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ABSTRACT 

1. Marine sponges are host to large, diverse communities of microorganisms. These 

microbiomes are distinct among sponge species and from seawater bacterial 

communities, indicating a key role of host identity in shaping its resident microbial 

community. However, the factors governing intraspecific microbiome variability are 

underexplored, and may shed light on the evolutionary and ecological relationships 

between host and microbiome. 

2. Here, we examined the influence of genetic variation and geographic location on the 

composition of the Ircinia campana microbiome. 

3. We developed new microsatellite markers to genotype I. campana from two locations 

in the Florida Keys, USA, and characterised their microbiomes using V4 16S rRNA 

amplicon sequencing. 

4. We show that microbial community composition and diversity is influenced by host 

genotype, with more genetically similar sponges hosting more similar microbial 

communities. We also found that although I. campana was not genetically 

differentiated between sites, microbiome composition differed by location. 

5. Our results demonstrate that both host genetics and geography influence the 

composition of the sponge microbiome. Host genotypic influence on microbiome 

composition may be due to stable vertical transmission of the microbial community 

from parent to offspring, making microbiomes more similar by descent. Alternatively, 

sponge genotypic variation may reflect variation in functional traits that influence the 

acquisition of environmental microbes. This study reveals drivers of microbiome 

variation within and among locations, and shows the importance of intraspecific 

variability in mediating eco-evolutionary dynamics of host-associated microbiomes. 
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INTRODUCTION 

A recent paradigm shift in biology has been the discovery of the breadth, diversity and 

importance of microbial communities associated with multicellular animals and plants. 

Termed the "microbiome", these communities influence a number of traits associated with 

host health, physiology and development (Blaser, Bork, Fraser, Knight, & Wang, 2013; 

Gilbert, Jansson, & Knight, 2014), and as such have been the focus of attention in fields as 

diverse as human medicine and wildlife conservation (Kashyap, Chia, Nelson, Segal, & 

Elinav, 2017; Trevelline, Fontaine, Hartup, & Kohl, 2019). Host-microbiome systems are 

complex ecological communities encompassing an array of host-microbe and microbe-

microbe interactions (Bauer, Kainz, Carmona-Gutierrez, & Madeo, 2018; Coyte, Schluter, & 

Foster, 2015). Understanding the ecological and evolutionary nature of the relationship 

between hosts and their microbiome requires an understanding of the forces structuring 

these microbial communities, driven by both host and environment (Antwis et al., 2017).  

 

Sponges (phylum Porifera) are considered valuable model systems in host-microbiome 

research due to the abundance and diversity within their associated microbial communities 

(Pita, Fraune, & Hentschel, 2016), with a total of 52 bacterial phyla and candidate phyla 

discovered among sponge hosts (Thomas et al., 2016). Sponge-microbiome interactions are 

numerous and complex, and microbial symbionts may confer a number of benefits to their 

host including nutrition and waste metabolism (Freeman, Thacker, Baker, & Fogel, 2013; 

Karimi et al., 2018; Moitinho-Silva et al., 2017; Thomas et al., 2010), acclimation to ocean 

acidification (Ribes et al., 2016), reduction in host surface fouling (On, Lau, & Qian, 2006), 

and production of compounds that deter predation of the sponge host (Garate, Blanquer, & 

Uriz, 2015). Sponge-associated microbes are also of significant biotechnological interest due 

to their potential for production of novel, pharmaceutically-active secondary metabolites 

(Thomas, Kavlekar, & Loka Bharathi, 2010). 
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Sponge microbiome composition is predominantly host-driven, with only a small degree of 

overlap with seawater microbial communities (Hentschel et al., 2002; Schmitt et al., 2012). 

Similarly, relatively few microbial taxa are shared across the phylum, and host species is a 

key determinant of microbiome composition (Blanquer, Uriz, & Galand, 2013; Pita, Turon, 

López-Legentil, & Erwin, 2013; Schmitt et al., 2012; Thomas et al., 2016; Turon, Cáliz, 

Garate, Casamayor, & Uriz, 2018). This strong association is thought to be driven by a 

combination of vertical transmission of microbial associates (i.e., parent to offspring 

transmission) and horizontal transmission of seawater microbes to highly-selective host 

environments (Fieth, Gauthier, Bayes, Green, & Degnan, 2016; Thacker & Freeman, 2012; 

Turon et al., 2018). 

 

Despite the strong effect of host species identity, significant variation in microbiome 

composition is still present within host sponge species (Thomas et al., 2016; Turon et al., 

2018). Intra-specific microbiome variation has been associated with environmental variation, 

such as geographic location (Fiore, Jarett, & Lesser, 2013; Luter et al., 2015; Swierts, 

Cleary, & de Voogd, 2018), depth (Morrow, Fiore, & Lesser, 2016), habitat (Cleary et al., 

2013; Weigel & Erwin, 2017) and water quality (Luter et al., 2015). However, given the 

strength of host identity in structuring the microbiome, genetic variation within the species 

may also be significant. Indeed, host genotype influences microbiome composition in several 

systems, including plants (Wagner et al., 2016), fish (Uren Webster, Consuegra, Hitchings, 

& Garcia de Leaniz, 2018), amphibians (Griffiths et al., 2018), birds (Pearce et al., 2017), 

and mammals (Benson et al., 2010; Goodrich et al., 2014). However, host genotype and 

microbial variation have not yet been linked in sponges.  

 

Noyer and Becerro (2012) found no significant relationship between host microsatellite 

diversity and bacterial communities analysed using denaturing gradient gel electrophoresis 

(DGGE) in Spongia lamella. However, DGGE has a lower resolution than current 

sequencing techniques, giving less information on community composition at lower 
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taxonomic ranks. In a later study, Marino et al. (2017) assessed correlations between 

latitude, sponge mitochondrial haplotype and microbiome composition in Ircinia campana 

from Florida and the Caribbean. However, cytochrome oxidase I haplotype correlated with 

location as well as microbiome composition, preventing the two variables from being 

disentangled. The role of host sponge genotype in structuring microbial communities is 

therefore still to be determined. This study addresses this gap in the literature, using highly 

polymorphic microsatellite markers and 16S rRNA Illumina sequencing to characterise 

Ircinia campana populations and their associated microbial communities in two locations in 

the Florida Keys, USA. 

 

MATERIALS AND METHODS 

Sample collection and DNA extraction 

In July 2014, we sampled Ircinia campana (Caribbean vase sponge) individuals at two 

shallow (< 2 m) nearshore hard bottom sites in the Florida Keys (FL, USA) separated by 

approximately 70 km: Long Key (24.81437, -80.8307) and Kemp Channel (24.6768, -

81.4757). We took samples in a single collection instance at each site to eliminate temporal 

variability, with 20 individuals sampled per site. We cut a piece of tissue from each individual 

and immediately preserved it in 99% ethanol upon surfacing. We then replaced the ethanol, 

firstly to act as a rinse, removing loosely attached seawater bacteria, and secondly to 

prevent dilution of the ethanol to aid DNA preservation. We stored samples at -80°C until 

processing. Prior to DNA extraction, we dissected the tissue under a stereomicroscope 

using aseptic technique to remove commensal macro-organisms. We then extracted total 

DNA with the DNeasy® Blood and Tissue Kit (Qiagen), and normalised it to 1 ng/μl. 

 

Microsatellite development and host genotyping 

We developed a suite of 10 tri- and tetra-nucleotide polymorphic microsatellite markers for I. 

campana using the pipeline implemented in the Palfinder Galaxy service (Griffiths et al., 

2016) (Table S1, see Supporting Information for full details of methods). One locus (Icam34) 
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performed well in individuals sampled from other localities (Griffiths et al. in prep, data not 

shown); however, it did not amplify well in the study populations. We therefore excluded 

Icam34 from further analysis in this study, thus using a total of nine loci. To fluorescently 

label PCR products, we used a three-primer PCR method, using a fluorescently labelled 

universal primer and tagging the 5’ end of the forward primer with the universal primer 

sequence, as described by Culley et al. (2013). We carried out multiplex PCR amplifications 

using the Type-it® Microsatellite Kit (Qiagen) using the following PCR thermal cycling 

conditions: 95°C initial denaturation for 5 minutes, 28 cycles of 95°C for 30 seconds, 60°C/ 

63°C for 90 seconds and 72°C for 30 seconds, and a final extension at 60°C for 30 minutes. 

PCR products were sized using the DNA Analyzer 3730 at the DNA Sequencing Facility at 

the University of Manchester, using the GeneScanTM LIZ® 1200 size standard. We scored 

alleles with Genemapper v3.7 (Thermo Fisher Scientific) and binned alleles in MsatAllele 

v1.03 (Alberto, 2009) in RStudio 1.1.442 for R 3.3.3 (RStudio Team, 2016; R Core Team, 

2017).  

 

Microbiome characterisation  

PCR, library preparation and sequencing  

PCR, sequencing and OTU taxonomic assignment were carried out at the Centre for 

Genomics Research, University of Liverpool, UK. We carried out amplification of the V4 

region of the 16S rRNA gene in a two-stage nested PCR in 5μl reaction volumes using 

primers described in Caporaso et al. (2011). We used the following thermal cycling 

conditions: 15 x 95°C for 20 seconds, 65°C for 15 seconds and 70°C for 30 seconds; 1 x 

72°C for 5 minutes. We purified PCR products using AMPure SPRI beads (Beckman 

Coulter), before entering into a second stage of PCR (conditions as above, 20 cycles) to 

incorporate Illumina sequencing adapter sequences containing indexes (i5 and i7) for 

sample identification. Following PCR, we purified the samples again, and quality checked 

the amplicon libraries using a Qubit and an Agilent Fragment Analyzer. We pooled the final 

libraries in equimolar amounts and used a Pippin Prep (Sage Science) to carry out size 
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selection of 300-600 bp. We assessed quantity and quality of the library pool using a 

Bioanalyzer (Agilent) and qPCR with the Illumina® Library Quantification Kit (Kapa 

Biosystems) on a LightCycler® (Roche). We then conducted paired-end (2 x 250 bp) 

sequencing on the Illumina MiSeq, with fragmented PhiX bacteriophage genome added to 

increase sequence complexity. 

 

Quality filtering and pre-processing 

We used CASAVA v1.8.2 (Illumina) to base call and de-multiplex indexed reads, and 

cutadapt v1.2.1 (Martin, 2011) to remove Illumina adapter and PCR primer sequences. We 

trimmed low quality bases from the reads using Sickle v1.200 (Joshi & Fass, 2011) 

(minimum window quality score 20), and removed reads under 10 bp in length. Sequencing 

errors were corrected using the error-correct module in SPAdes v3.1.0 (Bankevich et al., 

2012). We aligned read pairs using USEARCH8 (Edgar, 2010) with the 'fast-mergepairs' 

command, and selected merged sequences of between 200 and 600 bp. We used BLASTN 

(Altschul, Gish, Miller, Myers, & Lipman, 1990) to search for PhiX sequences (GenBank 

GI:9626372) in each sample; matching sequences (E-value <10-5) were then filtered out. 

Sequences containing Ns were discarded to remove low-quality reads.  

 

We clustered sequences into operational taxonomic units (OTUs) with 99% sequence 

similarity. Two different clustering algorithms were used for OTU picking; the first 

implemented in VSEARCH 1.1.3 (Edgar, 2010) using the function ‘-cluster-smalmem’ with 

99% identity threshold, and the second in Swarm (Mahé, Rognes, Quince, de Vargas, & 

Dunthorn, 2014). We removed clusters containing fewer than two sequences to reduce 

error, and merged the results from both clustering steps to create a non-redundant 

sequence set. We conducted chimera detection in VSEARCH using both a de novo 

approach and a reference-based approach with the SILVA 119 database. The reference-

based step found 12% of the sequences to be chimeras, which were removed for 

subsequent analyses, while none were found using the de novo approach. We used the 
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‘usearch_global’ function in VSEARCH to define the abundance of each OTU, and 

taxonomically classified these in QIIME 1.9.0 (Caporaso et al., 2010) using pick_rep_set.py 

to select the most representative sequence in the OTU, and assign_taxonomy.py to match 

sequences to those in the SILVA 119 database (Quast et al., 2013). We produced an OTU 

count table for all samples, and exported this and the taxonomic classification as a biom file. 

We imported this into RStudio using the phyloseq package (McMurdie & Holmes, 2013) for 

subsequent statistical analyses. We converted OTU count data to relative abundance for 

subsequent compositional and beta-diversity analyses. 

 

We also created a rarefied dataset for use in alpha-diversity analyses, as sequencing depths 

among samples were uneven. Repeated subsampling (33 repetitions) was carried out on the 

OTU count table at sampling depths from 2000 to 350,000 in QIIME (multi_rarefaction.py), 

following which we calculated Chao1 alpha diversity and plotted rarefaction curves (Fig. S1). 

We then created a rarefied dataset (single_rarefaction.py) by repeatedly subsampling 

(without replacement) at a depth of 173,000 sequences; samples with fewer sequences 

were removed from subsequent analysis (leaving n = 12 for Kemp Channel and n = 13 for 

Long Key). We used this dataset for alpha-diversity analyses as described below; we also 

repeated our beta-diversity analyses using this dataset, which produced similar results to the 

non-rarefied dataset (data not shown). 

 

Statistical analyses 

Host genetics 

We tested for linkage disequilibrium between microsatellite loci using Genepop on the Web 

v.4.2 (Rousset, 2008), correcting the significance threshold for multiple tests using Benjamini 

and Yekutieli's (2001) correction with the R function p.adjust. We estimated null allele 

frequencies in FreeNA (Chapuis & Estoup 2007) using the EM algorithm (Dempster, Laird, & 

Rubin, 1977). We calculated FST between the two sites, and corrected for null allele 
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presence using the ENA method as described in Chapuis & Estoup (2007) and implemented 

in FreeNA.  

 

We calculated pairwise Euclidean genetic distances between individuals from the multi-locus 

genotypes using GenoDive v2.0 b27 (Meirmans & Van Tiendener, 2004). In distance-based 

calculations, null alleles and missing data can bias results, overestimating differences 

between samples (Chapuis & Estoup, 2007). Thus, we first filled in missing data based on 

overall allele frequencies (11.8% in Long Key and 7.6% in Kemp Channel). We then used 

these distances to conduct a principle coordinates analysis (PCoA) in GenAlEx v.6.503 

(Peakall & Smouse, 2012). 

 

Microbiome composition 

We conducted analyses in RStudio using the phyloseq (McMurdie & Holmes, 2013), vegan 

(Oksanen et al. 2018) and microbiome (Lahti 2017) packages. We used a PERMANOVA 

(adonis) to test for significant differences in microbiome composition between sites using 

Bray-Curtis dissimilarities. We calculated the core microbiome of individual samples using a 

detection threshold of 0.001% and a prevalence threshold of 100% (i.e. a given OTU must 

be present in all individuals, with a relative abundance of at least 0.001%). We identified the 

core OTUs and then calculated the proportion of the total microbiome that these 

represented. We then repeated the core microbiome analysis with the data agglomerated to 

genus level. 

 

Host genotype-microbiome analyses 

We produced pairwise microbial community distance matrices between individuals across 

both sites, and for each site individually, using distance matrices based on Chao1 values as 

a measure of alpha-diversity, and Jensen-Shannon divergence (JSD) and Bray-Curtis 

dissimilarity as measures of beta-diversity. We tested for correlations between each 

microbial distance matrix (Chao1, JSD and Bray-Curtis) and host genetic distance matrix 
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(Euclidean) using Mantel tests with 999 permutations. We repeated the analyses with a 

further, more conservative genetic data file, removing loci with high null allele frequencies 

and high proportions of missing data. Following removal of loci with high (>0.16) null allele 

frequencies (Icam24, Icam26 and Icam10 in both sites, Icam3 in Kemp Channel samples), 

missing data was only present in Icam23 (0.077) and Icam3 (0.462) in Long Key. We then 

removed Icam3 at Long Key, giving final datasets of 5 loci for each site.  

 

We also extracted Bray-Curtis distance matrices for core microbiota across and within sites 

at both the OTU and genus levels, and used Mantel tests to test for correlation with the full 

and reduced genetic distance matrices. As the taxonomic composition of the core does not 

vary across individuals, this metric describes variation in relative abundances of these core 

taxa.  

 

RESULTS 

Population genetics 

We found no identical multi-locus genotypes in the dataset, indicating no clones were 

present amongst the sampled individuals. Across all sites, all loci were polymorphic, ranging 

up to 18 alleles per locus, but two of the loci were monomorphic in Kemp Channel (Icam32 

and Icam4) (Table S2). No significant linkage disequilibrium occurred among any loci pairs. 

Null allele frequencies and the proportion of missing alleles (genotyping failures) were high 

for many loci, and heterozygosity deficiencies were observed in many cases (Table S2). 

 

Pairwise genetic differentiation between Long Key and Kemp Channel was low (FST = 

0.021). The first and second principle coordinates of the PCoA explained only 15.81% of the 

total variation among the samples, and the individuals are not separated by site (Fig. 1). The 

sites can therefore be considered to be well-mixed genetically. 
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Microbial community composition 

We successfully conducted PCR amplification and Illumina sequencing on 34 samples (17 

each from Long Key and Kemp Channel). Between 97.10 and 99.61% of reads were 

assembled per sample. One sample from Kemp Channel yielded a far fewer assembled 

sequences than the remaining samples (28,163) and was removed from the analyses, 

leaving samples with between 118,370 and 426,014 assembled sequences (mean = 

241,448 ± 13,758 S.E., Fig. S1). Between 80.77 and 87.57% of the filtered sequence set 

could be aligned to a taxon, with 31,567 OTUs found across all samples, and individual 

sponges ranging from 4,165 to 14,503 OTUs (Fig. S1). Among all OTUs, we detected a total 

of 22 bacterial phyla and one archaeal phylum. The most abundant phylum was Chloroflexi 

(62.6% of the total reads), followed by Proteobacteria (17.5%), Acidobacteria (6.4%), 

PAUC34f (4.3%), SBR1093 (3.8%), Gemmatimonadetes (1.6%) and Actinobacteria (1.5%) 

(Fig. S2). The remaining phyla formed less than 1% of the total reads. Within Chloroflexi, 

Anaerolineae was the most dominant class, forming large proportions of the microbiomes of 

all samples (Fig. S3).  

 

There was a statistically significant difference in microbiome composition between sponges 

at Long Key and Kemp Channel (adonis, F1,31 = 4.391, R2 = 0.124, p = 0.001; Fig. 2), with 

12.4% of the variation in microbiome composition explained by site. These compositional 

differences are evident, albeit subtle, at both the phylum and class levels (Figs. S2 and S3).  

 

At the genus level, the core microbiome comprised 69.6% (± 1.7 S.E.)  of the total reads for 

sponges in Long Key, and 63.0%(± 1.6) for sponges in Kemp Channel. These genera 

included Desulfovibrionales, Chloroflexi, Pseudospirillium, PAWS52f, Nitrosococcus, 

Rhodovulum, Defluviicoccus, Acidobacteria, OM75 clade, Granulosicoccus, Nitrospira, 

Cerasicoccus, Actinobacterium MSI70, Candidatus Nirtosopumilus, Acidobacterium, 

PAUC32f, Truepera, PAUC43f, Synechococcus, and a number of unidentified 

Proteobacteria genera. Out of a total of 31,567 OTUs, we only identified two in the core 
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microbiome; one assigned to Proteobacteria and the other an unidentified Bacteria. 

Together these comprised 1.2%(± 0.2) of the total microbiome for sponges in Long Key, and 

1.3% (± 0.1) in Kemp Channel, and had the third (Proteobacteria sp.) and eleventh (Bacteria 

sp.) highest relative abundances of all OTUs in the total microbiome. 

 

Relationship between host genotype and microbiome composition 

We found statistically significant, positive relationships between genetic distance and 

microbial community dissimilarity when considering both alpha-diversity (Chao1) and beta-

diversity (Bray-Curtis and JSD distances), and when using the full and reduced microsatellite 

datasets (Table 1; Fig. 3). However, there were no significant relationships between genetic 

distance and core microbiome distance at either the OTU or genus level when using either 

of the genetic datasets (all p > 0.100).  

 

DISCUSSION 

Host genotype had a significant effect on microbiome diversity and composition in I. 

campana, both across and within sites. More genetically similar sponges hosted more 

similar microbial communities, in terms of both richness and composition. Between sites, 

sponge microbiomes significantly differed in composition, despite no genetic differentiation 

between the sponge populations. These results indicate that both environment and host 

genetics influence intraspecific microbiome variability in I. campana, and that these drivers 

vary in influence by spatial scale.  

 

Host genotype 

Host genetic similarity and microbiome similarity were positively correlated, both in terms of 

microbiome alpha- and beta-diversity. This relationship may be driven by vertical 

transmission of microbial communities, with sponges that are more genetically similar by 

descent hosting more similar microbiomes. Evidence for vertical transmission of the 

microbiome has been observed in the sympatric congener Ircinia felix (Schmitt, Weisz, 
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Lindquist, & Hentschel, 2007), as well as other sponge species (Ereskovsky, Gonobobleva, 

& Vishnyakov, 2005; Lee, Chui, Wong, Pawlik, & Qian, 2009; Sharp, Eam, Faulkner, & 

Haygood, 2007; Sipkema et al., 2015), and is thought to be a significant driver of the high 

host-species fidelity of microbiomes in sponges. Many evolutionary advantages can be 

gained from the inheritance of parental microbiomes, as favourable symbionts that are 

important for host health and physiology are already present in growing larvae.  

 

Horizontal transmission of microbes from the environment also contributes to the sponge 

microbiome (Fieth et al., 2016; Maldonado & Riesgo, 2009; Sipkema et al., 2015; Turon et 

al., 2018). As such, ecological interactions with seawater microbes could be key in shaping 

the microbiome. The relationships observed in this study may therefore be driven by host 

genotype-specific selection of seawater microbes.  

 

Selection of environmental microbes imposed by host genetic variation could result from 

secondary metabolites produced by the sponge, which are highly diverse (Genta-Jouve & 

Thomas, 2012) and include antimicrobial compounds (Kelman et al., 2001). Using an in-situ 

experimental approach, Tout et al. (2017) showed that seawater bacteria exhibit chemotaxis 

to cellular extracts isolated from a sponge, with particular enrichment of bacterial taxa that 

are commonly found in sponges. As sponge secondary metabolites can be intra-specifically 

variable (Noyer, Thomas, & Becerro, 2011; Puyana et al., 2015), the production of genotype-

specific compounds could attract varying seawater microbes to the sponge microbiome.  

 

Alternatively, genetic variation may encode variable responses in the host immune system to 

microbes in the environment. In other species, polymorphism in immunity related genes has 

been found to affect microbiome composition (Bolnick et al., 2014; Kubinak et al., 2015; 

Pearce, Hoover, Jennings, Nevitt, & Docherty, 2017) and responses to pathogenic bacteria 

(Lazzaro, Sceurman, & Clark, 2004). In addition, genotype-specific immune response, and 

varying gene expression patterns in response to a potentially pathogenic bacteria, have 
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been observed in the coral Acropora millepora (Wright et al., 2017). Although they do not 

have an acquired immune system, sponges have a relatively sophisticated innate immune 

system (Müller & Müller, 2003), which has been speculated to aid the maintenance of 

distinct extracellular microbial communities in the mesohyl tissue where phagocytosis of 

food bacteria takes place (Wehrl, Steinert, & Hentschel, 2007; Wilkinson, Garrone, & 

Vacelet, 1984). This system includes receptor proteins at the interface between the 

organism and the environment that can recognise and differentiate bacteria (Wiens et al., 

2005, 2007). There is currently no evidence that immune response varies intra-specifically in 

sponges. However, there is evidence of polymorphism of the Amphimedon queenslandica 

AqNLR (nucleotide-binding domain and Leucine-rich repeat containing) genes, which are 

pattern recognition receptors involved in detecting and binding a range of microbial ligands 

(Degnan, 2015).  

 

Further to these potential mechanisms, the sponge itself cannot be considered in isolation; 

selection of seawater bacteria is likely to be performed by the entire holobiont. The timing 

and order in which microbes join a sponge microbiome may have secondary effects on 

determining succession and ultimately community composition (historical contingency; 

Costello et al., 2012), with competitive interactions occurring among community members 

(Esteves, Cullen, & Thomas, 2017). Because of this, influence of the host genotype on even 

a relatively small proportion of the microbiome could increase its reach in shaping 

community composition. 

 

Geographic location 

Location was the largest driver of microbiome structure in this study. Although the sampling 

sites are only approximately 70 km apart, location accounted for 12.4% of the total 

microbiome variation observed across samples. Microbiomes vary within species by 

geographic location in a number of benthic marine organisms (Pantos, Bongaerts, Dennis, 

Tyson, & Hoegh-Guldberg, 2015; Rubio-Portillo, Kersting, Linares, Ramos-Esplá, & Antón, 
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2018; van de Water, Allemand, & Ferrier-Pagès, 2018), including in some sponge species 

(Fiore et al., 2013; Luter et al., 2015; Marino et al., 2017; Swierts et al., 2018), although this 

finding is not universal (Pita, López-Legentil, & Erwin, 2013; Pita, Turon, et al., 2013). 

Marino et al. (2017) showed a latitudinal gradient in microbiome composition in I. campana 

in the Caribbean, which also correlated with host mitochondrial haplotype. Our results show 

that even on a relatively local spatial scale (i.e., within the Florida Keys), microbiomes of I. 

campana can vary among sampling sites.  

 

In this study, we did not sample seawater bacterial communities or collect environmental 

data, as investigating environmental effects was not the objective of this study.  Instead, we 

sampled two sites as a form of replication to investigate host genetics. However, because 

there was effectively no genetic differentiation between the sponge populations at each site, 

the microbiome differences found between sites indicate that environmental variation drives 

I. campana microbiome composition at larger spatial scales.  The environmental parameters 

responsible for this pattern remain unknown. However, host genotype also had a significant 

effect on microbiome composition when considered across locations. In addition, there 

appears to be between-site variation in the strength of host genotype-microbiome 

relationships. Mantel test statistic values were mostly higher for Long Key than those for 

Kemp Channel; this could be the result of genotype x environment interactions, and could 

extend the influence of genotype at larger spatial scales. 

 

Core microbiome 

Despite a significant effect of host genotype on total microbiome composition, we did not find 

any effect of host genotype on core microbiome composition at the genus or OTU level. As 

the core was defined in this study as taxa found in all individuals, composition refers here to 

variation in relative abundance of the same microbial phylotypes among individuals. 

Therefore, our results show that while genotype exerts an effect on non-core microbiome 

taxa, it does not drive abundances of core taxa. This lends support to the theory that 
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horizontal transmission has an important role in forming the core microbiome (Turon et al., 

2018), as we may expect vertical transmission to produce significant genotype-core 

microbiome relationships. However, some refinement of the core microbiome concept and, 

in particular, the associated methodologies to define and identify ‘core’ taxa may be required 

to further our understanding of their significance, role and transmission. 

 

 At the 99% OTU level, the core microbiome in our study was comprised of two OTUs, which 

made up 1.2% and 1.3% of the total microbiome in Long Key and Kemp Channel, 

respectively. This core community appears small compared to results reported in some 

previous studies on sponges (Marino et al., 2017; Turon et al., 2018). Marino et al. (2017) 

found 119 core OTUs among 18 I. campana individuals, comprising 79.2 – 87.0% of the total 

microbiome. However, this study used 97% OTU clustering, which means individual OTUs 

are likely to encompass wider microbial taxonomic variation in contrast to 99% clustering of 

OTUs used in this study. The core microbial genera in our study formed 63% and 69% of the 

total microbiome in Long Key and Kemp Channel respectively, suggesting that the 

differences observed relative to previous work primarily reflect methodical differences 

(Astudillo-García et al., 2017). Furthermore, the higher the number of replicates, the smaller 

the apparent ‘core’ microbiome appears (Turon et al., 2018), and in this study the number of 

within-species replicates we used (n = 33) was substantially larger than in many previous 

studies.  

 

The core microbiome concept aims to identity stable, functionally important members of the 

microbiome, rather than transient or opportunistic members (Hernandez-Agreda, Gates, & 

Ainsworth, 2017; Shade & Handelsman, 2012). Ircinia campana appears to have a strong, 

possibly symbiotic, relationship with the two core OTUs observed, indicating a potentially 

important role in holobiont function. However, the larger genus-level core observed may be 

due to a level of functional redundancy within microbial genera, with characteristics at higher 

taxonomic ranks being more important for successful transmission and stability than OTU-
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level characteristics. As such, defining a core in terms of wider phylogenetic or functional 

groups may therefore be more useful than a strict OTU/ species-level approach (Turnbaugh 

et al., 2009). Furthermore, as our findings show that microbiomes vary by genotype, 

identifying stable associations using the host species-level core microbiome approach may 

obscure genotype-specific host-microbe symbioses.  

 

Concluding remarks 

We show that genetic diversity has an important influence in shaping microbiome 

composition in I. campana. These results highlight the potential for intraspecific genetic 

diversity to impact ecological dynamics within sponge-microbe relationships, and 

demonstrate an eco-evolutionary relationship between sponges and microbial communities. 

Further work on the mechanisms underlying host genotype-microbiome relationships will aid 

our understanding of the nature and eco-evolutionary dynamics of the sponge-microbiome 

relationship. Furthermore, understanding these drivers of interspecific microbiome variability 

is also important in the context of global climate change. Ocean warming and acidification 

are predicted to change microbial communities both within the environment and in host-

associated microbiomes, with huge implications for health and survival of marine species 

and their ecosystems (Lesser, Fiore, Slattery, & Zaneveld, 2016; Qiu et al., 2019). For 

example, ocean warming in the Mediterranean triggered microbial imbalances in I. 

fasciculata, which have been implicated in disease and mass mortalities (Blanquer, Uriz, 

Cebrian, & Galand, 2016). In Florida Bay, I. campana populations have already suffered 

numerous mass mortality events (Butler et al., 1995; Stevely, Sweat, Bert, Sim-Smith, & 

Kelly, 2010) due to cyanobacterial blooms caused by decades of ecosystem instability 

(Butler & Dolan, 2017; Butler, Weisz, & Butler, 2018; Fourqurean & Robblee, 1999; Kearney 

et al., 2015; Robblee et al., 1991). Microbiomes potentially have a huge importance in 

acclimation and resilience to climate change scenarios in marine organisms (Ribes et al., 

2016; Webster & Reusch, 2017). With this in mind, understanding individual-level drivers of 
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microbiome variation may assist in species management and conservation in the face of 

future stressors. 
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FIGURE LEGENDS 

Figure 1 

Principle coordinates analysis (PCoA) showing Euclidean genetic distances among Ircinia 

campana individuals at Long Key and Kemp Channel 

 

Figure 2 

Principle coordinates analysis (PCoA) showing Bray-Curtis distances among microbiomes of 

Ircinia campana from Long Key and Kemp Channel.  

 

Figure 3 

Scatter plot with regression lines showing correlations between pairwise host Euclidean 

genetic distances (using nine microsatellite genotypes) and microbial community Chao1 

distances (alpha-diversity) in Ircinia campana at a) Long Key, and b) Kemp Channel, and 

host genetic Euclidean distances and microbial community Jensen-Shannon divergence 

values (beta-diversity) at c) Long Key, and d) Kemp Channel. Shaded areas show 95% 

confidence intervals. 
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Table 1 

Results of Mantel tests between genetic distance matrices and microbiome distance 

matrices of Ircinia campana sponges. Genetic distances were based on either ten (“full 

genetic dataset”) or five (“reduced genetic dataset”) microsatellites. 

Location Microbiome 

dissimilarity 

metric 

Genetic dataset r value p value 

Across sites Chao1 Full 0.410 0.001 

  Reduced 0.347 0.001 

 Bray-Curtis Full 0.211 0.002 

  Reduced 0.139 0.025 

 JSD Full 0.278 0.001 

  Reduced 0.206 0.003 

Long Key Chao1 Full 0.503 0.001 

  Reduced 0.264 0.005 

 Bray-Curtis Full 0.465 0.001 

  Reduced 0.232 0.006 

 JSD Full 0.483 0.001 

  Reduced 0.236 0.009 

Kemp Channel Chao1 Full 0.297 0.033 

  Reduced 0.340 0.023 

 Bray-Curtis Full 0.280 0.013 

  Reduced 0.228 0.039 

 JSD Full 0.307 0.014 

  Reduced 0.277 0.033 

 

 

  



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

 
  



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

 
  



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

 


