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Abstract

Change of direction (COD) manoeuvres are associated with anterior cruciate ligament (ACL) injury risk due to the propensity
to generate large multiplanar knee joint loads. Given the short- and long-term consequences of ACL injury, practitioners
are interested in methods that reduce knee joint loads and subsequent ACL loading. An effective strategy to reduce ACL
loading is modifying an athlete’s movement mechanics to reduce knee joint loading. The purpose of this scoping review
was to critically appraise and comprehensively synthesise the existing literature related to the effects of training interven-
tions on COD biomechanics associated with increased knee joint loads and subsequent ACL loading, and identify gaps and
recommend areas for future research. A review of the literature was conducted using Medline and Sport DISCUS databases.
Inclusion criteria consisted of pre-post analysis of a COD task, a minimum 4-week training intervention, and assessments
of biomechanical characteristics associated with increased ACL loading. Of the 1,027 articles identified, 22 were included
in the scoping review. Based on current literature, balance training and COD technique modification are the most effective
training modalities for reducing knee joint loading (small to moderate effect sizes). One study reported dynamic core stabil-
ity training was effective in reducing knee joint loads, but further research is needed to definitively confirm the efficacy of
this method. Perturbation-enhanced plyometric training, the F-MARC 11 +soccer specific warm-up, Oslo Neuromuscular
warm-up, and resistance training are ineffective training modalities to reduce COD knee joint loads. Conflicting findings have
been observed for the Core-Pac and mixed training programme. Consequently, practitioners should consider incorporating
balance and COD technique modification drills into their athletes’ training programmes to reduce potentially hazardous knee
joint loads when changing direction. However, training intervention studies can be improved by investigating larger sample
sizes (> 20), including a control group, acknowledging measurement error when interpreting their findings, and considering
performance implications, to confirm the effectiveness of training interventions and improve adherence.

1 Introduction

Anterior cruciate ligament (ACL) injury is a serious, debili-
tating injury with short- and long-term consequences (finan-
cial, health and psychological) [1-5], with an elevated and
earlier risk of developing osteoarthritis a primary concern
[4, 6]. Annual ACL injury rates are estimated to be 250,000
in the USA [1] and two million injuries worldwide [7], with
in excess of US$1 billion estimated to be spent annually
on reconstruction and rehabilitation in the USA. Anterior
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cruciate ligament injuries typically require surgery when
athletes wish to return to cutting-based sports [8]; thus,
extensive rehabilitation periods are required, resulting in
prolonged absence and the potential to lose sporting schol-
arships or contracts [9]. Furthermore, athletes who do suc-
cessfully return to sport post ACL reconstruction may dem-
onstrate reduced sports-related performance (i.e. goals, shots
per match, pass success, etc.), reduced number of appear-
ances and minutes per match, and shorter career longevity
[10-12]. Therefore, reducing the relative risk of ACL injury
is of primary importance in sports medicine and strength
and conditioning.

Anterior cruciate ligament injuries occur when a load is
applied that exceeds the ligament’s tolerance threshold [13,
14]. Although ACL injury-risk factors are multifactorial (i.e.
hormonal, anatomical, biomechanical and neuromuscular)
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Modifying an athlete’s change of direction mechanics

by addressing biomechanical and neuromuscular deficits
associated with hazardous knee joint loading is an effec-
tive strategy to reduce anterior cruciate ligament loading.
This can be achieved through biomechanical and neuro-
muscular informed training interventions.

Balance training is a potentially effective strategy to
reduce knee joint loads during cutting, most likely
attributed to eliciting safer knee agonist-antagonist
muscle patterns and hip and trunk muscle activity.
Further research is necessary in greater sample sizes
and acknowledging measurement error when interpret-
ing findings, to definitively confirm the efficacy of this
method.

Change of direction technique modifications that focus
on reducing lateral trunk flexion, reducing lateral foot
plant distances, increasing knee flexion, and promoting
earlier braking (during the penultimate foot contact),
provide an effective training modality for reducing COD
knee joint loading. However, in order to confirm the
efficacy and adherence of this method, studies can be
improved by including a control group, investigating
larger sample sizes, acknowledging measurement error
when interpreting findings, and considering the perfor-
mance implications.

[1, 15], a large proportion of ACL injuries in sports such
as handball (60%) [16], American football (60%) [17] and
rugby (67%) [18] occur during non-contact change of direc-
tion (COD) manoeuvres (cutting, pivoting, plant-and-cut
actions). This occurrence can be attributed to the propensity
to generate high forces and multiplanar knee joint loading
(sagittal, frontal and transverse plane moments) during the
plant foot contact when changing direction [19-23], thus
increasing ACL strain [24-28]. For example, COD tech-
niques with greater ground reaction forces (GRF) [20, 29,
30], lateral foot plant distance [21, 23, 31, 32], lateral trunk
flexion over the plant foot [21, 31, 33, 34], hip abduction
[29], internal foot progression (initial posture) [29, 35], hip
internal rotation (initial posture) [29, 30, 32, 36] and peak
knee abduction angles (KAA) [23, 30, 31, 35, 36] are asso-
ciated with greater peak knee abduction moments (KAM),
and thus ACL loading and potential injury risk [25, 37-41].
Additionally, wide lateral foot plant distances, trunk rota-
tion towards the stance limb, trunk flexion displacements

and hip internal rotation moments have been reported to
be associated with greater knee internal rotation moments
(IRMs) [21, 34], which when combined with KAMs (mul-
tiplanar) produces greater strain on the ACL compared to
uniplanar loading [24-28]. Moreover, observational analysis
of ACL injuries has also confirmed these kinematics as char-
acteristics of non-contact injury during COD manoeuvres
[16-18, 42—46]. Therefore, minimising and avoiding these
potentially hazardous kinematic postures could be a viable
strategy to reduce ACL loading and the relative risk of non-
contact ACL injury during COD actions [41, 47, 48].

In order to reduce ACL loading and potential injury-
risk during directional changes, particularly non-contact
ACL injuries, an effective strategy is to modify an athlete’s
movement mechanics by addressing biomechanical and
neuromuscular deficits. This can be done through biome-
chanical and neuromuscular informed training interventions
to reduce the magnitude of knee joint loading [1, 14, 41,
49-55]. Due to the prevalence of non-contact ACL inju-
ries associated with COD actions in multidirectional sport
[16-18, 42-46], various training interventions have been
performed in an attempt to alter COD biomechanical char-
acteristics associated with increased ACL loading. These
include COD technique modification drills [22, 56], COD
speed and footwork [57], mixed training programmes (ses-
sions that integrate exercises from several training modali-
ties, e.g. plyometrics, stretching, balance, trunk stabili-
sation and/or resistance training) [53, 58—61], combined
trunk stabilisation and resistance training [62], resistance
training [62, 63], combined COD technique modification
drills and balance training [64], combined resistance train-
ing and intersegmental control training during running and
COD drills [65], dynamic core stability training [66], bal-
ance training [63, 67, 68], perturbation-enhanced plyomet-
ric training [69], and injury-prevention warm-up protocols
(i.e. Oslo, Core-Pac, F-MARC 11+) [53, 59, 70-75]. As
practitioners working in multidirectional sports are inter-
ested in injury-risk mitigation strategies, understanding the
most effective training modalities that address COD biome-
chanics associated with increased ACL loading is of great
importance. The purpose of this scoping review was three-
fold: (1) to critically appraise and comprehensively syn-
thesise the existing literature related to the effects of train-
ing interventions on COD biomechanics associated with
increased knee joint loads and subsequent ACL loading; (2)
to identify gaps in the literature and recommend areas for
future research; and (3) to provide evidence-based recom-
mendations that outline efficacious strategies for addressing
COD biomechanics associated with increased ACL loading
and potential non-contact injury risk.
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2 Literature Search Methodology

A literature search was performed using Medline and Sport
Discus databases. Figure 1 provides a schematic represen-
tation of the search methodology in accordance with the
PRISMA guidelines [76]. Search terms were as follows:
(1) “biomechanics”, or “neuromuscular”, or “electromyo-
graphy”, AND (2) “change of direction”, or “cutting”, or
“cut”, or “sidestep”, or “turning”, AND (3); “intervention”,
or “program”, or “programme”, or “training”’, or “modi-
fication”. Bibliographies of relevant studies were hand
searched to identify any additional studies. Citation tracking
on Google Scholar was also used to identify any additional
material. The search date ranged from 15 August 2018 to 10
January 2019. Articles were included for review if they met
the following criteria:

1. Investigated a cutting or turning task (e.g. side-step,
plant-and-cut actions, pivot).

2. Examined the effects of a training modality intervention
(minimum 4 weeks) on COD biomechanics associated
with increased ACL loading (e.g. knee valgus angle,
knee abduction moments, knee flexion angle, knee rota-
tion moments, knee flexion moment, vertical and poste-
rior GRF, muscle activation, lateral trunk flexion, trunk
rotation, foot progression angle, etc.).

3. Included participants who participated in sport or physi-
cal activity.

Studies that failed to meet the abovementioned criteria
were subsequently excluded. Training intervention studies
that met the abovementioned criteria were than classified
into the following training modalities:

e Change of direction technique modification training:
COD drills performed with coach feedback and cues that
focus on modifying COD technique, such as lateral foot
plant distance/ trunk positioning.

e COD speed and footwork training: pre-planned COD
drills with no coach feedback and cues regarding COD
technique.

e Balance training: balance training that incorporates sta-
ble and unstable training methods, such as balancing on
one leg (while catching a ball), wobble boards, etc.

e Mixed training programmes: sessions that integrate exer-
cises from at least three or more of the following training
modalities: plyometrics, stretching, balance, trunk stabi-
lisation and/or resistance training. These involve dedi-
cated sessions performed outside typical sports-specific
practice and games.

e Resistance training: sessions that include free weight
and/or machine-based resistance training.

e Perturbation-enhanced plyometrics: plyometric training
performed with added perturbation (motorised platform)
over weight acceptance.

e Trunk stabilisation training or dynamic core stability
training: trunk stabilisation training refers to training
with static exercises (i.e. planks, etc.). Dynamic core sta-
bility training includes exercises performed dynamically
(i.e. dynamic planks, bridges, etc.) with added perturba-
tions.

e Combined training: training that combines two of the
abovementioned training modalities. These are sub-
divided into: combined COD technique modification
and balance training, combined trunk stabilisation and
resistance training, and combined resistance training and
intersegmental control training during running and COD
drills.

e Warm-up interventions: neuromuscular warm-up inter-
ventions that were typically performed 15-25 minutes
prior to sport-specific practice (i.e. technical and tacti-
cal) and/or games. These warm-ups replaced their nor-
mal skill/tactical warm-up, and include exercises from
various training modalities, such as trunk stabilisation,
plyometrics, balance, body weight resistance training,
running and COD drills. These include the Oslo Neuro-
muscular warm-up, core position and control (Core-Pac)
warm-up intervention, and FIFA’s Medical Assessment
and Research Centre 11+ (F-MARC 11+) soccer-specific
injury-prevention warm-up.

The following sections outline the findings of included
studies relevant to the effects of specific training interven-
tions on COD biomechanics associated with ACL loading.

3 Results

Initial database searches resulted in the identification
of 1,021 articles, with an additional six articles through
bibliographies, citation tracking and hand searching
(Fig. 1). After removing duplicates, 928 articles were
retained for initial screening. Title and abstract screen-
ing resulted in 889 articles excluded. The remaining 29
articles were further examined using the inclusion/exclu-
sion criteria, and seven studies were excluded, result-
ing in 25 datasets from 22 studies included to examine
the effect of training intervention on COD biomechan-
ics associated with increased ACL loading (Fig. 1 and
Tables 1, 2, 3, 4).

Two studies investigated the effects of COD tech-
nique modification training [22, 56], while one study
examined the effects of COD speed and footwork training
[57]. Five studies examined the effects of a mixed training
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Records identified through database
searching: 1021

Additional records identified

through other sources: 6

!

l

Records after duplicates removed: 928

J

Titles/Abstracts screened: 928

Records excluded: 899

Records excluded: 7

Full-text articles assessed for eligibility: 29

Due to no COD kinetic or

kinematics data related
to ACL loading. No COD
task. Intervention < 4

Articles included in scoping review analysis:

22 articles which met inclusion criteria

weeks.

25 data sets from 22 articles

Balance trainingn =3
Mixed trainingn=>5
Combined training n =3
Resistance trainingn =2
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COD technique modification n =2
COD speed and footwork n =1

Perturbation enhanced plyometrics n=1

Trunk stabilisation training n=1

Dynamic core stability trainingn=1

Warm-up interventions: Oslo n = 2, F-MARC 11+ n = 2, Core-Pacn =2

Fig. 1 Flow diagram illustrating the different phases of the scoping review; based on PRISMA recommendations. COD change of direction, ACL

anterior cruciate ligament

programme [53, 58-61], while one study investigated the
effects of combined COD technique modification and bal-
ance training [64], combined trunk stabilisation and resist-
ance training [62], and combined resistance training and
intersegmental control training during running and COD
drills [65]. Three studies examined the effects of balance

training [63, 67, 68], two studies examined resistance
training [62, 63], while one study examined the effects of
dynamic core-stability training [66], and one other study
examined perturbation-enhanced plyometric training [69].
Two studies examined the effects of the Oslo neuromuscular
warm-up protocol [72, 73], two studies examined the core
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response to training interven-

tion
No CG

Individual differences in

No immediate feedback
regarding their technique or
biofeedback

Comments
Low sample size

2.02)

0.001, ES
<> peak KAM for PP and UP

ES cannot be calculated)

peak KAM

ting (p
(Raw data not provided, thus

Results (post-intervention)

5 of 7 subjects displayed

1 knee flexion angle and |
1 knee flexion angle PP cut-

1G

15-55° side-step PP and UP
15-55° side-step PP and UP

COD task

7) 4 x week

6 week—Core-Pac training

9)

changes (n=10) (move from

the centre- lead with the

belly button)
4 week—Core-Pac training

intervention—4 X a week

(n=10)

baseline testing—acute
intervention (n
plus a CG (n

Training intervention

soccer players

cer players
Twenty adolescent female

Ten adolescent female soc-

Subjects

1 increase, | decrease, <> no significant change, KAM knee abduction moment, /C initial contact, /RM internal rotation moment, GCT ground contact time, BW body weight, NMS neuromuscu-

lar, PP pre-planned, UP unplanned, EMG electromyography, RT resistance training, ES effect size, CG control group, /G intervention group, COD change of direction, SD standard deviation,
VL vastus lateralis, BF biceps femoris, ST semitendinosus, VPF vertical propulsive force, MVC maximal voluntary contraction, Core-Pac core position and control, F MARC 11 + FIFA NMS

Table 4 (continued)
Celebrini et al. [74]
warm-up, /C initial contact

Core-Pac warm-up
Celebrini et al. [75]

Study

position and control (Core-Pac) warm-up intervention [74,
75], and two studies examined FIFA’s Medical Assessment
and Research Centre 11+ (F-MARC 11+) soccer-specific
injury-prevention warm-up [70, 71] interventions on COD
biomechanics. Eleven of the 22 studies failed to include a
control group (Tables 1, 2, 3, 4). Only one study provided
reliability measures for biomechanical variables, but no
study acknowledged measurement error or established
smallest worthwhile change or smallest detectable difference
when interpreting findings (Tables 1, 2, 3, 4). The effects
of these training interventions on COD biomechanics are
presented in Tables 1, 2, 3, 4.

4 Discussion

The primary purpose of this scoping review was to criti-
cally appraise and comprehensively synthesise the existing
literature related to the effects of training interventions on
COD biomechanics associated with increased knee joint
loads and subsequent ACL loading, and identify gaps in the
literature with subsequent recommended areas for further
research. The primary findings were balance and COD tech-
nique modification training appear to be the most effective
training modalities for reducing knee joint loading (small
to moderate effect sizes) during COD while other train-
ing modalities were generally ineffective (Tables 1, 2, 3,
4). Although the published literature regarding the effec-
tiveness of training interventions on COD biomechanics
associated with increased ACL loading is indeed insightful,
there are key methodological and research design limita-
tions that must be acknowledged going forward to improve
our understanding of effective training strategies that reduce
COD knee joint loads. These limitations include, in gen-
eral, small sample sizes (18 studies n=7-20 for interven-
tion group), lack of control groups (11 studies contained no
control group), failure to establish reliability measures (21
studies) and acknowledging measurement error to establish
real and meaningful changes, and generally failing to con-
sider the implications on performance. The effectiveness
of the different training modalities, gaps in the literature,
and recommended areas of further research are discussed in
more detail below.

4.1 Change-of-Direction (COD) Technique
Madification Training

In order to reduce knee joint moments and subsequent ACL
loading, the magnitude of the GRF or the moment arm
must be reduced [23]. Several studies have shown that acute
(within-session) changes in COD technique can reduce knee
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joint loads [21, 75, 77], such as narrowing lateral foot plant
distance and changing trunk orientation [21], increasing
knee flexion [77], and moving the centre of mass closer to
the base of support [75]. Because of the promising results
observed with acute COD technique modification, several
studies have investigated the chronic effects of COD tech-
nique modification on COD biomechanics associated with
increased ACL loading [22, 56] (Table 1).

Dempsey et al. [21] initially examined the effects of an
acute within-session COD technique modification (altering
foot plant distances, trunk positioning and foot orientations)
on 45° side-step biomechanics. A wide foot plant combined
with lateral trunk flexion over the plant foot resulted in the
greatest peak KAMs (p <0.003, ES=0.75-0.97), while a
wide foot plant with torso rotation towards the plant foot
resulted in significantly (p =0.001, ES =1.00) greater peak
IRMs. These findings are concerning because knee fron-
tal and transverse moments can increase ACL strain [25,
37-39]. Conversely, a side-step technique that involved
neutral foot positioning, a foot plant distance closer to the
midline, and an upright (in frontal plane) torso resulted in
the lowest knee joint loading (KAM and IRM), due to reduc-
ing the moment arm between the GRF and knee joint cen-
tre [21]. As such, a narrow foot placement with an upright
trunk was subsequently advocated as a safer side-stepping
technique [21].

Expanding on the promising results of the acute side-step-
ping technical modification, Dempsey et al. [22] investigated
the effects of a 45° side-stepping technique modification
intervention over 6 weeks (2 X 15 mins sessions per week) on
COD biomechanics (Table 1). The intervention consisted of
performing side-step drills with imposed technique changes
by bringing the foot closer to the midline (tape placed on
floor for acceptable foot plant distance), maintaining an
upright torso, and having the torso facing towards the direc-
tion of travel. Importantly, participants were provided with
oral and video feedback regarding their technique between
repetitions. The authors, notably, demonstrated significantly
lower peak KAMs (p =0.034, ES = 0.58-0.78, 36%) during
both anticipated and unanticipated side-step tasks accom-
panied with significant reductions in lateral foot plant dis-
tance and lateral trunk flexion (p <0.039, ES=0.14-1.09)
(Table 1). As such, side-step technique modifications were
effective in reducing knee joint loading, and in turn, could be
an effective strategy to reduce non-contact ACL injury-risk.

Although the acute [21] and chronic COD technique
modifications [22] by Dempsey et al. have shown positive
reductions in knee joint loading during directional changes,
a note of caution is warranted. Firstly, the abovementioned
studies have failed to present and acknowledge measure-
ment error values; thus, it is uncertain whether such changes
were greater than the measurement error, and therefore real.
Secondly, the training intervention performed by Dempsey

et al. [22] did not contain a control group; therefore, the
results should be interpreted with caution. Although reduc-
ing lateral foot plant distance was shown to reduce peak
KAMs [22], critically, this imposed technique change could
be detrimental for medio-lateral force application and may
result in suboptimal COD performance (i.e. reduced exit
velocity from the push-off) [31, 32, 78, 79]. It is worth not-
ing, however, athletes adopted less lateral trunk flexion (i.e.
more upright trunk), which may be a positive adaptation
for faster cutting performance [80]. Moreover, the studies
performed by Dempsey et al. [21, 22] have failed to consider
the implications of such changes in side-step technique on
COD performance (i.e. ground contact time [GCT], COD
exit velocity and completion time). As athletes are driven
by performance, they may be unlikely to adopt movement
techniques that decrease the risk of knee injury if they do
not result in effective performance [32]. Consequently, fur-
ther research is necessary investigating the chronic effects
of side-stepping technique modification on both biomechan-
ics associated with decreased ACL loading and increased
performance [41].

Investigating a sharper COD (180°), Jones et al. [56]
reported a reduction in turning KAMs (ES=0.73) and
improved completion times (ES =0.74) in female netball
players as a result of a 6-week technique modification inter-
vention that consisted of technical drills that encouraged
penultimate foot contact braking, backwards trunk inclina-
tion and neutral foot positioning (Table 1). Interestingly, a
strong association between changes in initial foot progres-
sion angle and KAMs (r2= 37%, p=0.028) was observed,
while athletes also demonstrated changes in trunk inclination
during the final foot contact (ES =0.58). However, similar to
Dempsey et al. [22], there was no control group, and findings
were not interpreted in relation to the measurement error.
Nevertheless, instructing athletes to adopt a more neutral
foot progression angle (i.e. closer to 0°) during sharper 180°
turns could be an effective strategy to reduce peak KAMs
and subsequent ACL loading.

Collectively, COD technique modification appears to be
a potentially viable and effective strategy in reducing knee
joint loading (Table 1); however, published COD tech-
nique training interventions lack control groups and do not
acknowledge measurement error when interpreting findings.
Moreover, it is unknown how long such changes in COD
biomechanics are retained following a training intervention.
Thus, further COD technique modification interventions
are required that include a control group and acknowledge
measurement errors to definitively confirm the effective-
ness of this training modality in reducing knee joint load-
ing. Moreover, COD performance should also be considered
to understand the implications of such technical modifica-
tions on knee joint loading and performance because athletes
may be unlikely to adopt safer strategies at the expense of
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performance. If COD performance can be maintained or
improved while simultaneously reducing knee joint load-
ing following COD technique modification, this would help
improve adherence and may provide practitioners with an
effective strategy to mitigate injury risk.

4.2 COD Speed and Footwork Training

Wilderman et al. [57] examined the effects of a 6-week
agility training programme that was performed four times
a week by female basketball players compared to a control
group. The programme consisted of pre-planned COD speed,
footwork and manoeuvrability drills; thus, the term “agility”
is incorrect due to the absence of drills that involve respond-
ing to an external stimulus [81, 82]. Nevertheless, the inter-
vention group showed increases in medial hamstring activa-
tion (ES=0.94) (Table 1), which may help reduce anterior
tibial shear and subsequent ACL strain [83-87], though no
statistically significant (ES <0.15) changes in knee flexion
angle or vertical GRFs were observed. A limitation of this
study was the lack of specific drills that focused on side-
stepping mechanics. In addition, the absence of coach feed-
back regarding the athlete’s technique is also a limitation
that may explain the mixed results. Conversely, studies that
have documented positive changes in COD technique [22,
56] have emphasised the importance of coach technical feed-
back. It is also worth noting that the biomechanical variables
examined during the side-step by Wilderman et al. [57] were
limited to only knee flexion angle, GRF and muscle activity;
thus, a more comprehensive analysis of frontal plane biome-
chanics and trunk kinematics would have strengthened this
study, because these factors are strong determinants of knee
joint loading [21, 23, 41].

4.3 Balance Training

Because lower-limb balance training has been shown to be
effective in reducing ACL injury rates in sport [88, 89], sev-
eral studies have attempted to identify the underlying biome-
chanical and neuromuscular mechanisms that may explain
the reductions in ACL rates (Table 2). Oliveira et al. [67]
demonstrated 6 weeks of balance training resulted in a sta-
tistically significant 33% reduction in peak KAMs during a
perturbed cutting task, while a control group demonstrated a
slight increase, though not statistically significant (Table 2).
The improvement in peak KAMs was accompanied with
increased EMG activation of the trunk and proximal hip
musculature and increased EMG burst duration prior to
initial contact (Table 2). Although trunk kinematics were
not examined, the authors hypothesised the improved mus-
cle activity of the hip and trunk lead to improvements in
trunk control, which is a critical factor for knee joint loading
[21, 31, 33, 34]. It is worth noting, however, that pre- and

post-analysis in perturbed cutting biomechanics and muscle
activation was only performed for one trial. This is a prob-
lematic issue because evaluations based only on one trial
can lead to invalid data and erroneous conclusions [90, 91],
while one trial may not be fully representative of an athlete’s
typical movement pattern [91].

Reporting a similar finding to Olivera et al. [67], but
investigating a greater trial size, Cochrane et al. [63]
found balance training was the most effective modality to
reduce both peak KAMs (p <0.001, 62%) and peak IRMs
(p<0.001, 32%) in all anticipated and unanticipated COD
manoeuvres (Table 2), compared to machine-based resist-
ance training, free weight and combined machine-based
and balance training. While machine-based training was
also effective in reducing peak KAMs (p <0.05, 27%),
free weight and combined machine-based weights and bal-
ance training were ineffective in reducing KAMs or IRMs
(Table 2), and a control group increased their peak KAM.
The reductions in frontal and transverse plane joint loads as
a result of balance training may be explained by earlier work
from Cochrane et al. [68], who that found 12 weeks’ balance
training elicited positive and potentially safer changes in
lower-limb muscle activation. Increased knee flexor/exten-
sor contraction ratios, increased flexor muscle activation,
and increased biceps femoris/semimembranosus contrac-
tion ratios were observed, while a strength training group
increased their quadriceps activation and reduced their ham-
string activation (Table 2). The hamstrings are considered to
have an important role during the weight-acceptance phase
of COD in preventing anterior tibial translation and reducing
anterior tibial shear and ACL strain [55, 83-87].

Consequently, the results from these studies suggest that
balance training could be an effective training modality for
reducing COD knee joint loading (Table 2) and subsequent
ACL loading. The successful results are most likely attrib-
uted to positive changes in hamstring, hip and trunk muscle
activation, which supports and reduces knee joint loading
[55]. Tt is worth noting, however, that the aforementioned
studies failed to acknowledge measurement error when
interpreting their findings and did not consider the perfor-
mance implications; thus, is a future direction of research
to definitively conclude the effectiveness of this method.
Nevertheless, balance training involves the use of wobble
boards, instability surfaces and catching a ball, which is easy
to perform, simple to regress and progress, and can be easily
integrated into athletes training programmes to help reduce
ACL loading and potential injury risk.

4.4 Mixed Training Programmes
Several studies have used mixed training programmes (ses-

sions that integrate exercises from several training modali-
ties, i.e. plyometrics, stretching, balance, trunk stabilisation
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and/or resistance training) [53, 58-61] or a combination of
training modalities in an attempt to alter COD biomechanics
associated with increased ACL loading (Table 3).

4.4.1 Combination of Balance and COD Technique
Modification Training

Based on the successful results of previous balance [63] and
COD technique modification [22] interventions, Donnelly
et al. [64] inspected the combined effects of balance training
and COD technique modification compared to acceleration
training on COD biomechanics. This intervention was per-
formed in Australian Rules footballers (1,001 male athletes)
over a regular season in a ‘real-world’ environment. Both
training groups reduced their peak IRM during pre-planned
side-steps (45% reduction), but peak KAMs significantly
increased during unanticipated side-steps (31% increase) fol-
lowing the training intervention (Table 3), failing to substanti-
ate the positive findings of previous research [22, 63]. Similar
to previous COD technique modification and balance train-
ing interventions (Tables 1, 2), changes in knee joint loads
were not interpreted in relation to the measurement error. The
mixed findings of the training intervention by Donnelly et al.
[64] could be explained by the low compliance rate of only
45% reported for the training intervention and a high athlete-
to-coach ratio (40:1). These issues are problematic because
successful training interventions that reduce knee joint load,
thus ACL loading, are fundamentally underpinned by com-
pliance [1, 22, 54, 63, 92-94]. Furthermore, the high athlete-
to-coach ratios prevent sufficient biomechanical technique
correction and feedback to individuals, which again limits
the effectiveness of technique modification interventions [1,
22,54, 92-95]. Additionally, a subset of only 34 athletes were
examined for biomechanical testing throughout the season;
thus, it is uncertain whether the subset’s biomechanics are
fully representative of the whole sample (n=1001).
Although balance [63] and COD technique modification
[22] have been shown to be effective in reducing knee joint
loading in controlled environments and in relatively small
sample sizes (Tables 1, 2), the study by Donnelly et al. [64]
highlights the potential difficulty in administering such train-
ing methods in ‘real-world’ environments at the community-
level. The low adherence may be evident in such strategies
to community-level athletes, who may not have the time or
desire to complete further training outside typical sports
practice, while the high athlete-to-coach ratio often associ-
ated at the amateur and community level makes it potentially
unrealistic to provide individualised feedback. Therefore,
these issues present a potential barrier in applying such strat-
egies in the real world to attempt to reduce injury risk or
investigate injury risk. Nevertheless, based on these findings,
in order to perform a successful technique intervention that
reduces knee joint loading, thus relative risk of injury, it is

essential that there is high compliance and individual feed-
back regarding the athlete’s technique to facilitate effective
changes in COD biomechanics [22, 54, 94].

4.4.2 Combination of Trunk Stabilisation and Resistance
Training

Jamison et al. [62] compared the effects of combined resist-
ance and trunk stabilisation (static trunk exercises) train-
ing compared to resistance training only on trunk control,
strength and knee joint loading during a 45° unanticipated
side-step. Significantly greater peak KAMs (p=0.012, 50%)
were observed for the resistance-training group only, and
although not statistically different (p=0.116), the combined
group also displayed a 35% increase in side-stepping KAMs
(Table 3). Conversely, the combined group demonstrated a
35% reduction in peak IRMs, though this was not statisti-
cally significant (p=0.110), whereas IRMs increased 12%
in the resistance training group (p =0.617) (Table 3), though
these changes were not interpreted in relation to the meas-
urement error. Unsurprisingly, the combined group showed
significantly greater improvements in core endurance and
strength, while both groups improved 1RM deadlift strength
(Table 3). This finding is similar to that of Cochrane et al.
[63, 68], who also found resistance training was ineffective
in reducing peak KAMs during a COD task, potentially due
to the reduced hamstring and increased quadriceps activa-
tion, which may contribute to increased knee-joint loads
[55]. Although performance measures were not examined
(i.e. completion time, exit velocity, GCT) in the studies by
Jamison et al. [62] and Cochrane et al. [63], the groups that
performed resistance training increased their strength. Thus,
it is speculated that the increased peak KAMs could be a by-
product of an increase in approach velocity and an increased
ability to produce force due to the strength training, both of
which can influence knee joint loading [41, 48, 96].
Collectively, resistance training and combined resistance
training and trunk stabilisation modalities appear ineffective
in reducing COD knee joint loading (Table 3). The inef-
fectiveness of these training modalities, however, could be
explained by the lack of task-specific training around trunk
control and lower-limb control associated with multiplanar
side-stepping [22, 66, 69]. Additionally, it should be noted
that the trunk stabilisation intervention only included static
exercises; however, dynamic trunk stabilisation exercises
with perturbations may have provided a greater stimulus
and specificity in order to reduce side-stepping knee joint
loading [66, 69]. Furthermore, it is also worth acknowledg-
ing that a low sample size was investigated in the study by
Jamison et al. [62] (n=10 and 11), which failed to achieve
adequate statistical power (a priori determined minimum
sample of 18). It is must be noted, however, that although
resistance training does not reduce knee joint loads during
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COD (Tables 2, 3), resistance training provides several ben-
efits for athletes including enhanced performance during
dynamic tasks (i.e. jumping, sprinting, COD) and positive
adaptations to tissues (muscle, bone, ligament, tendon) [48,
97-99]. Moreover, as athletes become faster, improving their
physical capacity through resistance training should enable
them to tolerate the higher joint loadings [19, 23, 31, 55, 94,
97, 100, 101], thus highlighting the inclusion of resistance
training in an athlete’s training programme.

4.4.3 Combined Resistance Training and Intersegmental
Control Training During Running and COD Drills

King et al. [65] examined the effects of a rehabilitation pro-
gramme that targeted intersegmental control in athletes with
athletic groin pain. Athletes were subjected to three levels
of rehabilitation: level 1 consisted of intersegmental control
and strength training; level 2 focused on linear running drills
focusing on lumbo-pelvic control and posture, and running
mechanics; and level 3 focused on multidirectional technique
drills that emphasised segmental control (holding a medball,
or arms locked overhead) and lateral propulsion, which was
performed three times a week. Repeat three-dimensional
motion analysis revealed a 110° cutting task was performed
with reductions in ipsilateral trunk side flexion (ES=0.79),
a factor linked to peak KAMs [21, 31, 33, 34], reduced hip
abduction angle and hip adduction moment, which has also
been linked to greater peak KAMs [29, 34, 49], and increased
pelvic rotation in the direction of travel (ES=0.76) (Table 3).
Furthermore, changes in variables connected with faster cut-
ting performance were revealed including greater COM trans-
lation in the direction of travel relative to centre of pressure
(COP) (ES=0.40), reduced knee flexion angle (ES=0.33),
and increased ankle plantar flexor moment (ES =0.48). While
no differences in approach velocity were observed (p=0.434,
ES =0.07), a slightly shorter GCT was noted (ES =0.30),
indicating potential performance benefits [80, 102—-104].
Unfortunately, KAMs or angles were not provided in the
article, though it is speculated the positive changes in lateral
trunk flexion, hip abduction and hip adduction moment may
indicate a reduction in peak KAMs [29, 34, 49]. A note of
caution is advocated, however, because there was no control
group and measurement error values were not established.

4.4.4 Mixed Programme—Session Performed Separate
from Sports Session that Integrates Exercises
of at Least Three of the Following Modalities: Trunk,
Balance, Plyometric, Strength Training, Flexibility

Yang et al. [60] recently examined the effects of a 4-week
mixed-training intervention programme consisting of trunk
strengthening, stretching, balance training, hip exten-
sion strength training and plyometrics in male and female

basketball and volleyball players on 45° side-stepping. No
statistically significant intervention effects on knee flexion
angle, peak impact posterior GRF or exit velocities were
observed (Table 3). As such, a 4-week mixed training inter-
vention programme was ineffective in changing cutting bio-
mechanics; however, 4 weeks could be a relatively short
duration to potentially elicit positive adaptations, and it is
worth noting that only three biomechanical variables were
evaluated; thus, it is unknown what the effects were on fron-
tal plane biomechanics, which are arguably of greater impor-
tance to injury risk [23, 41, 48]. Moreover, a note of caution
is warranted for the hip-strengthening exercise repetitions
prescribed by Yang et al. [60] because although the authors
describe the protocol as strength training, the repetitions/
durations prescribed were in fact strength endurance (30 s of
one to two sets). This is sub-optimal for eliciting maximum
strength adaptations where low repetitions with higher loads
would be required [105, 106].

Bencke et al. [59] compared the effects a 12-week pro-
phylactic training program on side-stepping GRF variables
and muscle activity. The programme was performed twice
a week, consisting of unilateral jump landings, unilateral
squats, hamstring pulls, hip abductions and one-leg coordi-
nated hopping in handball players in comparison to a con-
trol group who resumed normal skill training. Interestingly,
the training intervention resulted in slightly greater vertical
propulsive force (ES=0.41), shorter GCTs (ES =0.94) due
to a shorter concentric phase duration (ES=0.94), and a
reduction in semi-tendinosis (ES =0.63) and biceps femoris
pre-activity duration (ES =0.59) (Table 3). Therefore, the
training programme had a positive effect on variables asso-
ciated with faster COD speed performance such as greater
vertical propulsive force [107, 108] and smaller GCTs [80,
102-104, 107], but the decreased hamstring muscle activity
is of concern because high levels of hamstring muscle acti-
vation are needed to prevent anterior tibial translation and
reduce anterior tibial shear [55, 83—-87], thus ACL loading.

Weir et al. [61] demonstrated increases in total gluteal
muscle activation and elevated contribution of hip extension
moment to total support moment during unanticipated side-
stepping following an §-week mixed programme interven-
tion (balance, plyometric and body-weight resistance train-
ing); however, no changes in frontal plane knee moments
were observed in 13 female hockey players. Weir et al. [58]
also demonstrated positive changes (reduced IRM) in unan-
ticipated side-stepping biomechanics following a 9-week
high-dosage mixed-training intervention (balance, plyo-
metric and resistance training) (4 X 20-min sessions), but
no statistically significant changes in frontal plane moments
for the whole group were observed. Recently, Staynor et al.
[53] examined the effects of a mixed programme training
intervention, based on the intervention by Weir et al. [58]
(consisting of plyometric, resistance and balance exercises,
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performed in-season twice a week for 9 weeks), on unan-
ticipated side-stepping biomechanics in local female com-
munity-level athletes. Knee flexor moments increased
post-training intervention (ES =0.77), but no statistically
significant changes in peak KAM and IRMs were observed
for the training group (ES <0.16), whereas the control group
displayed greater KAMs and IRMs (ES =0.36-0.56) post-
testing (Table 3). Additionally, the training group also pro-
duced kinematic changes associated with safer side-stepping
cutting techniques such as reduced foot plant distances, more
erect trunk postures in the frontal plane, and increased knee
flexion (ES =0.40-0.84, Table 3). It is worth noting, how-
ever, that all mixed training programme intervention studies
have not acknowledged measurement error when interpret-
ing their findings.

Consequently, based on the mixed training programmes
intervention studies, it is inconclusive that this method of
training is effective in reducing knee joint loading during
COD. The results of these studies are in contrast to bal-
ance training [63, 67, 68] and COD technique modification
interventions [22, 56], which have demonstrated reductions
in COD knee joint loads. Although the mixed programmes
did include balance exercises, the volume load and exercise
duration of balances exercises were much lower than the suc-
cessful interventions that solely focused on balance training.
This discrepancy in volume load and duration may explain
the contrasting findings. Additionally, it is speculated that
the additional and combination of exercises from different
modalities during these mixed programmes may interfere
with balance training and may limit its effectiveness.

4.5 Dynamic Core Stability Training

As the trunk contains over half of the body’s mass, defi-
cits in neuromuscular control and suboptimal trunk motion
and position is a critical factor affecting knee joint load-
ing [109, 110]. Additionally, deficits in trunk control (i.e.
core stability) have also been shown to be associated with
non-contact ACL injury [111, 112]. Consequently, several
studies have investigated the effects of trunk conditioning
on COD biomechanics [62, 66]. Jamison et al. [62] reported
what they defined as “combined resistance and trunk sta-
bilisation” (which effectively involved solely static trunk
exercises with resistance training) to be ineffective in reduc-
ing knee joint loads during cutting; however, in direct con-
trast, Whyte et al. [66] have recently demonstrated positive
effects of a dynamic core stability intervention (i.e. trunk
curls, dynamic bridges, planks, side planks, with added per-
turbations) on cutting mechanics (Table 2). Interestingly,
following the 6-week intervention, athletes demonstrated
increases in internal hip extensor moments and reductions
in frontal and transverse knee joint loads (Table 2). This
result is noteworthy because a combination of frontal and

transverse knee joint loads can increase ACL loading to a
greater extent than uniplanar loading [24, 28]. Additionally,
reductions in posterior GRF were observed as a result of the
training intervention. It is of note that this adaptation may
result in reductions in anterior tibial shear [113], thus injury
risk [37, 114-116]. Therefore, these findings indicate that
dynamic core stability training could be an effective train-
ing modality to reduce ACL loading during cutting actions.

Surprisingly, trunk and pelvic kinematics remained
unchanged following the intervention by Whyte et al. [66];
thus, the successful reductions in knee joint loads could be
partially attributed to the reduction in posterior GRF. While
this is a positive finding in terms of reducing potential ACL
loading, the fact that posterior GRF was reduced may nega-
tively affect performance, because posterior GRF has been
associated with faster COD performance [102, 117, 118].
Unfortunately, Whyte et al. [66] did not examine cutting per-
formance, but it is important to note that medio-lateral GRF
will most likely be a larger contributing factor to faster cut-
ting performance compared to posterior GRF [32, 78, 119],
but this was not examined in the study. Future research needs
to consider both injury risk and performance implications
to improve our understanding of the potential performance-
injury conflict present during COD.

The successful results of dynamic core stability train-
ing are in direct contrast to Jamison et al. [62]; however,
these conflicting observations could be attributed to differ-
ences in exercise selection. For example, Jamison et al. [62]
used static trunk stabilisation exercises, in contrast to the
dynamic core stability exercises used by Whyte et al. [66].
The dynamic core stability exercises (with added perturba-
tions) targets the centre of mass control and could be more
specific to the trunk control requirements during cutting
[69]. It should be noted, however, that only one study has
confirmed that dynamic core stability training is effective in
reducing knee joint loading during COD. Further research
is required to definitively confirm that this training method
is effective in reducing COD knee joint loads.

4.6 Perturbation-Enhanced Plyometric Training

Weltin et al. [69] investigated the effects of perturbation-
enhanced plyometric training (lateral reactive jumps on a
motorised platform that moved) in comparison to regular
plyometric training in female athletes. Interestingly, 4 weeks
post intervention, the perturbation-enhanced plyometric
group displayed reductions in trunk rotation and decreases
in step width (Table 2), both of which are associated with
greater KAMs [23, 34, 41, 48]. Although not statistically dif-
ferent, the perturbation-enhanced plyometric group showed a
slight reduction in KAMs, while KAMs increased in the ply-
ometric training group (Table 2). Surprisingly, lateral trunk
lean remain unchanged following the perturbation-enhanced
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training; however, this absence could be attributed to the
lack of feedback and cueing regarding trunk control in con-
trast to previous studies that have found positive changes in
lateral trunk lean [22]. Consequently, perturbation-enhanced
lateral reactive jump training reduces characteristics (trunk
rotation and step width) associated with greater peak KAMs
during directional changes but appears to be ineffective in
producing statistically significant reductions in peak KAMs.
Thus, more research is required around plyometric related
interventions for the development of safer cutting mechanics.

4.7 Injury-Prevention Warm-Up Training Protocols

Given the simplicity of training exercises to be integrated
into the warm-ups of field-based sessions for athletes to
improve neuromuscular control, and its relative success in
reducing ACL injury rates [1, 89, 94, 120], several stud-
ies have investigated the effects of the Oslo, Core-Pac and
F-MARC 11+ warm-up training interventions on COD bio-
mechanics (Table 4). These interventions involve a 15- to
25-minute protocol that is performed prior to sport-specific
practice (i.e. technical and tactical) and/or games.

4.7.1 Oslo Neuromuscular Warm-Up Intervention

Zebis et al. [73] found the Oslo warm-up training inter-
vention increased pre-landing semitendinosus activity
(»<0.001, ES=0.70-78), but unchanged quadriceps activ-
ity, hip and knee joint angles (ES =0.10-0.23) during a
side-stepping task in female handball and soccer players
(Table 4). It is worth noting, however, that there was no
control group, and only a limited number of biomechanical
variables were examined (hip and knee joint angles, EMG
activity). Including a control group, more recently Zebis
et al. [72] examined the effects of the Oslo neuromuscular
warm-up protocol on side-stepping biomechanics and EMG
muscle activity. The intervention group displayed a poten-
tially safer agonist-antagonist muscle pre-activity pattern,
with elevated semitendinosus and biceps femoris pre-activ-
ity, and a reduction in vastus lateralis activity post-training,
in contrast to the control group (Table 4). This finding is
noteworthy because a lack of pre-activity observed with the
medial hamstrings in combination with a greater proportion
of lateral quadriceps recruitment may compress the lateral
joint, open the medial joint, increase knee valgus, increase
anterior shear force and therefore increase ACL loading
[83-87]. For instance, in a cohort study, athletes who went
on to injure their ACL displayed higher vastus lateralis pre-
activity and reduced semitendinosus activity compared to
uninjured athletes during a cut [121]. It is worth noting that
Zebis et al. [72] observed no changes in peak KAM or knee
valgus angles at initial contact following the training inter-
vention, but unfortunately the authors failed to present the

mean and standard deviations, thus the effect size could not
be established. Consequently, the Oslo-warm-up protocol
produces favourable agonist-antagonist muscle pre-activity
patterns but appears to have a negligible effect on frontal
plane knee moments.

4.7.2 Core-Pac Warm-Up Intervention

In light of the positive effects regarding the within-session
changes in cutting technique adopting Core-Pac movement
strategy [75], in the same study the authors also investi-
gated the effects of Core-Pac warm-up training intervention
in female soccer players. The warm-up consisted of bal-
ance, trunk, lower-limb control, multidirectional running,
and COD drills. Due to a low sample size, statistical analysis
was not performed; however, five of seven subjects displayed
increases in knee flexion angle and reduced peak KAMs
during cutting following the training intervention (Table 4).
It is worth noting, however, that there was no control group,
but the preliminary results highlight the individual variation
in response to training interventions. Expanding on their
previous work, Celebrini et al. [74] compared the effects of
the Core-Pac warm-up in comparison to a control group who
completed a normal warm-up routine. Following a 6-week
intervention, the female soccer players who participated in
the Core-Pac displayed an increased knee flexion angle dur-
ing cutting (»p=0.001, ES=2.02) (Table 4), but peak KAM
remained unchanged. The researchers stressed two notes of
caution: firstly, the study contained a low sample size and
may therefore lack statistical power; and secondly, there was
an absence of coaches’ and technological feedback regarding
technique, which may explain the ineffectiveness in reduc-
ing peak KAM. The absence of feedback is in contrast to
previous studies that have provided immediate feedback and
subsequent successful reductions in knee joint loading [22,
56]. Consequently, further research is needed to confirm the
efficacy of the Core-Pac training intervention on COD knee
joint loading.

4.7.3 F-MARC 11+ Soccer-Specific Warm-Up

Thompson et al. [70] investigated the effects of the F-MARC
11+ soccer-specific warm-up on biomechanical risk factors
associated with ACL loading in preadolescent female soc-
cer players. The soccer players were divided into a control
and an intervention group, with the neuromuscular warm-up
performed twice a week for 7-8 weeks. Of concern, moder-
ate to large increases (p <0.044, ES =1.18-1.95) in peak
KAMs were demonstrated during pre-planned and unantici-
pated cutting (Table 4). Unfortunately, cutting performance
was not examined, thus the implications of the F-MARC
11+ training intervention on performance is unclear. Criti-
cally, the F-MARC 11 + intervention was ineffective in
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reducing peak KAMs during side-step cutting. This finding
is noteworthy because cutting actions are associated with
non-contact ACL injury, particularly in soccer [18, 42, 44,
45, 122].

More recently, Thompson-Kolesar et al. (2018) has also
confirmed that the F-MARC 11+ soccer-specific warm-
up was ineffective in reducing peak KAMs or knee valgus
angles during cutting tasks in adolescent athletes (Table 4),
substantiating the results of their earlier study in preado-
lescents. This observation could be attributed to the lack
of repetitions and volume of COD technique training in the
programme. The F-MARC 11+ programme primarily con-
sists of bilateral tasks such as squats and jump-landings that
are integrated with balance and trunk conditioning, which
could explain why KAMs reduced during the bilateral drop
landing task only. Conversely, the technique modification
intervention by Dempsey et al. [22] involved 15 minutes
exclusively of COD technique modification, thus greater
specificity and volume, resulting in reductions in KAMs.
Therefore, these findings suggest the F-MARC 11+ does not
adequately address deficits in cutting biomechanics in pre-
adolescent and adolescent athletes but appears to be effec-
tive in reducing knee joint loading during bilateral landing
activities.

4.8 Maintenance Training

While reductions in biomechanical characteristics associated
with ACL injury risk have been demonstrated with various
training modalities [21, 22, 56, 58, 63, 77], it is also impor-
tant to understand the training dosages required to retain
the improved movement biomechanics and reduced knee
joint loads following the training intervention. To the best
of our knowledge, only one study has examined the effects
of performing dosages of maintenance training following a
period of high-dosage mixed training. Weir et al. [58] dem-
onstrated positive changes (reduced IRM) in unanticipated
side-stepping biomechanics following a 9-week high-dosage
multicomponent training intervention (balance, plyometric
and resistance training) (4 X 20-min sessions), and found
a 16-week maintenance training programme (3 X 10-min
sessions) resulted in meaningful reductions in peak KAM
(-26.3%, g=0.30) (Table 3). As expected, the maintenance
programme was particularly effective in retaining improved
side-stepping biomechanics in the responder/high-risk group
(classified as moderate-large effect size change) (Table 3).
As stated previously, only one study has examined the effects
of maintenance training dosages on COD biomechanics,
thus, making it difficult to establish maintenance training
guidelines. Consequently, more longitudinal studies are
required that investigate the effects of maintenance training
on COD biomechanics to improve our understanding regard-
ing the maintenance of improvements in COD biomechanics.

5 Conclusions

Based on the literature (Tables 1-4), balance training [63,
67, 68] is a potentially effective strategy to reduce knee joint
loads during cutting; most likely attributed to eliciting safer
knee agonist-antagonist muscle patterns and hip and trunk
muscle activity. These positive biomechanical and neuro-
muscular adaptations may partially explain why balance
training has been shown to reduce ACL injury rates [88,
89]. COD technique modification [21, 22, 56, 75, 77] also
appears to be an effective training strategy for addressing
COD biomechanical deficits associated with increased ACL
loading and therefore potential non-contact ACL injury-risk.
It should be noted, however, that the COD technique modifi-
cation interventions that have shown promising results have
not contained a control group and, as such, are a recom-
mended area of further research. Moreover, the effective-
ness of COD technique modification training on ACL injury
rates has yet to be investigated. Nevertheless, in order to
reduce knee joint moments and subsequent ACL loading,
the magnitude of the GRF or moment arm must reduce
[23]. As such, practitioners interested in reducing COD
knee joint loading for their multidirectional athletes should
consider incorporating balance and COD technique modi-
fication training into their athletes’ training programmes to
reduce potentially hazardous knee joint loads when changing
direction.

One study has shown promising results regarding the
effectiveness of dynamic core stability training on COD knee
joint loading [66], but further research is needed to defini-
tively confirm the efficacy of this method. Perturbation-
enhanced plyometric training [69], the F-MARC 11 +[70,
71], Oslo Neuromuscular warm-up protocol [72, 73] and
resistance training [62, 63] are ineffective in reducing COD
knee joint loads, whereas conflicting findings have been
observed for the Core-Pac [74, 75], and mixed programme
training interventions [53, 58-61, 65]. More research is
required around plyometric-related interventions for the
development of safer cutting mechanics. Although several
studies have shown mixed training programmes and neu-
romuscular training appear to be ineffective in addressing
COD biomechanics associated with increased ACL loading
and potential non-contact injury risk (Tables 3 and 4), these
training modalities have been shown to be effective in reduc-
ing ACL injury rates [1, 89, 94, 120] and may improve other
qualities such as strength, muscle activation and athletic per-
formance [1, 94]. Similarly, resistance training appears to be
ineffective for reducing COD knee joint loads; however, this
training modality elicits positive performance adaptations
[97, 105, 123, 124] and is considered important for athletes
to tolerate the loading associated when changing direc-
tion [19, 55, 94, 97, 100, 101]. Therefore, mixed training
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programmes, injury-prevention neuromuscular warm-ups
and resistance training should not be overlooked, and war-
rant inclusion into an athlete’s holistic training programme.

Finally, to understand the most efficacious training
modalities for addressing COD biomechanics associated
with increased ACL loading, further research is needed
in larger samples sizes, while containing a control group,
and acknowledging measurement error to establish real
and meaningful changes. Given the potential performance-
injury conflict during COD [32, 41, 48], future studies need
to consider the implications of the training intervention on
both performance (completion time, GCT, exit velocity) and
injury-risk biomechanics to better inform injury-risk mitiga-
tion programmes, because athletes may be unlikely to adhere
to training programmes that negatively affect performance.
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