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Abstract
The traditional focus on taxonomic diversity metrics for investigating species responses 
to habitat loss and fragmentation has limited our understanding of how biodiversity is 
impacted by habitat modification. This is particularly true for taxonomic groups such as 
bats which exhibit species-specific responses. Here, we investigate phylogenetic alpha and 
beta diversity of Neotropical bat assemblages across two environmental gradients, one in 
habitat quality and one in habitat amount. We surveyed bats in 39 sites located across a 
whole-ecosystem fragmentation experiment in the Brazilian Amazon, representing a gradi-
ent of habitat quality (interior-edge-matrix, hereafter IEM) in both continuous forest and 
forest fragments of different sizes (1, 10, and 100 ha; forest size gradient). For each habi-
tat category, we quantified alpha and beta phylogenetic diversity, then used linear mixed-
effects models and cluster analysis to explore how forest area and IEM gradient affect 
phylogenetic diversity. We found that the secondary forest matrix harboured significantly 
lower total evolutionary history compared to the fragment interiors, especially the matrix 
near the 1 ha fragments, containing bat assemblages with more closely related species. For-
est fragments ≥ 10 ha had levels of phylogenetic richness similar to continuous forest, sug-
gesting that large fragments retain considerable levels of evolutionary history. The edge 
and matrix adjacent to large fragments tend to have closely related lineages nonetheless, 
suggesting phylogenetic homogenization in these IEM gradient categories. Thus, despite 
the high mobility of bats, fragmentation still induces considerable levels of erosion of phy-
logenetic diversity, suggesting that the full amount of evolutionary history might not be 
able to persist in present-day human-modified landscapes.

Communicated by Raphael K. Didham.

Our study highlights the erosion of phylogenetic diversity of bat assemblages associated with 
habitat fragmentation and degradation in the world’s largest and longest-running whole-ecosystem 
fragmentation experiment. This work advances our understanding of the effects of habitat modification 
on bats as key ecosystem service providers in tropical ecosystems.
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Introduction

Humans have fundamentally changed the face of the Earth, with negative side-effects for 
biodiversity across all major biomes. Tropical forests are among the biomes impacted 
most heavily given the large footprint of pervasive land use changes which have resulted in 
widespread habitat loss and fragmentation (Austin et al. 2017; Barlow et al. 2018). These 
land use changes have detrimentally affected the richness, abundance, and composition of 
many tropical taxa (Alroy 2017), leading to a pattern of extensive defaunation, with cas-
cading effects on ecosystem functioning (Young et al. 2016).

Idiosyncratic responses of species to fragmentation are ubiquitous, rendering assem-
blage-level inferences regarding fragmentation effects generally difficult (Ewers and Did-
ham 2006; Fahrig 2017). This is mainly because the treatment of species as equal enti-
ties by neglecting their unique evolutionary history, functional roles in the ecosystem, and 
their association with each other within the community (Pellens and Grandcolas 2016), 
paints an incomplete picture of the effects of habitat fragmentation. Therefore, recent stud-
ies assessing the effect of habitat fragmentation on tropical taxa have started to incorporate 
evolutionary information using phylogenetic diversity metrics in addition to species rich-
ness (Frishkoff et al. 2014; Santos et al. 2014; Cisneros et al. 2015, 2016; Aguirre et al. 
2016; Frank et al. 2017). By doing so, these studies were able to uncover patterns previ-
ously undetected by studies with a sole focus on the taxonomic dimension of biodiver-
sity. For example, the decrease of distantly-related plant species in a fragmented landscape 
(Santos et al. 2014) suggests that habitat fragmentation impoverished evolutionary history 
of the taxa in question. Similar trends were also found in more mobile taxa such as birds 
and bats, which also showed that closely-related species tend to co-occur more often than 
expected by chance in various types of disturbed habitats (Riedinger et al. 2013; Frishkoff 
et al. 2014; Frank et al. 2017). This pattern, often referred to as phylogenetic clustering, 
indicates a strong effect of habitat filtering (Vamosi et al. 2009).

Phylogenetic clustering in fragmented landscapes, however, is not consistently sup-
ported by empirical evidence. Several studies have documented the tendency of phyloge-
netic overdispersion at the edge of fragmented forests (Santos et  al. 2010; Peralta et  al. 
2015), suggesting that different types of habitat within a fragmented landscape differen-
tially affect the evolutionary dimension of biodiversity. Gaining better insights into the 
extent to which phylogenetic diversity of assemblages is eroded as a result of habitat frag-
mentation therefore is critical to improve our general understanding of biodiversity persis-
tence in human-modified landscapes.

Despite their mobility, bats (Chiroptera) are among the many animal groups that are 
demonstrably affected by habitat loss and fragmentation (Meyer et al. 2016; Alroy 2017). 
Notwithstanding increased research effort devoted over recent years to better understand 
how bats respond to habitat fragmentation, studies at the assemblage level, typically com-
paring species richness, diversity, and assemblage composition between forest fragments 
and continuous forest, show inconsistent results and highlight the need for more research 
focusing on the functional and phylogenetic biodiversity dimensions (Meyer et al. 2016). 
Bats are a good model group to study the effect of habitat fragmentation on phylogenetic 
diversity given their high species richness, functional diversity, and key roles in ecosystem 
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functioning (Kunz et al. 2011). Studies employing a phylogenetic approach to investigate 
bat responses towards habitat disturbance (Cisneros et al. 2015; Frank et al. 2017; Presley 
et al. 2018) have been made possible by the availability of phylogenetic trees of all extant 
bat species (Jones et al. 2002, 2005; Shi and Rabosky 2015) that can be used to calculate 
phylogenetic diversity metrics.

Of the few studies that have investigated bat phylogenetic diversity in fragmented land-
scapes, none has assessed responses across the entire gradient in habitat quality typically 
encountered, formed by the interiors (I) and edges (E) of continuous forest and forest frag-
ments, as well as the intervening matrix (M), or the IEM gradient (Rocha et  al. 2017a). 
Explicit consideration of the full IEM gradient, however, is important to better understand 
the extent of habitat filtering that usually is regarded as the cause of phylogenetic cluster-
ing in disturbed habitats (Riedinger et al. 2013; Frank et al. 2017; Presley et al. 2018) as 
species persistence in fragmented landscapes may be differentially affected by this gradient 
in habitat quality (Ferreira et al. 2017). The observed phylogenetic richness and structure 
in each habitat that comprises the IEM gradient can give an indication about the amount of 
evolutionary history retained by the constituent habitat elements of a fragmented landscape 
(Cisneros et al. 2015). Moreover, exploring which habitats share similar evolutionary his-
tory or harbour lineages that are more closely related compared to other habitats may give 
insights into the evolution of habitat preferences (Graham and Fine 2008).

To elucidate how habitat fragmentation affects the evolutionary dimension of bat diver-
sity, we investigated the changes in phylogenetic alpha and beta diversity of Amazonian 
bat assemblages across two environmental gradients, one in habitat quality (IEM gradient) 
and one in habitat amount (forest size: continuous forest; fragments of 1, 10 and 100 ha), 
in the experimentally fragmented landscape of the Biological Dynamics of Forest Frag-
ments Project (BDFFP), the world’s largest and longest-running experimental study of 
habitat fragmentation (Haddad et  al. 2015), investigating a total of 12 habitat categories 
(the IEM gradient of the continuous forest and forest fragments). We expected that dif-
ferences in phylogenetic diversity between forest fragments of different size will depend 
on the habitat quality therein so that the interaction between IEM gradient and forest size 
(habitat amount) will affect both phylogenetic alpha and beta diversity. The assemblages in 
the secondary forest matrix should retain the least total evolutionary history due to selec-
tion of bat lineages that are best adapted to different levels of habitat quality (Rocha et al. 
2018), followed by edges, while the interiors of continuous forest should harbour the most 
evolutionary history due to greatest resource availability (Ries and Sisk 2004). Accord-
ingly, phylogenetic clustering should be strongest in the matrix surrounding the smallest 
forest fragments as habitat filtering would result in each habitat category harbouring line-
ages that have already been adapted to a specific set of habitat conditions (Farneda et al. 
2015; Ferreira et al. 2017). These effects would result in low phylogenetic beta diversity 
among similar habitat categories as phylogenetic turnover would be low in assemblages 
containing similar types of lineages.

Methods

Study area

The BDFFP spans ~ 1000 km2 and is located approximately 80 km north of Manaus, Brazil 
(S2°30′, W60°; Fig. S1). The area contains different-sized forest fragments separated by 
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80–650 m from the surrounding continuous forest that serves as experimental control (Lau-
rance et al. 2018). Following abandonment of the cattle pastures which initially surrounded 
the experimentally isolated fragments after their creation in the early 1980s, Vismia- and 
Cecropia-dominated secondary forest developed in the matrix (Mesquita et al. 2015). Frag-
ment isolation was maintained by clearing and burning of a 100 m-wide strip of secondary 
forest around each of the forest fragments at intervals of ca. 10 years. Prior to this study, 
the most recent re-isolation occurred between 1999 and 2001 (Rocha et al. 2017b).

The forest at the BDFFP is a typical non-flooded forest of the Amazon basin (De 
Oliveira and Mori 1999), with approximately 280 species of trees (dbh > 10 cm) per hec-
tare (Laurance et  al. 2010). The area has a relatively flat topography (80–160  m), with 
nutrient-poor soils. Rainfall ranges from 1900 to 3500  mm annually, with a moderately 
strong dry season from June to October (Laurance et al. 2018).

Bat sampling

Bats were sampled with ground-level mist nets in eight primary forest fragments—three of 
1 ha, three of 10 ha and two of 100 ha—and in nine control sites in three areas of continu-
ous forest (Fig. S1). The eight forest fragments and three of the control sites were sampled 
in the interior, at the edges, and in the secondary forest matrix, whereas the remaining six 
control sites were sampled in their interior only, resulting in a total of 39 sites (Fig. S2). 
Distances between interior and edge sites of continuous forest and fragments were, respec-
tively 1118 ± 488 and 245 ± 208 m (mean ± SD). Matrix sites were located ca. 100 m away 
from the border between primary and secondary forest. Edge sites were sampled with mist 
nets deployed in the contact zone between primary and secondary forest which allowed us 
to study edges as linear landscape features. In fragments, interior sites were placed in the 
centre whereas in continuous forest we placed sampling sites in areas previously sampled 
for different taxa. Selection of field sites was constrained by limitations associated with 
fieldwork in remote locations (we tried to use well marked trails, especially in continuous 
forest) and restrictions imposed by the BDFFP which has strict limitations regarding the 
opening of new trails in their experimental fragments. The placement of the mist nets was 
therefore limited to pre-existing trails which precluded a study design suitable to investi-
gate edge penetration.

Each sampling site was visited eight times over a 2-year period (August 2011–June 
2013). Bats were captured using 14 ground-level mist nets (12 × 2.5  m, 16  mm mesh, 
ECOTONE, Poland) in the interiors of forest fragments and continuous forest, and seven 
ground-level mist nets at the edge and matrix sites. The nets were exposed for 6 h after 
dusk and visited at intervals of ca. 20 min. Total sampling effort was 18,650 mist net hours 
([1 mist-net hour (mnh) equals one 12-m net open for 1 h]) during which 4210 bats belong-
ing to six families and 55 species were captured. We restricted our analyses to bats of the 
family Phyllostomidae, the only Neotropical bat family that can be adequately sampled 
with mist nets (Kalko 1998). Thus, 3494 captures from 43 species were included in our 
calculations of phylogenetic diversity.

Phylogenetic information

The phylogenetic information of phyllostomid species present at the BDFFP, hereafter 
referred to as the local phylogeny, was extracted from the most recent species-level phy-
logeny of bats (Shi and Rabosky 2015) using R package ‘picante’ (Kembel et al. 2010). 
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We chose this particular tree as it covered more of the phyllostomid species that occur at 
the BDFFP compared to another frequently used bat phylogenetic tree published by Jones 
et al. (2002, 2005). The supertree was downloaded from TreeBASE and pruned to obtain 
the local phylogeny. The branch lengths of the local phylogeny represent the divergence 
time of the species in millions of years. As we used distance-based phylogenetic diversity 
metrics, the phylogenetic pairwise distance matrix was extracted from the local phylogeny 
using the ‘cophenetic.phylo()’ function from R package ‘ape’ (Paradis et al. 2004).

Species that occur in the study area but were not present in the pruned tree were substi-
tuted by their congeners, following Cisneros et al. (2016). Only for two out of 43 captured 
phyllostomid species was this the case, i.e. Artibeus gnomus and A. cinereus, which hence 
were both represented by their closest congener, A. glaucus (Redondo et al. 2008).

Measuring phylogenetic diversity

Alpha diversity

We explored variation in phylogenetic richness and structure within assemblages separately 
across the IEM gradient of 1, 10, and 100 ha fragments and continuous forest (CF) using 
Faith’s phylogenetic diversity (Faith 1992) and mean pairwise distance (Clarke and War-
wick 1998; Webb 2000), hereafter referred to as PD and MPD, respectively. To account for 
different sampling effort across the 12 habitat categories, we performed individual-based 
rarefaction of the observed PD values of the different assemblages using the R package 
‘BAT’ (Cardoso et al. 2015) by randomly (100×) sampling individuals from the regional 
pool; the sample size was the minimum abundance across all the 12 habitat categories, cor-
responding to 113 captures at the edges of the 1 ha fragments.

To assess the effect of phylogenetic information per se on PD, we eliminated any poten-
tial effect of species richness by calculating  SESPD (standardized effect size of PD) under 
a ‘richness’ null model (Swenson 2014). Similarly, we quantified phylogenetic structure 
per se by calculating  SESMPD (standardized effect size of MPD) using the tip-shuffling null 
model (Swenson 2014). However, as our local phylogeny consisted of closely related phyl-
lostomids with quite a balanced topology, MPD could underestimate phylogenetic cluster-
ing in the terminal part of the phylogeny (Vamosi et al. 2009). We therefore also calculated 
the mean nearest taxon distance (MNTD) and computed  SESMNTD using the tip-shuffling 
null model as it is more sensitive than MPD for detecting phylogenetic clustering in the 
terminal part of the local phylogeny (Tucker et  al. 2017). Significant community struc-
ture can be inferred if the standardized effect size values lie above or below the 95% and 
5% quantiles, respectively, of the null distribution. For  SESMPD and  SESMNTD, high quan-
tiles (> 95%) indicate a phylogenetically over-dispersed assemblage whereas low quantiles 
(< 5%) indicate a phylogenetically clustered assemblage (Swenson 2014).

Beta diversity

To explore between-assemblage variation in phylogenetic richness and structure in rela-
tion to the habitat quality (IEM) and amount gradients, we calculated COMDIST and phy-
logenetic beta diversity ( Pβtotal ), respectively. COMDIST is the mean pairwise phyloge-
netic distance (MPD) between species from different assemblages (Swenson 2011) which 
could help reveal which habitats along the gradient contain closely related lineages. To 
calculate COMDIST, we used R package ‘picante’ (Kembel et al. 2010). Phylogenetic beta 
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diversity was partitioned into its richness ( Pβrich ) and replacement ( Pβrepl ) components to 
capture, respectively, the difference in shared total branch lengths between assemblages 
and the uniqueness of each assemblage based on the evolutionary lineages present (Car-
doso et al. 2014). To calculate Pβtotal and its partitions, we used R package ‘BAT’ (Cardoso 
et al. 2015).

Phylogenetic alpha and beta diversity across the IEM and forest size gradient

Alpha diversity

We used linear mixed-effects models to assess how the IEM and forest size gradient affect 
the evolutionary dimension of biodiversity. For each metric of phylogenetic alpha diver-
sity and its standardized effect size, we evaluated the multivariate relationships by incor-
porating an interaction term of the fixed effects IEM gradient (interior, edge, matrix) and 
forest size (CF, 100 ha, 10 ha, or 1 ha) as well as a random effect of site nested within 
location (i.e. sampling camp locations, see Fig. S2) using the ‘lme4’ package (Bates et al. 
2015). If the full model was significant compared to the null model with only the intercept 
(P < 0.05), effects were further evaluated via multiple comparison tests using Tukey con-
trasts (adjusted P values reported) using the R package ‘multcomp’ (Hothorn et al. 2008). 
If the multivariate model was non-significant compared to the null model (P > 0.05), the 
full model was not further evaluated.

We note that adding the random effect did not improve the fit of the explanatory vari-
ables in the full model (see Table S1). Thus, we tested for spatial structure in the residuals 
of the significant models using Moran’s I (Moran 1950) calculated with the ‘spdep’ pack-
age (Bivand et al. 2008).

Beta diversity

To detect any implicit spatial structure in Pβtotal , Pβrich , Pβrepl , and COMDIST, we visu-
alized these metrics through UPGMA clustering (Borcard et  al. 2011) using the ‘hclust’ 
function in R (R Core Team 2017). When applied to Pβrich , UPGMA will cluster assem-
blages with similar amount of phylogenetic richness whereas Pβrepl will cluster assem-
blages with similar lineages. For COMDIST, UPGMA will cluster closely related assem-
blages. A Mantel test (Mantel 1967) was conducted using the R package ‘vegan’ (Oksanen 
et al. 2017) to detect any linear (Pearson correlation) or non-linear (Spearman’s rank cor-
relation) spatial structure in Pβtotal , Pβrich , Pβrepl , and COMDIST.

Results

Comparison within assemblages: phylogenetic diversity is lowest in the smallest 
fragments

Rarefied PD showed a decreasing trend from continuous forest and fragment interiors to 
forest edges and matrix, with the matrix sites adjacent to the 1 ha fragments harbouring 
the lowest PD overall (Fig. 1). The likelihood ratio test supports the significance of the 
interaction between IEM gradient and forest size in explaining PD (L = 59.76, df = 11, 
P ≤ 0.001). The parameter estimates have a wide confidence interval so that we could 
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not exclude the possibility of the effect of IEM gradient and forest size towards PD 
being much weaker or stronger (Table S2). However, multiple comparison tests showed 
that the decrease in PD from forest interior towards edge and matrix was significant 
in 1 ha fragments whereas in larger fragments the decrease was only significant in the 
edge (Table S3). Phylogenetic richness in 1 ha fragments was also considerably lower 
than in larger fragments across the entire IEM gradient (Table S3). When the effect of 
species richness on PD was accounted for  (SESPD), the interaction term did not signifi-
cantly improve model fit (L = 17.835, df = 11, P = 0.086). After subsequently dropping 
non-significant terms, we found that a univariate model incorporating the IEM gradi-
ent explained  SESPD better than the full model (L = 7.341, df = 2, P = 0.026). The sim-
ulated null communities for PD further showed that  SESPD values were considerably 
lower in the edges and matrix surrounding forest fragments compared to forest interior 
although smaller fragments do not exhibit considerably lower  SESPD than larger frag-
ments (Fig.  2a), further corroborating the strength of IEM gradient in explaining the 
phylogenetic richness of phyllostomid bats across the BDFFP.

The pattern of phylogenetic structure captured by MPD was likely caused by the 
interaction between IEM gradient and forest size (L = 26.587, df = 11, P = 0.005), 
even when we standardized the effect of phylogenetic structure (L = 22.201, df = 11, 
P = 0.023). In line with our full model, the simulated null communities showed that 
 SESMPD values were lower than expected in the interiors of 1 ha fragments, fragment 
edges, and the matrix around the larger (10 and 100  ha) fragments (Fig.  2b). The 
assemblages in the matrix surrounding 1  ha fragments, although not characterised as 

Fig. 1  Comparison of rarefied phylogenetic richness of bat assemblages across gradients of habitat qual-
ity (interior, edge, and matrix) and habitat amount (continuous forest, 100  ha fragment, 10  ha fragment 
and 1 ha fragment) at the Biological Dynamics of Forest Fragments Project, Brazil. The boxplots indicate 
the median, minimum, lower bound, upper bound, and maximum values of the repeated re-sampling of 
all pooled individuals, whereas the observed values of the total sum of branch lengths for all sites in each 
habitat category are overlaid on the boxplot as dots. Data were rarefied to the abundance level of the habitat 
category with the lowest number of captures (1 ha fragment edges, denoted by a line due to constituting the 
reference sample)
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phylogenetically clustered based on its  SESMPD (Fig.  2b), showed terminal clustering 
based on its significantly lower  SESMNTD (Fig. 2c). Our data could not provide enough 
evidence to infer the difference in phylogenetic structure between habitat categories, 
however, multiple comparison tests showed that most pairwise differences among habi-
tat categories were largely caused by chance (see Table S4 for MPD and Table S5 for 
 SESMPD) except between 100  ha matrix and 10  ha interiors (P = 0.015 for MPD and 
P = 0.006 for  SESMPD, Tables S4 and S5, respectively). According to the local phylog-
eny (Fig. S3), most lineages that reside within the matrix surrounding 100 ha fragments 
are different from those in the interiors of 10 ha fragments. The distinctiveness of these 
two habitat categories was also corroborated by the replacement component of phyloge-
netic beta diversity ( Pβrepl , Fig. 3c). The confidence interval was also relatively large for 
the parameter estimates of the models for MPD and  SESMPD, indicating that our models 
were unreliable in predicting the phylogenetic structure in our study design (Table S2).

Our results were unlikely affected by spatial autocorrelation as global Moran’s I tests 
did not show any spatial dependence of the residuals of the fitted models (Table S6, all 
P > 0.05). The implicit spatial structure of sampling site nested within location also 
unlikely contributes to the pattern of phylogenetic diversity metrics, considering the low 
variance of the random effects (see Table S2).

Comparison between assemblages: no clear pattern of lineage replacement

Dendrograms based on the total evolutionary history shared between assemblages (Pβtotal, 
Pβrich, and Pβrepl; Fig.  3) were substantially different from the one based on relatedness 
between lineages within assemblages (COMDIST; Fig.  4). UPGMA clustering based on 
total phylogenetic beta diversity (Pβtotal) suggested that the interiors of continuous for-
est and forest fragments harbour similar amounts of phylogenetic richness, except for the 
1 ha fragments (Fig. 3a), further confirming the phylogenetic erosion of 1 ha fragments. 
The similarity in total phylogenetic richness between the interiors of continuous forest 
and larger forest fragments (10 and 100 ha) was maintained after Pβtotal was partitioned 
into Pβrich and Pβrepl. For Pβrich, however, the interior sites of the larger fragments clus-
tered together, unlike Pβtotal which grouped the interior of continuous forest closer together 
with that of 100 ha fragments (Fig. 3b). For Pβrepl, the interior sites were over-dispersed 
(Fig.  3c), suggesting that the difference in Pβtotal compared to Pβrich is caused by differ-
ent lineages contained within the interiors. Although there was a significant relationship 
between geographic proximity and Pβtotal (Pearson’s Mantel statistic r = 0.134, P = 0.013, 
Table S7), the relationship did not hold when we partitioned Pβtotal into Pβrepl (Pearson’s 
Mantel statistic r = 0.031, P = 0.299, Table  S7) and Pβrich (Pearson’s Mantel statistic 
r = 0.059, P = 0.138, Table S7).

UPGMA clustering of COMDIST revealed that the investigated assemblages were 
closely related and were not clustered according to either the same IEM gradient or the 
same forest size categories (Fig.  4). The position of the interior sites of 1  ha fragments 

Fig. 2  Standardized effect size (dots) of a Faith’s phylogenetic diversity (PD), b mean pairwise distance 
(MPD), and c mean nearest taxon distance (MNTD) along with 5% and 95% quantiles (dashed lines) of the 
simulated null communities (box and whisker plots). For  SESMPD and  SESMNTD, high quantiles (> 95%) 
indicate a phylogenetically over-dispersed assemblage whereas low quantiles (< 5%) indicate a phylogeneti-
cally clustered assemblage. In the box plots, values of observed PD, MPD, and MNTD overlaid on the sim-
ulated null communities are indicated by a black diamond

▸
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distant from those of larger fragments and continuous forest, underscores the distinct com-
position of bat lineages in the assemblages of 1 ha fragments.

The distinct composition of bat lineages in the interior, edge, and matrix surrounding 
1 ha fragments was further corroborated by the local phylogeny (Fig. S3). The interiors of 

Fig. 3  Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering of bat total phyloge-
netic beta richness (Pβtot) (a) in the Biological Dynamics of Forest Fragments Project landscape, partitioned 
into its richness (Pβrich) (b) and replacement (Pβrepl) (c) components
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1 ha fragments contained different bat lineages compared to interior sites of the larger frag-
ments and continuous forest, and these lineages were also present in the edge and matrix of 
1 ha fragments (Fig. S3). The local phylogeny further showed that there was no clear pat-
tern of lineage distribution at forest edges and in the matrix adjoining continuous forest and 
fragments whereas interiors contained diverse lineages. This pattern unlikely resulted from 
spatial effects as there was no significant relationship between COMDIST and geographic 
distance (Pearson’s Mantel statistic r = 0.055, P = 0.230, Table S7).

Discussion

Using metrics of phylogenetic alpha and beta diversity, we showed that bat assemblages in 
the BDFFP landscape exhibit both a decrease of phylogenetic richness in the matrix and 
edges of forest fragments compared to the interior of continuous forest and a phylogenetic 
homogenization in these categories of the IEM gradient, as the sites in matrix and edges 
contained closely related bat lineages. The two environmental gradients investigated in this 
study explained quite well the observed variation in total phylogenetic richness (PD), but 
only the IEM gradient accounted for the phylogenetic information independent from spe-
cies richness  (SESPD). Although the mean phylogenetic distance of bat assemblages (MPD) 
in different fragment sizes apparently varies across the habitat categories of the IEM gradi-
ent even when quantified by its standardized effect size  (SESMPD), the two environmental 
gradients here investigated were unable to explain the differences in phylogenetic structure 
among the 12 habitat categories. In agreement with this, the cluster analysis of phyloge-
netic beta diversity metrics did not clearly group assemblages from the same category of 
habitat quality and amount together as a result of high phylogenetic turnover between these 
assemblages.

The erosion of phylogenetic richness in edge and matrix of forest fragments, especially 
in the smallest fragments (1 ha), showed that habitat fragmentation at the BDFFP does not 
only negatively affect bat taxonomic and functional diversity in those habitat categories 
(Farneda et al. 2015; Rocha et al. 2017a) but also the total evolutionary history preserved. 
Phylogenetic beta diversity further showed marked changes in phylogenetic richness and 
structure of 1  ha fragment interiors along with its similarity to their edges in terms of 

Fig. 4  Unweighted Pair Group 
Method with Arithmetic Mean 
(UPGMA) clustering of COM-
DIST metric representing the 
divergence aspects of phyloge-
netic beta diversity of bats in the 
Biological Dynamics of Forest 
Fragments Project landscape
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preserved evolutionary history (Fig. 3), suggesting that patterns of phylogenetic diversity 
are fundamentally driven by the pervasive negative edge effects that commonly plague 
fragments of this size (Santos et al. 2010; Laurance et al. 2018).

In accordance with other studies comparing phylogenetic richness between various 
human-modified habitats of different levels of forest/vegetation complexity (Riedinger et al. 
2013; Frishkoff et al. 2014; Edwards et al. 2015, 2017; Frank et al. 2017; Martins et al. 
2017; Ribeiro et al. 2017; Pereira et al. 2018), the observed decrease in total evolutionary 
history in a structurally less complex habitat such as the secondary forest matrix is not sur-
prising. Through the use of  SESMPD and  SESMNTD, we further showed that the edges and 
matrix of forest fragments also experienced phylogenetic clustering, whereby the matrix 
of 1  ha fragments was characterized by especially closely related lineages. Matrix sites 
surrounding 1 ha fragments are impoverished with respect to lineages with long evolution-
ary history, e.g. Lampronycteris brachyotis and several Micronycteris species (Fig. S3), 
and contain lineages that are phylogenetically clustered in the terminal branches. These 
absent lineages were also rarely present in disturbed habitat (Medellín et al. 2000; Frank 
et al. 2017), and their traits were documented to be highly associated with forest cover and 
tree height (Farneda et al. 2015). As these insectivorous lineages did not change their main 
feeding habit along their course of evolutionary history, they will be more vulnerable to 
habitat fragmentation compared to their frugivorous relatives which evolved independently 
multiple times within the Phyllostomidae in a relatively recent time (Rojas et al. 2011) and 
hence are better preadapted to disturbed habitat (Medellín et al. 2000; Farneda et al. 2015).

Although sites in the interior, edges, and matrix of 1 ha fragments experienced a con-
siderable reduction in phylogenetic richness and exhibited phylogenetic clustering, we 
found that the change of phylogenetic diversity in lower quality habitat did not consist-
ently depend on habitat amount. Phylogenetic beta diversity metrics further corroborate 
the weak effect of the two environmental gradients on between-assemblage differences 
in phylogenetic richness and lineage composition as there was no clear-cut pattern with 
regard to the relatedness and phylogenetic richness of bat assemblages in relation to IEM 
and forest size gradients. This is potentially due to the influence of landscape-level attrib-
utes which encompass wider environmental gradients (Rocha et  al. 2017a; Tinoco et  al. 
2018). The low structural contrast between secondary regrowth in the matrix and the forest 
interiors during the sampling period could also attenuate any strong phylogenetic structure 
of bat assemblages along the interior-edge-matrix gradient; Patrick and Stevens (2016) for 
instance found that environmental variables have a weaker effect upon phylogenetic struc-
ture when assemblages experience less harsh environmental conditions. Our measure of 
phylogenetic beta diversity also supports the unclear separation between different IEM gra-
dient categories. Spatial autocorrelation in the case of total phylogenetic richness among 
habitat categories was unlikely an issue as the autocorrelation did not hold after we parti-
tioned the phylogenetic beta diversity into its richness and replacement component.

The lack of a marked difference between the edge and matrix sites associated with the 
larger forest fragments and continuous forest possibly reflects a predominant effect of dis-
persal ability in the absence of contrasting environmental gradients (Moreno and Halffter 
2001). Additionally, the abiotic filter that is responsible for phylogenetic clustering could 
possibly result from non-linear responses (Smith and Lundholm 2010; Stegen and Hurlbert 
2011) that we were unable to detect using linear models. Stronger support for an effect 
of the IEM gradient in explaining phylogenetic structure may have been obtained if we 
had considered abundance-based metrics and quantitative variables such as seasonal tem-
perature (Stevens and Gavilanez 2015) or elevation (Cisneros et  al. 2014). Nonetheless, 
our findings still confirm our expectations that the low resource availability in the matrix 
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selects for lineages that have traits favoured by the existing habitat filter (Farneda et  al. 
2015).

As our study system comprises a relatively modest gradient of forest structure (Rocha 
et al. 2017a), the presence of closely related bat lineages in the edge and matrix of small 
forest fragments could be attributed to selection towards traits determining competitive-
ness instead of the niche of species, particularly if the niche differences among bat line-
ages were not strongly related to their phylogeny (Mayfield and Levine 2010; Gerhold et al. 
2015). Considering the strong sensitivity of several functional traits towards fragmentation 
(Farneda et al. 2015; Nuñez et al. 2019) we argue that phylogenetic clustering in habitat 
of low quality could lead to trait convergence to reduce competition asymmetry between 
closely-related species (Scheffer and van Nes 2006) and may further decrease the phylo-
genetic diversity of the assemblage. Thus, despite the ability of large forest fragments to 
retain amounts of total evolutionary history similar to the interior of continuous forest, the 
level of forest degradation at the edges and in the matrix still has a negative effect on the 
phylogenetic diversity of bats at the BDFFP.

We note that establishing the generality of our findings requires further studies as the 
experimentally controlled fragmented landscape of the BDFFP is a best-case scenario as 
levels of disturbance are reduced in relation to most real-world landscapes (Laurance et al. 
2018). Additionally, forest fragments are surrounded by a soft matrix dominated by forest 
regrowth (Mesquita et al. 2015), and which is largely free from human disturbances which 
could interact additively or synergistically with fragmentation (Laurance et al. 2018). The 
matrix was dominated by tall secondary forest regrowth at the time of study (Rocha et al. 
2017a), resulting in a rather homogenous makeup of the overall landscape which could 
promote random co-occurrence of bat lineages from our lineage pool (Morlon et al. 2011).

Landscape-scale studies are subject to the issue of pseudo-replication (Ramage et  al. 
2013) and our study at the BDFFP is no exception given that our sampling sites do not con-
stitute true replicates of several independent fragmented landscapes. However, we believe 
our findings to be generalizable towards other landscapes with similar scale of habitat frag-
mentation. Our results regarding phylogenetic beta diversity showed that the two environ-
mental gradients investigated were insufficient to detect meaningful trends in the pattern 
of phylogenetic diversity in our study system. Deciding which aspect of the environment 
actually matters for the taxa in question and on which ecological and evolutionary scale, 
however, remains a challenging part of such landscape-level studies.

Our study adds to a growing body of evidence suggesting biotic homogenization in 
human-modified landscapes is widespread not only with regard to the taxonomic facet of 
biodiversity but also its evolutionary dimension (La Sorte et al. 2018; Park and Razafind-
ratsima 2019). Despite the aforementioned caveats, we showed fragmentation to result in 
the loss of species lineages and phylogenetic homogenization of assemblages in degraded 
edge and matrix habitats. This could further affect ecosystem stability as communities 
where species are evenly and distantly related to one another are more stable compared 
to communities where phylogenetic relationships are more clumped (Cadotte et al. 2012). 
The conservation of large forest fragments and the improvement of habitat quality thus 
should be prioritized in managing fragmented tropical forest landscapes to conserve spe-
cies with longer evolutionary history.
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