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ABSTRACT 

It is well known that material absorption and scattering is dependent on incidence and observation angle. 

Despite this, the corresponding standardised coefficients, which are used to represent these mechanisms 

within computational acoustic models, aggregate all such dependency into single random-incidence 

parameters. This limits the accuracy that can be achieved with computational acoustic models – even if these 

algorithms were to capture the wave physics perfectly, which they often do not, the results would not match 

physical reality because the input data is too low resolution. Bi-Directional Reflectance Functions are an 

established way of describing boundary absorption and scattering in computer graphics that have been 

suggested for use in acoustics. To date, several algorithms have been published that do or could use these in 

simulation, but no measurement methods are available to acquire them. There is also ambiguity over some 

aspects of their definition e.g. whether finite panel size is included as a scattering mechanism. This paper 

adopts a definition suitable for high-frequency Boundary Element Method algorithms that use oscillatory 

basis functions to capture wave directions. It then proposes an acquisition method based on double-layer 

Near-Field Acoustical Holography and assesses it accuracy using 2D simulations. 
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1. INTRODUCTION AND BACKGROUND 

Methods to measure the acoustic absorption of materials have long been of interest and various 

approaches are standardised e.g. ISO 354:2003 (random-incidence in a reverberation room), ISO 

10534-2:2001 (normal-incidence in an impedance tube) or ISO 13472-1:2002 (free-field). Accurate 

material absorption data is known to be a prerequisite if computational room acoustic models are 

required to be accurate (1–3). This is particular clear when algorithms such as Boundary Element 

Method (BEM) are applied; these are capable of producing extremely accurate results if the material 

data is precisely known, but will still produce inaccurate results when it is not (4). ISO 10534-2:2001 

is presently the most accurate standardised technique for absorption measurement, and can capture 

surface impedance as well as absorption coefficient, but applying it for existing spaces is destructive 

(5). There has therefore been a recent surge in interest in ‘in-situ’ methods (6) and, of these, Nearfield 

Acoustical Holography (NAH) techniques show particular promise. For example the recent method by 

Hald et al (7) can be applied in an untreated room and requires only compact samples and hardware. It 

is also capable of measuring the angle-dependence of the absorption of homogeneous samples. 

Scattering from boundaries or obstacles is also known to be an important mechanism with in Room 

Acoustics, with specialist ‘diffusers’ often being installed to subjectively improve the acoustics for 

music performance or critical listening spaces (8). Its inclusion in room acoustic modelling software 

has also been shown to be necessary to achieve realistic results (1), and predicted values for room 

acoustic metrics depend strongly on the strength and type of scattering mechanism chosen (2). It is 

therefore now included in all commercial room acoustic modelling software, usually following the 

random-incidence scattering coefficient that is measured according to ISO 17497-1:2004. The current 

situation remains far from ideal though; there is relatively little measured scattering data available and 

what does exist typically has high uncertainty attached to it, leaving practitioners to make ‘best 

guesses’ based on what seems to have worked satisfactorily in the past. There is also the issue that no 

detail is captured about the nature of the scattering; devices that redirect sound or that scatter in only 

one plane, such as the extruded diffusers common in concert halls, are not well characterised. 

                                                        
1 j.a.hargreaves@salford.ac.uk 

4907



 

 

1.1 Directional Scattering Measurement 

It is perhaps no surprise therefore that the group who have previously been most interested in 

measuring higher-resolution angle-dependent scattering data are diffuser designers. D’Antonio 

discussed the possibility of standardising this as early as 1992 (9), but a scalar ‘diffusion coefficient’ to 

quantity uniformity of scattering was ultimately standardised in ISO 17497-2:2012 instead; this also 

includes an alternative scattering coefficient definition. The standard does however include detail on 

how to measure high-resolution angle-dependent scattering because that is the raw data from which the 

coefficients are extracted. This is achieved using a so-called ‘goniometer’ setup, where both the source 

and sensors are in the quasi-far field of the object to be measured. 

There are several problems with this approach in the author’s opinion. Firstly, there are issues of 

practicality. They rely on subtraction approaches to separate incident and scattered sound, so require 

very low background noise, time invariant conditions (e.g. temperature), and either an anechoic 

environment or a very large room with time-gating to eliminate contamination from other reflections. 

The rigs are also large and unwieldly to apply in situ (10). Secondly, their design is fundamentally 

incompatible with the way that the directional data they measure could be used in Geometrical 

Acoustics (GA) simulation algorithms. These assume an unrealistic model of acoustic wave 

propagation as geometric rays or beams, the reflection of which from a boundary is most closely 

approximated by far-field (i.e. plane wave) excitation and measurement with an infinite-sized sample. 

The latter restriction occurs because GA models reflection and scattering as a local phenomenon; the 

edge effects that occur in measurement due to finite sample size should not factor and require removal 

from the dataset. We therefore distinguish between local scattering, that could occur to surface 

undulations and roughness, and the leading-order edge diffraction that occurs at the edges of panels. 

The preferred approach is that the latter should be handled separately in the simulation algorithm (11), 

hence the task of measuring panel scattering is to quantify only the former. This is a useful distinction 

but one that has been muddied by the common practice of adjusting scattering coefficient to mask the 

worst errors occurring due to absence of diffraction in GA simulation algorithms (12). 

Goniometers are, by nature of their design, restricted to finite sample size and measurement  and 

excitation distances. The requirement from GA for far-field measurements of infinite-sized samples 

are both contradictory and unachievable with the goniometer ‘one physical source / sensor per 

measurement / observation angle’ paradigm. The coefficients defined in ISO 17497-2:2012 include 

normalisation for finite sample size, but this is not the same as correcting the raw directional measured 

data. Measurements of directional reflection and/or scattering with phase, as would be ideal for early 

reflections that provide critical spatial cues, is certainly out of the question. 

1.2 Scattering Measurement by Nearfield Acoustical Holography 

The issue of finite sample size is circumvented by measuring in the nearfield; edge effects are 

relatively less significant due to proximity to the sample and can be corrected for if required (13). 

Far-field data can also be recovered mathematically by applying the far -field approximation to the 

Kirchhoff-Helmholtz boundary integral equation (14), often termed “nearfield to far-field transform”. 

Usually this utilises a plane-wave decomposition, though Müller-Trapet (15) investigated representing 

scattering using spherical harmonic functions; there it was assumed that this means the microphone 

array also has to be spherical, though work by this author shows that this is not the case (16,17). 

D’Antonio (9) was aware of the usefulness of NAH in 1992 through its pioneering application to 

surface impedance measurement by Tamura (18,19) in 1990, but appears to have concluded that it 

required sample isotropy; that was true for the method of Tamura, which assumed specular reflection, 

but is not a limitation of NAH in general. Kleiner et al (20) actually used NAH to measure directional 

scattering in 1995, though here were attempting to include finite sample size effects to as to mimic the 

results acquired by goniometers, and viewed the difficulty in doing this as a limitation rather than an 

advantage. Such early studies were limited by the availability and cost of multi-channel acquisition 

hardware, which today is ubiquitous. Separation of incident and reflected waves was also an issue, 

with researchers often resorting to subtraction techniques. Today, multichannel integrated 

double-layer pressure-sensing (PP) microphone arrays are available, as are integrated pressure and 

particle-velocity (PU) sensors, that enable this issue to be overcome.  

1.3 Representation of Scattering in Acoustic Simulation Algorithms 

Commercial room acoustic simulation algorithms are almost exclusively GA based, and that 

paradigm will be assumed here. We therefore wish to represent how an incoming wave with amplitude 
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𝐴i arriving from an incident angle (𝜃i, 𝜙i) might give rise to a distribution of outgoing waves with 

amplitudes 𝐴o(𝜃o, 𝜙o); here 𝜃 is azimuth and 𝜙 is polar angle. The function 𝑅 that relates these 

must be a function of both pairs of angles, hence 𝑅(𝜃o, 𝜙o, 𝜃i, 𝜙i). Siltanen et al (21) refer to this a 

Bi-Directional Reflectance Function (BDRF), a term transferred from computer graphics. It can also 

predict the amplitude at a given outgoing angle, given the incoming distribution 𝐴i(𝜃i, 𝜙i) , by 

𝐴o(𝜃o, 𝜙o) = 𝑅(𝜃o, 𝜙o, 𝜃i, 𝜙i) ⨂ 𝐴i(𝜃i, 𝜙i); here ⨂ represents a two-dimensional convolution over 𝜃i 

and 𝜙i. The BDRF is about the most general representation of geometric scattering one could have, 

especially if it is also deemed to be position dependent, and Siltanen et al argued how it encompasses 

previous approaches and showed how it can be applied to a variety of GA algorithms. 

BDRFs do however have limitations when applied to acoustics. When used with raytracing in 

computer graphics, it is reasonable for a BDRF to vary spatially in an arbitrary way; this is because 

light’s very short wavelength means optical scattering structures are orders of magnitude smaller than 

the geometry being modelled. For acoustics in contrast, wavelength is comparable to the size of 

geometric features in many cases, meaning angular and spatial variation of BDRFs are inextricably 

interlinked. Subject to these restrictions, BDRFs can best be understood as representing acoustic 

scattering in some spatially averaged sense that uses a particular choice of spatial window function 

defined on the boundary. Understanding the effect of this for both measurement and simulation 

requires consideration beyond the GA paradigm, and some initial analysis will be presented herein. In 

particular, the transition from diffraction due to panel size to scattering due to surface roughness is 

essentially a ‘mid-frequency’ problem, so techniques developed for high-frequency BEM (22) can be 

useful. These algorithms interpolate pressure fields using oscillatory basis functions that are designed 

to capture leading-order propagation directions (23), which may even be found using a geometric 

method (24). The radiation from these basis functions rather resembles geometric beams as frequency 

increases; some can be stated as a geometric beam plus a correction term (25). One recent algorithm 

(26), like GA, uses reflectance boundary conditions and is solved by marching on in reflection order. 

Following the acknowledgement that acoustic BDRFs must be understood in a spatially-averaged 

sense over some surface ‘patch’, the category of algorithms to which they are most suited is what 

Svensson and Savioja (27) class as “surface-based” GA. Those that discretise wave arrival and 

reflection angles, in addition to spatial discretization with a mesh, have been given various names 

including ‘Acoustic Radiance Transfer’ (ART) (21) and ‘Dynamical Energy Analysis’ (DEA) (28). 

BDRFs will also require discretisation over space and angle; notably, if this matches what is used in 

the simulation algorithm then the convolution above becomes a straightforward matrix multiplication. 

Siltanen et al proposed piecewise-constant angular discretisation, but Chappell and co-workers 

developed superior hierarchical schemes based on Legendre polynomials in 2D (28) and Zernike 

polynomials in 3D (29). Both groups used discontinuous spatial discretisation, however continuous 

spatial discretisation will be employed here because it produces beams that are more geometric in 

nature (25), aids convergence of high-frequency BEM (26) and reduces microphone array sidelobes. 

2. MODELLING FRAMEWORK AND TESTBED 

When using BDRFs in a numerical model, the primary 

objective is to replace a complicated boundary Γ, which is either 

costly to simulated or can only be measured, with a simplified 

boundary Γs  with BDRFs that give equivalent scattering 

behaviour and absorption. A numerical testbed is useful since 

reflections computed from BDRFs on the simplified boundary 

can be validated against reflections computed using a direct 

model of the complicated boundary e.g. using BEM. 

Figure 1a show the configuration. A sample with complicated 

boundary Γ (black) lies below a fictional simplified boundary 

Γs  (dashed blue); this is shown as being planar but needn’t 

necessarily be due to the findings in (16) and (26). An incoming 

plane wave (green) excites the sample causing an outgoing wave 

(purple) to be scattered. Both are sensed by a microphone array 

(blue dots) located on Γs. This arrangement of having the output 

data (BDRFs) defined on the same surface that is for 

measurement is unusual for NAH; it is more common to 

back-propagate the measured data to the physical boundary that 

Figure 1 Procedure to produce a 

local model for BDRF evaluation. 
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produced it e.g. so that boundary vibration can be found. This step is unnecessary for the intended 

application, however, and is usually ill-posed so avoiding it is advantageous. 

The Kirchhoff-Helmholtz boundary integral equation, being the mathematical foundation of BEM, 

is useful for analysing this problem. It says that if pressure and particle velocity are known on the 

entire simplified boundary, then the reflections from the complicated boundary can be perfectly 

reproduced from that data. This is a useful benchmark but is impractical for entire scenarios since 

generating this data requires solution with an accurate algorithm such as BEM over the entire 

complicated boundary. If this can be done reasonable effort then it renders the entire encoding as 

BDRFs process pointless. 

Instead it is desirable to exploit the assumption that scattering is a local phenomenon and try and 

acquire BDRFs via local simulations that are much computationally cheaper. There is precedent for 

this in diffusion coefficient measurement and simulation; no one expects to have to simulate an entire 

concert hall to understand how a diffuser performs, and BEM simulations of small samples have been 

shown to be very effective (8). The complicated boundary could of course be simply truncated but this 

would likely produce strong edge effects, hence Figure 1b&c propose a more sophisticated approach. 

In Figure 1b the complicated boundary is truncated but embedded in an infinite planar baffle; this 

reduces truncation effects but means that the reflected wave (orange) from these sections can be 

computed analytically. To avoid meshing the planar baffle, symmetry is exploited in Figure 1c, 

reflecting both the obstacle and the incident wave, which then becomes the analytical reflected wave 

(orange). This approach is widely exploited in BEM and means that only the truncated section of  the 

complicated boundary needs to be meshed, yielding much-reduced computational cost. 

2.1 Mathematical Formulation 

The mathematical formulation used for the testbed will now be presented. The model is formulated 

in two dimensions for simplicity; all quantities and geometry are assumed to be invariant of the other 

third dimension. All quantities are time harmonic with time dependence e−i𝜔𝑡, where 𝜔 is frequency 

expressed in radians per second. Acoustic waves in the air domain have pressure 𝑝 that satisfies 

Helmholtz’ equation ∇2𝑝(𝐱) + 𝑘2𝑝(𝐱) = 0. Here 𝐱 is a point in 2D Cartesian space and 𝑘 = 𝜔 𝑐0⁄  is 

the wavenumber, where 𝑐0 is the speed of sound in air. The simplified boundary Γs is assumed to be 

planar for ease of analysis; 𝐭̂ and 𝐧̂ are respectively its tangential and normal unit vectors and 𝐧̂ is 

deemed to point away from the sample being characterised into the air volume. It is offset a distance 

𝑑 from the coordinate origin, which is taken to align with the sample, hence 𝐧̂ ∙ 𝐱 = 𝑑 for all 𝐱 ∈ Γs. 

A key concept in this formulation is that total pressure 𝑝t can be decomposed into an incoming 

wave with pressure 𝑝i and an outgoing wave with pressure 𝑝o, so  𝑝t(𝐱) = 𝑝i(𝐱) + 𝑝o(𝐱). The word 

“outgoing” has been used here because the more common words “reflected” and “scattered” have been 

reserved for more specific behaviours. Incidence and reflected wave directions (green and orange in 

Figure 1) will be parameterised by 𝑘t; the component of wavenumber tangential to the measurement 

plane. This definition is chosen over one based on angle because it supports inhomogeneous 

(evanescent) plane waves, for which |𝑘t| > 𝑘. In the non-evanescent region |𝑘t| ≤ 𝑘, polar angle 𝜙 

can be found by 𝜙 = sin−1(𝑘t 𝑘⁄ ) . The incoming and outgoing waves have complex amplitude 

densities 𝐴i(𝑘t) and 𝐴o(𝑘t) respectively. The pressures 𝑝i and 𝑝o can be found from these by: 

𝑝i|o(𝐱) =
1

2𝜋
∫ 𝐴i|o(𝑘t)ei[𝑘t𝐭̂∓𝑘n𝐧̂]∙𝐱𝑑𝑘t

∞

−∞

.  (1) 

The term ∓ in the exponent is negative for the incoming wave and positive for the outgoing wave and 

𝑘n = √𝑘2 − 𝑘t
2 is the component of wavenumber normal to Γs. The positive imaginary branch of the 

square root is chosen when |𝑘t| > 𝑘 because this means the outgoing evanescent waves decay in the 

direction 𝐧̂, which is consistent with the notion that they arise from the sample below. It may be 

noticed that eq. (1) takes the form of a spatial Fourier transform. Williams (30) calls this system of 

parameterising wave direction a ‘wavenumber spectrum’ and it is the basis of classical NAH. 

3. Spatial Windowing and BDRFs 

A system of spatial discretisation will now be defined. For the reasons mentioned in section 1.3, it 

is chosen to implement this using smooth spatial windowing functions. The intention is that this 

scheme could also be used as an approximation space for the reflection-based high-frequency BEM 

scheme in (26). This means the window functions must form a partition-of-unity, i.e. sum to one. 
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A system of overlapping raised Hanning windows fulfils these criteria. These have been shown to 

give improved accuracy compared to non-smooth alternatives in high-frequency BEM (31) and a 

technique to accelerate evaluation of integrals involving them was presented in (25). They are defined: 

𝑤(𝐱) = [1
2⁄ + 1

2⁄ cos(2𝜋𝜇(𝐱))] × Π(𝜇(𝐱)), where Π(𝜇) = {
1 |𝜇| < 1

2⁄

0 |𝜇| > 1
2⁄
 (2) 

Here 𝜇 is a normalised local coordinate that runs −1
2⁄ ≤ 𝜇 ≤ 1

2⁄  over the support of the window. 

The windows are length 𝐿 and are centered on vertices 𝐯𝑛 = 1
2⁄ 𝑛𝐿𝐭̂ + 𝑑𝐧̂, where 𝑛 is an integer 

window index, and 𝜇(𝐱) = 𝐭̂ ∙ [𝐱 − 𝐯𝑛] 𝐿⁄ . For each window complex amplitude densities 𝐶i,𝑛(𝑘t) and 

𝐶o,𝑛(𝑘t) are defined, allowing 𝑝i and 𝑝o to be found for 𝐱 ∈ Γs: 

𝑝i|o (𝐱) =
1

2𝜋
∑ ∫ 𝐶i|o,𝑛(𝑘t)𝑏(𝐱, 𝑘t)𝑑𝑘t

∞

−∞𝑛

, where 𝑏(𝐱, 𝑘t) = 𝑤(𝐱)ei[𝑘t𝐭̂∓𝑘n𝐧̂]∙[𝐱−𝐯𝑛]. (3) 

As with eq. (1), the term ∓ is negative for the incoming wave and positive for outgoing. Comparing 

eq. (3) and (1), and noting that the windows form a partition-of-unity, it is apparent that the ‘correct’ 

values are 𝐶i|o,𝑛(𝑘t) = 𝐴i|o(𝑘t)ei[𝑘t𝐭̂∓𝑘n𝐧̂]∙𝐯𝑛 = 𝐴i|o(𝑘t)ei[𝑘t𝐿𝑛 2⁄ ∓𝑘n𝑑]. Allowing each patch to have its 

own distribution is however more flexible and can result in individual 𝐶i|o,𝑛 being sparser than 𝐴i|o. 

To understand this, imagine a spherical wave impinging on a planar surface. 𝐴i|o must capture the 

curvature of the entire wavefront, so will contain significant amplitude over a wide range of 𝑘t. 𝐶i|o,𝑛 

on the other hand, need only represent a small section of the wavefront which, being quasi planar if the 

source is some distance away, will result in significant amplitude over a fairly narrow range of 𝑘t. 

In a GA algorithm, 𝐶i,𝑛(𝑘t) would be the angular distribution of rays or beams arriving at the 𝑛th 

surface patch, and 𝐶o,𝑛(𝑘t) would be what leaves in response. It follows that the BDRF for the 𝑛th 

surface patch, 𝑅𝑛(𝑘t,o, 𝑘t,i), must relate these so, with ⊗ representing convolution over 𝑘t,i: 

𝐶o,𝑛(𝑘t,o) = 𝑅𝑛(𝑘t,o, 𝑘t,i) ⊗ 𝐶i,𝑛(𝑘t,i). (4) 

This is our mathematically formalised definition of a patch based BDRF. It has been defined for 

complex pressure amplitudes but could readily be applied to energy, as proposed in (21), by applying 

it to squared pressure amplitudes. If 𝐶i,𝑛(𝑘t) and 𝐶o,𝑛(𝑘t) are discretised somehow using a finite set 

of coefficients in vectors 𝐜i,𝑛 and 𝐜o,𝑛, then it can be written in matrix form as 𝐜o,𝑛 = 𝐑𝑛𝐜i,𝑛. 

4. Measurement of BDRFs 

The task of the microphone array is to capture instances of 𝐶i,𝑛(𝑘t) and 𝐶o,𝑛(𝑘t) such that, given 

sufficient different incident wave conditions, 𝑅𝑛(𝑘t,o, 𝑘t,i) may be derived. It is important however to 

realise that the array does not measure these directly. Adopting the lexicon of variational BEM (32), 

𝐶i,𝑛 and 𝐶o,𝑛 are termed ‘Coefficients’; their values correctly represent 𝑝i and 𝑝o. The distributions 

that the array will measure are termed ‘Projections’. Evaluating these in BEM would typically involve 

an inner-product integral along the measurement surface; a simple windowed beamformer would be: 

𝑃i|o,𝑛(𝑘t) = ∫ 𝑝i|o (𝐱)𝑏∗(𝐱, 𝑘t)𝑑𝑙𝐱

Γs

. (5) 

This also takes the form of a spatial Fourier transform, but 𝑝i|o (𝐱) has been multiplied by 𝑤(𝐱). 

This becomes convolution in the 𝑘t domain, leading to 𝑃i|o,𝑛(𝑘t) = 𝐶i|o,𝑛(𝑘t) ⊗ 𝑊(𝑘t), where 𝑊(𝑘t) 

is the wavenumber spectrum of the window; for the choice of window used herein it is: 

𝑊(𝑘t) =
𝐿

2
sinc (

𝑘t𝐿

2
) +

𝐿

4
sinc (

𝑘t𝐿

2
+ 𝜋) +

𝐿

4
sinc (

𝑘t𝐿

2
− 𝜋). (6) 

This convolution with 𝑊(𝑘t)  has the effect of spectrally ‘smudging’ the desired spectrum 

𝐶i|o,𝑛(𝑘t) giving the spectrum 𝑃i|o,𝑛(𝑘t) measured by the array. Tamura (18) was aware of this issue 

but seemed primarily concerned with how it interacted with the high 𝑘t limit due to finite spatial 

resolution; he mitigated this by using a dipole source that had a more favourable excitation spectrum. 

Wang-Lin et al (33) studied the performance of Hanning and Tukey windows in this application in 

2017, showing that both outperformed the rectangular windowing of Tamura; the spectrum of this is 

𝐿 × sinc(𝑘t𝐿 2⁄ ), which decays slower with 𝑘t than the Hanning window spectrum in eq. (6). 
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Another reason why these authors did not run into problems is that their measure apertures were 

very large, being 1.8m diameter in (18) and 2.48m in (33). At these sizes the ‘smudging’ effect is 

negligible over the majority of the frequency range of interest. Portable NAH arrays are however much 

smaller. Hald et al (7) used an array that was only 0.2m across; the amplitude of 𝑊(𝑘t) for 𝐿 =
0.2m is shown in Figure 2a and can be seen to be significant over the full frequency range of interest. 

In this study a compromise value of 𝐿 = 1.0m has been chosen; 𝑊(𝑘t) for that is shown in Figure 2b. 

In terms of measuring BDRFs using projections, spectral ‘smudging’ would occur for both 𝐶i,𝑛 and 

𝐶o,𝑛 on the left and right of eq. (4). An approximate BDRF found from 𝑃i,𝑛 and 𝑃o,𝑛 would therefore 

experience both pre-convolution and post-deconvolution with 𝑊(𝑘t) compared to one computed 

exactly. This actually has zero effect if the incident wave is wavenumber pure and the sample is 

specularly reflecting, but in all other cases it will cause approximation.  

To illustrate this, a uniform and infinite porous material sample has been simulated. The material is 

10cm thick, has a flow resitivity of 50,000Nm-4s and is modelled using the approach in (7) to give 

normalised surface admittacne Ys(𝑘t). The sample reflects specularly and the exact BDRF is given by 

𝑅𝑛(𝑘t,o, 𝑘t,i) = 𝛿(𝑘t,o − 𝑘t,i) [𝑘n,i 𝑘⁄ − Ys(𝑘t,i)] [𝑘n,i 𝑘⁄ + Ys(𝑘t,i)]⁄ . 

In the first test, the incident wave was a single plane wave of unit amplitude and tangential 

wavenumber 𝑘t,inc , hence 𝐶i,𝑛(𝑘t,i) = 𝛿(𝑘t,i − 𝑘t,inc) . The outgoing spectrum 𝐶o,𝑛  was found by 

convolution of 𝐶i,𝑛  with 𝑅𝑛 , then 𝑃i,𝑛  and 𝑃o,𝑛  were found by convolving 𝑊  with 𝐶i,𝑛  and 𝐶o,𝑛 

respectively. 𝑘t,inc  was varied and the BDRF was estimated as 𝑃o,𝑛(𝑘t,inc) 𝑃i,𝑛(𝑘t,inc)⁄ , which is 

reasonable since the sample was known to reflect specularly, and this was compared to the exact value. 

As expected, the BDRF, and the absorption coefficient that can be calculated from it, matched exactly. 

In the second test, the sample was subject to excitation from a dipole source and the BDRF for all 

angles was measured simultaneously on the assumption of specular reflection; this mimics the 

approach used in (18) and (33). The incoming spectrum was set as 𝐶I,𝑛(𝑘t,i) = ei𝑘𝑛𝑧0, following the 

trend given in (18) where 𝑧0 = 1m is the height of the source above the measurement plane, and the 

same processing was performed. The results for this are shown in Figure 2c as absorption coefficient 

extracted from the BDRFs; the exact analytical value is compared to values computed using 𝐿 = 0.2m 

and 𝐿 = 1.0m. Both array sizes perform well around normal incidence ≡ 𝑘t = 0. However, at 𝑘t = 𝑘 

the absorption coefficient varies rapidly as the incident wave transitions into the evanescent region, 

and at this point the smudging due to the window functions has a noticeable effect; for the smaller 

array, especially, there is significant oscillation and error. The true reflection coefficient for a finite 

sample in real life is unlikely to vary as extremely as this – it is a quirk of the mathematical model of 

infinite plane waves and planar boundaries – but it is true that oblique incident angles are challenging. 

It is interesting to note that the troublesome 75° measurement in (7) falls at sin 75∘ = 0.96 on a 𝑘t 𝑘⁄  

scale, indicating how compressed oblique angles are in 𝑘t and therefore vulnerable to ‘smudging’. 

5. SEPARATING INCOMING AND OUTGOING WAVES 

The above approach required that 𝑝i and 𝑝o were known separately; the projection operator in eq. 

(5) cannot differentiate between them. This is troublesome in reality since it can only be achieved by 

subtraction, as applied in (20), which is error-prone and impractical in-situ. A more sophisticated 

operator that can discriminate between incoming and outgoing waves was defined in (26). It is a 

generalisation and extension of the array designs of Hulsebos et al (34) and has the physical 

interpretation of sensing common energy flux between waves (35). For this problem it can be stated as: 

a) b) c) 

Figure 2: Effect of spatial window. Amplitude of spectral ‘smudging’ function for a) 𝐿 = 0.2m and 

b) 𝐿 = 1.0m. c) Effect on absorption coefficient measurement under dipole excitation at 2kHz. 

4912



 

 

𝑃i|o,𝑛(𝑘t) = ∫ [
𝜕𝑝t

𝜕𝑛
(𝐱)𝑏∗(𝐱, 𝑘t) − 𝑝t(𝐱)

𝜕𝑏∗

𝜕𝑛
(𝐱, 𝑘t)] 𝑑𝑙𝐱

Γ𝐬

. (7) 

Note that this definition operates on total pressure 𝑝𝐭 rather than 𝑝i or 𝑝o. 𝜕 𝜕𝑛⁄  is shorthand for 

spatial derivative in the direction 𝐧̂ i.e. perpendicular to Γ𝐬. 𝜕𝑝t 𝜕𝑛⁄  may be measured by a particle 

velocity sensor or a spaced-pair of microphones. 𝜕𝑏 𝜕𝑛⁄  can be estimated as ∓𝑘n𝑏 – note it takes 

opposite sign for incoming and outgoing waves – but better differentiation between 𝑝i and 𝑝o can be 

achieved by defining it via a ‘Dirichlet to Neumann map’ (32); this also takes into account the effect of 

the window function on the wave. The net result of this is that 

the measurements of pressure and particle velocity will be 

windowed differently; particle velocity is multiplied by 𝑏∗ so is 

windowed by the original window 𝑤(𝜇), whereas measured 

pressure, which is multiplied by 𝜕𝑏∗ 𝜕𝑛⁄ , has a different 

window 𝑤′(𝜇) applied to it. Because 𝑤′(𝜇) is derived from 

the Dirichlet to Neumann map, it will depend on both 𝑘 and 𝑘t. 

Figure 3 shows these for 1kHz with 𝑘t 𝑘⁄ = 1
2⁄ . While 𝑤(𝜇) 

was purely real it turns out the optimal 𝑤′(𝜇) is complex.  

Equation (7) has been applied in a numerical test bed that 

models an absorbing patch within an infinite rigid baffle using 

BEM in the configuration depicted in Figure 1; details of and 

results from this will be included in the conference presentation. 

6. CONCLUSIONS 

This paper has proposed a mathematical formalisation for Bi-Directional Reflectance Functions 

(BDRFs) for acoustics, including consideration of the effect of the finite patches they must be defined 

and measured over. It was seen that the common trade-off between spatial windowing and spectral 

‘smearing’ occurs in this application too, and its effect on BDRF measurement was analysed and 

explored with a numerical test case. Knowledge and formulations from high-frequency variational 

Boundary Element Method (BEM) have been adopted to assist in the design and analysis. Further work 

could include attempting to apply other elements of this machinery to mitigate the spectral smudging 

observed in this study, and to provide a validation approach for partial or whole geometries. 
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