owner or an external malicious
entity.

PROUD is unforgeable against chosen message attack (EUF-
CMA) if there is no adversary that can succeed in the Expun f se-
curity game with non-negligible advantage. Similar to the con-
fidentiality game detailed in subsection 4.2.1, we define a chal-
lenger C and an adversary A that interactively conduct Expun f .
Note that Expun f starts with an initialisation process that per-
mits to set up the challenge access policies as well as generate
public parameters. Expun f includes 2 different phases, where
Phase 1 can be repeated as many times as the adversary wants:

Phase 1 Queries – C sets an empty table T. Then, for each
session i, A is allowed to issue the following queries:

• Private Key Query – A queries a signcryption attribute
set AA ,i w.r.t. a threshold value ti such that |AA ,i∩S∗e |< ti
and |AA ,i∩S∗s |< ti. Then, C runs the KeyGen algorithm
and forwards skA ,i to the adversary A .

• SignCryption Query – A requests the signcryption of
a message Mi w.r.t. ti, associated to both signing and
encrypting access policies Ψs,Ψe. C runs the SignCrypt
algorithm and returns a ciphertext Σi to A .

Forgery Phase – A generates a ciphertext Σ∗ w.r.t. (Ψ∗e ,Ψ
∗
s)

access policies (i.e; Ψ∗e ,Ψ
∗
s were not queried during Phase

1 Queries and where ti < t∗). Then, A forwards Σ∗ to C .
This latter runs DesignCrypt algorithm while taking Σ∗ as in-
put. A wins the security game if the signcrypted message Σ∗

is accurate and the DesignCrypt algorithm returns a valid mes-
sage M∗ which was not queried in the SignCryption Query
phase. The advantage of A is defined as AdvA [Expun f (1ξ)] =
|Pr[Expun f (1ξ)] = 1.

Definition 2. PROUD is unforgeable against chosen-message
attacks (EUF-CMA), if the advantage AdvA [Expun f (1ξ)] is neg-
ligible for all adversaries.

8

4.2.3. Privacy
We consider the privacy property for two different entities:

i) the data user, and ii) the data owner. In the first case, we
need to guarantee that a curious entity (which could be the CSP,
STES, or an external entity) is not able to gain any informa-
tion about the attributes of a data user. In fact, this property
holds due to the construction of the PROUD. The data user’s
attributes are neither sent to the CSP nor to the STES. Instead,
the data user uses his attributes (i.e., secret keys associated to
his attributes) locally to finalise the designcryption process.

In the second case, privacy property ensures that a curious
entity (which could be the CSP, STES, data user or even an in-
truder) is unable to distinguish between two correctly-generated
signcrypted messages that have been derived w.r.t. the same set
of attributes. That is, an adversary cannot link a signcrypted
message to a specific signing entity. To capture the malicious
behavior of these entities, in the following we present the ExpPriv

security game, that is an interactive game between an honest
data owner and a curious entity.

The ExpPriv security includes two phases and starts by an
initialisation phase where challenge access policies and public
parameters are set up.

Challenge Phase – A chooses the two required access poli-
cies Ψ∗s = (t,S∗s) and Ψ∗e = (t,S∗e) such that 1≤ t ≤ |S∗s |= |S∗e |,
two attribute sets AA ,1 and AA ,2 such that |AA ,1∩S∗e |= |AA ,1∩
S∗s | = |AA ,2 ∩ S∗e | = |AA ,2 ∩ S∗s | = t, and a message M. A for-
wards the tuple (Ψ∗s ,Ψ

∗
e ,AA ,1,AA ,2,M) to C . C chooses a ran-

dom bit b ∈ {0,1} and runs the KeyGen algorithm to derive a
secret key skA ,b. Finally, C derives Σb by running the SignCrypt
algorithm and sends it to the adversary A .

Guess – A picks a bit b′ and wins the game if b′ = b. The
advantage of A in ExpPrivis defined as AdvA [ExpPriv(1ξ)] =
|Pr[b = b′]− 1

2 |.

Definition 3. PROUD is said to be computationally private if
there is no adversary that can succeed in the security game
ExpPriv with non-negligible advantage.

4.2.4. Verifiability
The verifiability property ensures that a lazy STES cannot

reply to an outsourcing request coming from an honest data user
with a compromised partially designcrypted ciphertext. That is,
an honest data user should be able to find out whether the de-
signcrypted data content with the STES assistance is matching
the ciphertext downloaded from the CSP or not.

To capture the behavior of the STES, we formally define
the Expveri f security game, between a lazy server and a hon-
est data user. The adversary attempts to generate a valid par-
tially designcrypted message without processing the challenge
ciphertext. That is, Expveri f starts by an initialisation process
that permits to set up the challenge access policies as well as
generate public parameters, similarly as detailed in sub-section
4.2.1. Expveri f includes four different phases, where Phase 1
Queries and Phase 2 Queries can be repeated as many times

as the adversary wants:

Phase 1 Queries – first, C sets an empty table T. Then, for
each session i, A is allowed to issue the following queries:

• Private Key Query – A queries a signcryption attribute
set AA ,i w.r.t. a threshold ti where |AA ,i ∩ S∗e | < ti and
|AA ,i∩S∗s |< ti. Then, C runs the KeyGen algorithm and
forwards the generated secret key skA ,i to A .

• Transformation Key Query – A queries the secret trans-
formation keys tkA ,i, associated to a set of attributes AA ,i.
C searches the entry (AA ,i,skA ,i, tkA ,i) in table T. It re-
turns the transformation key if it exists in table T, oth-
erwise C executes the Transform algorithm to generate
tkA ,i and forwards them to the adversary.

• SignCryption Query – A requests the signcryption of
a message Mi with respect to a threshold ti, while con-
sidering the access policies Ψe,Ψs. Thus, C executes
SignCrypt and returns a ciphertext Σi.

• DesignCryption Query – A requests the designcryption
of a ciphertext Σi with respect to a threshold ti, while con-
sidering the signcryption attribute set AA ,i. C replies to
the request by executing the DesignCrypt algorithm that
returns Mi or a reject symbol ⊥.

Challenge Phase – A chooses a challenge message M∗ to
be sent to C . This latter derives the challenge signcrypted mes-
sage Σ∗, by running the SignCrypt algorithm and returns it to A .

Phase 2 Queries – Having received Σ∗, A is allowed to
query a polynomial number of queries as in Phase 1, except
that he is unable to request the designcryption of the received
challenged signcrypted message Σ∗.

Forge – A generates an attribute set {A∗A ,i} and a random
partially designcrypted ciphertext Σ∗part without executing the
DesignCryptout algorithm. We suppose that (AA ,i,skA ,i, tkA ,i)
is included in the table T , otherwise, C runs the Transforma-
tion Key Query and generates this tuple.
A wins the game if DesignCrypt(pp, t pkA ,i,(t,S∗e),(t,S

∗
s),Σ) <

{M∗,⊥} and the verification of the partially designcrypted ci-
phertext is valid. A’s advantage is noted as:

AdvA [Expveri f (1ξ)] = |Pr[Expveri f (1ξ)] = 1|

Definition 4. PROUD fulfills the verifiability property if there
is no adversary that can succeed the security game Expveri f

with non-negligible advantage.

5. Mathematical Background

5.1. Complexity Assumptions
The proposed PROUD scheme relies on the Computational

Diffie Hellman Assumption (CDH) and the augmented multi-
sequence of exponents computational Diffie-Hellman ((l̃, m̃, t̃)-
aMSE-CDH), which was introduced by Delerablée et al. [39,
40] in 2007. These assumptions are defined as follows:

9

Definition 5. Computational Diffie Hellman Assumption (CDH)
– Let G be a group of a prime order p, and g is a generator of
G. The CDH problem is, given the tuple of elements (g,ga,gb),

where {a,b} R←− Zp, there is no efficient probabilistic algorithm
ACDH that computes gab.

Definition 6. (l̃, m̃, t̃)-augmented multi-sequence of exponents
computational Diffie-Hellman ((l̃, m̃, t̃)-aMSE-CDH) – The (l̃, m̃, t̃)-
aMSE-CDH problem related to the group pair (G,GT) is to
compute T = e(g0,h0)

k· f (γ). It takes as input: the vector~xl̃+m̃ =

(x1, · · · ,xl̃+m̃)
> whose components are pairwise distinct ele-

ments of Zp which define the polynomials f(X) and g(X) as fol-
lows:

f (X) =
l̃

∏
i=1

(X + xi); g(X) =
l̃+m̃

∏
l̃+1

(X + xi) (1)

where the values xi are random and pairwise distinct of Z∗p, and
the values:

g0,g
γ

0, · · · ,g
γl̃+t̃−2

0 ,gk·γ· f (γ)
0

gωγ

0 , · · · ,gωγl̃+t̃−2

0

gα
0 ,g

αγ

0 , · · · ,gαγl̃+t̃

0

h0,h
γ

0, · · · ,h
γm̃−2

0

hω
0 ,h

ωγ

0 , · · · ,hωγm̃−1

0

hα
0 ,h

αγ

0 , · · · ,hαγ2(m̃−t̃)+3

0

Where k,α,γ,ω are unknown random elements of Zp and g0
and h0 are generators of G. We can solve the problem if we get
an output b ∈ {0,1} where b = 1 if T = e(g0,h0)

k· f (γ) or b = 0
when T is a random value from GT .

5.2. Collision-Resistant Hash Functions
The proposed PROUD scheme relies on the use of collision-

resistant hash functions, defined as follows:

Definition 7. Collision-Resistant Hash Function – A hash func-
tion H : {0,1}n −→ {0,1}m, where n,m ∈ N, is said to be
collision-resistant if it satisfies the following two properties:

• length compressing — m > n, typically m = n/2;

• hard to find collisions — for all non-uniform probabilis-
tic polynomial-time (PPT) algorithm A , there exists a
negligible function ε, such that for all n ∈ N,

Pr[(x0,x1)←A(1n,H) : x0 , x1∧H (x0)=H (x1)]≤ ε(n)

5.3. Aggregate Algorithm
The proposed PROUD scheme is based on the aggregate

algorithm Aggreg introduced by Delerablee et al. [39, 40]. This
algorithm is explained in the following description:

Let us consider a list of values {g
r

γ+xi ,xi}1≤i≤n, where r,γ ∈
Z∗p and x1, · · · ,xn are pairwise different. Then , the algorithm
proceeds as follows:

Aggreg({g
r

γ+xi ,xi}1≤i≤n) = g
r

∏
n
i=1(γ+xi)

Concretely, the Aggreg algorithm defines P0,m = g
r

γ+xm for each
m ∈ {1, · · · ,n}. Afterwards, the algorithm computes sequen-
tially Pi,m for i = 1 · · ·n− 1 and m = i+ 1, · · · ,n using the in-
duction:

Pi,m = (
Pi−1,i

Pi−1,m
)

1
xm−xi (2)

Then, we get Pi,m = g
r

(γ+xm)∏
i
k=1(γ+xk) where 1≤ i≤ m≤ n.

Therefore, since the elements x1, · · · ,xn are pairwise differ-
ent [41, 42] and using the equation 2, we can compute Pi,m for

i = 1 · · ·n−1 and m = i+1 · · ·n such as Pn,n−1 = g
r

∏
n
i=1(γ+xi)

6. PROUD: Verifiable Outsourced Attribute Based SignCryp-
tion Supporting Access Policy Update

In this section, we introduce an overview of PROUD frame-
work in subsection 6.1. Then, we detail different PROUD algo-
rithms and functions in subsection 6.2.

6.1. Overview
PROUD presents a new verifiable privacy-preserving out-

sourced ABSC scheme that ensures flexible access control, data
confidentiality and authentication, while supporting policy up-
dates in cloud assisted IoT applications. PROUD scheme relies
on the constant size ABSC scheme proposed by Belguith et al.
[11], which has been extended to fulfill all security and privacy
requirements introduced in section 2.

Figure 2 presents a detailed workflow of PROUD, while
enhancing the different interactions between involved actors.
Based on four phases, Figure 2 shows the chronological se-
quence of seven randomized algorithms and a set of functions.
Recall that some phases such as the SYS INIT, STORAGE and
RETRIEVAL are compulsory, while the UPDATE phase is con-
sidered as optional. Similarly, some functions are considered as
supported features, i.e; optional, such as the Verify function that
enables a honest data user to find out whether a data content
that has been designcrypted with the STES assistance is match-
ing the ciphertext downloaded from CSP or not.

Hereafter, we present the details of PROUD algorithms w.r.t.
the main four phases. For ease of presentation, the different no-
tations used in this paper are listed in Table 2.

6.2. PROUD Algorithms
The PROUD construction relies on seven randomized algo-

rithms defined as follows:

• SYS INIT phase:

– Setup – CTA sets three groups (G1,G2,G) of prime
order p, an asymmetric bilinear map ê : G1×G2→
G and a hash function H : {0,1}∗→ Zp. Note that
H is collusion resistant as defined in [43]. Ad-
ditionally, CTA defines a function τ such that τ :
U → (Z/pZ)∗, where U is the attribute universe
supported by CTA and k is the cardinal of U. For

10

CTA O U CSP STES

Public ParametersSetup

Secret KeysKeyGen
SYS-INIT

Ciphertext
SignCryptSTORAGE

Store ciphertext

Request ciphertext

Request update
Update

Updated ciphertext

Updated ciphertext

UPDATE

RETRIEVAL

Transform

DesignCryptout

Partially designcrypted ciphertext

DesignCrypt

Verify

Plaintext

Outsource ciphertext &
transformation public key

Figure 2: Work Flow of PROUD Scheme.

each attribute a ∈ U, the encoded attribute values
τ(a) = x are pairwise different. Then, Setup picks
two generators g and h of G1 and G2, respectively.
It also chooses a set of pairwise different elements
of (Z/pZ)∗, Di = {d1, · · · ,di} where i≤ k−1. Fi-
nally, it outputs the global public parameters pp de-
fined as follows:
pp= {G1,G2,G,g,h, ê,{hαγ j}{ j=0,··· ,k},{u j = gαγ j} j=1···k,

ê(gα,h),τ,H }
The master secret key is defined as msk = (α,γ)
where α,γ are two random from values (Z/pZ)∗.

– KeyGen – we denote by Ai the attribute set for an
entity where i = U for a data user U and i = O
for a data owner O. For a set of attributes Ai ⊂ U,
KeyGen generates the related secret key after se-
lecting a random value ri ∈ (Z/pZ)∗ as follows:

ski = ({g
ri

γ+τ(a) }a∈Ai ,{h
riγ

j} j=0,··· ,k−2,h
ri−1

γ)

= (ski1 ,ski2 ,ski3)

• STORAGE phase:

– SignCrypt – let (t,Se) and (t,Ss) be the encryption
and signing policies, defined as follows.
(t,Se) represents the access policy where Se ⊂ U
and s = |Ss| = Se| such that 1 ≤ t ≤ |Se|. Note that
the access policy is point out by the data owner to
define which set of attributes have to be satisfied by

requesting data users.
(t,Ss) represents the signing policy where Ss ⊂ U
and s = |Ss| such that 1 ≤ t ≤ |Ss|. Let AO be the
data owner’s sub-set of attribute set where |AO ∩
Ss| = t. Note that the signing policy is already de-
fined by the system.
The SignCrypt algorithm makes use of an aggregate
function Aggreg which is introduced and detailed
in [39, 40]. Using his secret key skO and the Aggreg
function, O derives T1 such as:

T1 = Aggreg({g
rO

γ+τ(ai) ,τ(ai)}ai∈AO)= g
rO

∏ai∈AO
(γ+τ(ai))

Then, O sets the following polynomial P(AO,Ss)(γ):

P(AO,Ss)(γ) =
1
γ
(∏

ai∈Ss∪Dk+t−1−s\AO

(γ+ τ(ai))−B1)

Where B1 = ∏ai∈Ss∪Dk+t−1−s\AO
τ(ai)

Then, using the skO2 , O computes B2 such as:

B2 = hrOP(AO,Ss)(γ)/B1

In the sequel, O computes H (M) and generates the
signature σ = (σ1,σ2,σ3) defined as:

σ1 = T1 ·g
H (M)

∏ai∈AU
O(γ+τ(ai))

σ2 = skO3 ·B2 ·hH (M)P(AO,Ss)(γ)/B1

σ3 = hα·H (M)

11

Table 2: The different notations used in this paper
Notation Description

CSP Cloud Service Provider
CTA Central Trusted Authority
ST ES Semi-Trusted Edge Server

O Data Owner
U User
M Message
U The attribute universe
k The size of the attribute universe U
M The message universe
pp Public Parameters
msk Master Secret Key

a An attribute
Ss A signing access policy
Se An encrypting access policy

s = |Ss|= |Se| The size of the signing and encrypting access policies
SU A set of attributes belonging to a user U
SO A set of attributes belonging to a data owner O
U A set of attributes to be added/removed to an encrypting access policy
l The size of U

S′e An updated encrypting access policy
t Threshold

skU Secret key related to a user U
skO Secret key related to a user O

pkAA j Public key related to AA j

tkU A transformation key related to user U
t pkU A transformation public key
tskU A transformation private key

Σ The signcrypted message
Σup The signcrypted updated message

Σpart The partially designcrypted message
E1 An exponentiation overhead in G1
E2 An exponentiation overhead in G2
E An exponentiation overhead in G
τP The computation overhead of a pairing function ê

O(M) The size of a message M
H The overhead of a hash function
|AU | The size of a user’s attribute set
|AO| The size of a user’s attribute set
|ss| The size of a signing access policy
|se| The size of encrypting access policy
l The size of an attribute set to be added or removed from access policy
r The maximum number of attributes that can be revoked from an access policy
Ω The size of a ciphertext element in bits
Φ The size of a user’s secret key element in bits

O defines also r ≤ s such that r is the maximum
number of attributes that can be revoked from the
access policy. Note that σ2 is generated using T1
that is computed relying on the Aggregate algorithm
presented in Section 5.3, and the public elements
{hαγ j}{ j=0,··· ,k} as defined in the aMSE−CDH as-
sumption (c.f., Definition 6). σ2 is generated us-
ing the secret keys ski2 , ski3 and the public elements
{hαγ j}{ j=0,··· ,k} while σ3 is generated using u0.

Finally, O selects κ ∈ (Z/pZ)∗ and generates E0,
C1 and CM . Note that E0, C1 are generated us-
ing the public parameters {u j} j=1···k and ê(g,h)α.
Additionally, {hαγ j} j=0,··· ,2k−1 are utilised to gen-
erate CM w.r.t to the equivalence equation defined
in the (l̃, m̃, t̃)−aMSE−CDH definition introduced
by Delerablee et al. [39, 40]. E0, C1 and CM are de-
tailed as follows: E0 = hκα·∏ai∈Se (γ+τ(ai)),E1 = Eγ

0, · · · ,Ek−s = Eγ

k−s−1
C1 = u−κ

1 , · · · ,Cr+1 = u−κ

r+1
CM = ê(g,h)α·κ · ê(g,h)α·H (M) ·M = K ·M

O finally generates the signcrypted message Σ =
(C1, · · · ,Cr+1,E0, · · · ,Ek−s,CM,σ1,σ2,σ3,
P(AO,Ss)(γ),B1).

• UPDATE phase:

– Update – the Update algorithm first checks the op-
eration indicator ind. Then, if ind = add, it proceeds
as defined in (i), otherwise if ind = revoke it exe-
cutes (ii):

(i) – given a signcrypted message Σ encrypted w.r.t.
to Se and U = {a′1, · · · ,a′l} a new set of attributes
such that U ∩ Se = /0, CSP has to add elements of
U to Se. To this end, CSP performs the following
steps:
Let F(x) be the polynomial in x defined as F(x) =
∏ai∈U(x+ τ(ai)) = flxl + fl−1xl−l + · · ·+ f0

Afterwards, Update generates E0up =EF(γ)
0 =∏

l
i=0 E fi

i .
The updated ciphertext is defined as Σup =(E0up ,C1,
CM,σ1,σ2,σ3,P(AO,Ss)(γ),B1)) w.r.t. S ′e, the updated
set of encrypting attributes S ′e = Se∪U.

(ii) – given a ciphertext Σ signcrypted w.r.t. Se and a
revocation attribute set U = {a′1, · · · ,a′l}⊆ Se where
l ≤ r, CSP updates Σ as follows:
Let F(x) be the polynomial in x as
F(x)= 1

∏ai∈U τ(ai)
∏ai∈U(x+τ(ai))= flxl+ fl−1xl−1+

· · ·+ f0

Then, the algorithm computes Σup =(E0up ,C1up ,CMup ,
σ1,σ2,σ3,P(AO,Ss)(γ),B1)) where E0up ,C1up ,CMup are
computed as follows:

E0up = E
1

∏ai∈U τ(ai)

0 = hκ·∏ai∈Se\U(γ+τ(ai))F(γ)

C1up = ∏
l+1
l=1 C fi−1

i = u−κF(γ)
1

CMup =CM · ê(∏l
i=1 C− fi

i ,h) = K′ ·M

• RETRIEVAL phase:

– Transform – the user U executes Transform. U who
has a set of attributes AU and the related secret key
skU , selects z ∈ Z∗N and derives the transformation
keys tkU = (t pkU , tskU), where t pkU and tskU are
computed as follows:

t pkU = (sk
1
z
O1
,sk

1
z
O2
,sk

1
z
O3
)

tskU = z

Therefore, t pkU and tskU are defined as:
t pkU = ({g

rU
z(γ+τ(ai)

)}ai∈AU ,{h
rU γ j

z } j=0,··· ,k−2,h
rU−1

zγ)

tskU = z

12

Finally, the user outsources the signcrypted text Σup
as downloaded from CSP while only randomising
(σ3)

1
z along with the transformation public key t pkU

to the STES.

– DesignCryptout – First, the STES verifies the data
owner O signature by checking the correctness of
the following equation:

s = ê(u−1
0 ,σ2) · ê(σ

1
B1
1 ,hα·∏ai∈Ss∪Dk+t−1−s

(γ+τ(ai)))

·ê(gα,h)H (M)·(1−U1− 1
U1

)

= ê(gα,h)

where U1 = ∏ai∈Ss∪Dk+t−1−s\AU
γ+τ(ai)

τ(ai)
.

Afterwards, STES aggregates the user’s secret key
for all ai ∈ AU using the aggregate function Aggreg
[39, 40] such as:

A2 = Aggreg({g
rU

z(γ+τ(ai)) ,τ(ai)}ai∈AU)= g
rU

z∏ai∈AU
(γ+τ(ai))

(3)
Afterwards, STES uses the aggregated transformed
secret key A2 and t pkU2 to compute K′′ which can
be retrieved based on two cases w.r.t. the ind oper-
ator value, such that:

∗ Case 1: in the case of adding attributes to the
access policy, STES deduces the deciphering
key K′′ such as:

K′′ = ê(C1, t pkU3) · ê(g,(σ3)
1
z)ê(A2,E0)

= ê(g,h)
α·κ

z · ê(g,h)
α·H (M)

z

= K
1
z

Finally, the STES returns K′′ to the user. Note
that if the Update has not been executed, i.e.,
the access policy has not been updated, the de-
signcryption process follows Case 1.
∗ Case 2: in the case of revoking attributes from

the access policy, STES deduces the decipher-
ing key K′′ such as:

K′′ = ê(C′1, t pkU3) · ê(g,σ3) ·
ê(g,h)κ·rU2 ·α

= ê(g,h)
α·κ·F(γ)

z · ê(g,h)
α·H (M)

z

= K′
1
z

Finally, the STES returns k′′ to the user.

– DesignCrypt – This algorithm includes two steps.
The first step, denoted by (i), enables U to retrieve
the plaintext, while the second step (ii) permits to
verify the correctness of the partially designcrypted

message received from STES:

(i) First, based on the partially decrypted cipher-
text k′′, the user executes Equation 4 while perform-
ing only one exponentiation without calculating any
pairing functions to recover the message. M can be
retrieved based on two cases w.r.t. the ind operator
value, such that:

∗ Case 1: in the case of adding attributes to the
access policy:

M =
CM

(K′′)tsk

=
K ·M
(K

1
z)z

=
K ·M

K

∗ Case 2: in the case of revoking attributes from
the access policy:

M =
C′M

(K′)tsk

=
K′ ·M
(K′

1
z)z

=
K′ ·M

K′

(ii) Using the retrieved message M, U computes
H (M). Afterwards, U calculates V = hα·H (M).
To verify the correctness of the retrieved message
M, i.e., the partially designcrypted message received
from STES K′′ is correct, U compares V against σ3
which was already downloaded from CSP.
If V = σ3, then STES has executed DesignCryptout
correctly, otherwise, U declines the received par-
tially designcrypted ciphertext K′′.

7. Security Analysis

The security of PROUD relies on the following Theorems.

Theorem 1. Correctness PROUD is correct if for all (pp,msk)←
Setup(ξ), all attributes’ sets Ai ∈ U where i ∈ {U,O}, all pri-
vate keys ski←KeyGen(pp,msk, i,Ai), all access policies {Ψe =
(t,Se),Ψs = (t,Ss)} such as t is the threshold value, Ψe(AU) =
1 and Ψs(AO) = 1, all messages M ∈M, all signcrypted mes-
sages Σ←SignCrypt(pp,skO,AO,Ψe,Ψs,M), all updated sign-
crypted messages Σup←Update(pp,Σ, ind,U), all transforma-
tion keys← Transform(pp,skU ,Ψe), all partially designcrypted
messages Σpart←DesignCryptout(pp, t pkU ,Ψe,Ψs,Σ) , we have
to obtain M← DesignCrypt(tskU ,Σpart).

Theorem 2. Confidentiality The proposed PROUD scheme is
indistinguishable against replayable chosen ciphertext attacks,
w.r.t. the a-MSE-CDH assumption.

13

Theorem 3. Unforgeability PROUD is unforgeable against
chosen-message attacks, w.r.t. CDH and a-MSE-CDH assump-
tions.

Theorem 4. Privacy The proposed PROUD scheme is compu-
tationally private w.r.t. the CDH assumptions.

Theorem 5. Verifiability If H is a collision-resistant hash
function, then the proposed PROUD scheme is verifiable against
lazy servers.

PROUD relies on the Computational Diffie Hellman As-
sumption (CDH) and the augmented multi-sequence of expo-
nents computational Diffie-Hellman ((l̃, m̃, t̃)-aMSE-CDH) as-
sumptions (cf. Definitions 6 and 5). More details of these as-
sumptions can be found in papers [39], [40], [41] and [11].

Here-after, we start by proving the correctness of the pro-
posed scheme. Afterwards, we introduce the security proofs
related to security games presented in Section 4.2.

7.1. Correctness
In this subsection, we show the correctness of PROUD w.r.t.

Theorem 1, while detailing the update process in subsection
7.1.1 and the designcryption algorithms in subsection 7.1.2.

7.1.1. Update Correctness
The Update algorithm first checks the operation indicator

ind. Then, if ind = add, it proceeds as (i), otherwise if ind =
revoke it executes (ii):

(i) – given a signcrypted message Σ encrypted w.r.t. to Se
and U = {a′1, · · · ,a′l}.

Let F(x) be the polynomial in x defined as F(x)=∏ai∈U(x+
τ(ai)) = flxl + fl−1xl−l + · · ·+ f0

Then, Update calculates E0up such that:

E0up = EF(γ)
0

= hκα·∏ai∈Se (γ+τ(ai))
(fl γl+ fl−1γl−l+···+ f0)

= hκα(flγl)·∏ai∈Se (γ+τ(ai)) ·hκα fl−1γl−l ·∏ai∈Se (γ+τ(ai))

· · ·hκα f0)·∏ai∈Se (γ+τ(ai))

= Eγl

l ·E
γl−l

l−1 · · ·E
f0
0

=
l

∏
i=0

E fi
i

The updated ciphertext Σup is defined as Σup = (E0up ,C1,CM)
w.r.t. S ′e, the new set of encrypting attributes defined as S ′e =
Se∪U.

(ii) – given a ciphertext Σ encrypted w.r.t. a set of attributes
Se and a revocation attribute set U = {a′1, · · · ,a′l} ⊆ Se where
l ≤ r, the server updates the signcrypted message Σ as follows:

Let F(x) be the polynomial in x as
F(x) = 1

∏ai∈U τ(ai)
∏ai∈U(x+ τ(ai)) = flxt + fl−1xl−1 + · · ·+ f0

Then, Update calculates Σup as follows:


E0up = E

1
∏ai∈U τ(ai)

0

C1up = ∏
l+1
l=1 C fi−1

i
CMup =CM · ê(∏l

i=1 C− fi
i ,h)

=


E0up = h

κα·∏ai∈Se (γ+τ(ai))

∏ai∈U τ(ai)

C1up = g−ακ∑
l+1
i=1 γi−1 fi−1

CMup = M · ê(g,h)α·H (M) · ê(g,h)ακ∑
l
i=0 fiγi

=


E0up = h

κα·∏ai∈U (γ+τ(ai))

∏ai∈U τ(ai)
∏ai∈Se\U(γ+τ(ai))

C1up = u−κF(γ)
1

CMup = M · ê(g,h)α·H (M) · ê(g,h)ακF(γ)

=


E0up = hκα·∏ai∈Se\U(γ+τ(ai))F(γ)

C1up = u−κF(γ)
1

CMup = M ·K′

7.1.2. Designcryption Correctness
We assume a data user U having an attribute set AU which

satisfies the encryption and signing policies (t,Ss) and (t,Se).
In the following, we prove the correctness of PROUD, i.e., U
can retrieve the plaintext message using his attributes and the
related secret keys.

First, U derives the transformation keys tkU = (tskU , t pkU).
Afterwards, she forwards the public transformation key t pkU to
STES. This latter first proceeds by verifying the data owner O
signature as follows:

s = ê(g−α·γ,h
rES
−1

γ ·h
(rES

+H (M))·P(AS ,S)
(γ)

∏ai∈S∪Dn+t−1−s\AS
(τ(ai)+γ)

)

·ê(gα,h)H (M)·(1−U1− 1
U1

) ·

ê(g

(rES
+H (M))

∏ai∈AS
(γ+τ(ai))·∏ai∈S∪Dn+t−1−s\AS

τ(ai) ,

hα·∏ai∈S∪Dn+t−1−s (τ(ai)+γ)
)

= ê(g−α·γ,h
rES
−1

γ h
rES ·

P(AS ,S)
(γ)

∏ai∈S∪Dn+t−1−s\AS
(τ(ai)+γ)

)

·ê(g−α·γ,h
H (M)·

P(AS ,S)
(γ)

∏ai∈S∪Dn+t−1−s\AS
τ(ai))

·ê(gα,h)H (M) · ê(gα,h)−H (M)·U1 · ê(gα,h)
−H (M)

U1

·ê(g
rES

∏ai∈AS
(γ+τ(ai))·∏ai∈S∪Dn+t−1−s\AS

τ(ai) ,

hα·∏ai∈S∪Dn+t−1−s (τ(ai)+γ)
)·

14

ê(g
H (M)

∏a∈AS
(γ+τ(ai))·∏ai∈S∪Dn+t−1−s\AS

τ(ai) ,

hα·∏ai∈S∪Dn+t−1−s (τ(ai)+γ)
)

= ê(gα,h)H (M) · ê(gα,h)
−H (M)·∏ai∈Ss∪Dk+t−1−s\AU

γ+τ(ai)
τ(ai)

·ê(gα,h)

−H (M)

∏ai∈Ss∪Dk+t−1−s\AU
γ+τ(ai)

τ(ai)

ê(gα,h) · ê(gα,h)
H (M)·∏ai∈S∪Dn+t−1−s\AS

γ+τ(ai)
τ(ai)

·ê(gα,h)
−H (M)·∏ai∈S∪Dn+t−1−s\AS

τ(ai)
τ(ai)

·ê(gα,h)

H (M)·∏ai∈S∪Dn+t−1−s
(γ+τ(ai))

∏ai∈AS
(γ+τ(ai))·∏ai∈S∪Dn+t−1−s\AS

τ(ai)

= ê(gα,h)

Afterwards, STES uses the aggregated transformed secret
key A2 and t pkU3 to derive K′ which can be retrieved based on
two cases w.r.t. the ind operator value, such that:

• Case 1: in the case of adding attributes to the access pol-
icy, STES deduces the deciphering key K′′ such as:

K′′ = ê(C1, t pkU3) · ê(g,(σ3)
1
z)ê(A2,E0)

= ê(g−αγκ,h
rU−1

zγ) · ê(g,h
αH (M)

z)

·ê(g,h)
κ·rU ·α

z

= ê(g,h)−αγκ
rU−1

zγ · ê(g,h)
αH (M)

z

·ê(g,h)
κ·rU ·α

z

= ê(g,h)
−ακrU

z · ê(g,h)
rU ακ

z ê(g,h)
αH (M)

z ·

·ê(g,h)
κ·rU ·α

z

= ê(g,h)
α·κ

z · ê(g,h)
α·H (M)

z

= K
1
z

Finally, the STES returns K′′ to the user.

• Case 2: in the case of revoking attributes from the access
policy, STES deduces the deciphering key K′′ such as:

K′′ = ê(C1up , t pkU3) · ê(g,(σ3)
1
z)ê(A2,E0up)

= ê(g−αγκF(γ),h
rU−1

zγ) · ê(g,hα·H (M))

·ê(g,h)F(γ)κ·rU ·α

= ê(g,h)−αγκF(γ)
rU−1

zγ · ê(g,h)α·H (M)

·ê(g,h)F(γ)κ·rU ·α

= ê(g,h)
−F(γ)ακrU

z · ê(g,h)
F(γ)ακrU

z

ê(g,h)
αH (M)

z · ê(g,h)
F(γ)κ·rU ·α

z

= ê(g,h)
F(γ)α·κ

z · ê(g,h)
α·H (M)

z

= K′
1
z

Finally, the STES returns k′′ to the user.

7.2. Confidentiality
The following proof shows that PROUD is indistinguish-

able against replayable chosen ciphertext attacks (IND-RCCA2)
w.r.t. Theorem 2.

Proof. The Expcon f security game, defined in Section 4.2.1,
captures the behavior of a non-authorised entity. That is, the
adversary A attempts to distinguish between two signcrypted
messages generated relying on the signcryption algorithm con-
ducted by the challenger C .

As detailed in Section 6.1, the PROUD scheme relies on the
[11] construction, was already proved to be IND-CCA2 secure.
As such, we prove that if the ABSC scheme proposed in [11] is
IND-CCA2 secure, then, our PROUD scheme is IND-RCCA2
secure such that AdvA [Expcon f]≤AdvA [ExpABSC], w.r.t to Def-
inition 1.

As PROUD introduces two additional features, i.e; update
and outsourced-decryption, it is necessary to consider the extra-
knowledge of the adversary, inferred while performing these
algorithms. To this end, we define an adversary A running the
Expcon f security game with an entity B . This entity B is also
running the Belguith et al’s [11] CCA2-security game (ABSC-
Game) with a challenger C . The aim of this proof is to demon-
strate that the advantage of the adversary A to succeed in the
Expcon f game is smaller than the advantage of the entity B to
win ABSC-Game.

In the following, we specify the interactions carried be-
tween A , B and C . During the intialisation phase, A first de-
fines a set of signcryption attributes S∗, which is then shared
with C and B . This latter derives and broadcasts the public
parameters pp.

In the second phase, the interaction is mainly carried be-
tween C and B , with A running the following steps and algo-
rithms, as specified in the Expcon f game. That is, A attempts
to infer knowledge about the designcryption process by query-
ing the execution of the KeyGen, Transform and DesignCrypt

15

algorithms, relying on Private Key Query, Transformation
Key Query, DesignCryption Query, respectively.

Phase 1 Queries – C sets an empty table T. Then, for each
session i, A is allowed to issue Private Key Query, SignCryp-
tion Query and DesignCryption Query queries as follows:

• Private Key Query – when A queries a signcryption at-
tribute set AA ,i w.r.t. ti where |AA ,i ∩S∗e | < ti and |AA ,i ∩
S∗s | < ti, C performs KeyGen(PP,msk,C ,AC ,i) and re-

turns the generated secret key skA ,i = ({g
rA

γ+τ(ai) }ai∈AA ,

{hrA γ j} j=0,··· ,k−2,h
rA−1

γ) to A .

• Transformation Key Query – A requests the transfor-
mation key tkA ,i, associated to a set of attributes AA ,i. C
seeks the entry (AA ,i,skA ,i, tkA ,i) in table T. It returns the
transformation key if it exists in table T, otherwise C exe-

cutes the Transform to derive t pkA ,i = ({g
rA

z(γ+τ(ai)
)}ai∈AA ,

{h
rA γ j

z } j=0,··· ,k−2,h
rA−1

zγ) and tskA ,i = z and forwards them
to A .

• SignCryption Query – A requests the signcryption of a
message Mi w.r.t ti, while considering the access poli-
cies Ψe,Ψs. C performs KeyGen and derives skC ,i =
KeyGen(PP,msk,C ,AC ,i), such that |AC ,i ∩ S∗e | ≥ ti and
|AC ,i∩S∗s | ≥ ti. Thus, C executes SignCrypt(pp,skC ,AC ,i,
Ψe = (t,Se),Ψs = (t,Ss),M) and returns a ciphertext Σi
such that:

Σi =



B1 = ∏ai∈Ss∪Dk+t−1−s\AC τ(ai)

P(AC ,Ss)(γ) =
1
γ
(∏ai∈Ss∪Dk+t−1−s\AC (γ+ τ(ai))−B1)

σ1 = g
rO

∏ai∈AC (γ+τ(a)) ·g
H (M)

∏ai∈AC O(γ+τ(ai))

σ2 = skC3 ·h
rOP(AC ,Ss)(γ)/B1 ·hH (M)P(AC ,Ss)(γ)/B1

σ3 = hα·H (M)

E0 = hκα·∏ai∈Se (γ+τ(ai)),E1 = Eγ

0, · · · ,Ek−s = Eγ

k−s−1
C1 = u−κ

1 , · · · ,Cr+1 = u−κ

r+1
CM = ê(g,h)α·κ · ê(g,h)α·H (M) ·M = K ·M

• DesignCryption Query – A asks C to designcryp a ci-
phertext Σi w.r.t ti and a signcryption attribute set AA ,i. C
executes the KeyGen=(pp,msk,A ,AA ,i) to derive skA ,i =

{g
rA

γ+τ(a) }a∈AA ,{hrA γ j} j=0,··· ,k−2,h
rA−1

γ), such that |AC ,i∩
S∗e | ≥ ti and |AC ,i∩S∗s | ≥ ti. Finally, C runs the DesignCrypt
(pp,skA ,i,(t,Se),(t,Ss),Σi) algorithm4 that outputs a mes-
sage Mi or a reject symbol ⊥.

The Challenge Phase consists of selecting two messages
by A . This latter randomly picks M0

∗ and M1
∗ and an attribute

set U∗ where U∗ ∩ Se
∗ = /0 if ind = add or U∗ ⊂ Se

∗ if ind =
revoke. Afterwards, B selects AB such that AB ⊆ S ′e∗, such
as Se

′∗ = Se
∗ \U∗ for ind = add or Se

′∗ = Se
∗ ∪U∗ for ind =

4As C executes both DesignCryptout and DesignCrypt algorithms, we use
DesignCrypt to refer to both algorithms

revoke.
Subsequently, B transmits the access policy AB and the two
messages M0 and M1, defined by A to C . Then, the challenger
chooses a random bit b from {0,1} with Se

′∗ = Se
∗ \U∗ for

ind = add or S
′∗
e = Se

∗∪U∗ for ind = revoke and computes Σb
∗

using SignCrypt.

The challenger C sends Σb
∗ to the adversary if U = /0, oth-

erwise Σ∗bup
= Update(pp,Σb

∗, ind,U∗).

Phase 2 Queries – the adversary is allowed to query a poly-
nomial number of queries as in Phase 1 Queries, except that he
is unable to request the designcryption of the received challenge
signcrypted message Σb

∗ or Σ∗bup
.

Hereafter, two cases are defined w.r.t. the ind operator value,
chosen by C to signcrypt the challenging message such that:

• Case A – it corresponds to attributes’ addition, such that
C sets Se

′∗ = Se
∗∪U∗ and generates a signcrypted mes-

sage Σup,b. In this case, we first show that how a chal-
lenge signcrypted message should be produced in the fol-
lowing:.

Σup,b =



B1 = ∏ai∈Ss∪Dk+t−1−s\AC τ(ai)

P(AC ,Ss)(γ) =
1
γ
(∏ai∈Ss∪Dk+t−1−s\AC (γ+ τ(ai))−B1)

σ1 = g
rC

∏ai∈AC (γ+τ(ai)) ·g
H (Mb)

∏ai∈AC (γ+τ(ai))

σ2 = skC3 ·h
rC P(AC ,Ss)(γ)/B1 ·hH (Mb)P(AC ,Ss)(γ)/B1

σ3 = hα·H (Mb)

E0up = ∏
l
i=0 E fi

i
C1 = u−κ

1
CM = ê(g,h)α·κ · ê(g,h)α·H (Mb) ·Mb

• Case B – this case refers to attributes’ revocation, i.e.,
C defines Se

′∗ = Se
∗ \U∗ and generates a signcrypted

message Σup,b.

Σup,b =



B1 = ∏ai∈Ss∪Dk+t−1−s\AC τ(ai)

P(AC ,Ss)(γ) =
1
γ
(∏ai∈Ss∪Dk+t−1−s\AC (γ+ τ(ai))−B1)

σ1 = g
rC

∏ai∈AC (γ+τ(ai)) ·g
H (Mb)

∏ai∈AC (γ+τ(ai))

σ2 = skC3 ·h
rC P(AC ,Ss)(γ)/B1 ·hH (Mb)P(AC ,Ss)(γ)/B1

σ3 = hα·H (Mb)

E0up = hκ·∏ai∈Se\U(γ+τ(ai))F(γ)

C1up = u−κF(γ)
1

CMup = Mb · ê(g,h)α·H (Mb) · ê(g,h)ακF(γ)

Guess – the adversary A selects a bit b′. Then, B sends b′

to C as its guess about b. If b′ = b, C answers 1 as the solution
to the given instance of the aMSE−CDH problem with respect
to Definition 2 as introduced in [11].

The adversary A outputs a bit b′. The probability to break
the instance of Expcon f game is smaller than the ABSC-Game,
as it is necessary for B to win the game for A to be able to get
the correct Σ∗b, and try to guess the value of b.

16

Referring to Case A and Case B, it is noticeable that the
distribution of the received signcrypted challenge message does
not depend on the attributes’ addition and revocation. In other
words, the distribution of the challenge signcrypted message
is quite similar in both cases. In addition, thanks to the hard-
ness of the aMSE −CDH problem, A cannot guess the secret
values such as ri,γ used to generate the secret keys associated
to the set of signcryption attributes S∗. Thus, the adversary is
not able to guess the message even if he might after seeing
the challenge signcrypted message. Thus, Pr[Expcon f (1ξ)] ≤
Pr[ExpABSC(1ξ)], and the advantage of A is negligible.

Consequently, we show that our PROUD is secure against
replayable chosen ciphertexts attacks in the standard model, un-
der the aMSE−CDH assumption, w.r.t Expcon f security exper-
iment.

7.3. Unforgeability

The following proof shows that PROUD is unforgeable against
chosen message attacks w.r.t. Theorem 3.

Proof. The Expun f security game, introduced in Section 4.2.2,
captures the behavior of a non-authorised signing entity. In this
security game, the adversary A attempts to compute a sign-
crypted message, that can be correctly verified by the challenger
C , based on the DesignCrypt algorithm.

Similar to the confidentiality security game, discussed in
subsection 7.2, we show that the proposed PROUD scheme in-
herits the unforgeability property from the ABSC scheme pre-
sented in [11], w.r.t Definition 2.

In fact, as stated above, PROUD introduces two additional
properties, namely the update and outsourced-decryption fea-
tures. However, while three main algorithms are added to sup-
port those features, they do not induce any changes on the sig-
nature process and signcrypted messages’ distribution, contrary
to the encryption process. More precisely, the Update and
Transform algorithms do not involve any signature’s compo-
nent (i.e., (σ1,σ2,σ3)), in both inputs and outputs, compared to
the ABSC scheme, presented in [11]. Note that, the DesignCryptout
algorithm also keeps unchanged the signature’s components,
except σ3 which will be randomized using the transformation
factor z.

To this end, we define an adversary A performing the Expun f

security game with an entity B . This entity B is also running
the Belguith et al’s EUF-CMA-security game (ABSC-Game)
with a challenger C [11]. The aim of the proof is to demon-
strate that the advantage of the adversary A to succeed in the
Expun f game is smaller than the advantage of the entity B to
win ABSC-Game.

During the initialisation phase, the adversary A chooses
a set of signcryption attributes S∗ and a threshold t. After-
wards, he asks for the execution of the Private Key Query
while changing the threshold ti. In addition, A asks for the

signcryption of a message M under different signcryption at-
tribute sets and threshold values. By executing this SignCryp-
tion Query, the adversary attempts to get information about
the secret values included in the KeyGen and SignCrypt algo-
rithms.

• Private Key Query – when A queries a signcryption at-
tribute set AA ,i w.r.t. a threshold ti where |AA ,i ∩ S∗e | < ti
and |AA ,i∩S∗s |< ti, C answers by running the KeyGen
(PP,msk,C ,AC ,i) algorithm and returns the generated se-

cret key skA ,i = ({g
rA

γ+τ(a) }a∈AA ,{hrA γ j} j=0,··· ,k−2,h
rA−1

γ)
to A .

• SignCryption Query – A requests the signcryption of a
message Mi w.r.t a threshold ti, while considering the ac-
cess policies Ψe,Ψs. C executes the KeyGen algorithm
to generate the secret key skC ,i =KeyGen(PP,msk,C ,AC ,i),
such that |AC ,i∩S∗e | ≥ ti and |AC ,i∩S∗s | ≥ ti. Thus, C exe-
cutes SignCrypt(pp,skC ,AC ,i,Ψe =(t,Se),Ψs =(t,Ss),M)
and returns a ciphertext Σi as following:

Σi =



B1 = ∏ai∈Ss∪Dk+t−1−s\AC τ(ai)

P(AC ,Ss)(γ) =
1
γ
(∏ai∈Ss∪Dk+t−1−s\AC (γ+ τ(ai))−B1)

σ1 = g
rO

∏ai∈AC (γ+τ(a)) ·g
H (M)

∏ai∈AC O(γ+τ(ai))

σ2 = skC3 ·h
rOP(AC ,Ss)(γ)/B1 ·hH (M)P(AC ,Ss)(γ)/B1

σ3 = hα·H (M)

E0 = hκα·∏ai∈Se (γ+τ(ai)),E1 = Eγ

0, · · · ,Ek−s = Eγ

k−s−1
C1 = u−κ

1 , · · · ,Cr+1 = u−κ

r+1
CM = ê(g,h)α·κ · ê(g,h)α·H (M) ·M = K ·M

Subsequently, the adversary A attempts to generate a valid
signcryption w.r.t to the challenge policy (t∗,S∗). Thus, the
adversary A has to solve the aMSE−CDH problem for proving
that he has the required attributes to satisfy the (t∗,S∗) access
policy. Additionally, thanks to the random values added to the
generated signature, A has to solve the CDH problem.

However, thanks to the hardness of to the aMSE −CDH
problem and the CDH problem, the adversary cannot learn in-
formation about the secret values used in the key generation and
the signcryption process.

Consequently, we show that our PROUD scheme is unforge-
able against chosen message attack (EUF-CMA) in the standard
model, under the aMSE −CDH and CDH assumptions, w.r.t
Expun f security experiment.

7.4. Privacy

In the following proof, we prove that PROUD is computa-
tionally private w.r.t. Theorem 4.

Proof. The Exppriv security game, introduced in Section 4.2.3,
captures the behavior of a curious entity. Indeed, the adver-
sary A attempts to distinguish between two correctly-generated
signcrypted messages that have been derived w.r.t. the same set

17

of attributes. More precisely, an adversary cannot link a sign-
crypted message to a specific signing entity. PROUD is said to
be computationally private if any adversary A cannot win the
ExpPriv game with non-negligible advantage.

Upon receiving the set of public parameters generated by
the challenger during the initialisation phase, A selects two at-
tribute sets AS1 and AS2 which satisfy the access policy (t∗,S∗)
and sends them to C . The challenger generates the private keys
related to the sets of attribute AS1 and AS2 as follows:

skC1 = ({g
rC

γ+τ(ai) }ai∈AS1
,{hrCγ j} j=0,··· ,m−2,h

rC−1
γ)

skC2 = ({g
rC

γ+τ(ai) }ai∈AS2
,{hrCγ j} j=0,··· ,m−2,h

rEC
−1

γ)

During the Challenge Phase, the adversary A generates a
challenge message M and asks C to output the signcryption of
M using one of the private keys skC1 or skC2 , associated to ei-
ther AS1 or AS2 , respectively. For this purpose, the challenger
chooses a random bit b ∈ {0,1} and generates Σb by execut-
ing the algorithm SignCrypt(pp,skCb ,ASb ,(t

∗,S∗),Mb). Recall
that |ASb ∩ S∗| = t∗, thus C can derive a valid signcrytpion on
the randomly selected message Mb. Thus, to demonstrate that
PROUD is privacy preserving, we only have to demonstrate
that the signcrypted messages created using skC1 or skC2 are
identically-distributed.

Relying on skCb , the generated signcrypted message Σb is
detailed as follows:

Σb =



B1 = ∏ai∈S∗s∪Dk+t−1−s\ACb
τ(ai)

P(ACb ,S
∗s)(γ) =

1
γ
(∏ai∈S∗s∪Dk+t−1−s\ACb

(γ+ τ(ai))−B1)

σ1 = g
rO

∏ai∈ACb
(γ+τ(ai)) ·g

H (M)
∏ai∈ACb

O(γ+τ(ai))

σ2 = skCb,3 ·h
rOP(AC ,S∗s)(γ)/B1 ·h

H (Mb)P(ACb
,S∗s)(γ)/B1

σ3 = hα·H (Mb)

E0 = hκα·∏ai∈S∗e (γ+τ(ai)),E1 = Eγ

0, · · · ,Ek−s = Eγ

k−s−1
C1 = u−κ

1 , · · · ,Cr+1 = u−κ

r+1
CM,b = ê(g,h)α·κ · ê(g,h)α·H (Mb) ·Mb = K ·Mb

Upon receiving Σb, the adversary checks the validity the
signature, by calculating:

s = ê(u−1
0 ,σ2b) · ê(σ

1
B1
1b

,hα·∏ai∈S∪Dn+t−1−s (γ+τ(ai))) ·

ê(gα,h)H (Mb)·(1−U1− 1
U1

)
= ê(gα,h)

Since |ASb ∩S∗|= |AS1 ∩S|= |AS2 ∩S∗|= t∗, we prove that
the signature generated using the set of attributes AS1 (i.e., us-
ing the private key skC1) is similar to the signature derived rely-
ing on the set of attributes AS2 (i.e., using the secret key skC2).
Consequently, it is impossible for the adversary A to deduce the
set of attributes used to derive the signature w.r.t. the hardness
of the CDH problem.
Thus, our proposed PROUD scheme is computationally pri-
vate, under the CDH assumption, w.r.t Exppriv security experi-
ment

7.5. Verifiability

In the following proof, we prove that PROUD is verifiable
against lazy servers w.r.t. Theorem 5.

Proof. The Expveri f security games, presented in 4.2.4 captures
the behaviour of lazy server STES. That is, the goal of an ad-
versary A is to forge a compromised partially designcrypted
ciphertext, that can be correctly verified by the challenger C ,
by running Designcrypt algorithm.

To this end, we define an adversary A running the Expveri f

security game with an entity B . This entity B is also running a
collusion attack against hash function H with a challenger C .
The aim of this proof is to demonstrate that the advantage of the
adversary A to succeed in the Expveri f game is smaller than the
advantage of the entity B to win the collusion game.

In the following, we detail the interactions carried between
A , B and C . During the intialisation phase, A first defines a set
of signcryption attributes S∗, which is then shared with C and
B . This latter derives and publishes the public parameters.

Afterwards, the interaction is mainly carried between C and
B , with A running the following steps and algorithms, as de-
tailed in the Expveri f game. That is, A tries to gain knowledge
about the designcryption process by requesting the execution of
the KeyGen, Transform and DesignCrypt algorithms, relying
on Private Key Query, Transformation Key Query, Design-
Cryption Query, respectively.
Phase 1 Queries – C sets an empty table T. Then, for each ses-
sion i, A is allowed to issue Private Key Query, SignCryption
Query and DesignCryption Query queries as follows:

• Private Key Query – when A queries a signcryption at-
tribute set AA ,i w.r.t. a threshold ti where |AA ,i ∩ S∗e | < ti
and |AA ,i∩S∗s |< ti, C answers by running the KeyGen
(PP,msk,C ,AC ,i) algorithm and returns the generated se-

cret key skA ,i =({g
rA

γ+τ(ai) }ai∈AA ,{hrA γ j} j=0,··· ,k−2,h
rA−1

γ)
to A .

• Transformation Key Query – A requests the transfor-
mation key tkA ,i, associated to a set of attributes AA ,i.
C searches the entry (AA ,i,skA ,i, tkA ,i) in table T. It re-
turns the transformation key if it exists in table T, oth-
erwise C executes the Transform algorithm to generate

t pkA ,i = ({g
rA

z(γ+τ(ai)
)}ai∈AA ,{h

rA γi

z } j=0,··· ,k−2,h
rA−1

zγ) and
tskA ,i = z and forwards them to the adversary.

• SignCryption Query – A requests the signcryption of a
message Mi with respect to a threshold ti, while consider-
ing the access policies Ψe,Ψs. C executes the KeyGen al-
gorithm to generate the secret key skC ,i =KeyGen(PP,msk,
C ,AC ,i), such that |AC ,i ∩ S∗e | ≥ ti and |AC ,i ∩ S∗s | ≥ ti.
Thus, C executes SignCrypt(pp,skC ,AC ,i,Ψe =(t,Se),Ψs =
(t,Ss),M) and returns a ciphertext

18

Σi =



B1 = ∏ai∈Ss∪Dk+t−1−s\AC τ(ai)

P(AC ,Ss)(γ) =
1
γ
(∏ai∈Ss∪Dk+t−1−s\AC (γ+ τ(ai))−B1)

σ1 = g
rO

∏ai∈AC (γ+τ(ai)) ·g
H (M)

∏ai∈AC O(γ+τ(ai))

σ2 = skC3 ·h
rOP(AC ,Ss)(γ)/B1 ·hH (M)P(AC ,Ss)(γ)/B1

σ3 = hα·H (M)

E0 = hκα·∏ai∈Se (γ+τ(ai)),E1 = Eγ

0, · · · ,Ek−s = Eγ

k−s−1
C1 = u−κ

1 , · · · ,Cr+1 = u−κ

r+1
CM = ê(g,h)α·κ · ê(g,h)α·H (M) ·M = K ·M

• DesignCryption Query – A asks C to designcryp a ci-
phertext Σi with respect to a threshold ti and a signcryp-
tion attribute set AA ,i. C executes the KeyGen=(pp,msk,
A ,AA ,i) algorithm to output the related private key as

skA ,i = {g
rA

γ+τ(ai) }ai∈AA ,{hrA γ j} j=0,··· ,k−2,h
rA−1

γ), such that
|AC ,i ∩ S∗e | ≥ ti and |AC ,i ∩ S∗s | ≥ ti. Finally, C runs the
DesignCrypt(pp,skA ,i,(t,Se),(t,Ss),Σi) algorithm5 that
outputs a message Mi or a reject symbol ⊥.

Phase 2 Queries – in this phase, A can query a polynomi-
ally bounded number of queries as in Phase 1 Queries, except
that A cannot query the designcryption of the challenge mes-
sages M0 and M1.

Hereafter, two cases are defined w.r.t. the ind operator value,
chosen by C to encrypt the challenging message such that:

• Case A – it corresponds to attributes’ addition, such that
C sets Se

′∗ = Se
∗∪U∗ and generates a signcrypted mes-

sage Σup,b. In this case, we first show that how a chal-
lenge signcrypted message should be produced in the fol-
lowing:.

Σup,b =



B1 = ∏ai∈Ss∪Dk+t−1−s\AC τ(ai)

P(AC ,Ss)(γ) =
1
γ
(∏ai∈Ss∪Dk+t−1−s\AC (γ+ τ(ai))−B1)

σ1 = g
rC

∏ai∈AC (γ+τ(ai)) ·g
H (Mb)

∏ai∈AC (γ+τ(ai))

σ2 = skC3 ·h
rC P(AC ,Ss)(γ)/B1 ·hH (Mb)P(AC ,Ss)(γ)/B1

σ3 = hα·H (Mb)

E0up = ∏
l
i=0 E fi

i
C1 = u−κ

1
CM = ê(g,h)α·κ · ê(g,h)α·H (Mb) ·Mb

• Case B – this case refers to attributes’ revocation, i.e.,
C defines Se

′∗ = Se
∗ \U∗ and generates a signcrypted

message Σup,b.

5As C executes both DesignCryptout and DesignCrypt algorithms, we use
DesignCrypt to refer to both algorithms

Σup,b =



B1 = ∏ai∈Ss∪Dk+t−1−s\AC τ(ai)

P(AC ,Ss)(γ) =
1
γ
(∏ai∈Ss∪Dk+t−1−s\AC (γ+ τ(ai))−B1)

σ1 = g
rC

∏ai∈AC (γ+τ(ai)) ·g
H (Mb)

∏ai∈AC (γ+τ(ai))

σ2 = skC3 ·h
rC P(AC ,Ss)(γ)/B1 ·hH (Mb)P(AC ,Ss)(γ)/B1

σ3 = hα·H (Mb)

E0up = hκ·∏ai∈Se\U(γ+τ(ai))F(γ)

C1up = u−κF(γ)
1

CMup = Mb · ê(g,h)α·H (Mb) · ê(g,h)ακF(γ)

Forge – A generates an attribute set {A∗A ,i} and a valid
partially designcrypted ciphertext Σ∗part without executing the
DesignCryptout algorithm. The adversary A has to break the
collusion resistance property of a H . Thanks to the collusion
resistance feature of hash functions [43], A cannot generates
H (Mpart) that satisfies the equality V = σ3 without knowing
M. Therefore, if Mpart ,M′, then V , σ3.

Consequently, we demonstrate that PROUD scheme is ver-
ifiable against lazy server attacks in the standard model, under
to the collusion resistance of hash functions w.r.t to Expveri f se-
curity experiment.

8. Performances Analysis

This section introduces the computation, storage and com-
munication overheads of PROUD scheme. For our performance
analysis, we present a detailed comparison of processing costs
of main algorithms, i.e, SignCrypt, Update, DesignCrypt and
DesignCryptout while considering the size of users’ secret keys,
transformation keys and ciphertext against closely related ABSC
schemes offering similar features, such as policy update and
outsourced designcryption.
Table 3 details the computation costs of PROUD compared to
the state-of-the-art schemes. While, Table 4 presents the stor-
age and communication overheads comparison. Note that nota-
tions used in these comparisons are defined in Table 2.

In the following, we first discuss the computation costs in
Section 8.2, and then, we detail the storage and communication
overheads in Section 8.1.

8.1. Computation Complexities
As the computation of exponentiations operations and pair-

ing functions are considered as the most costly mathematical
operations in attribute based techniques, we compare ABSC
schemes based on the execution of these operations in Table 3.

Liu et al. [26] have proposed an ABSC scheme support-
ing outsourced designcryption. In this scheme, the execution of
the SignCrypt algorithm requires (1+ 4|AU |) exponentiations
in G1. The outsourced designcryption procedure necessitates
the performance of 2|AU | pairing functions. The user is re-
quired to compute one exponentiation in G1, one exponentia-
tion in G1 and |AU | execution of pairing functions-where |AU |
is the size of the user’s attribute set are computed, during the
running of the DesignCrypt algorithm.

19

Table 3: Computation Costs of ABSC Schemes
Scheme Update Outsourcing Update Cost SignCryption Cost User DesignCrytion Cost STES DesignCrytion Cost

[26] 7 X −− E1(1+4|AU |) |AU |τp +E1 +ET 2τp|AU |
[25] 7 X −− (|AU |+1)E +10E1 +E1(6ss +2se)+O(H) 3O(H)+ τp(5+2ss)+E1(5+7ss +2se) E1(|AU |+4+6ss +2se)+E(2+ ss)+5τp
[29] 7 X −− E1(7ss +9+ |AU |+4se)+E(se +1)+3O(H) E1 E1(9se +2+3ss)+ τp(3+ se)+2seE

[6] X 7 (k− se +2)E1 +E lE1 |AU |E1 +2τp −−
(r+2)E1 +E (2l +2)E1 + τp |AU |E1 +2τp

[5] X 7 (k− se +2+ r)E1 +E (3l +2)E1 + τp 2τp +E1 +(|AU |+1)E −−
[30] X 7 lE3 (1+ k+ |AE |)E2 +E1 +E + τp 2τp +E2 +(|AU |+1)E −−

PROUD X X (1+ l)E2 +2lE1 + τp (r+1)E1 +(3+ k− se)E2 +2E E +E2 +H (M) 6τp +3E1 +E2 +2E

Table 4: Comparison of Storage Costs and Communication Overheads between PROUD and Closely Related ABSC Schemes

Schemes
Key Size Transformation Ciphertext Size SYSINIT STORAGE RETRIEVAL From CSP RETRIEVAL From STES

Key size Communication Cost (bits) Communication Cost (bits) Communication Cost (bits) Communication Cost (bits)
[26] 3ss 2+3|AU |+ |AU ||AO| |AU | |pp|+3ssΦ |AU |Ω |AU |Ω (2+3|AU |+ |AU ||AO|)Φ+ |AU |Ω
[29] 2+2|AU | 2+2|AU |+2k 4+ ss +4se |pp|+(2+2|AU |)Φ (4+ ss +4se)Ω (4+ ss +4se)Ω (2+2|AU |+2k)Φ+(4+ ss +4se)Ω
[25] 5+2|AU | 4+ |AU | 11Ω |pp|+(5+2|AU |)Φ 11Ω 11Ω 11Ω+(4+ |AU |)Φ

[6] |AU |+1 −− 3+ k− se / 3 |pp|+(|AU |+1)Φ (3+ k− se)Ω 3Ω −−
|AU |+1 −− r+3 / 3 |pp|+(|AU |+1)Φ (r+3)Ω 3Ω −−

[5] (|AU |+1)k −− 3+ k− se + r/3 |pp|+((|AU |+1)k)Φ (3+ k− se + r)Ω 3Ω −−
[30] (|AU |+1)k −− 1+ k−|AU |/3 |pp|+((|AU |+1)k)Φ (1+ k−|AU |)Ω 3Ω −−

PROUD |AU |+ k |AU |+ k+1 6+ k− s+ r/8 |pp|+(|AU |+ k)Φ (6+ k− s+ r)Ω 8Ω (|AU |+ k+1)Φ+8Ω

In [25], the signcryption of a message needs (10+6ss+2se)
exponentiations in G1, and (|AU |+1) exponentiations in G. To
recover a plaintext, the edge server executes (5+7ss +2se) ex-
ponentiations in G1 and (5+ 2ss) pairing functions, while the
end-users is required to compute (|AU |+ 4+ 6ss + 2se) expo-
nentiations in G1 and 5 pairing functions to fully retrieve data.

The authors in [29] propose an outsourced ABSC scheme
where the signcryption algorithm requires an overhead equal to
E1(7ss +9+ |AU |+4se)+E(se +1)+3O(H). The outsourced
designcryption algorithm DesignCryptout executes (9se + 2+
3ss) exponentiations in G1, (3+ se) pairing functions and 2se
exponentiations in G. Unlike the above-mentioned schemes,
this scheme fully releases the user from most of the design-
cryption computation, therefore, DesignCrypt algorithm neces-
sitates only one exponentiation in G.

Despite of the application of the outsourcing feature have
reduced the computation costs at the end-user side, the schemes
presented in [26], [25] and [29] do not support access policy
update.

Jiang et al. [6] introduces a CP-ABE scheme which sup-
ports access policy update. This scheme considers two inde-
pendent constructions, the first for adding attributes while the
second allows attributes revocation. In the attribute addition
algorithm, the encryption of a message requires k− se + 2 ex-
ponentiations in G1 and only one exponentiation in G while in
the second algorithm r+2 exponentiations in G1 and only one
exponentiation in G. The update algorithm execution requires
l exponentiations in G1 to add attributes and 2l+2 exponentia-
tions in G1 and one pairing operation to revoke attributes. The
decryption algorithm overhead is equal to 2τp +nE1.

The scheme proposed in [5] requires the execution of (k−
se + 2+ r) exponentiations in G1 and only one exponentiation
in G during the encryption phase. In this scheme, the update
procedure is executed using one algorithm that requires (3l +
2) exponentiations in G1 and one pairing function, to add and
remove attributes.

PROUD is the first ABSC scheme that ensures updating ac-
cess policies after generating ciphertext while reducing users
overhead by applying outsourcing technique. During signcryp-
tion, the overhead is equal to (r+1)E1+(3+k−se)E2+2E. To
designcrypt data, users leverages most of computation overhead
to STES which executes 3 exponentiations in G1, one exponen-
tiation in G2, 2 exponentiations in G and 6 pairing operations.
In the last phase, the user is only required to execute one expo-
nentiation in G1 to designcrypt data and E2 +H (M) to verify
the accuracy of the plaintext.

PROUD scheme presents quite similar overhead compared
to the costs of related ABSC schemes while providing more
practical features mainly related to desingncryption outsourcing
and policy update.

8.2. Storage and Communication Overheads

In [26], the authors proposed an outsourced ABSC scheme.
Nevertheless, the storage overhead incurred by this scheme de-
pends on the size of encryption and signing. For instance, the
size of the generated ciphertext is proportional to the number of
attributes composing the user’s access policy. Deng et al. [25]
have introduced a constant size ABSC scheme ensuring out-
sourced designcryption. This scheme generates a fixed number
of ciphertext elements equal to 11. Although the scheme pro-
posed in [29] supports outsourcing designcryption overheads to
an edge server, it outputs a ciphertext whose size is equal to
4+ ss + 4se. Indeed, this ciphertext size grows with the num-
ber of attributes composing both signing and encrypting access
policies. Except for ABSC scheme proposed in [25], state of
the art outsourced ABSC schemes such as [25, 26] generate
important storage and communication costs due to the size of
the ciphertext. In ABE schemes [6, 5, 30], policy update feature
affects the size of the ciphertext. Therefore, the size of the ci-
phertext produced by the data owner is not constant and is equal
to 3+k− se + r that depends on the size of attributes universes,
encrypting access policy and revocation set. This important size

20

is mainly due to addition of ciphertext elements required by the
update algorithm. However, after performing the access policy
update, the end-user only downloads a fixed number of cipher-
text elements which saves storage costs at his side.

Similar to ABE schemes supporting access policy update,
the data owner in PROUD generates a ciphertext whose size is
equal to 6+ k− se + r. This ciphertext depends on r and k due
to the ciphertext elements required to fulfill the update feature.
The end-user downloads a fixed ciphertext size equal to 8 which
reduces the storage and communication overhead incurred by
the use of PROUD scheme.

As depicted by Table 4, the communications overhead of
PROUD is acceptable in a cloud assisted IoT environment. Com-
pared to other state of the art ABSC schemes, PROUD sup-
ports access policies update which requires storing extra ci-
phertext components at the CSP side. However, communica-
tion between users and CSP are consuming low costs thanks to
the constant size of the ciphertext. Although the scheme pre-
sented in [25] offers a limited bandwidth consumption as well,
PROUD outperforms it by ensuring access policy update.

PROUD introduces two interesting features, i.e., outsourced
signcryption and access policy update while incurring reason-
able storage and communication overheads.

8.3. Resource-Constrained Performance Analysis

As the presented use case scenario is a vehicular network,
we aim at first testing the computation overheads on several
generic IoT devices as well as on the servers sides.

To simulate the performances of PROUD on the server sides
i.e., CSP and STES, we have tested the performances of the el-
ementary cryptographic operations (pairing and exponentiation
operations) on a laptop. Table 5 presents the specification of the
used computer.

As PROUD relies on the use of bilinear maps as well as
mathematical operations in a multiplicative group, we investi-
gate the impact of these operations on the performances of our
proposal while considering three security levels (cf. Figure 3
and Figure 4).

In cryptography, the brute-force attack consists in checking
all possible keys until the correct one is found (i.e; with a key
of length S bits, there are 2S possible keys). S is defined as
the security level in symmetric cryptography. In asymmetric
cryptography, the security level of an algorithm is defined with
respect to the hardness of solving a mathematical problem such
as the Discrete Logarithm Problem (DLP). The time required
to resolve the DLP problem is much less important than trying
the 2S keys by a brute-force attack. That is why, public key
cryptosystems must be longer than symmetric algorithm keys.
For example, a 1024 RSA key-length bits provides a 80 key-
length equivalent key of a symmetric algorithm.

On one hand, we choose to implement two symmetric pair-
ing functions mainly type A and type E as well as two asymmet-
ric pairing functions, type D and type G [44, 45?]. As shown in
Figure 3, we notice that type A pairing function is slower than
type D pairing function respectively type E and type G. In addi-
tion, the processing overheads of the different pairing functions

Exponentiation Cost (s) 80 112 128
80 0.12 Type A 0.5 2.75 8

112 0.405 Type D 3 10 22.5
128 0.72 Type E 3 12 30.75

Type G 5 24.5 72.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

80 112 128

Tim
e(

m
s)

Security Level (bits)
0

10

20

30

40

50

60

70

80

Tim
e (

m
s)

Security Level (bits)

Type A

Type D

Type E

Type G

Figure 3: Pairing Function Computation Costs at the Server Side

Exponentiation Cost (s) 80 112 128
80 0.12 Type A 0.5 2.75 8

112 0.405 Type D 3 10 22.5
128 0.72 Type E 3 12 30.75

Type G 5 24.5 72.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

80 112 128
Ti

m
e(

m
s)

Security Level (bits)
0

10

20

30

40

50

60

70

80

Ti
m

e
(m

s)

Security Level (bits)

Type A

Type D

Type E

Type G

Figure 4: Exponentiation Computation Costs at the Server Side

increase along with the security level. For instance, type A pair-
ing function requires 0.76 ms considering a security level equal
to 80, however, type D pairing function takes 03.23 ms under
the same security level. Besides, while considering a security
level equal to 128, type A, type D and type G pairing functions’
time durations are equal to 07.79ms, 22.6 ms and 72.46 ms, re-
spectively. As such, the type of the pairing function should be
taken into account, while implementing a cryptographic mech-
anism.

On the other hand, we evaluate the computation cost of the
multiplication operation as this elementary operation is an im-
portant criterion to evaluate the system performances. Figure
5 illustrates that the average time of exponentiation operations
increases along with the security level. We must note that these
results have been obtained while choosing type A pairing func-
tion and fixing three security levels. The exponentiation oper-

Exponentiation Procedure
Sony Smart Watch 0.03
Samsung Galaxy S4 0.021
JIAYU S3 Advanced 0.02
Intel Edison 1.7
Rasberry Pi 2B 1.71

Pairing Procedure
Sony Smart Watch 1600
Samsung Galaxy S4 1150
JIAYU S3 Advanced 1000
Intel Edison 400
Rasberry Pi 2B 1650

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Exponentiation Procedure

O
pe

ra
tio

n
Ti

m
e

(m
s)

Sony Smart Watch

Samsung Galaxy S4

JIAYU S3 Advanced

Intel Edison

Rasberry Pi 2B

0
200
400
600
800

1000
1200
1400
1600
1800

Pairing Procedure

O
pe

ra
tio

n
Ti

m
e

(m
s)

Sony Smart Watch

Samsung Galaxy S4

JIAYU S3 Advanced

Intel Edison

Rasberry Pi 2B

Figure 5: Exponentiation Computation Costs

21

Table 5: Performances of the Used Machines
Machine OS Processor Memory CPU
ASUS Ubuntu 12.04 Intel Core i7-5500U 8 Go 3 GHZ

Table 6: Selected Devices

Device Type Processor
Sony SmartWatch 3 SWR50 Smart Watch 520 MHz Single-core Cortex-A7
Samsung I9500 Galaxy S4 Smartphone 1.6 GHz Dual-Core Cortex-A15

Jiayu S3 Advanced Smartphone 1.7 GHz Octa-Core 64bit Cortex A53
Intel Edison IoT Development Board 500 MHz Dual-Core Intel AtomTM CPU, 100 Mhz MCU

Raspberry Pi 2 model B IoT Development Board 900 MHz Quad-Core ARM Cortex-A7

Exponentiation Procedure
Sony Smart Watch 0.03
Samsung Galaxy S4 0.021
JIAYU S3 Advanced 0.02
Intel Edison 1.7
Rasberry Pi 2B 1.71

Pairing Procedure
Sony Smart Watch 1600
Samsung Galaxy S4 1150
JIAYU S3 Advanced 1000
Intel Edison 400
Rasberry Pi 2B 1650

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Exponentiation Procedure

O
pe

ra
tio

n
Ti

m
e

(m
s)

Sony Smart Watch

Samsung Galaxy S4

JIAYU S3 Advanced

Intel Edison

Rasberry Pi 2B

0
200
400
600
800

1000
1200
1400
1600
1800

Pairing Procedure

O
pe

ra
tio

n
Ti

m
e

(m
s)

Sony Smart Watch

Samsung Galaxy S4

JIAYU S3 Advanced

Intel Edison

Rasberry Pi 2B

Figure 6: Pairing Computation Costs

ation requires 0.112 ms and 0.727 considering security levels
equal to 80 and 128, respectively. In addition, the multiplica-
tion overhead starts from 0.001 ms while fixing a security level
equal to 80 and goes up to 0.003 ms considering a security level
equal to 128.

Figure 6 shows the computation cost of one pairing opera-
tion in different IoT devices (cf., Table 6). The most efficient
device is Intel Edison that computes a single pairing operation
in around 500 ms. The computation cost of an exponentiation
operation in different IoT devices, as presented in Table 6, is
shown in Figure 5.

9. CONCLUSIONS

IoT devices are generating an extremely growing amount of
data that cannot be handled by IoT devices themselves. Cloud
and edge computing permit to assist and provide storage and
computation capabilities to IoT devices in order to help them
with processing and storing generated data. Thus, Cloud as-
sisted IoT has emerged as an extension of IoT networks to en-
sure the optimal computation and storage for data collected by
IoT devices. However, these paradigms raise several security
and privacy concerns.

A novel privacy-preserving attribute based signcryption scheme,
PROUD, is introduced. It presents several security features that

makes it suitable for several Cloud-assisted IoT environments
such as vehicular networks, e-health systems and smart homes.
PROUD ensures privacy preserving and flexible access con-
trol to shared data among dynamic groups of users. It also re-
duces computation overheads at the end-users’ side by leverag-
ing edge servers support to partially designcrypt received data.
PROUD is the first ABSC scheme that support updating ac-
cess policies by adding and/or removing attributes after gen-
erating and storing the ciphertext in the cloud without requir-
ing any proxy-servers neither re-encrypting data or re-issuing
users’ keys.

The security of PROUD has been proved through four se-
curity games, w.r.t. the confidentiality, unforgeability, privacy
and verifiability properties. That is, additionally to correctness,
PROUD has been proven to be resistant to several data leak-
age and forgery attacks performed either by a curious entity,
a malicious user or a lazy edge server. Finally, a theoretical
performances’ evaluation pointed out that PROUD provides ac-
ceptable overheads in terms of communication, storage and pro-
cessing, compared to related work.

As future work, we aim to test the performances of PROUD
in a real-world environment by implementing the different al-
gorithms in an Autonomous Vehicle Platooning environment as
explained in the proposed use-case scenario. In addition, we
aim to review the designed attribute based signcryption scheme
in order to propose a post-quantum construction [46].

References

[1] Regulation(EU), 2016/679 of the european parliament and of the council
of 27 april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and
repealing directive 95/46/ec (general data protection regulation), ojeu l
119/1 of 4.05.2016., 2016.

[2] M. Gagne, S. Narayan, R. Safavi-Naini, Threshold attribute-based sign-
cryption, in: Security and Cryptography for Networks, Springer, 2010.

[3] S. Belguith, N. Kaaniche, M. Mohamed, G. Russello, Coop-daab: Coop-
erative attribute based data aggregation for internet of things applications,
in: OTM Confederated International Conferences” On the Move to Mean-
ingful Internet Systems”, Springer, 2018, pp. 498–515.

[4] S. Debnath, M. V. Nunsanga, B. Bhuyan, Study and scope of signcryption

22

for cloud data access control, in: Advances in Computer, Communication
and Control, Springer, 2019, pp. 113–126.

[5] S. Belguith, N. Kaaniche, G. Russello, Lightweight attribute-based en-
cryption supporting access policy update for cloud assisted iot, in: 13th
IEEE International Conference on Security and Cryptography(Secrypt),
2018, pp. 135–146. doi:10.5220/0006854601350146.

[6] Y. Jiang, W. Susilo, Y. Mu, F. Guo, Ciphertext-policy attribute-based en-
cryption supporting access policy update and its extension with preserved
attributes, International Journal of Information Security (2017) 1–16.

[7] L. Nkenyereye, Y. Park, K. H. Rhee, A secure billing protocol over
attribute-based encryption in vehicular cloud computing, EURASIP Jour-
nal on Wireless Communications and Networking 2016 (1) (2016) 196.

[8] A. Sajid, H. Abbas, Data privacy in cloud-assisted healthcare systems:
state of the art and future challenges, Journal of medical systems 40 (6)
(2016) 155.

[9] S. Cui, S. Belguith, P. De Alwis, M. R. Asghar, G. Russello, Malicious
entities are in vain: Preserving privacy in publish and subscribe systems,
in: 2018 17th IEEE International Conference On Trust, Security And Pri-
vacy In Computing And Communications/12th IEEE International Con-
ference On Big Data Science And Engineering (TrustCom/BigDataSE),
IEEE, 2018, pp. 1624–1627.

[10] C. Esposito, M. Ciampi, On security in publish/subscribe services: a sur-
vey, IEEE Communications Surveys & Tutorials 17 (2) (2015) 966–997.

[11] S. Belguith, N. Kaaniche, M. Laurent, A. Jemai, R. Attia, Constant-size
threshold attribute based signcryption for cloud applications, in: SE-
CRYPT 2017: 14th International Conference on Security and Cryptog-
raphy, Vol. 6, Scitepress, 2017, pp. 212–225.

[12] N. Chen, M. Gerla, D. Huang, X. Hong, Secure, selective group broadcast
in vehicular networks using dynamic attribute based encryption, in: Ad
Hoc Networking Workshop (Med-Hoc-Net), 2010 The 9th IFIP Annual
Mediterranean, IEEE, 2010, pp. 1–8.

[13] J. Zhou, X. Dong, Z. Cao, A. V. Vasilakos, Secure and privacy preserving
protocol for cloud-based vehicular dtns, IEEE Transactions on Informa-
tion Forensics and Security 10 (6) (2015) 1299–1314.

[14] F. Gonçalves, B. Ribeiro, V. Hapanchak, S. Barros, O. Gama, P. Araújo,
M. J. Nicolau, B. Dias, J. Macedo, A. Costa, et al., Secure management of
autonomous vehicle platooning, in: Proceedings of the 14th ACM Inter-
national Symposium on QoS and Security for Wireless and Mobile Net-
works, ACM, 2018, pp. 15–22.

[15] F. Chen, Y. Han, D. Jiang, X. Li, X. Yang, Outsourcing the unsigncryption
of compact attribute-based signcryption for general circuits, in: Interna-
tional Conference of Young Computer Scientists, Engineers and Educa-
tors, Springer, 2016, pp. 533–545.

[16] S. Belguith, N. Kaaniche, M. Hammoudeh, Analysis of attribute-based
cryptographic techniques and their application to protect cloud services,
Transactions on Emerging Telecommunications Technologies e3667.

[17] Y. S. Rao, R. Dutta, Efficient attribute-based signature and signcryption
realizing expressive access structures, International Journal of Informa-
tion Security 15 (1) (2016) 81–109.

[18] Y. S. Rao, Attribute-based online/offline signcryption scheme, Interna-
tional Journal of Communication Systems 30 (16) (2017) e3322.

[19] S. Belguith, N. Kaaniche, M. Laurent, A. Jemai, R. Attia, Account-
able privacy preserving attribute based framework for authenticated en-
crypted access in clouds, Journal of Parallel and Distributed Computing
135 (2020) 1–20.

[20] M. Green, S. Hohenberger, B. Waters, et al., Outsourcing the decryption
of abe ciphertexts, in: USENIX Security Symposium, no. 3, 2011.

[21] W. H. Negalign, H. Xiong, A. A. Addis, Y. G. Ashenafi, D. M. Geresu,
Outsourced attribute-based signcryption in the cloud computing, in: 2018
15th International Computer Conference on Wavelet Active Media Tech-
nology and Information Processing (ICCWAMTIP), IEEE, 2018, pp. 40–
44.

[22] J. Lai, R. H. Deng, C. Guan, J. Weng, Attribute-based encryption
with verifiable outsourced decryption, IEEE Transactions on Information
Forensics and Security 8 (8) (2013) 1343–1354.

[23] J. Li, F. Sha, Y. Zhang, X. Huang, J. Shen, Verifiable outsourced decryp-
tion of attribute-based encryption with constant ciphertext length, Secu-
rity and Communication Networks 2017.

[24] S. Belguith, N. Kaaniche, M. Laurent, A. Jemai, R. Attia, Phoabe: Se-
curely outsourcing multi-authority attribute based encryption with policy
hidden for cloud assisted iot, Computer Networks 133 (2018) 141–156.

[25] F. Deng, Y. Wang, L. Peng, H. Xiong, J. Geng, Z. Qin, Ciphertext-policy
attribute-based signcryption with verifiable outsourced designcryption for
sharing personal health records, IEEE Access.

[26] X. LIU, Y. Xia, Z. Sun, Provably secure attribute based signcryption with
delegated computation and efficient key updating, KSII Transactions on
Internet and Information Systems 11 (5) (2017) 2646.

[27] K. Liang, M. H. Au, J. K. Liu, W. Susilo, D. S. Wong, G. Yang, Y. Yu,
A. Yang, A secure and efficient ciphertext-policy attribute-based proxy re-
encryption for cloud data sharing, Future Generation Computer Systems
52 (2015) 95–108.

[28] C. Ge, W. Susilo, L. Fang, J. Wang, Y. Shi, A cca-secure key-policy
attribute-based proxy re-encryption in the adaptive corruption model for
dropbox data sharing system, Designs, Codes and Cryptography (2018)
1–17.

[29] Q. Xu, C. Tan, Z. Fan, W. Zhu, Y. Xiao, F. Cheng, Secure data access
control for fog computing based on multi-authority attribute-based sign-
cryption with computation outsourcing and attribute revocation, Sensors
18 (5) (2018) 1609.

[30] S. Belguith, N. Kaaniche, G. Russello, Pu-abe: Lightweight attribute-
based encryption supporting access policy update for cloud assisted
iot, in: 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), IEEE, 2018, pp. 924–927.

[31] S. Belguith, N. Kaaniche, G. Russello, Cups: Secure opportunistic cloud
of things framework based on attribute-based encryption scheme support-
ing access policy update, Security and Privacy e85.

[32] Y. S. Rao, A secure and efficient ciphertext-policy attribute-based sign-
cryption for personal health records sharing in cloud computing, Future
Generation Computer Systems 67 (2017) 133–151.

[33] K. Emura, A. Miyaji, M. S. Rahman, Dynamic attribute-based signcryp-
tion without random oracles, International Journal of Applied Cryptogra-
phy 2 (3).

[34] J. Liu, X. Huang, J. K. Liu, Secure sharing of personal health records in
cloud computing: ciphertext-policy attribute-based signcryption, Future
Generation Computer Systems 52.

[35] S. Belguith, N. Kaaniche, A. Jemai, M. Laurent, R. Attia, Pabac: a pri-
vacy preserving attribute based framework for fine grained access control
in clouds, in: 13th IEEE International Conference on Security and Cryp-
tography(Secrypt), 2016.

[36] N. Kaaniche, M. Laurent, Attribute-based signatures for supporting
anonymous certification, in: European Symposium on Research in Com-
puter Security, Springer, 2016, pp. 279–300.

[37] D. H. Phan, D. Pointcheval, On the security notions for public-key en-
cryption schemes, in: International Conference on Security in Communi-
cation Networks, Springer, 2004, pp. 33–46.

[38] R. Canetti, H. Krawczyk, J. B. Nielsen, Relaxing chosen-ciphertext secu-
rity, in: Annual International Cryptology Conference, Springer, 2003, pp.
565–582.

[39] C. Delerablée, P. Paillier, D. Pointcheval, Fully collusion secure dynamic
broadcast encryption with constant-size ciphertexts or decryption keys,
in: International Conference on Pairing-Based Cryptography, Springer,
2007, pp. 39–59.

[40] C. Delerablée, D. Pointcheval, Dynamic threshold public-key encryption,
in: Annual International Cryptology Conference, Springer, 2008.

[41] J. Herranz, F. Laguillaumie, C. Ràfols, Constant size ciphertexts in thresh-
old attribute-based encryption, in: International Workshop on Public Key
Cryptography, Springer, 2010, pp. 19–34.

[42] N. Attrapadung, J. Herranz, F. Laguillaumie, B. Libert, E. De Panafieu,
C. Ràfols, Attribute-based encryption schemes with constant-size cipher-
texts, Theoretical Computer Science 422 (2012) 15–38.

[43] Y. Lindell, J. Katz, Introduction to modern cryptography, Chapman and
Hall/CRC, 2014.

[44] B. Lynn, On the implementation of pairing-based cryptosystems, Ph.D.
thesis, Stanford University (2007).

[45] S. Belguith, N. Kaaniche, M. Mohamed, G. Russello, C-absc: cooperative
attribute based signcryption scheme for internet of things applications,
in: 2018 IEEE International Conference on Services Computing (SCC),
IEEE, 2018, pp. 245–248.

[46] M. S. Rahman, A. Basu, S. Kiyomoto, Decentralized ciphertext-policy
attribute-based encryption: A post-quantum construction., J. Internet
Serv. Inf. Secur. 7 (3) (2017) 1–16.

23

