
Evaluation of uncertainties in classical and component (blocked force) transfer path
analysis (TPA)

A.T. Moorhouse1, J.W.R. Meggitt1, A.T. Elliott1

1Acoustics Research Centre, University of Salford, Greater Manchester, M5 4WT

Abstract

Transfer path analysis (TPA) has become a widely used diagnostic technique in the automotive and other sectors. In classic
TPA, a two-stage measurement is conducted including operational and frequency response function (FRF) phases from which the
contribution of various excitations to a target quantity, typically cabin sound pressure, are determined. Blocked force TPA (also
called in situ Source Path Contribution Analysis, in-situ TPA and component TPA) is a development of the classic TPA approach
and has been attracting considerable recent attention. Blocked force TPA is based on very similar two stage measurements to classic
TPA but has two major advantages: there is no need to dismantle the vehicle and the blocked forces obtained are an independent
property of the source component and are therefore transferrable to different assemblies. However, despite the now widespread
reliance on classic TPA, and the increasing use of blocked force TPA in the automotive sector, it is rare to see any evaluation of the
associated uncertainties. This paper therefore aims to summarize recent work and provide a guide to the evaluation of uncertainties
in both forms of TPA. The various types of uncertainty are first categorized as, ‘model’, ‘source’ and ‘experimental’ uncertainties.
Model uncertainties arise due to incomplete or inconsistent representation of the physical assembly by the measurements. Criteria
are provided for evaluation of completeness in terms of measured quantities. Experimental and source uncertainties are evaluated
through a first order propagation approach. Expressions are provided allowing the uncertainty in the target quantity to be estimated
from measured quantities. Additional data storage and analysis is required but no additional measurements are needed over and
above the usual TPA measurements. An illustrative example is provided.

1. Introduction

Transfer path analysis (TPA) has become a widely used
diagnostic technique in the automotive industry, as well as in
other industrial sectors [1]. The aim is to quantify the contribu-
tions of various structural transmission paths to a vibro-acoustic
target quantity, typically cabin sound pressure. This breakdown
provides valuable information for engineers to influence e.g.
cabin sound pressure through modification of structural com-
ponents. Noise sources considered include road noise, engine
noise as well as others. Airborne sources and transmission can
be included in TPA, but the focus here is on structural transmis-
sion. In this paper we consider the uncertainties and errors in
two of the most widely used variants of TPA, namely classical
[2, 3] (matrix inverse) and component (blocked force) TPA [4].
Other TPA variants, such as the mount stiffness method [1] and
advanced TPA [5], are not considered although could be subject
to a similar analysis.

In both classical and blocked force TPA, the assembled ve-
hicle is delineated into a source region, S, and a receiver region,
R (see Figure 1). The source region contains all the source
mechanisms of interest and frequently also includes some pas-
sive structures. For road noise for example, the source region
includes the tire-road contact patch, the tire, wheel, hub and
parts of the suspension such as wishbones. All parts of the ve-
hicle downstream of the source-receiver interface are consid-
ered to belong to the receiver, which for road noise typically

includes the cabin, body, perhaps subframes and possibly some
upper parts of the suspension. It is assumed that a set of forces
act on the receiver region from the source region. Normally
in TPA these forces are considered to act at discreet points but
may include moments as well as ordinary forces. The aim of
TPA is to quantify the contributions of each of the forces to the
target quantity, P. Arguably, these are contributions rather than
‘transfer paths’ but we will continue to use the term transfer
path analysis since this name has become widely adopted.

1.1. Measurements for TPA
A two-stage measurement process is needed for both classi-

cal and blocked force TPA. The first phase is an operational test
where the vehicle is run under appropriate load cycles while ac-
celerations and sound pressures are recorded at various points
on the structure and in the cabin. Essentially the same oper-
ational test is used for both classical and blocked force TPA.
A ‘passive’ measurement phase is then conducted with the ve-
hicle at rest in which frequency response functions (FRFs) are
measured, typically using excitation from a hammer. In clas-
sical TPA, the source and receiver regions must be physically
separated for this phase so that the FRFs relate purely to the re-
ceiver substructure. In blocked force TPA, the vehicle remains
fully assembled and the FRFs therefore relate to the whole as-
sembly.

The analysis also comprises two steps, the first an inverse
step to calculate the forces acting on the source-receiver inter-
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Figure 1: Schematic of measurement phases in TPA. Upper: operational test.
Lower: FRF test for classical (left) and blocked force (right) TPA. S, R: source,
receiver. a: operational accelerations. Dots and crosses: responses at indicator
and target locations.

face, and the second a forward or prediction step to calculate
the contribution of these forces to the target quantity. The above
measurement approaches can provide invaluable diagnostic in-
formation. However, they are known to be sensitive to measure-
ment and other errors. It is perhaps surprising then that com-
paratively little attention has been devoted to the treatment of
uncertainties in TPA. Hence, the aim of this paper is to provide
a guide to the evaluation of uncertainties in both classical and
blocked force TPA. The emphasis will be on providing as com-
prehensive a treatment as possible by bringing together already
published results into a common framework. The reader will be
referred to source publications for detailed derivations. In the
following section we categorize the uncertainties affecting TPA
as, ‘model’, ‘source’, ‘or ‘experimental’ uncertainties. ‘Model’
uncertainties are then discussed by considering the ‘complete-
ness’ and ‘consistency’ with which the measurements are able
to represent the physical test structure. Treatment of ‘source’
and ‘experimental’ uncertainties are then discussed and practi-
cal methods for their evaluation are provided. These concepts
are illustrated through a simulation example before a final sum-
mary and conclusions.

2. Types of Uncertainty in TPA

In this section we provide a categorization of the various
forms of error and uncertainty affecting TPA. First though, we
define the essential TPA equations.

2.1. Classical and blocked force TPA

The inverse and prediction steps in TPA are encapsulated
respectively by the following equations:

f = Y+a (1)

p = Hf (2)

In equation (1), a, is a vector of operational accelerations mea-
sured at indicator positions, usually on or close to the source-
receiver interface (see fig 1); f is an initially unknown vector
of generalized forces acting at the interface degrees of freedom.
Y is a matrix of FRFs relating the indicator and interface de-
grees of freedom and Y+ indicates the inverse of this matrix
(a pseudo-inverse for non-square matrices and a conventional
inverse for square matrices). The force vector calculated from
equation (1) is taken as the input to the prediction step outlined
in equation (2) where p is a vector of (predicted) target quanti-
ties, usually cabin pressure at various points and H is a matrix
of FRFs relating target and interface degrees of freedom. All
quantities are assumed to be in the frequency domain and the
dependence on radian frequency W is omitted for clarity.

Both classical and blocked force TPA can be described in
terms of these same equations. However, there are some dif-
ferences in the interpretation of the quantities apart from the
indicator accelerations A in equation (1) which are the same for
both methods, being based on identical measurements [4]. In
classical TPA, the FRF measurements are conducted with the
source substructure removed and hence the matrices Y and H
relate to the receiver substructure only. In this case, the forces
obtained from the inverse step, equation (1), are the contact
forces at the interface, in other words the forces exerted by the
source on the receiver. On the other hand, in blocked force TPA,
the source and receiver substructures remain attached for the
FRF measurements, so the matrices Y and H relate to the whole
assembly. In this case, the forces obtained are the blocked
forces of the source [6]. The physical interpretation of the
blocked forces is slightly more abstract than for the contact
forces, however, this minor disadvantage is compensated by a
significant benefit in that they are independent of the receiver
structure and can hence be transferred to assemblies where the
same source is mounted on different receivers. This advan-
tage is one of the main reasons why blocked force TPA is cur-
rently attracting interest. The inherent possibilities have been
described in more detail elsewhere [1].

The ‘output’ of TPA depends on what it is being used for.
As a diagnostic technique the desired quantities are the contri-
butions to the target quantity, i.e. rewriting the righthand side
of equation (2), the relative magnitudes of the terms in the sum
(the transfer path contributions) are of primary interest:

p =
∑

i

Hi fi (2a)

where Hi are the columns of H. However, with blocked force
TPA there is the possibility of using the blocked forces purely
for prediction purposes in which case the target quantity itself
is of most interest. In this paper we will focus on the uncer-
tainties in the target quantity, p. The more detailed problem of
estimating uncertainties in the transfer path contributions will
be considered in a later paper.
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Category Description
Model:

Completeness
Due to incomplete representation of all sig-
nificant forces at the source-receiver inter-
face

Consistency
Due to variations in system properties
between the operational and passive test
phases

Source
Uncertainty inherent in the source opera-
tion

Experimental:
Measurement Due to noise in the measurement chain

Operator Due to random errors in location and direc-
tion of forces during FRF measurement

2.2. Categories of Uncertainty

Meggitt et al.[7] have recently categorized the sources of
uncertainty in inverse force identification as originating from
the ‘model’, the ‘source’, and the ‘experiment’. These cate-
gories have been slightly extended here for the context of TPA.
The categories are summarized below and in table 1 and are
described in more detail in the following two main sections.

‘Model’ uncertainty arises due to imperfect representation
of the physical system by the measured data, for example due
to inherent assumptions. A main cause is lack of ‘complete-
ness’ in the representation of the interface, for example due to
neglected degrees of freedom. Similarly, if the measurement
points are not located at the actual location of the interface
forces then an error can be expected. Strictly speaking, these
are systematic errors rather than uncertainties but are an impor-
tant reason (possibility the main reason) for poor results in TPA
and so are included in this overview.

A further cause of ‘model’ error lies in lack of ‘consistency’
between the operational and FRF measurement phases, for ex-
ample due to temperature variation or operating loads. Again,
this is a systematic error rather than an uncertainty. Consistency
is classed here as a form of model uncertainty, although it could
be argued that it is a separate category.

‘Source’ uncertainties arise due to the variations (assumed
random) in the operation of the source. Source uncertainties
are handled here in a conventional way by obtaining a number
of samples during operation from which estimates of statistical
properties (mean and variance) are obtained. As an example,
it is clear that road noise is a statistical source that requires
repeated measurements over time with appropriate statistical
treatment of the data.

‘Experimental’ uncertainties were defined by Meggitt et al
[7] as comprising ‘measurement’ and ‘operator’ uncertainty.
Measurement uncertainty consists of uncorrelated noise in the
measurement chain which could originate from electrical noise
in instruments or uncorrelated background noise in the acceler-
ation signals, a. Again, this is handled by repeating measure-
ments so as to obtain a set of samples from which statistical
properties are derived. ‘Operator’ uncertainty arises due to a
lack of repeatability in the measurement of FRFs. Assuming

that the structures are excited by an instrumented hammer dur-
ing the FRF measurement phase, then differences (assumed to
be random) are expected from one hit to the next both in the po-
sition and direction of the hit. (Note that differences in strength
of the hit are not considered a source of uncertainty because,
assuming linearity, the FRFs are normalized to the input force).
It is normal practice to average the results of several hammer
hits to obtain average FRFs, however, we recommend here that
the individual FRFs obtained with each hit are retained so as to
allow calculation of the variance (and covariance) in addition
to the mean during postprocessing. Further details are provided
later.

In the following we discuss first model uncertainty before
then going on to present a framework for evaluation of all other
types of uncertainty.

3. Model Uncertainty

An important cause of error in TPA lies in what we are
terming ‘model’ uncertainty. Two categories of model uncer-
tainty have been identified above, relating to completeness and
consistency.

3.1. Completeness

Although TPA is an experimental technique, it is neverthe-
less necessary to adopt a ‘model’ of the physical system, com-
prising various assumptions, so that it can be represented by
measured data. For TPA, a crucial aspect of the model is the
representation of generalized forces at the source-receiver in-
terface which are inevitably approximated or idealized to some
extent. An important source of error in TPA, possibly the dom-
inant source, is thought to be incomplete descriptions of the in-
terface forces, for example if important degrees of freedom are
neglected because of insufficient channel count, difficulties of
access or difficulty in applying e.g. moments or in-plane forces
for FRF measurement. For example, if there is significant ex-
citation of the receiver by rotational degrees of freedom (mo-
ments) or in-plane forces at the interface then these forces need
to be included in the force vector f, which implies they must
also be represented in the FRF matrices Y and Y. An error will
result if any are omitted.

The interface completeness criterion (ICC) has been devel-
oped to quantify the extent to which the chosen interface de-
grees of freedom provide a true representation the physical sys-
tem. The essential concept, illustrated in figure (2), is that a
force on one side of the interface will produce zero response on
the other side if the interface is fully blocked. Blocking of the
interface is not feasible physically but it can be achieved math-
ematically at the degrees of freedom included in the model, de-
noted, ck, in figure (2). A non-zero response on the opposite
side from the excitation is then taken to indicate the presence
of unaccounted interface degrees of freedom, cu i.e. a lack of
completeness in the interface description.
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The ICC is defined as follows [8]:

Cba =

∣∣∣∣Yba
(
Ŷba

)H ∣∣∣∣2
Yba (Yba)H Ŷba

(
Ŷba

)H (3)

where Yba is the FRF with excitation at a and response at b
etc. (see below) and Ŷba = Ybck Y−1

ckck
Ycka. A complete in-

terface corresponds to Cba = 1 and indicates that there are no
neglected paths, i.e. cu = 0. At the other extreme, Cba = 0 indi-
cates a totally incomplete interface description, in other words
that none of the interface paths are included in the model, so
ck = 0. Cba has previously been termed the Interface Complete-
ness Criterion (ICC) for consistency of terminology with, for
example the Frequency Response Assurance Criterion (FRAC)
[9] although both are more accurately ‘coefficients’ rather than
‘criteria’.

Figure 2: Illustration of the interface completeness criterion (ICC) concept: the
interface is (mathematically) blocked at the known degrees of freedom, ck; a
non-zero response at b on the receiver R due to excitation at a on the source S
then indicates the presence of neglected degrees of freedom at the interface, cu,
i.e. a lack of completeness in the model of the interface.

The FRFs needed for evaluation of the ICC, as defined in
equation (3) are: Ybci , Y−1

cici
and Ycia. The ICC is equally valid

for classical and blocked force TPA, however, since all FRFs
required are measured with the source and receiver connected,
then fewer additional measurements are required for blocked
force TPA than for classical TPA:

1) Ybck contains the accelerances with response at b and ex-
citation on the interface at ck. These would normally be
measured in blocked force TPA if at least some of the in-
dicator positions are at b (on the receiver away from the
interface);

2) Y−1
ckck

contains accelerances with response and excitation
both on the interface at ck. This would normally be mea-
sured in blocked force TPA if the indicator positions are
at ck (on the interface);

3) Ycka contains the accelerances with excitation at loca-
tions a on the source side of the interface and responses
on the interface at ck. This would not normally be mea-
sured, however, it is a fairly simple additional measure-
ment since accelerometers will already be placed at ck in
any case. This can be considered as a ‘artificial excita-
tion’ of the source with the hammer.

An example of the ICC is given in figure (3) which indi-
cates that the continuous interface between two halves of a plate
is almost completely described by forces and moments at 10
discreet points on the interface (blue curve). However, when
the moments are neglected the completeness is significantly re-
duced over certain frequency ranges (orange curve).

(a)

(b)

Figure 3: Illustration of the Interface completeness criterion (ICC). Top: ‘plate
1’ and ‘plate 2’ are two sides of the same flat plate connected through a contin-
uous interface. Continuous forces and moments along this interface are repre-
sented by generalized forces at 10 discreet points (the ‘model’). Bottom: ICC
with forces and moments included (blue); forces only (brown).

3.2. Consistency

As well as incompleteness, another cause of error in TPA
occurs if there is inconsistency between the operational and
FRF testing phases. For example, if there are temperature changes
or if operating loads cause changes in the FRFs then then opera-
tional and FRF measurement actually describe slightly different
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systems. It was shown in [10, 11] that this can result in signif-
icant errors in certain frequency ranges. This can be illustrated
by expressing the measured operational acceleration in terms
of the ‘true’ force (or blocked force), ftrue, and the true FRF
matrix, Ytrue.

a = Ytrueftrue (4)

Note that the acceleration is measured directly and we do not
have access to the terms on the right hand side so the ‘true’ FRF
matrix, Ytrue, is implied in the acceleration measurements but
is not obtained explicitly. When the inverse step is applied, as
in equation (1), we pre-multiply by the inverse of the measured
FRF matrix, Y:

f = Y+ (Ytrueftrue) (5)

Clearly, if there is consistency between the ‘true’ FRF matrix,Ytrue,
and the measured one, Y, then the FRF matrices in equation (5)
cancel and the estimated forces (or blocked forces) f are equal
to the true values. However, if there is any inconsistency then
the cancellation will be incomplete. A typical scenario is when
there is a shift in the frequency of a resonance or antiresonance,
perhaps due to temperature or load changes; around the peak or
trough, the FRF changes rapidly and a small shift in frequency
can result in significant artefacts over a narrow frequency range
due to lack of cancellation. Note that incompleteness in the
model, as described above, is one possible cause of inconsis-
tency. Ideally, it will be possible to quantify the consistency
through a metric similar to the ICC developed above. However,
this problem will be addressed in a later paper.

4. Propagation of measurement uncertainties

The aim of the uncertainty analysis outlined in this section
is to quantify the uncertainties inherent in the estimates of the
target quantity, p. In this section, we consider those uncertain-
ties originating in the various TPA experiments (experimental
uncertainty); we also consider source uncertainty since this may
readily be evaluated as part of the same general approach. We
start with a general framework for measurement uncertainties
which is then applied to TPA. We go on to describe how the
necessary inputs are obtained in the measurement phases and
provide relationships for propagating the measured uncertain-
ties through to the target quantity.

4.1. Framework for measurement uncertainties

Consider a general input-output system described by:

y = Ax (6)

where x is an n×1 vector of inputs, y an m×1 vector of outputs
and A is the m × n system matrix. The problem is to propagate
the uncertainties inherent in the quantities on the right hand side
through to the outputs on the left hand side.

For uncertain inputs, x, the covariance between any two el-
ements of the output can be expressed using the law of error
propagation as:

Σy = JxΣxJT
x (7)

where Σy is the covariance matrix of the output and Σx the co-
variance matrix of the input. For real inputs, Σx is of dimension
n × n, but since the inputs in TPA will generally be complex
this becomes 2n × 2n, since the real and imaginary parts must
be described separately (as described later). Similarly, Σy is of
dimension 2m×2m. Jx is the Jacobian which is defined in terms
of the derivatives of equation (6) with respect to each input and
is of dimension (for complex inputs) 2m×2n. In the following it
will be described how to calculate the Jacobian from measured
quantities. Further details about the derivation can be found in
[7].

If, as well as the inputs, x, the system matrix, A, is also un-
certain then additional terms are required to express the output
covariance:

Σy = JxΣxJT
x + JAΣAJT

A (8)

where ΣA is the covariance matrix for the uncertain system ma-
trix which, for a complex matrix, has dimension 2mn×2mn. JA
is the Jacobian formed from the derivatives of equation (6) with
respect to the elements of the system matrix and is of dimension
2m × 2mn.

Equation (8) assumes no correlation between the inputs and
the system matrix which is a fair assumption for TPA since the
operational and FRF tests are performed at different times. De-
spite this simplification, it is evident from equation (8) that a
large number of elements are required to account for all possi-
ble cross correlations, particularly those between the elements
of the system matrix. It is tempting to introduce further sim-
plifying assumptions at this point, for example, the covariance
matrix ΣA of the system matrix is diagonal if there is no correla-
tion between the elements [12]. However, when using hammer
measurements, it is usual to measure a full column of the ma-
trix simultaneously in which case the elements within a column
will be correlated to some extent. It has been shown that these
correlations can have a significant influence on the output vari-
ances so the temptation to simplify will be resisted and all terms
will be retained in the following analysis [12].

4.2. General framework applied to TPA
Having identified the general approach in the previous sus-

bsection, we now proceed to apply this to the TPA problem. In
effect, we apply the law of error propagation outlined in equa-
tion (8) to the forward and inverse steps of the TPA process as
defined in equations (2) and (1) respectively.

4.2.1. Forward (prediction) step
Starting with the forward (prediction) step given in equation

(2), it is noted that this is of the same form as equation (6). The
law of error propagation defined in equation (8) can therefore
be applied directly to give the covariance matrix of the target
response (cabin sound pressure):

Σp = JfΣfJT
f + JHΣHJT

H (9)

where Σf is the covariance matrix of the forces (or blocked
forces for blocked force TPA) and ΣH the covariance matrix for
the measured FRF matrix H. Jf and JH are the corresponding
Jacobians.
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Symbol Description How obtained

Σa

Covariance matrix of
measured operational
indicator responses

Calculated from re-
peated measurement of
operational response
vector a

ΣH

Covariance matrix of
measured FRF matrix,
H

Calculated from re-
peated measurement of
FRF matrix H

ΣY

Covariance matrix of
measured FRF matrix,
Y

Calculated from re-
peated measurement of
FRF matrix Y

Jf
Jacobian relating to
force vector, f See equation (24)

JH
Jacobian relating to
FRF matrix, H See equation (26)

Ja
Jacobian relating to re-
sponse vector, a See equation (27)

JY
Jacobian relating to
FRF matrix, Y

See equation (28) for
square matrices and
(29) for non-square
matrices

Table 1: Quantities required for the calculation of measurement uncertainty in
TPA.

The covariance matrix Σp of the target responses are the
quantities sought from this analysis. On the right hand side we
have two covariance matrices, Σf , ΣH and two Jacobians, Jf
and JH, which need to be evaluated before we can obtain this
desired quantity. Of these, ΣH can be obtained from measured
FRFs as described in [7, 13] and in the following. The Jaco-
bians can also be described in terms of directly measured quan-
tities as given in [13] and described later. The forces however
are not measured directly and so an additional step is required
to obtain their covariance matrix, Σf , as described in the follow-
ing.

4.2.2. Inverse (force identification) step
Equation (1) shows that the forces (or blocked forces), f,

are not measured directly but are inferred from other measured
quantities in the inverse step of TPA. Applying the law of error
propagation, equation (8), to equation (1) we obtain:

Σf = JaΣaJT
a + JY+ΣY+ JT

Y+ (10)

where Σa is the covariance matrix of the indicator responses, a.
In effect, these are the ‘source’ uncertainties. Ja is the corre-
sponding Jacobian. ΣY+ is the covariance matrix for the pseudo
inverse of the measured FRF matrix Y+ and JY+ the correspond-
ing Jacobian.

Note that since the directly measured quantity is the FRF
matrix Y rather than its pseudo inverse Y+, an additional step
is required to propagate uncertainties of the measured FRFs
through the matrix inversion. Fortunately, it is possible to rewrite
equation (10) in a form more convenient for TPA as follows

[14]:
Σf = JaΣaJT

a + JYΣYJT
Y (11)

where ΣY is the covariance matrix for the (directly measured)
FRF matrix, Y. JY is a correspondingly modified Jacobian
which will be given later and again, is calculable from mea-
sured quantities. A derivation of equation (11) will be provided
in [14]. Note that, whilst equation (8) provided an exact prop-
agation of uncertainty (as equation (6) is linear), equation (11)
provides only a first order approximation because the inverse of
a matrix is non-linear function. The Jacobian JY therefore pro-
vides a first order relation between Y and Y+ and equation (11)
is valid only in the presence of ‘low levels’ of FRF uncertainty.

Combining the results from this and the previous subsection
we see that in order to calculate the desired variances of the
target responses Σp we require three covariance matrices and
four Jacobians as summarized in Table 2. How to obtain these
quantities will be shown in the following. However, first we
briefly consider the issue of complex data.

4.2.3. Handling of complex data
In frequency domain TPA, as discussed here, all quantities

will generally be complex. We therefore must consider the vari-
ance in both the real and the imaginary parts of each quantity
and furthermore, the covariance between the real and imaginary
parts. Therefore, in order to express the variance of a single
complex quantity a 2 × 2 covariance matrix is required:

σxi x j →

[
σ<(xi)<(x j) σ<(xi)=(x j)
σ=(xi)<(x j) σ=(xi)=(x j)

]
(12)

where σxi x j is the covariance between elements i and j of a
measured matrix or vector, and<( ) and =( ) represent real
and imaginary parts respectively. For example, in the case of i =

j, σ<(xi)<(xi) is the variance of the real part, σ=(xi)=(xi) is that of
the imaginary part and σ<(xi)=(xi) = σ=(xi)<(xi) is the covariance
between real and imaginary parts.

Fortunately, the required transformations can be handled
relatively straightforwardly in the programming stage of analy-
sis [10, 14, 15] by the use of three complex matrix operators as
defined below:

M1(A) =

[
<(A)
=(A)

]
(13a)

M2(A) =

[
<(A) −=(A)
=(A) <(A)

]
(13b)

M3(A, B) =

[
<(A + B) −=(A + B)
=(A + B) −<(−A + B)

]
(13c)

Each can be implemented in one line of code. For reference,
the first, M1( ), applies to vectors, the second, M2( ), to ana-
lytic matrices satisfying the Cauchy Riemann equations and the
third, M3( ), to complex matrices not satisfying the Cauchy-
Riemann equations. In the following, these operators will be
applied elementwise. However, the same operations could po-
tentially be applied to entire matrices, the important require-
ment is to ensure consistent ordering of matrix and vector ele-
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ments. The reader is referred to [10, 14, 15] for further infor-
mation on derivation and application.

4.3. Obtaining the covariance matrices

We now consider how the required covariance matrices are
obtained from measurements. We start with the indicator re-
sponse vector, a, before going on to treat the FRF matrices, Y
and H. Again, we stress the importance of correct and consis-
tent ordering of all elements of all matrices and vectors.

4.3.1. Covariance matrix of response vector, Σa

In effect, the covariance matrix Σa represents the source un-
certainty, (although the measured values will to some extent be
modified by the receiver structure to which the source is at-
tached). To obtain the covariance matrix, the response vector, a
(assumed n×1), is measured multiple times, say k times in total.
The resulting column vectors are arranged horizontally and the
real part of each element is stacked on top of the corresponding
imaginary part by elementwise application of the M1( ) oper-
ator (see equation 13a). The resulting measurement matrix is of
dimension 2n × k:

ā =
[

M1(a(1)) M1(a(2)) · · · M1(a(k))
]

(14)

where a(i) is the column vector of responses measured in the ith
measurement. For clarification, the expanded form of equation
(14) is given by:

ā =



<(a1
(1)) <(a1

(2)) · · · <(a1
(k))

=(a1
(1)) =(a1

(2)) · · · =(a1
(k))

<(a2
(1)) <(a2

(2)) · · · <(a2
(k))

...
...

. . .
...

=(an
(1)) =(an

(2)) · · · =(an
(k))


(15)

The covariance matrix is then obtained from equation (14) in
the conventional manner using:

Σa =
1
k

[
(ā − E(ā)) (ā − E(ā))T

]
(16)

where the expectation E( ) is taken along the rows.

4.3.2. Covariance matrix of FRF matrix,, ΣY

In the evaluation of the FRF covariance matrices two ad-
ditional factors arise that were not present for response vector,
namely the need for multiple measurements and for reorganiza-
tion of the FRF data.

The first point is that the FRF matrix, Y, must be recorded
multiple times in order for the statistics to be evaluated. Whilst
as described above, this is common practice for response mea-
surements, it is not usual for FRF measurements to be processed
in this way. In fact, the data is usually available because multi-
ple measurements of FRFs are generally taken, however the in-
dividual results are typically discarded after averaging with no
attempt to evaluate higher order statistics. However, by retain-
ing the data from each measurement it is possible, as described
below, to evaluate variance without resorting to any additional

measurements. In the case of hammer measurements, this sim-
ply means that the results of each hit must be saved.

The second point is that, whereas FRF matrices are nor-
mally arranged such that the rows and columns correspond to
response and excitation positions, for calculation of variance we
require the correlations between every pair of matrix elements
and a more convenient pattern is to arrange all the FRF elements
into a single column vector. This can be achieved using a ‘vec-
torization’ operation, consisting of stacking the columns of the
FRF matrix beneath each other moving left to right. This oper-
ation is simple to perform in many programming languages.

Considering the above, it is then possible to construct a
measurement matrix similar to that for the response measure-
ments defined in equation (14):

Ȳ =
[

M1(vec(Y(1))) M1(vec(Y(2))) · · · M1(vec(Y(k)))
]

(17)
where, as with equation (14), the superscripts in brackets refer
to the number of the measurement where k is the total number
of measurements made. vec( ) represents the vectorization
operator as described above, thus, vec(Y(i)) represents the entire
FRF matrix for measurement i in vectorized form. M1( ) is
the complex operator as defined in equation (13a) which again
is applied elementwise.

Noting the similar form of equation (14) and (17) we can
then express the covariance matrix in the same form as equation
(16):

ΣY =
1
k

[(
Ȳ − E(Ȳ)

) (
Ȳ − E(Ȳ)

)T
]

(18)

where the expectation E( ) is taken along the rows.

4.3.3. Covariance matrix of FRF matrix, ΣH

The covariance matrix for the target location FRFs, H, can
be treated in the same way as that for the indicator location
FRFs, Y. It is simply necessary to replace Y with H in equa-
tions (17) and (18). The resulting equations are given below for
completeness:

H̄ =
[

M1(vec(H(1))) M1(vec(H(2))) · · · M1(vec(H(k)))
]

(19)
and

ΣH =
1
k

[(
H̄ − E(H̄)

) (
H̄ − E(H̄)

)T
]

(20)

4.4. Evaluating the Jacobians

Having obtained the necessary covariance matrices from the
previous section, the remaining quantities required from table 2
are the four Jacobians Ja,Jf ,JY,JH.

4.4.1. General forms of Jacobian
In order to illustrate the general form of the Jacobians, we

return to the input-output problem outlined in equations (6) and
(7). The Jacobian Jx is defined in terms of the partial differen-

7



tials of the outputs with respect to the uncertain inputs,

Jx =


∂y1
∂x1

∂y1
∂x2

· · ·
∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · ·
∂y2
∂xn

...
...

. . .
...

∂ym
∂x1

∂ym
∂x2

· · ·
∂ym
∂xn

 (21)

For the simple example of equations (6) and (7) this results in
Jx = A.

If in addition to the input vector, the system matrix is uncer-
tain, an additional term is needed as was introduced in equation
(8). The corresponding Jacobian, JA is obtained by partial dif-
ferentiation of the outputs with respect to each of the uncertain
matrix entries:

JA =


∂y1
∂A11

∂y1
∂A21

· · ·
∂y1
∂Amn

∂y2
∂A11

∂y2
∂A21

· · ·
∂y2
∂Amn

...
...

. . .
...

∂ym
∂A11

∂ym
∂A21

· · ·
∂ym
∂Amn

 (22)

This is a similar form to equation (21) except that the number
of columns is increased to allow for partial differentiation by all
mn entries of the matrix. Thus, the dimension of JA is m × mn
and it contains m diagonal matrices arranged horizontally, each
containing a repeated element of the vector x.

JA =


x1 0 0 x2 0 0 · · · xn 0 0

0
. . . 0 0

. . . 0 · · · 0
. . . 0

0 0 x1 0 0 x2 · · · 0 0 xn


(23)

= xT ⊗ I.

The compact form of notation on the righthand side introduces
the Kronecker product, ⊗, where every term of the matrix or
vector on the left of the symbol is multiplied by the matrix or
vector on the right. Fortunately, the Kronecker product is a
standard function in many programming languages which fa-
cilitates implementation of the above.

4.4.2. Jacobians required for TPA
We now present expressions for the Jacobians required in

TPA starting with those for the prediction step outlined in equa-
tion (2). We note that equation (2) is of the same form as equa-
tion (6), so the Jacobian Jf from equation (9) can be written
as:

Jf = M2(H) (24)

where the complex matrix operator M2( ) (equation (10b)) has
been introduced to deal separately with the real and imaginary
parts. The second Jacobian from equation (9) is of a similar
form to equation (23), so:

Jf = M2(fT ⊗ I) (25)

This can be rewritten in terms of directly measured quantities
by substituting in equation (1), giving:

Jf = M2((Y+a)T ⊗ I) (26)

where, again, M2( ) has been applied to deal with real and
imaginary parts.

We now consider the inverse step outlined in equation (1),
for which a similar analysis can be applied, albeit slightly com-
plicated by the presence of the pseudo inverse. The first term of
equation (11) is similar to that of equation (9) which leads to:

Ja = M2((Y+) (27)

The remaining Jacobian, JY, requires a more involved analysis
because of the pseudo inverse and the result is presented here
without derivation; the reader is referred to [14] for further de-
tails. For square matrices JY takes the following form:

JY = M2((−Y−1a)T ⊗ Y−1) (28)

However, when the matrix is non-square, which will often be
the case, a lengthier expression is needed using the third form
of the complex matrix operator from equation (13c):

JY = M3((−Y−1a)T ⊗ Y−1), ([((I − YY+)a)T ⊗ Y+Y+H] + · · ·

· · · [(Y+Y+Ha)T ⊗ (I − YY+)]K) (29)

where K is known as a commutation matrix and gives a relation
between Kvec(A) = vec(AT) [16]. K is uniquely defined by the
dimensions of A. For example, if A is of dimensions 3 × 2, K
is given by,

K =



1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1


(30)

All of the elements necessary for evaluation of the source and
experimental uncertainties are now available. The procedure is
summarized in the following.

4.5. Summary for source and experimental uncertainties

The procedure for calculating uncertainties can be summa-
rized by substituting equation (11) into equation (9):

Σp = Jf(JaΣaJT
a + JYΣYJT

Y)JT
f + JHΣHJT

H (31)

The following steps are then required:

1) Σa is evaluated by repeated measurement of the opera-
tional response vector, a, and calculation of the covari-
ance matrix according to equations (14, 16);

2) ΣY is evaluated by repeated measurement of the FRF ma-
trix, Y, during the passive measurement phase and cal-
culation of the covariance matrix according to equations
(17, 18);

8



Figure 4: System for numerical example. The source and receiver are both flat
plates. The red dot is the location of the ‘internal’ operating forces of the source
(not normally accessible). The target response, p, is evaluated at the yellow dot
and indicator responses, a, at the interface locations (green). The FRF matrix,
Y (4 × 4), is evaluated at the interface locations (green) and H, (1 × 4) between
the interface and target locations.

3) ΣY is evaluated in a similar fashion to Y using equations
(19, 20);

4) The Jacobians Ja, Jf , JY, JH are evaluated using equa-
tions (24, 26, 27, 28);

5) Values for all terms are substituted into equation (31).

4.5.1. Correlation between Y and H
Note that equation (27) and all the preceding analysis as-

sumes there is no correlation between the indicator position
FRFs, Y, and the target position FRFs, H. This is a reason-
able assumption if they are obtained in separate tests, which
would occur for reciprocal measurement for example with a
volume velocity source. However, if forward FRF measurement
is used, with structural excitation at the interface then it is pos-
sible to obtain responses at both indicator and target locations
simultaneously, in which case there will be correlation within
the columns of H and Y and an additional term is required in
equation (27):

Σp = Jf(JaΣaJT
a +JYΣYJT

Y)JT
f +JHΣHJT

H +2JHYΣHYJT
HY (32)

Based on analysis in [13], the most likely effect of neglecting
this correlation is a significant overestimation of the overall un-
certainty. Since the estimates are likely to be on the safe side
a full analysis of this effect will be left to a later paper. How-
ever, it is worth mentioning that there are potentially important
implications for whether forward or reciprocal measurement of
FRFs provides the most reliable results in TPA.

5. Numerical Example

In this section, the estimation of uncertainties in TPA is il-
lustrated by a numerical example. Measurement examples of
certain aspects of the above analysis are also provided in [7, 13].
The system evaluated is shown in figure (4). The source and
receiver are both flat plates, connected at the top of 4 rigid con-
nections. The lack of repeatability in the hammer hits for the

FRF measurements is simulated by randomly varying the ex-
citation position which leads to an ensemble of measurements
with the spread shown in the upper plot of figure (5). The FRF
covariance matrices, ΣY and ΣHY are evaluated from this en-
semble. The FRF variance has been selected for illustration
purposes to lie on the high side of what would be expected
from a typical physical measurement. The receiver response
is contaminated by noise as shown in the lower plot of figure
(5) leading to estimates of response variance, Σa.

Figure 5: Upper: example mean FRF with spread of results from different ham-
mer hits. Lower: example receiver response showing the spread of results with
added noise.

Figure 6: Bivariate uncertainty of the predicted response (compared against a
Monte-Carlo solution)

Figure (6) shows the relative variance for the real and imag-
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inary parts of the target response as predicted from the above
calculation scheme. Note that the covariance between the real
and imaginary parts is significant and cannot be neglected. Also
shown are the results from a Monte-Carlo analysis of the same
data. Results indicate that the first order analysis described ear-
lier provides a good estimate of uncertainties in the output, at
least for the level of input uncertainty level considered (believed
to be realistic).

Figure (7) shows the predicted magnitude of the target re-
sponse overlaid with the 95% confidence intervals obtained from
the above analysis. These confidence intervals were obtained
assuming the real and imaginary parts of the response were joint
normally distributed. A Monte-Carlo method was then used
to estimate the confidence bounds for the magnitude of the re-
sponse [13]. It can be seen that for this example the variance
at low frequencies (¡50 Hz) primarily derives from background
noise in the indicator responses. However, at high frequencies
(300-600 Hz) the main source is the lack of repeatability in the
FRF measurements.

Figure 7: Predicted magnitude of the target response with a 95% confidence
bounds

6. Summary/Conclusions

The uncertainties affecting TPA measurements have been
categorized as: model, source and experimental. Model uncer-
tainties occur due to incompleteness or inconsistency in the rep-
resentation of the physical system by the measurements and are
a significant potential cause of error. The Interface Complete-
ness Criterion (ICC) has been introduced as a way of quanti-
fying the (lack of) completeness. A corresponding metric for
consistency is under development.

Source and experimental uncertainties are random varia-
tions. A first order framework for estimating the influence of
these input uncertainties on the target quantity in both classi-
cal and blocked force TPA has been outlined and illustrated by
a numerical example. Three covariance matrices are required
for the input quantities, i.e. the indicator accelerations and the
FRFs for indicator and target locations. In addition, four Ja-
cobian matrices are required which can all be calculated from
directly measured quantities. No additional measurements are

required over and above the usual TPA measurements, although
additional data storage and calculation is required.
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Definitions/Abbreviations

TPA transfer path analysis

ICC interface completeness criterion, or
interface completeness coefficient

FRF frequency response function
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