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Abstract:   

The efficient magnetic swimming of actual or mechanically designed micro-swimmers within 

bounded regions is reliant on several factors. Few of which are: the actuation of these swimmers 

via magnetic field, rheology of surrounding liquid (with dominant viscous forces), nature of 

medium (either porous or non-porous), position (either straight, inclined or declined) and state 

(either active or passive) of the narrow passage. To witness these interactions, we utilize Carreau 

fluid with Taylor swimming sheet model under magnetic and porous effects. Moreover, the cervical 

canal is approximated as a two-dimensional complex wavy channel inclined at certain angle with 

the horizontal. The momentum equations are reduced by means of lubrication assumption, which 

finally leads to a fourth order differential equation. MATLAB's built-in bvp4c function is 

employed to solve the resulting boundary value problem (BVP). The solution obtained via bvp4c 

is further verified by finite difference method (FDM). In both these methods, the refined values of 

flow rate and cell speed are computed by utilizing modified Newton-Raphson method. These 

realistic pairs are further utilized, to calculate the energy delivered by the micro-swimmer. The 

numerical results are plotted and discussed at the end of the article. Our study explains that the 

optimum speed of the micro-organism can be achieved by means of exploiting the fluid rheology 

and with the suitable application of the magnetic field. The peristaltic nature of the channel walls 

and porous medium may also serve as alternative factors to control the speed of the propeller.  

 

Keywords: Magnetic field, complex wavy channel, porous medium, Carreau fluid, micro-

swimmer, inclined channel. 
 

*Corresponding author. Tel.: + 923455882685; E-mail address: zee.qau5@gmail.com 

 

mailto:zee.qau5@gmail.com


2 

 

 

 

Nomenclature  

Roman symbols 

Sa           Wave amplitude in organism surface 

1 2,a a        Wave amplitude in channel walls 

C                             Wave speed 

SU          Swimming speed of the organism 

,X Y      Cartesian coordinates for fixed frame 

,x y       Cartesian coordinates for wave frame 

Superscript (+)        Upper half ( )1SH Y H   

Superscript (-)        Lower half ( )2 SH Y H   

V                  Velocity vector of the fluid 

1 2,V V        Velocity components in fixed frame 

1 2,v v        Velocity components in wave frame 

0B                   Strength of magnetic field 

C
F              Resultant force on the organism  

P                        Pressure in fixed frame 

p                        Pressure in wave frame 

S                           Extra stress tensor 

1A                      First Rivlin-Ericksen tensor 

, andxx xy yyS S S        Components of extra       

                                      stress tensor 

 

Greek symbols 

                             Wavelength 

                 Phase difference  ( )0     

                             Fluid density 

                            Permeability 

m                    Electrical conductivity 

                          Inclination angle 

0
                   Zero shear-rate viscosity 

                  Infinite shear-rate viscosity 

                  Ratio of infinite to zero shear- 

                               rate viscosity 

 

                            Second invariant 

                Time constant/ relaxation time 

                    Dimensionless wave number 

                           Stream function 

           Power delivered by the swimmer 

 j       Unit vector normal to the organism 

         Under-relaxation parameter 

              (0,1   
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We                      Weissenberg number 

n                          Power law index 

Re                       Reynolds number 

H                        Hartmann number 

g                         Force due to gravity 

Da                       Darcy number 

G                        Gravitational parameter 

F                         Flow rate of the fluid 

 

 

1. INTRODUCTION 

An undulating sheet or an undulating cylindrical filament in a viscous fluid serve as a mathematical 

model for swimming of a minute organism. Both these models are thoroughly analyzed by Taylor 

in two different communications [1, 2]. These pioneer studies have laid down foundation for most 

of the later contributions in the field of swimming microorganisms. Taylor utilized lubrication 

theory along with perturbation method to compute the speed and efficiency of the organism. An 

alternative approach based on stokeslet distribution technique was employed by Hancock [3] to 

calculate the speed of a cylindrical filament in a Newtonian viscous fluid. Gray and Hancock [4] 

successfully computed the speed of a sea urchin spermatozoa by employing the general theory of 

flagella motion. Extension of Taylor’s work to account for large amplitude undulations in the tail 

of the microorganism was made by Drummond [5]. The inclusion of the inertial part of the 

momentum equation in the Taylor analysis was substantiated by Reynolds [6] and Tuck [7]. The 

motion of microorganism next to a solid boundary or inside a tubular structure is naturally justified 

to be analyzed because of its relevance with actual environment surrounding the microorganism 

such as spermatozoon. With such motivation, Reynolds [6] modeled the motion of microorganism 

near a solid wall and predicted a repulsive motion of the organism from the wall. The dynamics of 

microorganism between two rigid passive walls based on the lubrication theory was investigated 

by Shack and Lardner [8]. The effects of a thin peripheral layer fluid surrounding a thick core 
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layer fluid of different viscosity on swimming of a minute organism through a channel were 

thoroughly discussed by Shukla et al. [9]. The observation that the spermatozoon motion is 

supplemented with the contraction of the cervix and uterus during its journey towards oviducts has 

led to the study performed by Smelser et al. [10]. In this study, the authors developed a 

mathematical model of sperm movement through a channel with wavy walls. The model of 

Smelser et al. [10] was studied under long wavelength theory by Shukla et al. [11]. 

Radhakrishnamacharya and Sharma [12] quantified the role of variable viscosity on the 

movement of spermatozoa in a passive rigid channel.  

The rheology of fluid in all the above mentioned studies is not treated as a crucial factor in order 

to achieve the efficient swimming despite the fact that cervical fluid exhibits remarkable non-

Newtonian characteristics. This fact motivated several researchers to explore the dynamics of 

swimming of microorganism through a complex rheological fluid. A brief overview of these 

attempts is as follows: Tuck’s works on inertial swimming was extended by Chaudhry [13] for 

viscoelastic second order fluid. His analysis revealed a reduction in the swimming speed with 

increasing the fluid elasticity at larger Reynolds number. However this behavior was due to a 

calculation error which was pointed out by Sajid et al. [14] in their study on 

magnetohydrodynamics effects in inertial swimming through an infinite pool of second order fluid. 

Sturges [15] employed a complex integral model to study the dynamics of swimming 

microorganism in an infinite quiescent fluid. The explicit formulas of swimming speed and energy 

consumed by the organism for several non-Newtonian models were derived by Lauga [16]. He 

emphasized on the role of non-Newtonian characteristics of the fluid to optimize the speed and 

energy expended by the organism. Lauga’s work was extended by Sajid et al. [17] to account for 

the porosity effects. Ali et al. [18] used couple stress model to quantify the rotational effects of the 

fluid particles on the swimming characteristics in an unbounded medium. The celebrated Eringen 

micropolar model was utilized by Sinha et al. [19] and Phillip and Chandra [20] to estimate the 

micro-rotational effects on swimming hydrodynamics. The Bingham model was integrated by 

Balmforth et al. [21] to study the swimming of microorganism near to a rigid wall. More recently, 

Ives and Morozov [22] presented an analysis of swimming in a viscoelastic Oldroyd-B fluid in 

the presence of a solid wall. The computations were carried out by an efficient spectral method. 

Their results indicate that viscoelasticity can enhance the speed of the microorganism in the 

presence of a rigid boundary.  
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The interaction of magnetic field with swimming dynamics of microorganism is important due to 

its applications in bio-medical industry. These include but not limited to micro-magneto-robots 

used in non-invasive medical procedures [23], treatment of diseased eyes through targeted drug 

delivery [24], evaluating the robustness of prosthetic smart magneto rheological kneecaps [25] and 

green magneto-tactic fuel cells [26, 27]. The previous study on swimming of microorganism in a 

magneto-hydrodynamic (MHD) environment were carried out by Ansari et al. [28] for swimming 

of microorganism in a second grade fluid, Gadelha [29] on swimming in the presence of 

oscillating magnetic fluid, Belovs and Cebers [30]  for ferromagnetic swimmers, Goa et al. [31] 

on application of free magnetic swimming to targeted drug deliver, Gauger et al. [32] on the role 

magnetically actuated cilia in transportation of fluid at low Reynolds number and Asghar et al. 

[33] on hydromagnetic swimming of Carreau fluid in an active channel. 

Motivated by above studies the aim of this paper is to explore the swimming characteristics in a 

magneto-hydrodynamic Carreau fluid by including three novel effects which are: (i) the passive 

transport mechanism effects achieved through peristaltic activity governed by complex waves (ii) 

the channel inclination effects (iii) the permeability effects. The previous study pertaining to the 

effects of porous medium on swimming in an unbounded medium were carried out by Sajid et al. 

[17] and Ansari et al. [34]. The peristaltic motion included in the present model greatly resembles 

with the cilia motion as both these mechanisms contribute toward biological fluid transport 

processes. We refer the readers to studies carried out in refs. [35-41] for details on theoretical 

models pertaining to the cilia assisted fluid transport. The Carreau fluid model chosen for the 

analysis is elegant because of its superiority over other generalized Newtonian fluid models in 

predicting the rheology of many biological fluids. This superiority of Carreau model owes to five 

parameters which appear in its constitutive equation and which provide it a great flexibility to fit 

the viscosity shear rate of several physiological and industrial fluids [42]. In context of swimming 

microorganism, the Carreau model has been employed by Cordero and Lauga [43] to generalize 

the Taylor undulating sheet model for complex rheological fluids. The application of Carreau 

model in related areas such as gliding motion of bacteria, swimming of spermatozoa in passive 

channel and peristaltic flows are documented in refs. [44-46]. 

The present work is structured in the following sequence: In section 2, geometrical description of 

the problem and extra stress tensor of Carreau model are presented. Problem is modeled in section 
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3. Solution methodology is elaborated in section 4. Validation of the obtained solution with FDM 

is explained in section 5. The effects of several parameters on cell speed, flow rate and power 

dissipation are displayed in MATLAB figures and explained in section 6. Lastly, section 7 

concludes the whole work. 

2. PHYSICAL DIAGRAM AND EQUATIONS OF CARREAU MODEL 

Fig. 1 presents a magnetically controlled undulating sheet swimming through a Carreau fluid 

bounded between two inclined active walls. We also consider the porous medium effects in the 

present work. Due to its wavy surface, the micro-swimmer is propelling in the inclined negative 

X-direction. A magnetic field of constant strength (applied in the negative Y-direction) is also 

superimposed on the swimming hydrodynamics.  

  

 

Fig.1. Propulsion of magnetic micro-swimmer through complex wavy inclined channel  

In the fixed frame of reference, the complex waves at upper ( )1Y H=  and lower walls ( )2Y H=  

and the undulating surface ( )SY H=  of the organism are mathematically defined as: 

( )( ) ( )( )1 2S1 0 S

2π 4π
H = a +a sin X - C -U t +a sin X - C -U

λ λ
,t

   
   
   

                     (1)                                                

( )( )S S S

2π
H = a sin X - C -U t

λ
,

 
+ 

 
                                                (2) 

( )( ) ( )( )2 1 20 S S

2π 4π
H = a +a sin X - C -U t +a sin X - C -U t

λ λ
,

   
   
   

−                     (3)                                                 
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Here SC -U  is basically the speed of the wave relative to the organism. 

The fluid velocity components at the boundary walls are constrained according to the following 

conditions. 

                         
11

22

0

and
,

0

at Y HV

Y HV

+

−

==


== 
                                                     (4) 

1

2

.SS

S

HdH

V U

at Y
V

dt





= −


=
= − 



                                                   (5)                                                            

For free swimmer case, the net force acting on the organism must vanish. This condition also 

referred as the dynamic equilibrium condition may be casted mathematically as [33, 37, 41]:  

                                                  ( ) 0.ds+ −+ = C C
F F                                                        (6) 

The relevant equations governing the flow are: 

                . 0. =V                                                             (7)  

. .
d

p
dt




  += − +
V

BS                                    (8) 

The extra stress tensor of Carreau model is [39-42]: 

                                     ( ) ( )( )
1

2 22

10 1 ,

n

  

−

  

 

 
 = +  
 
 

+ − AS                                    (9) 

where 
  is given as: 

( ) ( )( ) ( ) ( )
2

1 1 1 1

1 1
, .

2 2

T

trace       = = +=  : VA VA A A                  (10) 

The Galilean transformations connecting variables in fixed and wave frames are: 

                                      
( )

( )
1 1 2 2, ,

, .

S

S

C -U

X - C -U t

v V v V P p ,

x y Y

     = − = =

= =
                                    (11) 
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3. MAGNETIC SWIMMING MODEL WITH POROUS MEDIUM 

The appropriate velocity field for the flow induced by combined motion of the organism and the 

wavy walls is defined as 1 2, ,0v v    V = . Further, the body force arising due to combination of 

gravity, magnetic field and porous medium is given by 2

0BB = . For this velocity, Eqs. (7) and 

(8) become:  

1 2 0,
x y

v v  
+ =

 
                                                        (12) 

0

1 2 1 1 ,
0

xyxx 2

m

SSp
g sin

x y x x y
Bv v v v


  





   

    
+ = − + + + + 

   

 
− 

  
         (13) 

                   
0

1 2 2 2 ,
xy yyp

g cos
x y y x y

v v v v
S S 

  


 
   

    
+ = − + + − 

 
−

   
                     (14) 

                                       ( ) ( )( )
1

2 22 1
02 ,1xx

n

x

v
S   

−









 
 +  
 
 

 
=  

 
+ −                             (15) 

( ) ( )( )
1

2 22 1 2
0 1 ,xy

n

y x

v v
S   

−





 



 
 +  
 

  
= + 

   
+ −                        (16) 

                                     ( ) ( )( )
1

2 22 2
02 ,1yy

n

y

v
S   

−









 
 +  
 
 

 
=  

 
+ −                             (17) 

where 

                                      ( )
2 2

2
2

1 2 1 21
.

2x y y x

v v v v
            

 = + + +     
    


     

                                 (18) 

Introducing: 
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( ) ( )

( ) ( ) ( ) ( )

2
* 1,2,* * *0 0 0

1,2, 2

0 0 0

2
1,2,* 20 0 0

1,2, 2

0 0 0 0 0 0

2
* * * *

* * 0 0

0 0 0

2 2

1 2
1 2

2
, , ,

2
, , , , ,

22
, , , , ,

,

,
0

S S
S S

S

S

ij ij

2m
a

aa U a a
a U

C a C C C

H a Ca aC
H We H

a a a

a ay
x x y p p ,

a C C C C

g
G

Re B D

v v
v v S S

 



  


 



  

 






  




 








 

 

= = = =

= = = = = =

= = = = = =

  =


=

P P

    (19) 

Defining: 

                                               ( ) ( )
* *

* *1 2, ,
y x

v v
 

  
= = −

 
                                                 (20) 

Utilizing (19) and (20) in (13) - (18) and neglecting superscript *, we get: 

                    

2 1
,xx xy

a

Re
y x x y y

p
H G sin

x y x D y
S S



 

  

 
 

       
− =   

       

    
+ − + − + 

    

                   (21) 

               

3

2 21
,xy yy

a

Re
y x x y x

p
G cos

x y y D x
S S



    

  

 
 

       
− − =   

       

   
+ − − −

   

               (22) 

                                 ( ) ( )( )
1

2
22

22 1 ,1

n

xx We
x y

S   

−


 
   
 = +       

+ −                                 (23) 

                                 ( ) ( )( )
1

2 2
22

2 2

2 2
1 ,1

n

xy We
y x

S  

−
 

 
     
 = + −      

+ −                  (24) 

                                     ( ) ( )( )
1

2
22

22 1 .1

n

yy We
x y

S   

−


 
   
 = +       

+ −                             (25) 

With non-dimensional second invariant: 

                                  ( )
2 2

2 2 2
2

2

2

2

1
2 .

2x y y x
 

  
         

= + −   
      

                                (26) 
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Employing creeping flow and long wavelength assumption [1-9, 11, 12, 33-38, 40-49] to Eqn. 

(23)-(26), we have ( ) ( )( )
1 2

22

2

2

0, 11

n

yy xx xy
We

y
S S S  



  

−




 
= = = +



  
+ −     

 and 

( )
2

2
2

2

1

2
.

y




 

=



 
 
 

 

Combining these compact expressions into reduced Eqn. (21), we get: 

( ) ( )( )
1

2
22 2

2

2

1
1 .1

n

a

p
We H G sin

x y y D y
  

−
            

 = + + − +             





+ −      (27) 

The compatibility equation is: 

( ) ( )( )
1

2 2 2
22 2

2 2 2

2 1
1 0.1

n

a

We H
y y D y

 

−
 


          
 + + − =             

+ −              (28) 

After utilizing the Galilean transformation, dimensionless variables and stream function on Eqn. 

(4) and (5), we finally arrive at the boundary conditions: 

1 1 2

2 1 2

0,
1 2

1 2 ,
0

SU 1
at y H a sin x a sin xy

and y H a sin x a sin x

x







 = = −  = = + + 


= = − + + 

=
 

         (29) 

( )

( )
, 1

.S S

S

F
y

at y H a sin x

a cos x
x







 = = − 

 
= = +

 
= − +

 

                    (30) 

The standard definition of flow rate across two halves of the cervical canal: 

                                      

2

2

.
S

S

y Hy H

y H y H

F dy d
y

y
y

== − +

= =

= =
 

                                              (31) 

The appropriate form of force balance condition (6) via utilizing stress-strain relation and long 

wavelength approximation is as follows: 
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( )
( ), ;

, ;
S

xy S S
Sy H

dp U F x
U F x H

dx
dx  = 0.S



−

=
−

 
    

 
                              (32) 

Where ( ) ( ) ( ), ; , ; , ;
S S S

xy S xy S xy Sy H y H y H
U F x S U F x S U F xS + −

= = =
= −   , and pressure gradient  

( ) ( ) ( ), ; , ; , ;
.S S Sdp U F x

dx

dp U F x dp U F x

dx dx

+ −
 

= 
 

−  

For the case of free channel: 

( ) ( ) 0.
dp

dx p p
dx

P





  

−



 = = − − =                                       (33) 

The power losses can be calculated as:     

                                 = ( ) ,ji i
i

j j ji jiS v ds  S S ds
y

p p

p p

x x± + -

- -

±

é ù
ê úë û

¶Y

¶
= -Ã ò ò                              (34) 

The final expression of power required (after using the lubrication assumption) is: 

( ) ( ) ( )( ), , .;S
S S S

dH
U F p U F x a cos x p p dx

x
dx

d

 

 

+ −

− −

= = −  +                     (35) 

4.  SOLUTION METHODOLOGY  

In case of Newtonian mucus ( )1 0n or We= = , Eqn. (27) becomes: 

3
2

3

1
0.

a

p
H G sin

y D y x


      
+ − − + = 

   
                                (36) 

The closed form solution of (36) corresponding to the boundary conditions (29) and (30) is: 

( )

( ) ( )
1

2

3/2
2

2

2 3

1
1

cosh 1 ,

a

a a

a

a

D p
y D H D G sin

xH D

p
csch A A G sin H D A

x









  


−  

− − +  
 − 

   
− + +        

−

=

               (37) 
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( ) ( )( )
(((

( ))) ( )( )( ) ( ))

2 2

2

1, 2 1

2

1, 2 1

1
1

1 2

2 2 ,2

/ 2

/ 2

a a

a a S a

S a a S S

dp
H D F D FH

dx D H D H H D tanh A

G sin H H D D G sin H U U tanh A 







= − − −
− − +

+ −− + + −

           (38) 

( ) ( )

( ) ( )

1

2 2

1,2 1,2

2

2

3 2

1 1
, ,

cosh 1 1 .

where
a S a

a a

a S S

H D H H H D H y
A A

D D

p
A A D G sin H U U

x


 



 

− − − −
= =


= + − −


−+

  
  

  

 

For Newtonian fluid the equilibrium conditions to calculate the unknowns SandF U  are: 

2 2

2 2

S

S

y H

0 and d
p p

H
y y x

x
x

= 0.
dp

dx
dx









+ − + −

−



=
−

=
   

−
 

− −
   

   
   
   
            (39) 

Utilizing Eqn. (37) and (38) into Eqn. (39) one can find out that the analytical integration 

technique is not possible due to nonlinear nature of these algebraic equations. Hence we need a 

numerical root finding algorithm to compute SandF U . We employed modified Newton-Raphson 

method in the present computations. 

However, in the absence of magnetic field and without any porous medium effects one can obtain 

much simpler expressions of stream function and pressure gradient (which can be easily integrated 

as in Eqn. (39)). Finally, the solution of two algebraic equations with two unknowns is: 

( ) ( )( )

( ) ( )( )

3/2
2

2

1
1

2 2

1 1

1/2
2

2 2

11

2 2

1 1

11

2 1 12

13
.

2

,

1 4

S
S

S S

SS

S S

S

F

U

G sin a aa a

a a a a

G sin a aa a

a a a a









− −− −
−

+ − −

− −−
−

+ −
=

−

=

                             ( )40  

These expression of SandF U  are obtained in a special case of Newtonian mucus without porous/ 

magnetic effects. Flow rate and organism speed are functions of wave amplitude of channel and 

organism with inclination angle. In that case there is no alternative way to control the swimmer 

via magnetic field, permeability and rheological properties of surrounding fluids. However, (for 

non-Newtonian fluid with magnetic and porous effects) Eqns. (27) and (28) fulfill the purpose. 
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Since these equations are highly non-linear so we need an appropriate numerical technique to solve 

the BVP (Eqns. (28), (29) and (30)). We solve the problem in MATLAB software via bvp4c 

solver. The solution is computed in two regions 
2 1,S S forH y H H y H x     −  

with some fixed values of 
1 2, ,, , , , , , ,a SH D We n G anda a a   . The two unknowns

SandF U  are also assigned some initial values so that the BVP can be solved. The solution is 

further utilized in equilibrium conditions (which are off course not satisfied due to crude values of

SandF U ) to calculate the iterative values of flow rate and organism speed.  

5. PROBLEM VALIDATION WITH FDM 

The bvp4c solution is further validated by another numerical technique i.e. FDM.  First we 

transform the nonlinear differential equation into linear one at (j+1)th  step as: 

                
( )

( )
( )

( )
( )

( )1 1 1
2 3 42 ( ) ( )

2 ( )

2 2 3 4

1
0,

j j j
j j

j

a

q q
H q

y D y y y y

+ + +
         

+ − + + = 
     

           (41) 

( )
( ) ( )

( )1

1

1 20, sin sin 2S

j

j
U 1 at y 1 a x a x,

y

+


+


 
 = = − =  + +


                (42) 

( )
( ) ( )

( )

( )

1

1

, 1 sin ,S

j

j
F at y a x

y




+


+



= = − = +


                           (43) 

where 

                                       ( ) ( )
( )

( )

1
2 2

2

( ) 2

2
1 1 .

n

j

jq y We
y

 

−

     = + − +     

                            (44) 

The above BVP is linear in ( )
( )1j+

 . Using central difference formulae, the BVP can be 

transformed into system of algebraic equations. This system can be solved (by matrix inverse 

method) to get ( )
( )1j+

  at each cross-section. In order to get the convergent values of ( )
( )1j+


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to 
-1010  (which is denoted by ( )

( )1j+
 ) we use successive under-relaxation (SUR) method which 

is: 

( )
( )

( )
( )

( )
( )

( )
( ) 1 1

.
k k k k

   
+ +

   = + −
                                  (45) 

The procedure of utilizing the FDM solution in equilibrium conditions to compute the SandF U  

is exactly the same as that of bvp4c. The validation via FDM is shown by red dots Figs. 2 and 3. 

 

6. RESULTS AND DISCUSSION 

The numerical results obtain by means of bvp4c (validated by FDM) are shown through plots (in 

Figs. 2-9) and briefly discussed.  

6.1 FLOW RATE, CELL SPEED AND POWER DISSIPATION 

The role of magnetic field, fluid rheology and complex bounded domain in the swimming speed, 

flow rate and power dissipation is elaborated in Fig. 2. The speed of spermatozoa swimming 

through shear-thinning mucus against Weissenberg number is displayed in Fig. 2(a). Three curves 

are plotted for different magnetic strengths i.e. H = 0, 0.25 and 0.5. A single red colored curve is 

plotted for passive channel (without any wave at the channel walls (a1 = a2 = 0)). This figure 

insures that the presence of magnetic field aids the micro-swimmer and a relatively greater speed 

is achieved for nonzero Hartmann number as compared to zero Hartmann number. The direction 

of the magnetic field is also an important aspect. If the direction become opposite (i.e. upward) the 

MHD will play a resistive role in organism swimming mechanism. In a similar fashion rheology 

of the surrounding fluid is also a key factor in faster or slower propulsion. For shear thinning case 

(n < 1) the organism attain a maximum speed for a small Weissenberg number and then decreases 

for large Weissenberg number just like a plateau-type topology. Moreover, Fig. 2(a) clearly 

reveals that the complex wavy channel appears to be a resistive factor since the speed of the 

organism is relatively greater in passive channel case.  

The other unknown i.e. the flow rate of Carreau fluid is plotted in Fig. 2(b) for the same physical 

conditions as used in Fig. 2(a). This figure shows that the magnitude of flow rate reduces in the 

presence of magnetic field, while passive (rigid) canal increases the flow rate. In case of rigid 
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channel there is more space available to the organism and it can propel easily (faster as compared 

to complex wavy channel) and pushes the fluid backward with greater speed.  

These numerically calculated (and plotted) pairs of SandF U  are further utilized in Eqn. (35) to 

predict the behavior of power consumed by the micro-swimmer. Fig. 2(c) displaying the power 

dissipation is in good agreement with previous figures (Fig. 2(a) and (b)). 
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Fig.2. Variation of (a) propelling speed (b) flow rate and (c) power losses against Weissenberg number and three  

different values of Hartmann number in active and passive channel. 

 

It shows three outcomes: (i) when organism gets slower with varying fluid rheology it consumes 

less power (ii) Since MHD assist the organism to propel faster so the organism consumes less 

power in presence of magnetic field (iii) A wider rigid channel also provides an easy pathway to 

the swimmer which means swimmer needs more power to swim through a complex wavy active 

channel as compared to the passive one. Fig. 2 is plotted only for the shear-thinning mucus 

meanwhile the upcoming figure (Fig. 3) supports the fact that the shear-thickening mucus is 

exactly an opposite case of shear-thinning mucus. 

Fig. 3 is plotted to investigate the behavior of propelling speed, flow rate and power expended as 

a function of power law index (n). Effects to porous medium on the swimming motion of the 

spermatozoa is also expounded. Figs. 3 (a), (b) and (c) are plotted for organism speed, flow rate 

and energy dissipation, respectively. One can witness from Fig. 3 that porous medium reduces the 

swimming speed, enhances the magnitude of flow rate and have negligible effects on power 

required by the swimmer. For comparatively larger values of Weissenberg number shear-

thickening propertise are more suitable to enhace the swimming speed (as shown in Fig. 3 (a)), 

while for small values of Weissenberg number (We < 2) shear-thinnning propertise appear to be 

assistive. From Figs. 3 (b) and (c) it is clear that the magnitude of flow rate decreases and power 

increases when fluid rheology changes from shear-thinning to shear-thickening. Moreover, phase 

difference also effects organism swimming. When there is no phase difference between channel 
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and organism wave the swimming speed and power dissipation reduces however flow rate 

enhances. 

 

 

 

 

Fig.3. Variation of (a) propelling speed (b) flow rate and (c) power losses against power law index and three  
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different values of Darcy number in phase and out of phase scenario. 

 

6.2 ENERGY DISSIPATED IN DIFFERENT PHYSICAL SITUTAIONS 

In Figs. 2(c) and 3(c) the power is plotted after inserting different pairs of SandF U . However, 

if wave amplitude in the organism surface is tuned in such a way that it will maintain the same 

speed in two different situations the comparison of power will be more appropriate.  

 
 

Fig. 4. Power dissipation in two different conditions i.e. with and without MHD (when organism is 

maintaining the same swimming speed in both situations). With

1 2 aa = 0.1, a = 0.2, n= 0.75, γ = 0.5, = / 2, G = 1, / 6 and 1 / D = 0.1 .   =  

In the present work we have discussed three possibilities for power comparison: (i) in absence 

( )H = 0  and presence ( )H 0  of MHD (ii) in passive ( )1 2a = a = 0  and complex wavy active 

( )1 2a = 0.2, a = 0.3 channel (iii) in absence ( )a1 / D 0⎯⎯→  and presence ( )a1 / D 0 of porous 

medium. These cases are displayed in the form of bar charts in Figs. 4-6. 

The first case is shown in Fig. 4. This bar graph reveals that in order to maintain the same speed 

in magnetic and non-magnetic environment an organism needs more energy in absence of 

magnetic field. This is because of the fact that MHD is an assistive force to the organism 

movement.  
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Since Fig. 2 (a) already established that fact that the presence of complex wave in channel walls 

reduces the swimming speed so here Fig. 5 is in excellent agreement to that fact. It can be witness 

that the organism expended greater power in complex wavy channel as compared to rigid channel.  

  

 
 

Fig.5.  Power dissipation in two different conditions i.e. passive and complex wavy channel (when 

organism is maintaining the same swimming speed in both situations). With 

aH = 0.7, n= 0.75, γ = 0.5, = / 2, G = 1, / 6 and 1 / D = 0.1 .   =  

 

Fig. 6 highlights the comparison of power expended by the organism propelling through porous 

and non-porous medium. It can be seen that the organism propelling through porous medium 

expended greater amount of energy as compared to non-porous medium. 
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Fig. 6.  Power dissipation in two different conditions i.e. with and without porous medium (when 

organism is maintaining the same swimming speed in both situations). With 

1 2H = 0.7, n= 0.75, γ = 0.5, = / 2, G = 1, / 6, a = 0.2 and a = 0.3.   =  

 

6.4 STREAMLINES IN BOTH PARTS OF THE CANAL 

The assessment of Carreau fluid’s streamlines for various magnetic field strengths, phase 

difference, Darcy number, passive and complex wavy channel, fluid properties and swimming gait 

are presented in Figs. 7-9. In these figures an undulating surface of the micro-swimmer (in the 

central region) bounded between two complex wavy walls is displayed. A red arrow is indicating 

the direction of swimming spermatozoa.   

Fig. 7 highlights the effects of magnetic field and phase difference on the streamline topologies. 

All the other parameters are fixed. When the organism is out of phase with the channel walls it 

propel faster and the surrounding fluid gets trapped. For 0 0,and H = =  there is no circulating 

zone and the level curves are similar in both regions (as shown in Fig. 7 (a)) while the streamlines 

for / 4 0,and H = =  exhibit a diverse trend in upper and lower side of the organism (as shown 

in Fig. 7 (b)). In comparison to Fig. 7 (a) (without MHD and no phase difference), Fig. 7 (c) is 

plotted for a considerable value of magnetic force and we can observe that a circulating zones also 

appear in the void regions. Comparing Fig. 7 (d) to Fig. 7 (b) ( )/ 4for  =  reveals that the 

strength of the circulating zones reduces with MHD effects. 
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Fig. 7. Flow lines within a complex wavy inclined channel with four pairs of , ,SU F H and   

with 
S 1 2 aa = 0.6, a = 0.2, a = 0.3, We= 5, n= 1.3, γ = 0.5 and 1 / D = 0.1 .  

 

The eccentric behavior of stream function in rigid and complex wavy canal with/without porous 

medium effects are described in Fig. 8. Fig. 8 (a) is plotted to explore the porous effects within 

complex wavy canal while the same physical situation is displayed in Fig. 8 (b) for rigid canal 

 

 

  

  

Fig. 8. Flow lines within a rigid and complex wavy inclined channel with four pairs of , , , 1/S 1 2 aU F a a and D  

with 
Sa = 0.6, H = 1, We= 1, n = 0.5, γ = 0.5 and Φ = π / 2 .  
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It can be observed that the passive channel offers a less resistive pathway and the amount of 

trapped fluid reduces. In other words fluid flow is quite smooth in rigid channel as compared to 

complex wavy domain. On the other hand Figs. 8 (c) and (d) are plotted for negligible porous 

effects. By comparing these plots with plots. 8 (a) and (b) we arrive at the conclusion that porous 

effects enhances bolus size. In plots. 8 (c) small eddies (as shown in plots. 8 (a)) near the lower 

wall of the channel disappear. 

Figs. 9(a)-(d) are shown for two different wave amplitudes in the organism surface and 

Weissenberg number. It can be seen from these plots that greater undulations results in formation 

of circulating zones, while in case of shear-thinning fluid high Weissenberg number enhaces the 

bolus size. 

 

  

  

Fig.9. Flow lines within a complex wavy inclined channel with four pairs of , ,S SU F We and a  

with 
1 2 an=0.5, a =0.2, a = 0.3, H = 1, γ = 0.5, Φ = π / 4 and 1 / D = 0.05.  
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7.  KEY FINDINGS 

The magnetic swimming problem at low Reynolds number with porous medium effects is 

explored. The tail of the micro-swimmer is approximated as two-dimensional sheet which is 

bounded in an inclined channel with complex wavy walls. The fluid around the swimming sheet 

is assumed to be Carreau fluid. The reduced boundary value problem is solved numerically by 

MATLAB routine bvp-4c. Newton Raphson algorithm is used to compute the flow rate and cell 

speed. The whole numerical procedure is tested by FDM. The computed results of organism speed, 

flow rate and power dissipation are plotted for various emerging parameters. The present work is 

concluded as follows: 

• The organism propel slower through porous medium as compared to non-porous medium. 

• The magnetic force applied in the downward direction enhances the swimming speed and 

reduce the power dissipation.  

• The organism propel faster through passive channel with less energy losses as compared 

to complex wavy channel. 

• The phase difference between channel and organism wave leads to faster propulsion. 

• The fluid rheology plays an effective role in swimming motion. For small values of 

Weissenberg number shear-thinning rheology is suitable while for large Weissenberg 

number shear-thickening rheology is more appropriate. 

• When the porous medium is not considered, channel is assumed to be passive and MHD is 

applied micro-organism can easily obtain that same speed (obtained in opposite situations) 

with less amount of work done.  

• Greater undulations, phase difference and complex wavy nature creates circulating zones 

around the micro-swimmer. 
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