
EBNO: EVOLUTION OF COST-SENSITIVE BAYESIAN NETWORKS 1

 EBNO: Evolution of Cost-Sensitive Bayesian

Networks

Eman Nashnush and Sunil Vadera1

Author version of article to appear in the Expert Systems Journal (accepted Oct 2019).

ABSTRACT

The last decade has seen an increase in the attention paid to the development of cost sensitive learning algorithms that

aim to minimize misclassification costs while still maintaining accuracy. Most of this attention has been on cost sensitive

decision tree learning, while relatively little attention has been paid to assess if it is possible to develop better cost

sensitive classifiers based on Bayesian networks. Hence, this paper presents EBNO, an algorithm that utilizes Genetic

Algorithms to learn cost sensitive Bayesian networks; where genes are utilized to represent the links between the nodes

in Bayesian networks and the expected cost is used as a fitness function. An empirical comparison of the new algorithm

has been carried out with respect to: (i) an algorithm that induces cost-insensitive Bayesian networks to provide a base

line, (ii) ICET, a well-known algorithm that uses Genetic Algorithms to induce cost-sensitive decision trees, (iii) use of

MetaCost to induce cost-sensitive Bayesian networks via bagging (iv) use of AdaBoost to induce cost-sensitive Bayesian

networks and (v) use of XGBoost, a gradient boosting algorithm, to induce cost-sensitive decision trees. An empirical

evaluation on 28 data sets reveals that EBNO performs well in comparison to the algorithms that produce single

interpretable models and performs just as well as algorithms that use bagging and boosting methods.

 Keywords— Cost-sensitive classification, machine learning, data mining

Conflicts of interest: none

1 INTRODUCTION

The induction of classifiers from data sets of pre-classified instances is known to be a major challenge and many
algorithms have been introduced to learn decision trees, Bayesian networks, and neural networks. Most of the
early machine learning algorithms focused on maximizing accuracy and assumed that costs for misclassification
error remain equal, irrespective of the class (Dong & Wu, 2018; Mitchell, 1997). However, several authors have
noted that this is not adequate for practical applications (Domingos, 1999; Drummond & Holte, 2000). Hence, in
recent years, a significant level of attention has been paid to cost-sensitive learning which aims to minimize the
expected cost (Dai, Han, Hu, & Liu, 2016; Ling & Sheng, 2004; Lomax & Vadera, 2017). Historically, most of the
cost-sensitive algorithms developed have focused on learning decision trees, with a recent survey comparing
over 50 algorithms (Lomax & Vadera, 2013). In contrast, although Bayesian networks (BNs) have proved their
effectiveness in a wide range of applications (Heckerman, Mamdani, & Wellman, 1995; Jiang, Li, Cai, & Zhang,
2013), the number of studies exploring the development of algorithms that learn cost-sensitive Bayesian net-
works is limited to a few studies (Jiang, Li, & Wang, 2014; E. Nashnush & Vadera, 2014, 2017).

In general, a Bayesian network classifier is a probabilistic model that represents variables (continues or discrete)
as nodes in a Directed Acyclic Graph (DAG) where edges between nodes represent the direct correlations be-
tween variables (Pearl, 1988).

There are two steps to constructing Bayesian networks (Heckerman et al., 1995; Lauritzen & Spiegelhalter, 1988):

1. Learning the graphical structure: this aims to find the relationships between the variables.

1 Corresponding author is Sunil Vadera, S.Vadera@salford.ac.uk

2

2. Learning the parameters: this aims to determine the extent of the relationships between the variables and
takes the form of a table that represents the conditional probabilities between a node and its parents.

Learning the graphical structure of a Bayesian network is known to be an NP-hard problem and much more
challenging than learning the parameters (Cheng & Greiner, 2001; Chickering, Heckerman, & Meek, 2004;
Dasgupta, 1999). Although several algorithms have been developed to learn different types of graphical struc-
ture (e.g., Chow and Liu(1968); Langley et al. (1992); Friedman et al.(1997)) they focus on maximizing accuracy
without taking account of the cost of misclassifications. Hence, this paper explores whether Genetic algorithms
(GAs) can be used to evolve the structure of Bayesian networks that minimize the expected cost of misclassifica-
tion whilst utilizing existing methods for estimating the parameters. The key questions explored in this paper
include:

• Is it possible to evolve cost-sensitive Bayesian networks that are better at minimizing cost than algorithms

that induce cost-sensitive decision trees?

• Are the resulting cost-sensitive Bayesian networks better at minimizing cost than those obtained from
algorithms that aim to maximize accuracy?

• If there are improvements, are they at the expense of reduced accuracy?

 The paper is organized as follows: Section 2 presents the context by describing approaches to cost-sensitive
learning; Section 3 develops EBNO, an evolutionary algorithm for learning cost-sensitive Bayesian networks;
Section 4 presents an empirical evaluation aimed at addressing the questions above and Section 5 concludes the
paper.

2 BACKGROUND ON COST-SENSITIVE LEARNING

There have been many different approaches to cost-sensitive learning dating back to the late 1980s. Figure 1
lists some of the major studies to provide a historical context. These algorithms can be categorized under three
broad approaches:2 (i) methods that explicitly modify an algorithm to take account of costs, (ii) methods that
utilize bagging and boosting, and (iii) methods that utilize genetic algorithms.

These three approaches have been used mainly to develop algorithms that induce cost-sensitive decision trees

but can also be adopted for developing algorithms that induce Bayesian networks, and hence the following sub-
sections summarize some of the key studies. Readers interested in a more detailed and comprehensive account
are referred to the survey by Lomax and Vadera (2013). Several authors have also described algorithms for the
evolution of Bayesian networks (Campos, Fernandez-Luna, Gámez, & Puerta, 2002; Larrañaga, Poza,
Yurramendi, Murga, & Kuijpers, 1996; Zeng, Zhang, Cai, Jiang, & Jiang, 2006) and although these do not take
account of cost, they are closely related to the work described in this paper and are also summarized below.

2 Other categorisations, such as black box and white box (Zadrozny et al. 2003) also exist and the one we use extends this to include algo-
rithms that utilise genetic algorithms.

EBNO: EVOLUTION OF COST-SENSITIVE BAYESIAN NETWORKS 3

Figure 1: Categories of cost-sensitive learning algorithms with references to examples of studies under each category3

(Davis, Ha, Rossbach, Ramadan, & Witchel, 2006; Ling & Sheng, 2004; Norton, 1989; Núñez, 1991; Tan & Schlimmer, 1989; Ting, 2002)(Freitas, Costa-Pereira, & Brazdi, 2007)(Liu, 2007)(Vadera, 2010)(Lomax & Vadera, 2017) (Domingos, 1999; Fan, Stolfo,

Zhang, & Chan, 1999)(Abe, Zadrozny, & Langford, 2004)(Moret, Langford, & Margineantu, 2006) (Turney, 1995) (J. Li, Li, & Yao, 2005)(Nikdel & Beigy, 2012; Omielan & Vadera, 2012)

2.1 Algorithms that modify a classifier

A key step in decision tree learning is selecting the next attribute of the decision tree, which is typically done by
using an information theoretic measure such as information gain. This is based on the difference between the
entropy of a class label on the current data, D, before splitting and the entropy if an attribute A is used (Quinlan,
1993):

Entropy(D) = ∑ −P(c). log2 P(c)

c∈Class

Entropy(A) = ∑ P(a) . ∑ −P(a|c) . log2 P(a|c)

c∈Classa∈A

IA = Entropy(D) − Entropy(A) (1)

Where, c is a class value, a is an attribute value and IA is the information gain.

The attribute that results in the highest information gain is used as the next attribute in a tree and the process

repeated recursively until a stopping condition, such as a certain proportion of examples belonging to the same
class is reached. However, this selection measure does not take account of costs.

A natural way of making such algorithms cost-sensitive, which has been attempted by several authors, is to
modify the above measure to include misclassification costs (Liu, 2007; Norton, 1989; Tan & Schlimmer, 1990;
Zhao & Li, 2017). However, empirical evaluations of this approach have showed mixed results (Lomax, S. and
Vadera, 2011; Vadera & Ventura, 2001). Hence, instead of adapting the information gain measure to include
costs, other algorithms utilize the cost of misclassification directly as the selection criteria. Examples of algo-
rithms that take this approach include Cost-Minimization (Pazzani et al., 1994), Decision Tree with Minimal
Costs (Ling & Sheng, 2004), PM (Liu, 2007), Cost-Sensitive Non Linear Decision trees (CSNL) (Vadera, 2010),
and Cost-Sensitive Decision Trees (CSDT) (Bahnsen, Aouada, & Otterssten, 2015).

3 Appendix A provides an expansion of the acronyms used in Figure 1.

4

2.2 Algorithms that utilize bagging and boosting

These algorithms make use of a technique known as bagging (Breiman, 1996) which applies a base learner on
different samples of training data and combines the outcomes to predict the class of each example that reduces
the cost. One of the earliest and most widely cited examples is the MetaCost system (Domingos, 1999), which
uses bagging to relabel the data to minimize classification cost and then applies the base learner on the relabeled
data to induce a classifier, as summarized in Figure 2. A more recent method, due to Li et al. (2018), proposes
an attribute selection measure that is a function of the Gini index, information gain and misclassification cost.
This measure is used in an algorithm known as CHMDT (Cost-sensitive and Hybrid attribute Multi-Decision
Tree) to rank the attributes, select the top n attributes and induce n trees, where each tree has one of the n attrib-
utes as a root node. Classification is then performed by applying the n trees and using majority voting.

Figure 2: The MetaCost system (Domingos, 1999)

Boosting applies a number of hypotheses and then combines them to form a more accurate composite hypoth-

esis. One of the earliest examples of boosting is AdaBoost (Adaptive Boosting (Freund & Schapire, 1996)) which

uses an accuracy based learner to generate an improving sequence of hypotheses. AdaBoost starts the boosting

process by assigning unit weights to each example, then in each sequential trial, it increases the weights of mis-

classified examples and decreases the weights of the other examples. After many sequential trials, it combines

these hypotheses to perform a final classification which is based on selecting the class that results in the maxi-

mum weighted vote. Several algorithms that build on this concept have been developed in recent years, includ-

ing XGBoost (Extreme Gradient Boosting) which has been credited with winning several submissions to the

Kaggle challenges (Chen and Guestrin , 2016).

There are several studies that use boosting and modify the weighting rules to take account of costs, including
AdaCost (Adaptive Boosting with Costs) (Fan et al., 1999), Cost-UBoost (Cost with Unequal instance weights
boosting) (Ting & Zheng, 1998), and GBSE (Gradient Boosting with Stochastic Ensembles)
 (Abe et al., 2004). For example, AdaCost uses the cost of misclassifications to assign high initial weights to costly
examples. It then increases the weights of costly misclassifications and decreases the weights of correct classifi-
cations before another round of boosting. Masnadi-Shirazi and Vasconcelos (2011) propose a framework that
enables derivation of three cost-sensitive boosting algorithms, CS-Ada, CS-Log and CS-Real, each based on their
respective cost-insensitive versions: AdaBoost, LogitBoost and RealBoost. An empirical comparison showed
that CS-Ada performed well in comparison to other cost-sensitive adaptations of AdaBoost, such as AdaCost.

However, in a more recent paper, “Cost-sensitive boosting algorithms: Do we really need them?”, Nikolaou et al.
(2016) present a critique of cost-sensitive boosting algorithms from multiple perspectives and conclude that Ada-
boost performs just as well as other variations of boosting algorithms.

EBNO: EVOLUTION OF COST-SENSITIVE BAYESIAN NETWORKS 5

2.3 Algorithms that use Genetic algorithms

Genetic algorithms (GAs) have been utilized by several authors to learn cost-sensitive decision trees (Kretowski
& Czajkowski, 2018; Nikdel & Beigy, 2012; Omielan & Vadera, 2012; Turney, 1995). Here we describe one of the
earliest and most seminal studies and then summarize studies that use GAs for evolving Bayesian networks
given their relationship to the work presented in this paper.

Turney’s (1995) ICET system (Inexpensive Classification with Expensive Tests) was one of the first to use GAs to
evolve decision trees in order to minimize both test costs and misclassification costs. ICET uses a genetic pool
that consists of genes representing the cost of attributes (CostA), a parameter used to control the amount of weight
that should be given to the cost of attributes (𝝎), and a parameter (CF) used to indicate the level of pruning by
C4.5.

These parameters are used in a version of C4.5 to generate trees, where, instead of Equation (1), the following
measure, known as the Information Cost Function (ICF) is used to rank attributes:

 𝐼𝐶𝐹𝐴 =
2𝐼𝐴− 1

(𝐶𝑜𝑠𝑡𝐴 + 1)ω (2)

In ICET, trees are not represented in a genetic pool directly, but are learnt using the genes as parameters for a
tree induction algorithm (C4.5) as illustrated in Figure 3. Following this process, the decision trees are evaluated
using expected cost as a fitness function, and a new pool is produced using mutation and cross over. This process
is repeated 50 times and the fittest tree returned.

Figure 3: The ICET System (Turney, 1995)

Several authors have also studied the use of GAs for evolving the structure of Bayesian networks. Larrañaga et
al.(1996), represent a Bayesian network as an ordered list of nodes in which a node can only have preceding
nodes as parents. In contrast to the algorithm developed by Larrañaga et al. (1996), which focuses on evolving
directed acyclic graphs, Zeng et al. (2006), evolve an extended Naïve Augmented Bayes network (EANB) in
which each attribute can have one other attribute as a parent. Zeng et al. (2006) compare their algorithm with
Naïve Bayes (Langley et al., 1992), C4.5(Quinlan, 1993), and Tree Augmented Naïve Bayes (N. Friedman et al.,
1997), and conclude that it outperforms these algorithms in terms of accuracy. These algorithms have some sim-
ilarities with the use of GAs in this paper, though our primary focus is on cost-sensitive Bayesian networks and
their relative merits in comparison to cost-sensitive decision trees.

6

3 DEVELOPMENT OF EBNO

Section 2 described various approaches that have been used to develop algorithms that induce cost-sensitive
decision trees. Any of these approaches could be adopted for generating Bayesian networks that take account of
costs of misclassification, and in a previous study, we reported attempts at using a direct approach as well as
changing the distribution of examples to reflect the misclassification cost (Nashnush & Vadera, 2017). In this
section we formulate a GA for evolving cost-sensitive Bayesian networks.

As described in Section 1, learning a Bayesian network consists of two parts: a qualitative part that learns a struc-
ture and a quantitative part that learns the parameters of the structure. There are different types of Bayesian net-
works and learning them is known to be an NP-hard problem (Chickering et al., 2004). Hence, several algorithms
have been developed that reduce the size of the search space by limiting the type of topology that is learned.
Chow and Liu (1968) developed an algorithm for learning Bayesian trees based on approximating the joint dis-
tribution of a set of discrete variables using the products of distributions involving no more than pairs of varia-
bles as illustrated in Figure 4(a). Duda and Hart (1973) and Langley et al. (1992) developed an algorithm for
learning Naïve Bayes structures, where the attributes are represented as independent nodes that have one parent
node which represents the class. A Naïve Bayes classifier, as shown in Figure 4(b), assumes conditional inde-
pendence of the features given the class. Naïve Bayes is easy to construct and has been used as a classifier for
many years, especially where the features are not strongly correlated. Pearl (1988) developed an algorithm to
learn singly-connected graphs, which are Directed Acyclic Graphs (DAGs) where any two nodes have at most
one unique path between them, as illustrated in Figure 4(c).

Figure 4: Types of Bayesian Structures

More recently, Friedman et al. (1997) have developed a natural extension to the Naïve Bayes classifier, known as
a Tree Augmented Naïve Bayes (TAN) structure. In contrast to Naïve Bayes, where the assumption is that all at-
tributes are independent, a TAN can model dependencies between attributes by allowing the attributes to form
a tree. Thus, in a TAN structure, the correlations between attributes can be captured by adding additional edges
between attributes, as illustrated in Figure 4(d). In this study we adopt TANs, since they make fewer assumptions
than Naïve Bayes networks, avoid the computational overhead of DAGs, and have been shown to be effective
classifiers (N. Friedman et al., 1997).

The structure of a TAN can be viewed as a directed graph which can be represented by an adjacency matrix A,
where an element A(i,j) is set to 1 if node j is a parent of node i, and set to 0 if there is no link between node j and
node i. Figure 5 illustrates the idea, where node a0 has two parents a2 and a4, and hence A(0,2)=A(0,4)=1; while
there are no links between a1 and a3, so A(1,3)=A(3,1)=0.

EBNO: EVOLUTION OF COST-SENSITIVE BAYESIAN NETWORKS 7

Figure 5: An illustration of how TAN classifiers are represented.

Generating the initial pool of TANs for a GA involves three steps: (i) generating the adjacency matrix randomly,
(ii) testing the adjacency matrix to ensure that it represents a valid TAN, and if not, to make it a TAN, and (iii)
converting the adjacency matrix to a linear string of bits that can be used by a GA. Figure 6 illustrates the first
of these steps, showing a case when an illegal TAN is obtained, either when generating the initial population or
following mutation or crossover.

Figure 6: An example of an illegal TAN structure created from an adjacency matrix

The following two steps correct such illegal TANs:

(i) Any circularities are removed: immediate circularities, such as a2 to a2 in Figure 6, are removed and paths

that are circular are broken by randomly removing a link in the circular chain.
(ii) By definition of a TAN, the class node must have no parents, and all the other nodes must have the class

node as a parent. In addition, each node, except one node which is labelled the root, has one other parent that

is chosen from the other nodes. If this is not the case, then this is corrected by making sure the class node is

added as a parent, and one of the other nodes is chosen randomly as the other parent.

a0

Create structure of TAN classifier form bits

of Genes (individual)

Individual represents the links between at-

tributes: a1 ,a2, a3, and a4 (class label)

0000010001100001000110100

0 0 1 0 1

1 0 0 0 1

0 0 0 0 1

1 0 0 0 1

0 0 0 0 0

Parent(j) a0 a1 a2 a3 a4

Adjacency matrix

A(i, j)

Child(i)

 a0

 a1

 a2

 a3

 a4

a4

a2

a3 a1

a4

a3

a0

a1

a2

0 0 1 1 0

1 1 0 0 0

0 1 1 0 1

1 1 0 0 1

0 1 0 0 0

Parent(j) a0 a1 a2 a3 a4

illegal adjacency matrix

A(child , parent)

Child(i)

 a0

 a1

 a2

 a3

 a4

8

Once an adjacency matrix representing a valid TAN is obtained, it can be converted to a string of bits by arrang-
ing it row by row as illustrated in Figure 5. As well as the representation, there are two more ingredients required
to use a GA, namely a fitness function and the operators required for generating offspring. To generate the off-
spring, the standard selection, mutation and crossover operators are used together with the above steps for cor-
recting illegal offspring. The fitness function used in EBNO is the expected cost:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ ∑ 𝐶𝑖𝑗. 𝑃𝑖𝑗

𝑘

𝑗=1

𝑘

𝑖=1

 (4)

where, k is the number of classes, Pij represents the probability of classifying an example of class i as j and 𝐶𝑖𝑗 is
the cost of classifying an example of class i as class j.

Given the above representation and fitness function, Figure 7 summarizes the EBNO algorithm.

Input:

Training data D
Misclassification cost matrix Cij
Number of generations of evolution N

Output: A Tree Augmented Network (TAN)

1. Randomize D, and divide it into 3 parts:
a. Dp: 50% for parameter learning,
b. Df: 25% for the fitness function,
c. Dt: 25% for testing.

2. Generate an initial population of 50 individuals, {P1, …,P50} where each individual represents a network of
connections.

3. Check that the individuals represent valid TANs: namely that there are no circular paths, each node should
have just one parent, and the class label is the main parent for all nodes.

4. Create 50 well-formed TANs, Ti, one from each individual Pi.
5. Learn the parameters for each of the 50 TANs, Ti, using the data in Dp.
6. Evaluate the fitness of each TAN Ti using the data Df, and cost matrix Cij using Equation (4)
7. Produce the next generation as follows:

a. P1 is set to the individual that has minimum cost in the previous generation.
b. P2,..,P25 are obtained by using the standard mutation and crossover operators on the best 25

individuals in the previous generation.
c. P26,..,P50 are generated randomly.

8. Repeat from step 3 for N cycles and then return the minimum cost TAN as the output.
__

Figure 7: The EBNO Algorithm

4 EMPIRICAL EVALUATION AND RESULTS

This section presents an empirical evaluation of the EBNO algorithm using 28 data sets from the UCI repository
which are listed in Table 1 (Appendix B) together with their characteristics (Dua & Taniskidou, 2017). The exper-
imental methodology involves using 75% of the data for training and 25% for testing. The 75% of training data
is further subdivided so that 50% is used for learning the parameters and 25% is used for assessing the fitness.
All experiments are repeated with 10 random trials and the results report the average cost, accuracy, precision,
recall and F measure. For consistency, the same misclassification costs were used for all the data sets, with the
experiments performed using 16 different cost ratios for the two classes: [4:1, 4:2, 4:3, 4:4, 3:1, …, 2:4,1:4].

EBNO: EVOLUTION OF COST-SENSITIVE BAYESIAN NETWORKS 9

Given the questions raised in the introduction, the evaluation is carried out with respect to the following algo-
rithms:

(i) The ICET algorithm to enable comparison with the results from a well-known cost-sensitive decision

tree learning algorithm that is known to perform well (Lomax, S. and Vadera, 2011; Vadera & Ventura,
2001).

(ii) MetaCost with TAN as the base classifier to enable comparison with an algorithm that produces cost-
sensitive Bayesian networks. In this study, our choice of MetaCost was influenced primarily by the fact
that it generates a model which can be viewed and interpreted by a user. It also remains an option
available in toolkits such as Weka, Scikit learn and R, so the results should be of interest to practitioners.

(iii) The original TAN learning algorithm in order to assess the extent to which EBNO makes a difference in
comparison to an algorithm that focuses on maximizing accuracy of TANs.

(iv) Use of two boosting algorithms: AdaBoost to induce cost-sensitive TANs and use of XGBoost to induce
cost-sensitive decision trees. Although AdaBoost is one of the earliest boosting algorithms, as the study
by Nikolaou et al. (2016) concludes, it remains an important method for boosting and cost-sensitive
learning. XGBoost is included primarily because it is a more recent innovation and has resulted in some

of the best results in Kaggle competitions.

The WEKA implementations of MetaCost and algorithm for learning TANs were utilized for the evaluations,
and for consistency, EBNO was also implemented in WEKA, with default settings for the probability of cross-
over rate (0.6), mutation (0.033) and generations (20).4 For ICET, an implementation that has been used in other
work and verified as faithful was used (Lomax, S. and Vadera, 2011; Vadera & Ventura, 2001). For AdaBoost and
XGBoost, we used the implementations provided by the Scikit learn package in R.

Tables 2 and 3 (Appendix B) present the average misclassification cost, accuracy, precision, recall and F measure
when each of the six methods is applied to the 28 data sets. To compare the performance of the algorithms, we
follow the recommendations by Demšar (2006) who carries out an extensive study of different parametric and
non-parametric methods for comparison of machine learning algorithms, and concludes by advocating the use
of non-parametric methods. More specifically, Demšar (2006) recommends the use of a test introduced by Fried-
man (1937) to determine if there is a difference amongst the algorithms and if so, to follow up with the use of the
Nemenyi test (1963) to assess if one method is significantly better than another. Figure 8 shows a box plot of the
misclassification costs for each algorithm, giving a visual indication of the differences.

Figure 8: Box plot of the misclassification cost for each algorithm

4 The default settings were used to allow easy repeatability of the experiments and for consistency with ICET which also adopts default
values.

10

 Carrying out a Friedman test on the misclassification costs results in a p-value of 5.5e-14, confirming a signif-
icant difference amongst the algorithms. Table 4 presents the results of a Nemenyi test between pairs of algo-
rithms, showing that there is a significant difference between EBNO and the other algorithms that also produce
a single interpretable model Figure 9 summarizes the relative performance of the algorithms using a Critical
Difference (CD) diagram, where the CD is defined as the minimum distance that must be exceeded to reject the
null hypothesis that two algorithms are the same.

TABLE 4

Results from the pairwise Nemenyi test

 EBNO AB.BN XGB.DT ICET MC.BN

AB.BN 0.988

XGB.DT 0.992 1.000

MC.BN 0.004 0.036 0.029

ICET 0.135 0.452 0.406 0.863

Original 1.1e-10 1.1e-10 4.9e-09 0.014 0.0002

Figure 9: Critical Difference (CD) diagram with = 0.15

Thus, based on the above results we can surmise that, in general:

(i) As expected, use of cost-sensitive algorithms such as EBNO, AB.BN, XGB.DT, ICET and MC.BN results
in more cost-effective decisions than the use of the original cost-insensitive Bayesian learning algorithm
(Figures 8 and 9).

EBNO: EVOLUTION OF COST-SENSITIVE BAYESIAN NETWORKS 11

(ii) There is little to distinguish between EBNO and the use of boosting to generate cost-sensitive models.
It is however, worth noting that EBNO generates an explicit model that can be viewed by a user; some-
thing that is likely to become an important consideration as greater attention is paid to ensuring the
fairness of the models learned.

(iii) EBNO is better at minimizing cost than the other algorithms that also aim to produce explicit models
(ICET, MC.BN, Original) More specifically, EBNO is ranked first for 19 out of the 28 data sets. For the
remaining 9, where EBNO is ranked 2nd best, it is outperformed by ICET on 5 data sets (Breast Cancer,
Cylinder Band, Haberman, Sonar, and SPECT-Heart) and by MC.BN on 4 data sets (German Credit, Kr
vs Kp,Musk, Sick). Given that both ICET and EBNO utilize GAs, this suggests that evolving cost-sen-
sitive BNs has some merit over evolving cost-sensitive decision trees.

(iv) EBNO performs very well in terms of accuracy, recall, precision and F measure (Tables 2 and 3, Ap-
pendix B) in comparison to the other cost-sensitive algorithms. It even remains competitive in terms
of accuracy with the use of cost-insensitive Bayesian networks which aim to maximize accuracy. How-
ever, the precision and recall measures (Table 3, Appendix B) reveal that the improvements in cost
sensitivity are due to improving recall rates over precision when compared to the use of cost-insensitive
Bayesian networks (Table 3, Appendix B).

These improvements do, of course, come at a price, since use of evolution can be computationally more expensive
than greedy algorithms such as Friedman et al.’s(1997) algorithm for learning TANs. Equally, it can also be ar-
gued that this is worthwhile given there is little difference in computational cost once a classifier is deployed.

5 CONCLUSION AND FUTURE WORK

Throughout the past decade, the problem of developing algorithms that induce cost-sensitive classifiers has be-
come a significant challenge. Most of the research on cost-sensitive learning algorithms has focused on induction
of decision trees with either direct amendments to existing algorithms or use of indirect methods such as bag-
ging. Bayesian networks have been shown to be an effective classifier, and hence an obvious question is whether
they can result in classifiers that perform better than decision trees when it comes to minimizing costs of mis-
classification.

This research has aimed to address this question by developing an evolutionary algorithm, EBNO, for learning
Bayesian networks that aim to minimize costs of misclassification. An empirical evaluation of the algorithm rel-
ative to other algorithms shows that:

• As one would expect, EBNO outperforms a cost-insensitive version of an algorithm that learns Bayesian

networks.

• An empirical comparison with ICET, which also adopts GAs, shows that there are merits in using Bayesian

networks over decision trees for cost-sensitive learning.

• EBNO, which generates an explicit model, performs as well as the use of AdaBoost and XGBoost, in terms

of cost-sensitive classification, and hence should be considered where an application benefits from the trans-

parency of a single model that can be viewed by a user.

• Perhaps more surprisingly, on many of the cases, EBNO did not compromise accuracy, because the use of a

GA led to exploration of a wide range of potential solutions.

In conclusion, given the results of this study, the evolution of cost-sensitive Bayesian networks should be con-
sidered a serious alternative to cost-sensitive decision trees. One direction for future work is to investigate how
to extend EBNO so it can take account of other types of costs, such as test costs. Our empirical evaluation used
the default parameters for the GA used in EBNO and some experimentation and tuning of these parameters
might lead to even better performance. Use of evolution can be computationally expensive, particularly as the
number of features increases, so another direction of work is to explore the use of parallel implementations of

12

GAs (Harding & Banzhaf, 2007) so that EBNO can be applied to very large data sets.

ACKNOWLEDGEMENTS

The authors are grateful to the reviewers for their comments which have led to several improvements to this
paper. The authors acknowledge that the work presented in this paper is based on the first author′s Doctoral
thesis titled “Development of new cost-sensitive Bayesian network learning algorithms” (Eman Nashnush,
2015) carried out under the supervision of the second author. An e-copy of the thesis is available from the Uni-
versity of Salford Repository at http://usir.salford.ac.uk.

REFERENCES

Abe, N., Zadrozny, B., & Langford, J. (2004). An iterative method for multi-class cost-sensitive learning. In

Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining

(KDD ’04). (pp. 3–11). ACM New York, NY, USA.

Bahnsen, A., Aouada, D., & Otterssten, B. (2015). Example-dependent cost-sensitive decision trees. Expert Systems

with Applications, 42(19), 6609–6619.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

Campos, L. M. De, Fernandez-Luna, J. M., Gámez, J. A., & Puerta, J. M. (2002). Ant colony optimization for learning

Bayesian networks. International Journal of Approximate Reasoning, 31(3), 291–311.

Cheng, J., & Greiner, R. (2001). Learning Bayesian belief network classifiers: Algorithms and System. In Advances

in Artificial Intelligence (pp. 141–151). Berlin Heidelberg: Springer.

Chickering, D. M., Heckerman, D., & Meek, C. (2004). Large sample learning of Bayesian networks is NP-hard.

Journal of Machine Learning Research, 5, 1287–1330.

Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE

Transactions on Information Theory, 14(3), 462–467.

Dai, J., Han, H., Hu, Q., & Liu, M. (2016). Discrete particle swarm optimization approach for cost sensitive attribute

reduction. Knowledge-Based Systems, 102, 116–126. https://doi.org/10.1016/j.knosys.2016.04.002

Dasgupta, S. (1999). Learning Polytrees. In Proceedings of the Fifteenth conference on Uncertainty in artificial

intelligence (pp. 134–141).

Davis, J. V., Ha, J., Rossbach, C. J., Ramadan, H. E., & Witchel, E. (2006). Cost-sensitive decision tree learning for

forensic classification. In 17th European Conference on Machine Learning (pp. 622–629).

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning

Research, 7, 1–30.

Domingos, P. (1999). MetaCost: A general method for making classifiers cost-sensitive. In Proceedings of the fifth

ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 155–164).

Dong, S., & Wu, Y. (2018). A diversity-based method for class-imbalanced cost-sensitive learning. In International

Conference on Mathematics and Artificial Intelligence (pp. 51–55). Chengdu, China: ACM New York, NY,

USA.

Drummond, C., & Holte, R. C. (2000). Exploiting the cost (in) sensitivity of decision tree splitting criteria. In

International Conference on Machine Learning (pp. 239–246).

Dua, D., & Taniskidou, K. E. (2017). UCI Machine Learning Repository. Retrieved June 10, 2018, from

https://archive.ics.uci.edu/ ml

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: Wiley.

Fan, W., Stolfo, S. J., Zhang, J., & Chan, P. K. (1999). AdaCost: Misclassification Cost-Sensitive Boosting. In I.

Bratko & S. Dzeroski (Eds.), Proceedings of the Sixteenth International Conference on Machine Learning (pp.

97–105). Morgan Kaufmann Publishers Inc.

Freitas, A., Costa-Pereira, A., & Brazdi, P. . (2007). Cost-Sensitive Decision Trees Applied to Medical Data. In `Song

I.Y, E. J., & N. T.M (Eds.), Lect. Notes Comput. Sci., (Vol. 4654, pp. 303–312). Springer Berlin Heidelberg.

Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. In Proceedings of the Thirteenth

International Conference on Machine Learning (pp. 148–156). Morgan Kaufmann Publishers.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance.

Journal of the American Statistical Association, 32, 675–701.

http://usir.salford.ac.uk/
http://usir.salford.ac.uk/

EBNO: EVOLUTION OF COST-SENSITIVE BAYESIAN NETWORKS 13

Friedman, N., Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning,

29(2–3), 131–163.

Harding, S., & Banzhaf, W. (2007). Fast genetic programming on GPUs. In Proceedings of the European Conference

on Genetic Programming (pp. 90–101). Springer Berlin Heidelberg.

Heckerman, D., Mamdani, A., & Wellman, M. P. (1995). Real-world applications of Bayesian networks.

Communications of the ACM, 38(3), 24–26.

Jiang, L., Li, C., Cai, Z., & Zhang, H. (2013). Sampled Bayesian network classifiers for class-imbalance and cost-

sensitive learning. In 25h IEEE International Conference on Tools with Artificial Intellligence (ICTAI) (pp. 512–

517).

Jiang, L., Li, C., & Wang, S. (2014). Cost-sensitive Bayesian network classifiers. Pattern Recognition Letters, 45,

211–216.

Kretowski, M., & Czajkowski, M. (2018). Evolutionary Algorithms for Global Decision Tree Induction. In

Encyclopedia of Information Science and Technology (4th ed., pp. 2132–2141). Hershey, PA: IGI Global.

Langley, P., Iba, W., & Thompson., K. (1992). An analysis of Bayesian classifiers. In Proceedings of the tenth national

conference on Artificial intelligence (AAAI’92) (pp. 223–228).

Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R. H., & Kuijpers, C. M. (1996). Structure learning of Bayesian

networks by genetic algorithms: A performance analysis of control parameters. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 18(9), 912–926.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their

application to expert systems. Journal of the Royal Statistical Society. Series B (Methodological), 157–224.

Li, F., Zhang, X., Zhang, X., Du, C., Xu, Y., & Tian, Y.-C. (2018). Cost-sensitive and hybrid -attribute measure multi-

decision tree over imbalanced data sets. Information Sciences, 422, 242–256.

Li, J., Li, X., & Yao, X. (2005). Cost-sensitive classification with genetic programming. In IEEE Congress on

Evolutionary Computation, (pp. 2114–2121). https://doi.org/doi: 10.1109/CEC.2005.1554956

Ling, C. X., & Sheng, V. S. (2004). Cost-sensitive learning. In Encyclopedia of Machine Learning (pp. 231–235).

Springer.

Liu, X. (2007). A New Cost-Sensitive Decision Tree with Missing Values. Asian Journal of Information Technology,

6(11), 1083–1090.

Lomax, S. and Vadera, S. (2011). An empirical comparison of cost-sensitive decision tree induction algorithms. Expert

Systems: The Journal of Knowledge Engineering, 28(3), 227–268.

Lomax, S., & Vadera, S. (2013). A survey of cost-sensitive decision tree induction algorithms. ACM Computing

Surveys, 45(2), Article 16:1--35.

Lomax, S., & Vadera, S. (2017). A Cost-Sensitive Decision Tree Learning Algorithm Based on a Multi-Armed Bandit

Framework. The Computer Journal, 60(7), 941–956. https://doi.org/10.1093/comjnl/bxw015

Masnadi-shirazi, H., & Vasconcelos, N. (2011). Cost-Sensitive Boosting. IEEE Transaction Pattern Analysis and

Machine Intelligence, 33(2), 294–309.

Mitchell, T. M. (1997). Does machine learning really work? AI Magazine, 18(3), 11.

Moret, S., Langford, W., & Margineantu, D. (2006). Learning to predict channel stability using biogeomorphic

features. Ecol. Modell, 191(1), 47–57.

Nashnush, E., & Vadera, S. (2014). Cost-sensitive Bayesian network learning using sampling. In Advances in

Intelligent Systems and Computing (Vol. 287, pp. 467–476).

Nashnush, E., & Vadera, S. (2017). Learning cost-sensitive Bayesian networks via direct and indirect methods.

Integrated Computer-Aided Engineering, 24(1), 17–26. https://doi.org/10.3233/ICA-160514

Nashnush, Eman. (2015). Development of new cost-sensitive Bayesian network learning algorithms, PhD Thesis.

University of Salford.

Nemenyi, P. B. (1963). Distribution-free multiple comparisons, PhD thesis,. Princeton University.

Nikdel, Z., & Beigy, H. (2012). A genetic programming-based learning algorithms for pruning cost-sensitive

classifiers. International Journal of Computational Intelligence and Applications, 11(2), 1–16.

Nikolaou, N., Narayanan, E., Kull, M., Flach, P., & Brown, G. (2016). Cost-sensitive boosting algorithms: Do we

really need them? Machine Learning, 104(2–3), 359–384.

Norton, S. W. (1989). Generating better decision trees. In IJCAI’89 Proceedings of the 11th International Joint

Conference on Artificial Intelligence (Vol. 1, pp. 800–805).

Núñez, M. (1991). The use of background knowledge in decision tree induction. Machine Learning, 6, 231–250.

Omielan, A., & Vadera, S. (2012). ECCO: A New Evolutionary Classifier with Cost Optimisation. In Intelligent

14

Information Processing VI (pp. 97–105). Berlin Heidelberg: Springer.

Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., & Brunk, C. (1994). Reducing misclassification costs. In

Proceedings of the 11th International Conference on Machine Learning (pp. 217–225). New Brunswick, New

Jersey, USA.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco,

California: Morgan Kaufmann Publishers.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.

Tan, M., & Schlimmer, J. (1990). Two Case Studies in cost-sensitive concept acquisition. In Proceedings AAAI (pp.

854–860). AAAI. Retrieved from http://www.aaai.org/Papers/AAAI/1990/AAAI90-128.pdf

Tan, M., & Schlimmer, J. C. (1989). Cost-sensitive concept learning of sensor use in approach and recognition. In

Proceedings of the sixth international workshop on Machine learning (pp. 392–395). Morgan Kaufmann

Publishers.

Ting, Kai Ming. (2002). An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on

Knowledge and Data Engineering, 14(3), 659–665.

Ting, K.M., & Zheng, Z. (1998). Boosting cost-sensitive trees. Discovery Science, 244–255.

Turney, P. D. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction

algorithm. Journal of Artificial Intelligence Research, 369–409.

Vadera, S. (2010). CSNL: A cost-sensitive non-linear decision tree algorithm. ACM Transactions on Knowledge

Discovery from Data (TKDD), 4(2), 1–25.

Vadera, S., & Ventura, D. (2001). Comparison of Cost-Sensitive Decision Tree Learning Algorithms. In Proceedings

of the Second European Conference on Intelligent Management Systems in Operations (pp. 79–86). Operational

Research Society, UK.

Zeng, D., Zhang, S., Cai, Z., Jiang, S., & Jiang, L. (2006). Augmented Naive Bayes Based on Evolutional Strategy. In

Proceedings of the sixth IEEE International Conference on Intelligent Systems Design and Applications (pp.

446–450).

Zhao, H., & Li, X. (2017). A cost sensitive decision tree algorithm based on weighted class distribution with batch

deleting attribute mechanism. Information Sciences, 378, 303–316. https://doi.org/10.1016/J.INS.2016.09.054

EBNO: EVOLUTION OF COST-SENSITIVE BAYESIAN NETWORKS 15

APPENDIX A

List of Acronyms in Figure 1 together with their meanings.

Algorithms that modify the induction process
CS ID3 (Tan & Schlimmer 1989) Cost-Sensitive Iterative Dichotomiser 3

EG2 (Nunez 1991) Economic Generalizer 2

IDX (Norton 1998) Iterative Dichotomiser X

C4.5CS (Ting 2002) C4.5 Cost Sensitive

CSGain (Davis et al. 2006) Cost Sensitive Gain

CS C4.5 (Frietas et al. 2007) Cost Sensitive C4.5

CSNL (Vadera, 2010) Cost Sensitive Non-Linear

CSDT (Bahnsen et al., 2015) Cost Sensitive Decision Tree

MA-CSDT (Lomax & Vadera 2017) Multi-Armed Bandit - Cost Sensitive Decision Tree

BDADT (Zhao & Li 2017) Batch Deleting Attribute Decision Tree

Algorithms that use bagging and boosting
Cost-Uboost (Ting & Zheng 1998) Cost with Unequal instance weights boosting

MetaCost (Domingos 1999) Meta algorithm for Cost sensitive learning

AdaCost (Fan et al. 1999) Adaptive Boosting with Costs

GBSE (Abe et al. 2004) Gradient Boosting with Stochastic Ensembles

CS-ADA, CS-Real, CS-Log
(Masnadi-Shirazi & Vasconcelos 2011)

Cost Sensitive-AdaBoost, Cost-Sensitive LogitBoost and
Cost-Sensitive RealBoost

CHMDT (Li et al. 2018) Cost-sensitive and Hybrid attribute measure Multi- Decision Tree

Algorithms that use GAs
ICET (Turney 1995) Inexpensive Classification with Expensive Tests

CGP (Li et al. 2005) Constrained Genetic Programming cost-sensitive classifier

ECCO (Omielan & Vadera 2012) Evolutionary Classifier with Cost Optimisation

DTGP (Nikdel & Beigy 2012) Decision Trees pruning with Genetic Programming

16

APPENDIX B

TABLE 1. Characteristics of the data sets used for empirical evaluation.

Dataset Class

distribution

Instances Attributes Type of attributes

Adult (76 : 24) 48842= (37155,11687) 14 5 continuous

Australian Credit (56 : 44) 690=(383, 307) 15 5 continuous

Bank (54 : 46) 600=(362, 274) 11 2 continuous

Breast Cancer (70 : 30) 286=(201,85) 9 All nominal

Bupa liver disorder
(58 : 42) 345=(200, 145) 7 6 continuous

Cleveland disease
(54 : 46) 303=(165,138) 13 5 continuous

Crx
(56 : 44) 689=(382,307) 16 6 continuous

Cylinder Band (58 : 42) 540 =(312,228) 39 17 continuous

German credit (70 : 30) 1000=(700,300) 20 7 continuous

Gymexamg (70 : 30) 2500=(1755,745) 20 11 continuous

Haberman (74 : 26) 306=(225,81) 3 2 continuous

Hepatitis (97 : 23) 155=(32, 123) 19 6 continuous

Horse Colic
(63 : 37) 368=(214,152) 22 14 continuous

Horse (66:34) 370=(215,153) 28 8 continuous

IonoSphere (64 : 36) 351=(225,126) 34 23 continuous

kr-vs-kp (52 : 48) 3196=(1669,1527) 36 All nominal

Labor (65 : 35) 57=(37,20) 16 8 continuous

Musk (52 : 48) 476=(207,269) 168 166 continuous

Pima_diabetes (57 : 43) 768=(500,268) 8 All continuous

Sick (94 : 6) 2800=(171, 2629) 29 7 continuous

Sonar (53 : 47) 280=(111,97) 60 All continuous

Spambase (61 : 39) 4601=(2788,1813) 57 All continuous

SPECT Heart (59 : 41) 267=(157,110) 22 All nominal

Supermarket (64 : 36) 4627=(2948,1679) 216 All nominal

Tic-Tac-Toe (65 : 35) 958=(626,332) 9 All nominal

Vote (61 : 39) 435=(267,168) 16 All nominal

Weather (64 : 36) 14=(9,5) 5 All continuous

Wisconsin Cancer (66 : 34) 699=(458,241) 10 All continuous

EBNO: EVOLUTION OF COST-SENSITIVE BAYESIAN NETWORKS 17

TABLE 2. Average Cost and Accuracy. Columns labeled Cost are presented in the format Average Cost± Standard Error.

Dataset

EBNO algorithm

 ICET

MetaCost.BN

Original BN

Adaboost BN

XGBoost

Cost Accuracy Cost Accuracy Cost Accuracy Cost Accuracy Cost Accuracy Cost Accuracy

Adult 0.25±0.17 0.84 0.27±0.12 0.80 0.29±0.44 0.80 0.38±0.12 0.86 0.23±0.12 0.84 0.25±0.1 0.81

Australian Credit 0.19±0.12 0.85 0.22±0.15 0.85 0.25±0.38 0.84 0.43±0.17 0.86 0.11±0.18 0.83 0.22±0.33 0.84

Bank 0.20± 0.19 0.74 0.20± 0.11 0.66 0.25±0.31 0.74 0.53±0.37 0.76 0.22±0.2 0.74 0.20± 0.9 0.66

Breast Cancer 0.23±0.21 0.73 0.15±0.99 0.70 0.29±0.30 0.73 0.41±0.36 0.70 0.3±0.18 0.73 0.15±0.79 0.72

Bupa liver disorder 0.22±0.80 0.61 0.24±0.73 0.62 0.37±0.39 0.60 0.43±0.49 0.60 0.22±0.74 0.71 0.23±0.66 0.61

Cleveland disease 0.13±0.15 0.69 0.22±1.44 0.65 0.19±0.18 0.70 0.43±0.12 0.86 0.11±0.19 0.67 0.15±1.37 0.66

Crx 0.10±0.58 0.86 0.19±1.63 0.83 0.21±0.14 0.81 0.5±0.053 0.86 0.19±1.6 0.82 0.19±1.61 0.85

Cylinder Band 0.57±0.26 0.76 0.51±0.44 0.72 0.69±0.33 0.74 0.73±0.88 0.74 0.57±0.34 0.76 0.51±0.1 0.72

German credit 0.20±0.30 0.73 0.20±0.21 0.62 0.19±0.28 0.73 0.56±0.29 0.74 0.2±0.38 0.73 0.19±0.27 0.74

Gymexamg 0.13±0.11 0.66 0.19±0.21 0.63 0.23±0.32 0.60 0.91±0.42 0.70 0.15±0.39 0.62 0.15±0.21 0.69

Haberman 0.7±0.13 0.72 0.67±0.38 0.73 0.70±0.21 0.68 0.99±0.37 0.70 0.66±0.26 0.71 0.66±0.1 0.73

Hepatitis 0.10±0.10 0.90 0.55±0.20 0.78 0.11±0.78 0.88 0.7±0.15 0.90 0.10±0.10 0.90 0.15±0.7 0.82

Horse Colic 0.20±0.28 0.66 0.20±0.28 0.65 0.37±0.34 0.65 0.58±0.34 0.63 0.20±0.24 0.68 0.20±0.1 0.68

Horse 0.12±0.19 0.79 0.18±0.23 0.79 0.66±0.54 0.70 0.70±0.35 0.78 0.09±0.59 0.70 0.11±0.3 0.79

IonoSphere 0.14±0.27 0.94 0.18±0.35 0.83 0.35±0.11 0.88 0.29±0.08 0.91 0.11±0.33 0.94 0.12±0.5 0.90

Kr-vs-Kp 0.37±0.37 0.95 0.37±0.37 0.96 0.32±0.44 0.83 0.50±0.11 0.87 0.39±0.22 0.96 0.35±0.24 0.96

Labor 0.11±0.37 0.86 0.18±0.17 0.77 0.27±0.54 0.70 0.33±0.13 0.86 0.11±0.67 0.85 0.12±0.17 0.79

Musk 0.19±0.21 0.79 0.22±1.67 0.65 0.17±0.30 0.83 0.46±0.16 0.84 0.22±1.67 0.65 0.20±1.4 0.64

Pima diabetes 0.11±0.41 0.77 0.18±0.90 0.68 0.57±0.67 0.75 0.78±0.80 0.77 0.55±0.6 0.77 0.18±0.33 0.68

Sick 0.05±0.45 0.97 0.07±0.29 0.93 0.04±0.40 0.94 0.06±0.50 0.97 0.08±0.2 0.96 0.04±0.8 0.97

Sonar 0.63±0.45 0.66 0.18±0.61 0.68 0.63±0.45 0.66 0.68±0.44 0.74 0.11±0.61 0.68 0.2±0.6 0.66

Spambase 0.18±0.22 0.93 0.21±0.58 0.77 0.21±0.34 0.91 0.20±0.43 0.92 0.21±0.55 0.77 0.20±0.59 0.89

SPECT Heart 0.50±1.40 0.64 0.40±2.4 0.64 0.51±1.40 0.64 0.80±0.30 0.68 0.51±1.39 0.68 0.43±2.4 0.62

Supermarket 0.55±3.41 0.64 0.90±2.17 0.64 0.68±3.22 0.63 1.46±5.66 0.63 0.50±3.41 0.64 0.90±2.11 0.64

Tic-Tac-Toe 0.10±0.98 0.69 0.1±1.01 0.61 0.33±1.00 0.60 1.20±1.90 0.74 0.1±1.01 0.66 0.1±0.9 0.66

Vote 0.05±0.12 0.96 0.14±0.17 0.95 0.15±0.33 0.96 0.15±0.15 0.93 0.07±0.17 0.95 0.1±0.17 0.95

Weather 0.10±0.20 0.60 0.18±0.52 0.60 0.18±0.52 0.60 0.60±0.33 0.60 0.09±0.28 0.60 0.12±0.51 0.60

Wisconsin Cancer 0.10±0.81 0.96 0.14±1.11 0.97 0.10±0.81 0.98 0.23±0.7 0.97 0.10±0.81 0.98 0.13±0.9 0.97

Average 0.23 0.78 0.27 0.74 0.33 0.75 0.57 0.79 0.23 0.77 0.23 0.76

18

 TABLE 3. Precision Recall and F Score.

Dataset Precision Recall F SCORE

 EBNO ICET MC.
BN

BN AB.
BN

XGB.
DT

EBNO ICET MC.
BN

BN AB.
BN

XGB.
DT

EBNO ICET MC.
 BN

BN AB.
BN

XGB.
BN

Adult

0.67 0.56 0.58 0.71 0.67 0.59 0.67 0.83 0.66 0.65 0.67 0.66 0.67 0.67 0.62 0.68 0.67 0.62

Australian
Credit

0.78 0.78 0.79 0.84 0.78 0.79 0.94 0.91 0.87 0.86 0.95 0.87 0.85 0.84 0.83 0.85 0.86 0.83

Bank 0.67 0.61 0.68 0.81 0.67 0.61 0.86 0.71 0.84 0.61 0.85 0.71 0.75 0.66 0.75 0.70 0.75 0.66

Breast Can-
cer

0.61 0.56 0.61 0.60 0.61 0.60 0.59 0.66 0.57 0.34 0.58 0.66 0.60 0.60 0.59 0.44 0.59 0.63

Bupa liver
disorder

0.54 0.56 0.53 0.54 0.63 0.54 0.59 0.51 0.49 0.35 0.60 0.51 0.56 0.54 0.51 0.43 0.61 0.52

Cleveland
disease

0.61 0.60 0.62 0.96 0.61 0.60 0.92 0.75 0.92 0.72 0.94 0.89 0.73 0.67 0.74 0.83 0.74 0.72

Crax 0.87 0.82 0.78 0.89 0.82 0.86 0.81 0.79 0.79 0.77 0.79 0.78 0.84 0.81 0.79 0.83 0.80 0.82

Cylinder
Band

0.77 0.70 0.73 0.81 0.77 0.70 0.62 0.60 0.64 0.50 0.62 0.60 0.69 0.65 0.68 0.62 0.69 0.65

German
credit

0.54 0.40 0.55 0.57 0.54 0.57 0.68 0.53 0.71 0.51 0.68 0.70 0.60 0.46 0.62 0.54 0.60 0.63

Gymexamg 0.42 0.33 0.25 0.50 0.32 0.44 0.29 0.25 0.15 0.07 0.28 0.27 0.34 0.28 0.19 0.12 0.30 0.33

Haberman 0.47 0.50 0.41 0.29 0.46 0.50 0.43 0.48 0.43 0.10 0.47 0.48 0.45 0.49 0.42 0.14 0.46 0.49

Hepatitis 0.73 0.50 0.70 0.86 0.73 0.54 0.89 0.67 0.78 0.67 0.89 0.71 0.80 0.57 0.74 0.75 0.80 0.61

Horse Colic 0.49 0.48 0.47 0.46 0.49 0.46 0.68 0.68 0.58 0.52 0.68 0.68 0.57 0.56 0.52 0.48 0.57 0.55

Horse 0.71 0.74 0.59 0.75 0.71 0.71 0.71 0.66 0.66 0.60 0.75 0.70 0.71 0.70 0.62 0.67 0.73 0.70

IonoSphere 0.89 0.70 0.78 0.86 0.90 0.86 0.97 0.94 0.94 0.91 0.99 0.97 0.93 0.81 0.85 0.88 0.94 0.91

kr-vs-kp 0.95 0.96 0.81 0.88 0.95 0.96 0.95 0.95 0.85 0.84 0.95 0.95 0.95 0.96 0.83 0.86 0.95 0.95

Labor 0.76 0.62 0.55 0.91 0.74 0.70 0.87 0.87 0.80 0.67 0.87 0.86 0.81 0.72 0.65 0.77 0.80 0.77

Musk 0.71 0.57 0.74 0.84 0.57 0.55 0.88 0.81 0.92 0.79 0.83 0.81 0.79 0.67 0.82 0.81 0.68 0.66

Pima_diabe-
tes

0.64 0.53 0.61 0.68 0.63 0.53 0.75 0.69 0.76 0.63 0.76 0.69 0.69 0.60 0.68 0.65 0.69 0.60

Sick 0.73 0.48 0.53 0.72 0.72 0.70 0.81 0.88 0.86 0.84 0.79 0.89 0.77 0.62 0.65 0.77 0.75 0.78

Sonar 0.61 0.63 0.61 0.79 0.64 0.62 0.76 0.80 0.76 0.60 0.81 0.78 0.68 0.70 0.68 0.68 0.72 0.69

Spambase 0.90 0.66 0.91 0.95 0.68 0.72 0.93 0.84 0.87 0.83 0.86 0.78 0.92 0.74 0.89 0.88 0.76 0.75

SPECT Heart 0.54 0.53 0.54 0.62 0.62 0.54 0.79 0.82 0.75 0.57 0.80 0.81 0.64 0.65 0.63 0.59 0.70 0.65

Supermar-
ket

0.58 0.51 0.46 0.00 0.58 0.51 0.07 0.05 0.07 0.00 0.08 0.06 0.13 0.09 0.12 0.00 0.14 0.11

Tic-Tac-Toe 0.55 0.47 0.46 0.73 0.52 0.54 0.78 0.74 0.73 0.41 0.77 0.74 0.64 0.57 0.56 0.53 0.62 0.62

Vote 0.95 0.93 0.98 0.91 0.94 0.93 0.95 0.95 0.93 0.91 0.94 0.95 0.95 0.94 0.95 0.91 0.94 0.94

Weather 0.50 0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.50 1.00 1.00 0.67 0.67 0.67 0.50 0.67 0.67

Wisconsin
Cancer

0.90 0.92 0.95 0.97 0.98 0.92 1.00 0.98 0.98 0.93 1.00 0.98 0.95 0.95 0.97 0.95 0.99 0.95

Average 0.68 0.61 0.63 0.71 0.67 0.65 0.76 0.73 0.73 0.60 0.76 0.73 0.70 0.65 0.66 0.64 0.70 0.67

