
1 
 

HEAT TRANSFER- ASIAN RESEARCH  

Accepted September 15th 2019  

Online ISSN:1523-1496; Publisher – Wiley 

 

FINITE ELEMENT ANALYSIS OF NON-NEWTONIAN 

MAGNETO-HEMODYNAMIC FLOW CONVEYING NANO-

PARTICLES THROUGH A STENOSED CORONARY ARTERY 

 

B. VASUa,*, ANKITA DUBEYa and O. ANWAR BÉGb 
aDepartment of Mathematics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 

Uttar Pradesh- 211004, India 

*Corresponding author- email: bvasu@mnnit.ac.in, rma1601@mnnit.ac.in 
bDepartment of Mechanical and Aeronautical Engineering, Salford University, Manchester, M54WT, 

UK. O.A.Beg@salford.ac.uk 

ABSTRACT 

The present study considers two-dimensional mathematical modelling of non-Newtonian 

nanofluid hemodynamics with heat and mass transfer in a stenosed coronary artery in the presence 

of a radial magnetic field. The second-grade differential viscoelastic constitutive model is adopted 

for blood to mimic non-Newtonian characteristics and blood is considered to contain a 

homogenous suspension of nanoparticles. Vogel’s model is employed to simulate the variation of 

blood viscosity as a function of temperature. The governing equations are an extension of the 

Navier-Stokes equations with linear Boussinesq’s approximation and Buongiorno’s nanoscale 

model (which simulates both heat and mass transfer). The conservation equations are normalized 
by employing appropriate non-dimensional variables. It is assumed that the maximum height of 

the stenosis is small in comparison with the radius of the artery and furthermore that the radius of 

the artery and length of the stenotic region are of comparable magnitude. To study the influence 

of vessel geometry on blood flow and nano-particle transport, variation in the design and size of 

the stenosis is considered in the domain. The transformed equations are solved numerically by 

means of the finite element method based on the variational approach and simulated using the 

FreeFEM++ code. A detailed grid-independence study is included. Blood flow, heat and mass 

transfer characteristics are examined for the effects of selected geometric, nanoscale, rheological, 

viscosity and  magnetic parameters i.e. stenotic diameter (d), viscoelastic parameter ( 1 ), 

thermophoresis parameter (
tN ), Brownian motion parameter (

bN ) and magnetic body force 

parameter (M) at the throat of the stenosis and throughout the arterial domain. The velocity, 

temperature and nanoparticle concentration fields are also visualized through instantaneous 

patterns of contours. An increase in magnetic and thermophoresis parameters is found to enhance 

the temperature, nanoparticle concentration and skin-friction coefficient. Increasing Brownian 

motion parameter is observed to accelerate the blood flow. Narrower stenosis significantly alters 

the temperature and nano-particle distributions and magnitudes. The novelty of the study relates 

to the combination of geometric complexity, multi-physical nanoscale and thermomagnetic 

behaviour and also the simultaneous presence of bio-rheological behaviour (all of which arise in 

actual cardiovascular heat transfer phenomena) in a single work with extensive visualization of the 

flow, heat and mass transfer characteristics. The simulations are relevant to diffusion of nano-

drugs in magnetic targeted treatment of stenosed arterial disease. 
 
KEYWORDS: Arterial stenosis, Non-Newtonian blood flow, Nano-drugs, Vogel’s model, 

Magnetohydrodynamics, Thermophoresis, Finite Element Method.  
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NOMENCLATURE 

 A, B       Vogel’s viscosity parameters  

1 2,A A     Rivlin-Ericksen tensors 

0B          Magnetic field                       

Br          Brownian diffusion constant                         
'B         Total magnetic field 

bD         Brownian diffusion coefficient                     

TD        Thermophoretic diffusion coefficient            

 g          Gravitational vector                                      

 J          Electric current density   

 Gr        Grashof Number    

M          Magnetohydrodynamic body force parameter  

bN         Brownian motion parameter 

tN        Thermophoresis parameter 

 p         Pressure 

rP            Prandtl Number     

0R         Radius of artery (non-stenotic)                                                              

eR          Reynolds Number  

R (z)     Radius of artery (stenotic)                

R          Radial coordinate
 

cS         Schmidt Number 

u           Velocity in radial direction  

V           Velocity vector 

w           Velocity in axial direction                

z            Axial coordinate 

 

Greek letters 

1 2,      Material modules                              Temperature 

            Thermal conductivity                             Nanoparticle volume fraction 

  
f        Density of the base fluid                                  

p         Density of the nanoparticles   

  1          Viscoelastic parameter                                σ          Electrical conductivity   

   μ          Dynamic viscosity                  
0         Reference viscosity 

  
w          Wall Temperature                  

L         Reference fluid temperature 

  w        Concentration at wall                               L         Reference mass concentration 

            Stenosis depth                                          Ratio of non-stenotic radius to stenotic length 

  *         Ratio of stenosis depth to non-stenotic radius 
 

1. INTRODUCTION    

Hemodynamics plays a critical role in the formation and evolution of cardiovascular diseases. 

Simulation of blood flow has been widely used in recent decades for better understanding the 

symptomatic spectrum of various diseases, in order to improve already existing treatments or to 

develop new therapeutic techniques. The characteristics of the blood flow in an artery can be 

modified significantly by arterial disease which may include aneurysms and stenoses [1]. The 

progress of atherosclerosis or stenosis in a blood vessel is quite common and may be accelerated 

by continuous addition of lipids in the arterial wall. Blood vessels are tapered by the growth of 

atherosclerotic plaques that bulge into the lumen, resulting in stenosed blood vessels. When 

stenosis is developed in an artery, one of the most severe problems associated with this obstruction 

is the increased resistance and the concomitant reduction of the blood flow to the specific vascular 

bed supplied by the artery. Thus, the development of a stenosis can lead to severe circulatory and 

arterial disorders [2]. 

Blood is suspension of various tiny particles in a continuous saline plasma solution. The plasma 

generally behaves as a Newtonian fluid whereas the whole blood (a suspension of cells and highly 
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viscous in nature), exhibits the property of a non-Newtonian fluid, in particular in smaller vessels 

[3]. The non-Newtonian characteristics of blood emerge at low shear rate whereas at high shear 

rate blood usually behaves as a Newtonian fluid as observed in large arteries [4, 5]. Blood flow 

ensures the transportation of nutrients, hormones, metabolic wastes, O2 and CO2 throughout the 

body to maintain cell-level metabolism, the regulation of the pH, osmotic pressure and 

temperature of the whole body and protection from microbial and mechanical harms. The presence 

of arterial stenosis influence the hemodynamic behaviour of blood flow [6]. Arterial blood flow is 

fundamental the human circulatory system. Interest in this area has made important contributions 

to combatting heart diseases (stenosis) via diagnostic tools and simulations of chirurgical 

treatments like stents and by-passes [7]. Mekheimer and El kot [8] have analyzed blood flow in 

time-variant stenosed elastic tapered arteries. Riahi et al. [9] have examined blood flow in an artery 

containing an overlapping stenosis. Ellahi et al. [10] discussed the arterial blood flow through a 

mild composite stenosis by treating blood as micropolar fluid. Tzirakis et al. [11] studied 

numerically non-Newtonian bio-magnetic fluid flow in a duct. Akbar et al. [12] employed the 

Jeffrey fluid model for blood flow through a tapered artery with a stenosis to study non-Newtonian 

fluid characteristics in which a convective derivative rather than a time derivative was employed 

to simulate relaxation and retardation times. Chakravarty et al. [13] developed a mathematical 

model of blood flow through the time-variant tapered stenotic artery. Moreno and Kiran [14] 

explored plaque morphology in stenotic blood flows. Haghighi and Chalak [15] used a finite 

difference method and the Sisko rheological model to simulate blood flow in a stenotic artery with 

body acceleration effects. Tripathi [16] presented analytical solutions for three layered oscillatory 

blood flow via stenosed arteries. Mishra et al. [17] studied the blood flow through a composite 

stenosis in an artery with a permeable wall. Nadeem and Akbar [18] used a perturbation method 

and second grade viscoelastic model to investigate blood flow through a tapered artery. Ramesh 

and Devakar [19] have considered endoscopic and heat transfer effects in peristaltic non-

Newtonian blood flow in a tube. Srivastav [20] explored permeability effects on the flow 

characteristics of a Newtonian fluid in an inserted catheterized stenosed artery. Jayaraman and 

Tewari [21] discussed the blood flow analysis in a catheterized curved artery by considering the 

blood vessel as a curved pipe and the catheter to be coaxial to it. Srivastava and Srivastava [22] 

presented a theoretical analysis on hemodynamics with artery catheterization with and without 

stenosis. 

Magnetohydrodynamics (MHD) involves the motion of electrically-conducting fluids under the 

influence of an applied magnetic field. MHD arises in both Newtonian and non-Newtonian fluid 

https://en.wikipedia.org/wiki/Nutrient
https://en.wikipedia.org/wiki/Hormone
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/CO2
https://en.wikipedia.org/wiki/Metabolism
https://en.wikipedia.org/wiki/PH
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flows and has diverse technological applications including medical engineering, chemical 

engineering, energy systems, materials processing etc. The presence of ions and iron in the 

haemoglobin molecule produces electrically-conducting properties in blood. Streaming blood can 

therefore be manipulated via the application of extra-corporeal magnetic fields which may be static 

or alternating in nature. Arterial diseases such as arteriosclerosis may therefore be treated via 

biomagnetic therapy. Magnetohydrodynamic blood flows also feature in electromagnetic medical 

pumps wherein magnetic field can be used to regulate the flow rates in the blood pump specific to 

different cardiac operations. In diseased arteries, the effect of vessels tapering in addition to the  

shape of a stenosis also constitutes an interesting scenario for magnetic blood flow simulation. 

Haik et al. [23] reported a 30% decrease in blood flow rate due to a high magnetic field of 10 Tesla 

when gravitational effects are considered in non-stenosed flows. Yadav et al. [24] showed a similar 

reduction in blood flow rate but at a much smaller magnetic field of 0.002T for stenosed arteries. 

Nadeem et al. [25] discussed the effects of induced magnetic field on blood flow through stenosed 

vessels.  These studies have shown that the imposition of a magnetic field to streaming blood 

induces both electric and magnetic fields which interact to generate a Lorentzian body force, which 

is resistive in nature and opposes the movement of blood [26, 27]. A non-invasive technique based 

on MRI devices is often used to identify the structure of the stenosis in the artery, and this 

technique employs a strong magnetic field which affects the velocity field [28]. Many different 

mathematical and computational studies have been reported on the influence of magnetization in 

arterial blood flow. Tzirtzilakis [29] presented a detailed mathematical model for three-

dimensional biomagnetic blood flow under static magnetic field which featured 

ferrohydrodynamic and a Langevin function. They obtained extensive numerical results with a 

finite-difference-based pressure-linked collocated pseudo-transient method. Selvi and 

Ponalagusamy [30] investigated the effect of magnetic field on the two-phase oscillatory blood 

flow by assuming core and plasma regions as a Newtonian fluid in the arterial stenosis, showing 

that an increment in magnetic field elevates flow resistance of the blood flow in the stenosed artery. 

Ponalagusamy and Priyadharshini [31] extended the study [30] to consider tapered stenotic and 

non-Newtonian effects in magnetized oscillatory two-phase blood flow.  

In recent years another significant development in biomedical engineering has been the application 

of nanofluids. The term “nanofluid” was first proposed about a decade ago by Choi [32], to 

characterize engineered colloids composed of nanoparticles dispersed in a base fluid. In 

comparison with milli- and micro- sized particle slurries explored in past, the nanoparticles are 

closer in molecular dimension to the particles of the base fluid. The popular base fluids are oil, 
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water and organic fluids such as ethylene glycol and ethanol. Buongiorno [33] presented a 

comprehensive study of convective transport in nanofluids. Nanofluids display an enhancement in 

thermal conductivity, which is boosted with increasing volumetric fraction of nanoparticles as 

reported by Masuda et al. [34]. Nanoparticle doping has been implemented in many diverse 

technological sectors including heat exchangers, cooling of electronics, diesel electric generators, 

drug delivery and biomedical therapy. Classical models are not applicable for the enhancement of 

thermal conductivity of nanofluid. In recent years, most mathematical models have featured one 

or two postulated mechanisms for nanofluid heat transfer, irrespective of the area of application. 

As a result, there is relatively sparse fundamental research which has been reported on 

determination of the effective thermal diffusivity or heat transfer coefficients for nanofluids in 

natural convection, as highlighted by Wong et al. [35]. However Xuan and Roetzel [36] and Xuan 

and Li [37] assumed that convective heat transfer enhancement is due mainly to dispersion of the 

suspended nanoparticles. Giljohann et al. [38] and Kumar et al. [39] also investigated the effect of 

gold nanoparticles suspension in blood identifying the excellent utility of small size nanoparticles 

in biomedical systems. In recent years, various nano-sized particles have been deployed in 

pharmacodynamics to increase or decrease the blood capillary growth and most of them are very 

effective. Nano-particles have also been employed in biological fuel cell systems. Bég et al. [40] 

studied combined nanofluid doping and oxytactic biconvection micro-organisms in near-wall 

flows of microbial fuel cells. Ali et al. [41] presented a comprehensive computational model for 

studied unsteady heat and mass transfer in streaming blood flow doped with nanoparticles via a 

tapered stenotic artery.  

In many hemodynamic simulations, blood viscosity is assumed to be constant. However, this 

assumption is not valid everywhere. In general, the coefficient of viscosity for real fluids is a 

function of temperature and pressure. In recent years there have been several investigations in 

which blood viscosity has been taken as function of temperature. Vogel’s model is commonly used 

to describe the variation of the viscosity with temperature in a variety of flows [42]. Pakdemirlia 

and Yilbas [43] utilized the Vogel viscosity model to analyse entropy generation in viscoelastic 

blood flow. Ellahi et al. [44] derived homotopy series solutions for non-Newtonian nanofluid flows 

using two variable viscosity models (Reynolds’ model and Vogel’s model). Akbar et al. [45] 

employed Vogel’s model to consider viscosity variation in peristaltic flow of Jeffrey fluid. Malik 

et al. [46] investigated variable viscosity in Eyring–Powell flows. Hatami et al. [47] simulated 

hydromagnetic convection in axisymmetric viscoelastic flow doped with gold nano-particles. They 
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observed that non-Newtonian and viscosity parameters had a significant influence on the 

temperature and velocity profiles in physiological flows. 

The theoretical studies dealing with effects of heat transfer and magnetic field on the steady flow 

of blood in a coronary artery have received comparatively less attention. The vast majority of 

models in the literature relating to thermomagnetic blood flows have considered very simplified 

geometric systems and have not presented beyond one-dimensional formulations. It has been 

observed that the heart rate decreases by exposing biological systems to an external magnetic field 

and also that injected nanoparticles help in improving the blood flow in a stenosed artery. 

Motivated by extending these studies this paper focuses on simulation of the nanoparticle drug 

delivery in stenosed realistic hemodynamics in small vessels (coronary arteries) of the human 

circulatory system where blood is considered as second grade fluid with flow viscosity variation 

simulated as a function of temperature which is adequately enabled in the Vogel model. The results 

elaborate on the influence of several nanoscale parameters (thermophoresis parameter and 

Brownian motion parameter) and magnetic body force parameter on velocity, skin friction 

coefficient, nanoparticle concentration, temperature profiles and wall shear stress on the stenotic 

section in addition to the rest of the coronary artery. Due to the viscosity being modelled as a 

function of temperature, an improved prediction of velocity and wall shear stress has been achieved 

which approximates more closely to actual blood flow in stenotic artery. A small segment of 

stenosed coronary artery is considered in which the non-Newtonian blood flow and heat transfer 

with nano particles is modelled by employing the Buongiorno model. The normalized conservation 

equations are solved subject to appropriate boundary conditions with the finite element method 

using a variational approach and the FreeFem++ code. Overall the novelty of the study may be 

summarized in that it provides a significant step forward in combining the geometric complexity, 

multi-physical nanoscale thermomagnetic behaviour and the interaction of many real phenomena 

(rheological second order effects etc) in biological cardiovascular heat transfer simulations in a 

single work with extensive visualization of the flow, heat and mass transfer characteristics. The 

present simulations are envisaged to be of relevance to better characterizing hemodynamics in the 

assessment and diagnosis of cardiovascular disease, testing the hypothesis of disease formation, 

modelling the transport of drugs through the circulatory systems and furthermore may be of benefit 

in the design of cardiovascular devices, heart valves, stents, probes etc.  

 

 

2. MAGNETIC NON-NEWTONIAN NANO-PARTICLE BLOOD FLOW MODEL  
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A two-dimensional mathematical model for blood flow in a coronary artery is considered wherein 

blood flow is modelled as non-homogeneous fluid flow containing a suspension of nanoparticles. 

Blood rheology is simulated with the second grade Reiner-Rivlin fluid model. Both heat and mass 

transfer are included. For the simulation, the stationary case of the blood vessel is assumed i.e. the 

pulsatile nature of streaming blood is neglected. The velocity is taken as zero at the internal walls 

of the vessel which is modelled as a cylindrical tube. A cylindrical coordinate system ( , , )r z  is 

therefore adopted, where r is the radial coordinate, z- is axial coordinate and φ is azimuthal 

coordinate. Since the flow is axisymmetric the contribution in the azimuthal (φ) direction may be 

neglected i.e. the flow is only in the radial (r) and axial (z) direction as shown in Fig. (1). The fluid 

is incompressible and laminar. The coronary artery has finite length L and contains a sinusoidal- 

shaped stenosis. In the arterial segment the geometry of the mild stenosis is assumed to be is 

described by 

2

0 02

0

1
exp ( 0.5) ;

( ) 2 2

;

L
R a z L z L L

R z a

R otherwise

  
− + − − +   +  

=  



. Here the radius 

and length of the non-stenotic section are 0 0,R L  respectively and the radius of the stenotic part is 

taken as ( )R z . The z-axis is parallel to the blood flow direction and normal to the r-axis and d is 

the stenotic diameter. The obstruction (stenosis) is symmetrical with a maximum height with

5

4
a = . 

 

 

Figure 1.  Schematic illustration of a stenosed coronary artery 

 

For steady axisymmetric flow of blood in the arterial vessel, the velocity vector V is assumed to 

be of the form: 

                                              [ ( , ),0, ( , )]V u r z w r z=                                                      (1) 
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Here u and w are the velocity components in radial and axial directions. Blood is considered to be 

an incompressible second-grade non-Newtonian fluid containing a homogenous distribution of 

nano-particles. The viscosity of blood is assumed to be a function of temperature following 

Vogel’s model [42,44]: 

                                              0

A
L

B

e




 
−

+

=                                                (2)                                                                          

Since natural convection is considered, the appropriate expression for the nanofluid density [33, 

49] is:  

                                              0
(1 )

(1 )[ (1 ( ))]

p f

p f T L

   

     

= + −

 + − − −
                                                   (3) 

Here 
0f

 is base fluid (blood) density and f  is the base fluid’s density at the reference fluid 

temperature
L .  

The conservation equations for mass, momentum, thermal energy and nanoparticle volume 

fraction (species) for the nano-doped blood transport may be presented in vectorial form as: 

                                          ( , ) 0V r z =                                                              (4) 

                    '( ) [ (1 )[ (1 ( ))]]f s p f T L

V
V V divT g J B

t
      

 
+  = + + − − − +  

 
               (5) 

                   2( ) ( ) ( ) [ ( ) ( )]T
f p b

L

D
c V k c D

t


       



 
+  =  +   +   

 
                         (6) 

                      2 2( ) T
b

L

D
V D

t


  



 
+  =  +  

 
                                                                   (7) 

Here ϕ is the nanoparticle volume fraction. In equation (5) the third term on the right-hand side is 

the contribution due to applied magnetic field in electrically-conducting blood flow. Ohm’s law 

provides a relation between J and B’ [50]: 

                                                                     '( )J E V B= +                                              (8) 

Where E represents the electric field, 'B  = B0 + b represents the total magnetic field, σ the electrical 

conductivity, V is the velocity vector and J represents the electric current density. For small 

magnetic Reynolds number, the induced magnetic field is neglected. Hence:  

  2

0'J B B V = −                                                                               (9) 

In this study, it is assumed that each variable, u, v,   and ϕ has an initial value at the boundary 

wall and this value is prescribed as unity at the inlet boundary and zero at the outlet.  



9 
 

The constitutive equation for the Cauchy stress tensor in a second-order Reiner– Rivlin fluid is 

given by [51] 

                                                            2

1 1 2 2 1ST pI A A A  = − + + +                                  (10) 

Where 1 , 2  are material moduli which in general are considered to be functions of temperature. 

In Eq. (10), due to the restraint of incompressibility, −pI represents the spherical stress, and the 

kinematical tensors A1, A2 can be defined by the following equations: 

                                                                     
1 ( )tA V V= +                                                             (11) 

                                                     1
1 1( ) ( )tn

n n n

dA
A A V V A

dt

−
− −= +  +                              (12) 

For the model to be compatible with thermodynamics, in the sense that all motions satisfy the 

Clausius-Duhelm inequality, it is assumed that the specific Helmholtz free energy is minimum in 

equilibrium. Therefore, all the material derivatives taken in the above equations must meet the 

following conditions (Dunn and Fosdick [52] and Dunn and Rajagopal [53]). 

                                                          1 1 20, 0 0and     + =                                       (13) 

From the above Eqns. (4) - (7), neglecting the pressure gradient, the steady state, incompressible, 

two-dimensional governing equations for the nano-doped hydromagnetic blood transport reduce 

to the following: 

 

                                                            0
u u w

r r z

 
+ + =

 
                                                          (14) 

( )

22 2 2 2

12 2 2

3 3 2 2
2

02 2 4

2 1
2 2

2 (1 )[ (1 ( ))]p f T L

p w u w w w w w w w w

r z r r z r r r r r z r z r z

w w w w u
u w g B u

z r z r z r z r


 

      

            
= − + + − + + +                   

   
+ + + + − + − − − −

       

        (15) 

 

2 3 2

12 3 2

2 3 2 2

2 2 2

2 2 3 3 2

2 3 2

1

1 1

2 2 2 2

f

w w p w w w w w u
u w u

r z z r r r r r r r r

w w w u w w w w w u w
w

z r r z r r r r z r r z r r r

w w w w w w w w
u w

r r z r z r r z z z z


  

            
+ = − + + + + −   

             

        
+ + + + + −
          

       
+ + + + +
           

( ) 2

0(1 )[ (1 ( ))]p f T L g B w      



+ + − − − −

     (16) 
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2 2

2 2

1
( ) ( )f p b

T

L

c u w c D
r z r r r z r r z z

D

r r z z

        
  

   



             
+ = + + + +                 

    
+ +       

                 (17) 

 

2 2 2 2

2 2 2 2

1 1T
b

L

D
u w D

r z r r r z r r r z

       



           
+ = + + + + +    

            

               (18) 

 

The corresponding boundary conditions are: 

00, , 0, 0, 0 0

0, 0, , ( )w w

w
u w U at r

r r r

u w at r R z

 

   

  
= = = = = =

  

= = = = =

                             (19) 

The following non-dimensional parameters are introduced: 

  

0

0 0 0 0 0

2

0

0 0 0

, , , ,

, L L

w L w L

uL w z r
u w z r

U U L R

pR
p and

U L




 

   
 

    

= = = = =

− −
= = =

− −

                                                           (20) 

Where 0 0 0 0, , , , , , ,L w L wU L R and      denote the reference velocity, reference length of the 

blood vessel, reference radius, reference dynamic viscosity, stenosis depth, reference fluid 

temperature, vessel wall temperature, reference mass concentration and vessel wall mass 

concentration in the arterial tube model, respectively.  

The two important physical quantities of interest are the wall shear rate and skin friction.  

The shear rate at wall is 

2 2

1 2w

w w w w w u w
u w

r r r z r z r r
  

        
= − + + − +  

         
  (21) 

Skin-friction is defined as follows: 

2

0

2 w
f

f

C
U




=        (22) 

Implementing Eqns. (20) in eqns. (14)-(19) the following system of dimensionless conservation 

equations emerges: 
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( )

22 2 2 2
2 * 2 2

12 2 2

3 2 3 2
* 2 * 2 2 * 2 *

2 2 4

2 1
2 2

2( ) r r

p w u w w w w w w w w

r z r r z r r r z r z r r r z

w u w w u
u w B G Mu

z r r r z z r r


       

          

            
= − + + + + +   

               

   
+ − + + + + −

       

           (23) 

2 3
* 3 * *

12 3

2 3 2 2 2 2
* *

2 2 2 2

2 3
* 2

2

1
Re

1

2 2 2

w w p w w w w u w
u w u

r z z r r r r r r r r

w w w u w w w w w w w w u
w

z r r z r r r r z r r z r r z r r

w w w
u

r z r r z


          

  

  

            
+ = − + + + + −   

             

          
+ + + + + + −
             

  
+ + +

    

3 2

3 2
2 r r

w w w
w G B Mw

z z z
  

  
+ + + −

   

      (24) 

 

2 2
* 2 2 2

2 2

2

1
Re Pr b

t

u w N
r z r r r z r r z z

N
r r z z

        
    

   


            
+ = + + + +    

            

    
+ + 

    

            (25) 

 

2 2
* 2 2 2

2 2

2 2
2

2 2

1
Re

1t

b

Le u w
r z r r r z

N

N r r r z

    
   

  


      
+ = + +  

       

   
+ + + 

   

                     (26) 

A mild stenosis is assumed and the nondimensional geometric parameters appearing in the terms 

defined above are stenosis height parameter ( *

0

1
R

 =  ) and the vessel aspect ratio ( 0 0R L =

). For the subsequent analysis, we shall assume that *  << 1 and ε = O (1), i.e., the maximum 

height of the stenosis is small in comparison with the radius of the artery and also that the radius 

of the artery and length of the stenotic region are of comparable magnitude. Hence these 

parameters should be neglected [54].   In this study viscosity of nanofluid is considered as a 

function of temperature as given in Vogel’s model [46, 47, 48] we can rewrite Eqn. (2) as:  

                             
2

1
c A

S B




 
= − 

 

 ,          where  
(( / ) )

0
LA B

S e
 −

=                                         (27)                             

 Here A, B, c, 0 , L  are the reference values.                                            

 After applying the above equation in the normalized system of Eqns. (23) – (26), we get: 

    

( )
2 2

12 2

1
2 0r r

cA w w w w
B G

SB z r r r r r


  
      

− + − + =  
       

   (28) 
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2 3 2

12 2 2

2 2

1

2 ( ) 0r r

cA w w w w w w w w
w

SB r r z r r z r r z r r z

w w w w
G B Mw

r r z r z r




 

       
− + + +

         

   
+ + − + + =
      

                (29) 

2

2

1
0b tN N

r r r r r r r

                
+ + + =      

           

     (30) 

2 2

2 2

1 1
0t

b

N

r r r N r r r

         
+ + + =   

      

       (31) 

 The associated non-dimensional boundary conditions become: 

0, 1, 0, 0, 0 0

0, 0, 1, 1 ( )

w
u w at r

r r r

u w at r R z

 

 

  
= = = = = =

  

= = = = =

                                                        (32)    

In Eqns. (28)-(31) the following dimensionless quantities arise: MHD i.e. magnetic body force 

parameter 
2

0 0 0

0

,
B L R

M



=  the Brownian motion parameter, 

( )( )
,

b w L p

b

D c
N

  



−
=  thermophoresis 

parameter 
( )( )

,
T w L p

t

L

D c
N

  

 

−
=  the Grashof number , 0 0

0 0

( ) (1 )
,

w L f w L Tg L R
Gr

U

    



− −
=  the 

Brownian diffusion constant 0 0

0 0

( ) ( )
,

p f w LL R g
Br

U

   



− −
=   the Reynolds number 

0 0

0

Re ,
fU L


=

viscoelastic parameter  1 0
1

0 0

,
U

L





= 14Prandtl number 0

Pr ,
pc 


=  and Schmidt number 0

c

f b

S
D




= .   

 

Non-dimensional skin friction coefficient is given by: 

2

1

1
Re

2
f

w w w w
C w

r r z r z
 

    
= + − 

     
     (33) 

Applying equation (27), we get- 

2

12

1
Re 1

2
f

c A w w w w
C w

S B r r z r z



      

= − + −  
       

        (34)     

Where Re is the local Reynolds number (which is the ratio of inertial to viscous forces). 

              

       
3. FINITE ELEMENT SIMULATION WITH FreeFEM++ 

This section describes the numerical solution of the non-dimensional model derived in Sec. (2) i.e. 

the transformed Eqns. (28)-(31) with boundary conditions (32) using the finite element method 

with a variational approach and FreeFEM++ software. The finite element method involves 

dividing the domain of the problem into a collection of subdomains, with each subdomain 

represented by a set of element equations to the original problem, followed by systematically 
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recombining all sets of element equations into a global system of equations for the final calculation. 

FEM’s popularity has been increasing due to the greater flexibility it offers in modelling complex 

geometries. It has significant capabilities in accommodating general boundary conditions and 

variable material properties with a clear structure and versatility that helps to construct general 

purpose software for diverse applications. FEM has a solid theoretical foundation which gives 

added reliability and makes it possible to mathematically analyse and estimate the error in the 

approximate solution. Some recent studies employing the finite element method in blood flow 

modelling include Rajashekhar and Fabian [55] who investigated two-dimensional steady blood 

flow through an arterial bifurcation using finite element analysis (FEA) with different geometries. 

Many other studies of medical fluid dynamics have been reported using finite element techniques. 

Contreras-Silva et al. [56] conducted finite element simulations of blood flow in an ideal artery 

with stenosis. Lozovskiy et al. [57] developed a finite element method for incompressible viscous 

blood flow in a time-dependent domain using a quasi-Lagrangian formulation of the problem 

which provides stability and convergence analysis of the fully discrete (finite-difference in time 

and finite-element in space) method. Finite element modelling and simulation of the arterial 

network in the human arm for the aortic pulse wave propagation has been described by Choudhari 

et al. [58]. Gupta et al. [59] employed a finite element method to study drug diffusion in the human 

dermal region. They employed linear shape functions and discretized the dermal region into three 

layers by considering a linear concentration variation in each layer and defined as a function of 

one space variable. Kanday and Rafiq [60] applied the variational finite element method to study 

the absorption rate of drugs in a transdermal drug delivery system wherein the overall drug 

concentration was formulated by assembling the linear variations of each region. Jyoti and 

Srivastava [61] deployed a four-step wavelet Galerkin Method for parabolic and hyperbolic 

problems. Chi [62] used the discontinuous Galerkin method for time-dependent partial differential 

equations in medical transport problems.  

FreeFEM++ is an open source multi-physics programming software which allows fast and efficient 

solution of partial differential equations using the finite element method. This software offers 

several triangular finite elements, including discontinuous elements. It also provides options for 

simulating coupled electromagnetics, heat and mass diffusion and other phenomena. Recently 

FreeFEM++ has been increasingly utilized by researchers in diverse fields of engineering science 

fluid dynamics. Bertoglio et al. [63] applied FreeFEM++ to simulate flow in a straight channel 

with space-time discretization and adaptive mesh refinement. Deleuze [64] used FreeFem++ to 

investigate the effect of an inserted needle on the subcutaneous interstitial flow to describe the 

physical stress affecting body cells during acupuncture. Further studies employing FreeFem++ 
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software include Janela et al. [65] (on rigid particle motion in Newtonian fluids with a hyper-

viscosity model), Mahmud et al. [66] (on incompressible Newtonian fluid flow) and Devys et al. 

[67] (on two-dimensional respiratory hydrodynamics). 

To obtain a weak formulation of the system of differential equations (19-23) we define the function 

spaces: 

( ) 

( ) 

1

1

( ) , 0

( ) 0

in wall

in wall

X u H u a on u on

Q u H u on

=   =  = 

=   =   
                                    (35) 

The weak form of Eqns. (28) - (31) is obtained by determining w ∈ X and ϕ,   ∈ P such that every

v Q and q P  where 2 ( )P L=  . Therefore, the weak formulation of Eqns. (28) – (31) will be:  

2 2

12 2

1
2

0r r

cA w w w w
u dr u dr u dr

SB z r r r r r

B u dr G u dr




 

  

 

     
 −  −  

     

−  −  =

  

 
                        (36) 

 

2 3

1 12 2 2

2 2

1 1 1

2
2

1

1

2 0r r

cA w w w w
v dr v dr w v dr

SB r r z r r z

w w w w w w
v dr v dr v dr

r r z r r z r r z

w w
v dr G v dr B v dr M w v dr

r z r


 

  

  

  

  

   

    
 −  − 

     

    
−  −  − 

      

 
−  −  −  +  =

  

  

  

   

  (37) 

 

2

2

1
0b tw dr w dr N w dr N w dr

r r r r r r r

     

   

        
 +  +  +  =   

        
     (38) 

 

2 2

2 2

1 1
0t

b

N
q dr q dr q dr

r r r N r r r

   

  

    
 +  + +  = 

    
       (39) 

A fundamental aspect of the current modelling is to obtain the weak form of the above system of 

Eqns. (36)-(39). To achieve smoothness of the solution which is bounded due to the weaker 

restriction, these differential equations cannot be solved directly. So the finite dimensional 

subspaces have to be defined as 
hQ Q and

hP P . Consider the finite dimensional 

approximations as ,h h hu v Q and ,h h hw q P . In view of the finite dimensional approximation, the 

set of Eqns. (36)-(39) becomes: 
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2 2

12 2

1
2

0

h h h

r h r h

cA w w w w
u dr u dr u dr

SB z r r r r r

B u dr G u dr




 

  

 

     
 −  −  

     

−  −  =

  

 
  (40) 

2 3

1 12 2 2

2 2

1 1 1

2
2

1

1

2 0

h h h

h h h

h r h r h h

cA w w w w
v dr v dr w v dr

SB r r z r r z

w w w w w w
v dr v dr v dr

r r z r r z r r z

w w
v dr G v dr B v dr M w v dr

r z r


 

  

  

  

  

   

    
 −  − 

     

    
−  −  − 

      

 
−  −  −  +  =

  

  

  

   

   (41) 

 

2

2

1

0

h h b h

t h

w dr w dr N w dr
r r r r r

N w dr
r r

   

 

  



    
 +  +  

    

  
+  = 

  

  



               (42) 

2 2

2 2

1 1
0t

h h h

b

N
q dr q dr q dr

r r r N r r r

   

  

    
 +  + +  = 

    
                 (43) 

 

Eqns. (40)-(43) with boundary conditions (32) are solved numerically using the variational finite 

element method in FreeFEM++ [68, 69]. In the present study we consider classic Taylor-Hood 

triangular elements (
1 2,P P ). The simulation features 5928 unstructured fixed mesh triangular 

elements with 12177 nodes as presented in Figure 2. The mesh is built taking advantage of an 

automatic FreeFEM++ mesh generator based on the Delaunay-Voronoi algorithm. The non-linear 

system of the governing equations has been solved by employing the Generalized Minimal 

Residual (GMRES) iteration method. In the fixed mesh the prescribed minimum step size (
minh ) is 

0.0001 and the tolerance for computation is
610−  for all simulations.  

 

Figure 2. Unstructured fixed mesh of triangular elements 
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4. GRID SENSITIVITY ANALYSIS 

 

To ensure that the calculated numerical results are grid-independent, several different grid 

distributions have been tested. Table 1 shows the numerical values for velocity, temperature and 

nano-particle concentration for various designs of unstructured fixed mesh elements involving 

vertices and triangular elements as shown in Figure 2. Several different mesh distributions have 

been tested to ensure that the simulated numerical results are mesh independent. Therefore, the 

selected mesh for the present calculations consisted of 12177 nodes and 5928 triangular elements 

respectively. It can be seen from Table 1 along with figures 3 and 4 that increasing the mesh 

elements beyond this design does not modify significantly the numerical values of non-

dimensional velocity, temperature, nano-particle concentration and skin-friction coefficient in the 

domain with the parametric values prescribed as  
10.3, 0.3, 0.3, 0.5, 5,b tM N N A B= = = = = =  

0.4 , 0.0001,d l r= = 0.005 0.3z and c= = . Mesh-independent results are therefore ensured with 

the mesh design comprising 12177 nodes and 5928 triangular elements (simulation number 4 in 

Table 1). 

Table 1. Grid Independency analysis with 10.3, 0.3, 0.3, 0.5, 5,Re 1b tM N N A B= = = = = = =

0.4 , 0.0001, 0.005 0.3d l r z and c= = = =  

 

Simulation 

No. 

No. of 

Nodes 

No. of 

elements 

(Cells) 

Velocity 

(w) 

Temperature 

(θ) 

Nanoparticles 

Concentration 

(ϕ) 

Skin-friction 

coefficient 

(at r=0.001) 

      ( 1
Re

2
fC ) 

1. 7949 3854 0.98486 0.0526 0.0526 0.89326 

2. 8389 4064 0.98765 0.053498 0.053497 0.97221 

3. 11201 5460 0.98842 0.063114 0.063114 0.99551 

4. 12177 5928 0.99617 0.067073 0.067073 1.0142 

5. 24909 12244 0.99671 0.068061 0.068062 1.01693 

6. 27261 13390 0.99678 0.069895 0.06989 1.0136 

7. 50837 25098 0.99715 0.071355 0.071352 1.036 
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 Figure 3: Grid independence study (Velocity) 

 
 Figure 4: Grid independence study (Skin-friction coeff.) 

 

 

5. RESULTS AND DISCUSSION 
 

In this section the response in velocity, temperature and nano-particle concentration in the 

magnetic stenotic hemodynamic flow is studied for different shape and designs of stenosis and 

also with variation of different parameters. For computation of the model, the default values of 

different parameters are given in Table 2. 

 

Table 2: Default values of key parameters 

Parameter 
0  0  rG  rB   L l M 

bN  tN  1  d A B c Re 

Values 0.5 0.5 1.0 1.0 0.020 0.005 0.3 0.3 0.3 0.5 0.4l 5 5 0.3 3 
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The visualizations of non-dimensional velocity profile for different values of magnetic parameter 

(M) and thermophoresis parameter ( tN ) is documented in figures 5(a), 5(b), 5(c) and 5(d) in the 

arterial domain, Ω, corresponding to the mild stenosis case (here the blood flow direction is taken 

from left to right). 

    

   5(a)      5(b) 

     

   5(c)      5(d) 

 Figure 5 Velocity field (a) 0.3, 0.3 0.3b tM N and N= = =  (b) 0.3, 0.3 0.6b tM N and N= = = , (c) 

0.6, 0.3 0.3b tM N and N= = = , (d) 0.6, 0.3 0.6b tM N and N= = = .  

 
It is observed from figures 5(a)-5(b), that increasing the values of thermophoresis parameter (

tN ) from 

0.3 to 0.6 (with magnetic parameter, M, and Brownian motion parameter, 
bN  fixed) decreases the 

value of velocity in whole domain. Thermophoresis relates to the migration of nano-particles under 

the force of a temperature gradient. With nano-particles migrating the momentum is inhibited in the 

arterial flow and deceleration induced. Effectively thermophoretic body force arises due to the 

averaged Brownian motion of particles in the nano-doped blood under a steady temperature gradient. 

Since steady state conditions are assumed, the stronger molecular impulses in the hotter nanofluid 

region mobilize nano-particles to migrate towards the colder region, where the molecular impulses 

are weaker. This destroys momentum in the blood flow and results in a depletion in velocity. In 

particular, in the core zone strong deceleration is induced. With increasing magnetic parameter (M) 

from 0.3 to 0.6 as shown in figures 5a and 5c (for 
tN  = 0.3) and figures 5b and 5d (for 

tN = 0.6) there 

is also a significant decrement in velocity i.e. the core flow is again retarded. The presence of the 

Lorentzian magnetic drag force resists blood flow and especially generates deceleration in the 

constricted zone at the stenosis which in turn influences the remainder of the flow domain. In all plots, 
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the velocity is maximum at centreline of the artery and decreases to the boundary at which it vanishes 

in accordance with the no-slip condition. 

 

 

 Figure 6 Velocity profile for diameter of stenosis = 0.4l at z = 0.005 

 

 

Figure 7 Velocity profile for diameter of stenosis = 0.4l at z = 0.005 
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Figure 8 Velocity profile for diameter of stenosis = 0.3l at z = 0.005 

Figures 6, 7 and 8 illustrate the velocity profiles at a specific location of the arterial segment 

z=0.005 in the stenotic region (the throat of the stenosis) with variation along the r – axis for 

selected values of thermophoresis parameter (
tN ) and Brownian motion parameter (

bN ). In these 

plots the magnetic parameter is also varied although it is constrained to be less than unity indicating 

that the Lorentzian drag force is always less in magnitude than the viscous hemodynamic force in 

the regime. Figure 8 corresponds to the velocity profile when the diameter of the stenosis, d = 0.3l. 

It can be seen from the above figures that increasing the magnetic parameter clearly results in a 

significant reduction in velocity magnitudes. The imposition of a transverse magnetic field, as 

elaborated earlier, has a tendency to develop impedance known as the Lorentz drag force which 

acts perpendicular to the magnetic field i.e. along the axial direction. Stronger magnetic field 

corresponds to higher M values and this manifests in blood flow deceleration. However, by 

increasing the Brownian motion parameter (
bN ), the velocity is observed to increase. Larger 

values of 
bN  are associated with physically smaller nanoparticles in the Buongiorno model. This 

encourages ballistic collisions and momentum diffusion in the hemodynamic flow which results 

in flow acceleration. The decelerating effect of increasing thermophoresis parameter, tN , already 

observed in Figures 5(a)-(d) is confirmed in figures 6-8. There is a marked depression computed 

in velocity magnitudes and this is observed across the arterial span i.e. for all radial coordinate 

values.  
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   9(a)      9(b) 

       

   9(c)       9(d) 

 Figure 9 Velocity contour plots (a) 0.3, 0.3 0.3b tM N and N= = =  (b) 0.3, 0.6 0.3b tM N and N= = = , (c)

0.6, 0.3 0.3b tM N and N= = =  (d) 0.6, 0.6 0.3b tM N and N= = = .   

 

Figs. 9(a)-(d) represents the non-dimensional velocity profile for another size of stenosis with 

different values of magnetic parameter (M) and Brownian motion parameter ( bN ). The figure 

indicates that the radial velocity is progressively decreasing with greater values of M, associated 

with the related enhancement in Lorentz drag force. Significant impedance to blood flow is 

therefore clearly induced with stronger applied magnetic field and this is immensely useful in 

biomagnetic therapies for arterial diseases.  It is also apparent that velocity is elevated by increasing 

the Brownian motion parameter due to the associated exacerbation in nano-particle collisions when 

they are smaller in size. Higher velocity contours (dark red) are observed to replace the lower 

velocity (pink) contours in the constricted zone from fig. 9c to 9d for which the 
bN  value is doubled 

from 0.3 to 0.6 with M constrained at 0.6 and tN  fixed at 0.3. 

          

   10(a)                            10(b) 

Figure 10 Velocity contours for (a) 0.3, 0.3 0.3b tM N and N= = =  (b) 0.3, 0.6 0.3b tM N and N= = =  
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Figure 10(a) and 10(b) showing the affected part of the above two figures 9(a) and 9(b) with 

stenosis diameter (d = 0.3l). The increment in velocity by increasing the Brownian motion 

parameter (
bN ) is verified from inspection of the contours clearly. Smaller nanoparticles (higher

bN ) values therefore successfully induce acceleration in the blood flow. 

 

Figure 11 Velocity profile for diameter of stenosis = 0.3l at z = 0.005 

 

 

Figure 12 Velocity profile for diameter of stenosis = 0.3l at z = 0.005 

Figs. 11 and 12 depict the evolution in dimensionless velocity profiles for different values of tN  

and 
bN  when the blood is treated as Newtonian fluid i.e., 1 0 =  for the second stenosis case 

(stenosis diameter d = 0.3l) with variation of thermophoresis parameter (
tN ), Brownian motion 

parameter ( bN ), and magnetic body force parameter. Again, it is evident that blood velocity 

increases with increasing Brownian motion parameter ( bN ), whereas it is markedly depleted with 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003

V
e
lo

c
it

y
 (

w
) 

r - axis

M=0.3, λ1 = 0, d=0.3l, A=5, B=5, c=0.3

Nb=0.3, Nt=0.3

Nb=0.3, Nt=0.6

Nb=0.6, Nt=0.3

Nb=0.6, Nt=0.6

0

0.2

0.4

0.6

0.8

1

-0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003

V
e
lo

c
it

y
 (

w
)

r - axis

M=0.6, λ1= 0, d= 0.3l, A=5, B=5, c=0.3

Nb=0.3, Nt=0.3

Nb=0.3, Nt=0.3

Nb=0.6, Nt=0.3

Nb=0.6, Nt=0.6



23 
 

increasing thermophoresis parameter ( tN ). The nanoscale effects are therefore dual in nature. 

Brownian dynamics is found to accelerate the stenotic flow whereas thermophoretic body force 

induces retardation in the stenotic flow. 

 

Figure 13 Velocity profile for diameter of stenosis = 0.4l at z = 0.005 

 

 

Figure 14 Velocity profile for diameter of stenosis = 0.4l at z = 0.005 

 

Figs. 13 and 14 illustrate the variation in blood velocity profile with the variation of Vogel 
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parameter, c. As this parameter is increased the viscosity is elevated which modifies the velocity 

field. Blood flow is observed to be weakly accelerated with increasing Vogel parameter, c. 
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Additionally the velocities computed in Fig. 13 are observed to be larger than those in Fig. 14 since 

the magnetic parameter, M, is doubled from 0.3 to 0.5. This doubles the Lorentz magnetic drag 

force and morphs the profiles from a more plateau-like distribution across the vessel to a sharper 

parabolic profile with lower magnitudes. The velocity around the core region i.e. juxtapose to the 

mid-line (r = 0) of the arterial vessel, is dramatically reduced, with greater magnetic body force 

parameter.  

  

Fig. 15 shows the response in velocity field with variation in the Vogel’s viscosity parameter (A). 

This parameter arises both individually as a numerator and as an exponent in the denominator 

parameter, S, as defined in Eqn. (27). The overall effect is that viscosity is significantly modified 

and leads to a deceleration in the blood flow in the arterial vessel. This effect is clearly captured 

across the cross section of the vessel i.e. for all values of radial coordinate, r. 

 

Figure 15 Velocity profile for diameter of stenosis of 0.4l at z = 0.005 
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Figure 16 Skin-friction coefficient for diameter of stenosis of 0.4l at r = 0 

 

Figure 17 Skin-friction coefficient for diameter of stenosis = 0.4l at z = 0 

 

 

Figure 18 Skin-friction coefficient for diameter of stenosis = 0.3l at z = 0 
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Figure 16 illustrates the skin-friction coefficient distribution versus magnetic parameter (M) for 

various values of the Vogel parameter, c, at the arterial mid-line (r = 0). It is evident that with 

greater M values the skin friction is initially weakly increased up to M= 0.9. However, 

subsequently, for 0.9 < M < 1.1 there is a significantly sharper increase in skin friction and 

thereafter the ascent is less dramatic. Evidently when magnetic body force becomes equal to 

viscous hemodynamic force (M = 1) there is a step-up in the impact of magnetic field. Following 

this even though magnetic body force is increasingly greater than viscous force, the skin friction 

while continuing to increase does so less sharply. Consistently there is an elevation in blood flow 

velocity with Vogel parameter, c, for all values of magnetic parameter. However, the most 

dramatic enhancement clearly corresponds to the case when M >0.9. 

Figs. 17 and 18 depicts the variation of skin-friction coefficient with radial coordinate (r) for 

different magnetic parameter (M) and viscoelastic parameter ( 1 ) values for two different cases of 

stenosis (i.e., stenosis diameter d=0.4l and d=0.3l, respectively). It is apparent that when the artery 

is narrower (i.e., diameter of stenosis d =0.3l) the value of skin friction coefficient is considerably 

greater (Fig. 17) than when the artery is wider (diameter of stenosis d =0.4l.). In Fig. 17 the skin 

friction coefficient magnitudes are evidently much lower. The greater constriction   corresponding 

to the narrower artery clearly impedes the flow and leads to higher wall shear stress (WSS) i.e. 

greater skin friction, which characterizes arterial disease. With positive viscoelastic parameter ( 1

) values much higher skin friction magnitudes are computed (Fig. 17) than for negative viscoelastic 

parameter ( 1 ) values. This parameter arises in both the normalized radial and axial momentum 

conservation equations i.e. (28) and (29) in the terms 
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. Clearly there is strong coupling with the 

velocity fields. The impact of viscoelastic parameter 1 0
1
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,
U

R





= is therefore considerable. This 

parameter is inversely proportional to the reference dynamic viscosity, 0. For negative values of 

1 the large terms in Eqns. (28) and (29) are reversed in polarity and corresponds to blood flow 

with opposite relaxation and retardation characteristics to those for positive 1. With increasing 

magnetic parameter, M, there is a sustained elevation in skin friction in both Figs. 17 and 18 at all 

values of radial coordinate, r. it is also noteworthy that for the wider artery i.e. larger stenosis (Fig. 
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18) a consistently linear growth in skin friction is witnessed. However, for the narrower artery 

(Fig. 18) a sharper ascent is observed at lower radial coordinate values followed by a gentler 

gradient at intermediate values and then finally sharper ascent at highest radial coordinates.  

Table 3 documents the variation in wall skin-friction coefficient for the variation of MHD 

parameter (M) with Vogel’s parameter (c) for the wider case of stenosis (i.e., d=0.4l). It is evident 

that skin-friction coefficient increases monotonically with an increase in Vogel’s model parameter, 

c at the throat of the stenosis (on the wall of the artery). Furthermore, there is a marked increment 

in skin friction coefficient with greater magnetic parameter, M, indicating once again that there is 

significant flow modification at the arterial wall. 

 

Table 3. Comparison of values of skin friction coefficient with different values of Vogel’s 

parameter and MHD parameter for the wider case of stenosis when 

10.3, 0.3, 5, 0.5, 0.001 0.005b tN N A B r and z= = = = = = =  

MHD 

parameter 

(M) 

d=0.4l 

c=0.1 c=0.2 c=0.3 c=0.4 

0.1 
1.206 1.2707 1.4373 1.9694 

0.2 
1.2156 1.6866 1.9687 2.6709 

0.3 
1.6843 2.2926 2.992 3.3107 

0.4 
1.9671 2.6693 3.1123 3.7003 

0.5 
2.2919 3.0017 3.5012 4.049 

0.6 
2.4186 3.317 3.8963 4.4207 

0.7 
2.6668 3.7816 4.2579 4.89061 

 

Figures 19 and 20 present the variation of temperature () at the throat of stenosis (z=0.005) for 

both cases of stenosis (wider and narrower artery respectively), with different Brownian motion (

bN ) and thermophoresis ( tN ) parameters. An inverse parabolic distribution is computed (in both 

figures) with vanishing temperature at the arterial mid-line i.e. r= 0 with steady growth in 

temperature towards the walls of the artery where it is maximized. In both figures the value of 

temperature decreases across the arterial domain when Brownian motion parameter ( bN ) 

increases. This applies both at the stenosis and the boundary of vessel before and after the stenosis). 

Brownian motion therefore while encouraging momentum diffusion (it accelerates the flow as 

indicated in earlier graphs) is found to inhibit thermal diffusion which results in a cooling of the 

arterial regime. However, with increment of thermophoresis parameter ( tN ) there is a clear 
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enhancement in temperatures across the arterial cross-section. Thermophoresis therefore has the 

opposite influence to Brownian motion i.e. it enhanced thermal diffusion and opposes momentum 

diffusion (inducing deceleration as noted earlier). It can be also be observed that in the second 

stenotic case i.e. narrower artery (Fig 20) the magnitudes of the temperature in the core region are 

substantially higher than for the first stenotic case i.e. wider artery (Fig. 19). Geometric stenotic 

effects therefore both influence velocity distribution (as shown earlier) and via coupling with the 

energy field will also impact on thermal diffusion in the blood flow regime. 

 
 

Figure 19 Temperature profile for diameter of stenosis = 0.4l at z = 0.005 

 

 

 

Figure 20 Temperature profile for diameter of stenosis = 0.3l at z = 0.005 
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                         21(a)                  21(b) 

       

   21(c)      21(d)                                                               

Figure 21 Temperature distribution (a)
1 0.5, 0.4 , 0.3 0.3b td l N and N = − = = = , (b) 

1 0.5, 0.4 , 0.3 0.6b td l N and N = − = = = , (c)
1 0.5, 0.3 , 0.3 0.3b td l N and N = − = = = , (d) 

1 0.5, 0.3 , 0.3 0.6b td l N and N = − = = =  

 

Figure 21 illustrates the temperature contour plots with various values of stenotic diameter (d) and 

thermophoresis parameter (
tN ) along the arterial domain for a fixed value of Brownian motion 

parameter ( bN = 0.3) and viscoelastic parameter (1= -0.5). From fig. 21a to 21b the 

thermophoresis parameter tN  is increased from 0.3 to 0.6 and both graphs correspond to the wider 

stenotic region (d = 0.4l). This generates an expansion in the hotter zone to an around the mid-line 

of the domain i.e. darker orange contours are replaced by lighter ones. Temperature in the vicinity 

of the constriction is therefore elevated both axially and radially and this concurs with earlier 

graphs. This trend is also observed by comparing figs. 21c and 21d which relate to the narrower 

stenotic region (d = 0.3l) and again correspond to the same increase in thermophoresis parameter. 

Comparing fig. 21a with 21c (which corresponds to a reduction in stenotic diameter from d = 0.4l 

to 0.3l), the yellow/orange central zone computed in fig. 21a is considerably expanded around the 

mid-line indicating that a narrower geometry reduces thermal transport along the axis of the artery 

and decreases temperatures in the blood flow. The yellow contours correspond to higher 

temperatures and these are constricted while the cooler orange contours are expanded. This trend 

is sustained before and after the stenotic region along the entire axial length of the arterial section. 

There is no significant modification in temperature contours in the vicinity of the arterial walls 

(upper and lower boundaries) in any of the plots i.e. no tangible alteration in temperature near the 

walls is caused by a change in stenotic diameter or thermophoresis parameter.  
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Figure 22 shows the radial temperature distribution in the arterial stenosed blood flow with 

variation of thermophoresis parameter ( tN ) and Brownian motion parameter ( bN ) for magnetic 

parameter, M=0.6 for the wider (first) case of stenosis (d = 0.4l). With increasing thermophoresis 

body force (i.e. larger tN ) there is a notable elevation in temperatures across the arterial cross-

section i.e. with all values of radial coordinate. A strong plateau is computed in the central mid-

line zone of the arterial vessel. Maximum temperatures correspond to the walls of the vessel and 

the minimum values arise in the centre of the vessel. With increasing Brownian motion parameter 

temperatures are found to be markedly decreased in the central zone (plateau region around the 

mid-line) whereas they are weakly enhanced in the peripheral regions around the core zone. 

Cooling of the blood flow around the central core region is therefore induced with greater 

Brownian motion i.e. smaller sized nano-particles. 

 

 

Figure 22 Temperature profile for diameter of stenosis d = 0.4l at, z = 0.005 

 

Figure 23 shows the radial temperature distribution with different values of magnetic body force 

parameter (M) and also various thermophoresis values ( tN ) for the wider stenotic case. A distinct 

elevation in temperature is computed across the vessel cross-section. The supplementary work 

expended in dragging the blood against the action of the radial magnetic field is dissipated as heat. 

This excess heat energizes the blood flow and manifests in temperature elevation. The associated 

thermal boundary layer thickness at the vessel walls will also be increased. This confirms the 

findings of many investigators in magnetohydrodynamics including Cramer and Pai [70]. Static 

magnetic fields may therefore prove very beneficial in thermal treatment of blood flow disorders 

as noted by Brix et al. [71]. Again it is also apparent that higher values of nanoscale thermophoresis 
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parameter ( tN ) induces a clear enhancement in temperatures for all radial locations of the arterial 

vessel, although the principal elevation is observed around the central zone and diminishes 

progressively towards the vessel boundaries. 

 

Figure 23 Temperature profile for diameter of stenosis = 0.4l at, z = 0.005 

 

      

   24(a)                24(b) 

      

   24c)      24(d)    

 Figure 24 Nanoparticle Concentration for (a)
1 0.5, 0.3, 0.3 0.3b tM N and N = − = = = , (b) 

1 0.5, 0.3, 0.3 0.6b tM N and N = − = = = , (c) 
1 0.5, 0.6, 0.3 0.3b tM N and N = − = = =  (d)  

1 0.5, 0.6, 0.3 0.6b tM N and N = − = = = . 

 

Figures 24(a) - (d) visualize the nanoparticle concentration contours for various magnetic body 

force parameters (M) and thermophoresis parameters (
tN ) with fixed values of Brownian motion 
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thermophoresis parameter is increased from 0.3 to 0.6 with all other parameters constrained, there 

is an expansion in the orange (lower magnitude contour) zone is expanded and the engulfing 

yellow zone (higher magnitude contour) is contracted. The values for nano-particle concentration 

are therefore reduced along the axial direction and radial direction in the vicinity of the stenotic 

region. Species diffusion of nano-particles into the core region is therefore decreased with greater 

thermophoretic effect. Comparing fig. 24a with fig. 24c, the magnetic parameter is increased from 

M = 0.3 to 0.6, with all other parameters fixed. A similar response to the thermophoretic effect is 

observed i.e. the orange zone is expanded and the yellow zone is diminished Stronger magnetic 

field therefore also inhibits nano-particle diffusion into the core zone and results in decreasing 

magnitudes of nano-particle concentration along the entire arterial section i.e. with all axial 

coordinate locations.  Comparing fig. 24c and 24d this trend is further amplified with the 

emergence of a thin brown zone along the arterial mid-line indicating an even greater depletion in 

nano-particle concentration values. The combination of maximum magnetic parameter value and 

maximum thermophoresis parameter value therefore serves to strongly diminish nano-particle 

concentration values. The opposite effect i.e. elevation in nano-particle diffusion may therefore be 

induced by utilizing a weaker magnetic field and lower thermophoresis in nano-particle 

deployment in stenotic blood flows. Generally, no significant modification in nano-particle 

concentration distribution at the vessel walls is induced with a change in either magnetic body 

force parameters (M) and thermophoresis parameters ( tN ). 

Fig. 25 illustrates the influence of Brownian motion parameter (
bN ) and thermophoresis parameter 

(
tN ) on radial distribution of the nano-particle concentration () at low magnetic field (M = 0.3) 

and for the wider stenosis case (d = 0.4l). Parabolic profiles are computed across the vessel cross-

section with maximum nano-particle concentrations at the vessel walls and the minimum values 

clustered around the arterial mid-line. With increasing thermophoresis parameter there is a strong 

boost in magnitudes of nano-particle concentration for all radial coordinates, as opposed to the 

axial decrease computed earlier in figs. 24a-d. Similarly, there is a marked elevation in nano-

particle concentrations with increasing Brownian motion parameter from 0.3 to 0.6. Both 

nanoscale effects therefore assist in the diffusion of the nano-particle species at all radial 

coordinates although the effect is maximized at intermediate distances from the arterial mid-line. 

Brownian motion acts to distribute the nano-particles as uniformly as possible throughout the 

blood flow regime. This reduces the nanoparticle concentration gradient and diminishes the 

regional variations in fluid characteristics whereas it encourages species diffusion leading to an 

elevation in nano-particle concentration magnitudes.  
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Figure 25 Nanoparticles concentration for diameter of stenosis = 0.4l at z = 0.005 

 

Figure 26 Nanoparticles concentration for diameter of stenosis = 0.3l at z = 0.005 

Fig. 26 depicts the impact of Brownian motion (
bN ) and thermophoresis parameter (

tN ) for the 

narrower stenosis case (d = 0.3l). Comparing Fig. 26 (narrow stenosis) with fig. 25 (wider stenosis) 

over the range -0.0004 < r < 0.0004 it is immediately evident that much higher magnitudes of 

nano-particle concentration are obtained across the vessel cross-section i.e. along the radial 

direction. The narrower stenosis therefore assists in the diffusion of nano-particles through the 

blood flow across the vessel cross-section. Parabolic distributions are again obtained for all 

combinations of bN and tN . Again, elevation in tN  value leads to accentuation in the nano-particle 

concentration values. However, an increase in bN  values, in this narrower stenotic case, manifests 

with a weak reduction in the nano-particle concentration values.  
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Figure 27 Nanoparticles concentration for diameter of stenosis = 0.4l at z = 0.005 

Fig. 27 shows the variation of nano-particle concentration with magnetic parameter (M) and 

thermophoresis parameter (
tN ). An increment in thermophoresis parameter generally enhances 

magnitudes of the nano-particle concentration for at all radial locations. Similarly, nano-particle 

concentration magnitudes are also elevated with greater M value i.e. stronger radial magnetic field 

encourages nano-particle species diffusion in the blood flow. 

28(a)  

 

28(b)  

 

28(c)  

 

28(d) 

0

0.2

0.4

0.6

0.8

1

-0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001

C
o
n

c
e
n

tr
a
ti

o
n

 (
ϕ

)

r -axis

Nb=0.3, λ1= - 0.5, A=5, B=5, c=0.3

M=0.3, Nt=0.3

M=0.3, Nt=0.6

M=0.6, Nt=0.3

M=0.6, Nt=0.6



35 
 

Figure 28 Streamlines of blood flow in the arterial segment when a)  0.3, 0.3tM N= =                               

b) 0.3, 0.6tM N= =  c)  0.6, 0.3tM N= =  d)  0.6, 0.6tM N= =  

 

 

 

Finally, Figs. 28 (a) to (d) depict the streamlines of blood flow for specific values of M and 
tN   

when
10.3, 0.5, 5 0.3bN A B and c= = = = = . In Fig 28(a), the presence of a circulating bolus of 

blood enclosed by the streamlines in the stenotic region of the artery represents that if the size of 

the bolus will be decreased, the flow acceleration will also be decreased at the stenotic part of the 

artery. The bigger the bolus the higher the acceleration at that point. It can be seen from the two 

figures 28(a) and 28(b), by applied magnetic field the strength of the circulating region reduced. 

But comparing the 28(a) with 28(c), even with alteration in magnetic parameter (M) there seems 

no significant deviation in size and circulation of this bolus of blood. This indicates that the 

circulating bolus of blood is relatively insensitive to magnetic field. However, inspection of Figs. 

28(b), 28(d), shows that there is some deviation in the characteristics (magnitude and structure) 

of the bolus of blood with a change in thermophoresis parameter. It is further of note that the 

circulating bolus in is a trapped vortex zone generated in internal hemodynamics. It is an 

important flow characteristic which signifies a modification in flow deceleration/acceleration at 

the stenotic part of the artery. It has been popularized for a number of decades in hemodynamics 

simulations, notably by Fung [72] and also Yoganathan et al. [73] and Zien et al. [74]. In 

consistency with these studies, our simulations show that  the larger the bolus the higher the 

acceleration at that point. A good perspective of the internal flow dynamics in blood behaviour is 

therefore furnished with bolus dynamic consideration. Of course, this may be further analysed 

with three-dimensional simulations in the future. 

 

 

6. CONCLUSIONS 

In the present paper, motivated by providing a deeper understanding of nano-drug diffusion in the 

treatment of cardiovascular disease (stenotic arteries), a finite element simulation of two-

dimensional magnetohydrodynamic viscoelastic blood flow doped with nano-particles in a 

stenosed arterial geometry has been presented. The Reiner-Rivlin second order differential model 

has been adopted to mimic non-Newtonian effects and the Buongiorno nanoscale model employed 

to analyse Brownian motion and thermophoresis effects. The non-dimensional conservation 

equations for momentum, heat and nano-particle species with appropriate boundary conditions are 
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solved numerically by means of the finite element method based on the variational approach and 

simulated using the FreeFEM++ code. Modification in hemodynamic velocity, heat and mass 

transfer characteristics are studied for the effects of geometric, nanoscale, rheological, viscosity 

and magnetic parameters i.e. viscoelastic parameter (1), thermophoresis parameter ( tN ), 

Brownian motion parameter (
bN ) and magnetic body force parameter (M) at the throat of the 

stenosis and the domain. The main outcomes from the present investigation are as follows: 

• It is observed that in the first stenosis case (i.e., wider stenosis diameter, d = 0.4l), increasing 

the thermophoresis parameter (
tN ) generates an increase in nanoparticles concentration and 

temperature values in the regime. 

• For the wider stenosis case, increasing thermophoresis parameter and magnetic body force 

parameter both result in an elevation in temperature and nanoparticle concentration whereas 

they strongly reduce velocity (i.e. decelerate the blood flow) both at the stenosis and 

throughout the whole domain. 

• For the second stenosis case (i.e. narrower stenosis diameter d = 0.3l) there is a deceleration 

in the flow in the vicinity of the stenotic region. However, there is a marked acceleration in 

the blood flow with increasing Brownian motion parameter (
bN ) in the entire arterial 

geometry simulated.  

• For the second stenosis case, there is a generally an elevation in temperature and nano-

particle concentration with higher values of magnetic parameter (M) and thermophoresis 

parameter ( tN ). 

• The skin-friction coefficient is elevated significantly for the narrower stenosis geometry 

(second case, d = 0.3l). 

• For higher values of magnetic body force (MHD) parameter M ( 1M  ), the values of skin 

friction coefficient increase rapidly in comparison with lower values of M. 

• For the larger stenosis geometry (first case, d = 0.4l) there is a sustained linear growth in 

skin friction with radial coordinate whereas for the narrower stenosis (second case, d = 0.3l) 

there is a variation in the gradient. 

• An increase in the Vogel viscosity model parameter, A decelerates the blood flow whereas 

the converse effect i.e. enhancement in velocity is induced with increasing Vogel parameter, 

c.  

• Due to viscosity being taken as a function of temperature (which provides a better 

approximation for actual cardiovascular hemodynamics based on clinical observations), the 

velocity decreases at the walls of the artery as compared to the case where viscosity is taken as 



37 
 

a constant. Furthermore, due to increased drag at the walls, the skin friction coefficient is 

increased which relates to a transition in the flow from laminar towards turbulent flow and this 

case is much closer to the actual case of blood flow in a stenotic artery. Therefore, the 

simulations provide an improved insight into diagnosing the cardiovascular disease formation, 

modelling of drugs through the diseased arteries and testing the designs of heart valves, stents 

etc. 

• An increase in positive viscoelastic parameter (1) generates much higher skin friction 

magnitudes due to the elevation in viscosity of the rheological blood. The reverse behaviour 

is computed with negative viscoelastic parameter (1) values. 

• Bolus structure and magnitude exhibits a greater sensitivity to thermophoresis nanoscale effect 

than to magnetic field. This indicates that nanoparticles may provide a more useful mechanism 

for treatment than extra-corporeal magnetic fields in cardiovascular diagnostics and clinical 

treatments. 

 

 The present study has been confined to two-dimensional geometric configurations and has 

produced interesting computations with the FreeFEM++ code. Future investigations will 

consider more complex three-dimensional geometries [75] and also alternative non-Newtonian 

models e.g. the Oldroyd-B viscoelastic model.  
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