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Abstract 

Variability in the timing of walking patterns has a complex mathematical structure (fractality). 

Fractality of gait can reflect health, so practicing walking with specific temporal coordination 

could be helpful for various groups at high risk of falls. However, the degree to which gait fractality 

can be ‘prescribed’ using different auditory stimuli is yet to be elucidated.  This study evaluated 

the use of several fluctuating timing imperatives on the consistency of ‘prescribing’ gait 

complexity in healthy individuals.  14 healthy young adults cued timing of heel contact to an fractal 

auditory stimuli across four conditions (uncued, white noise, pink noise, and red noise) 

administered across three sessions (session 1, session 2, and session 3), with each experimental 

trial repeated twice within each session.  Fractality differed based on the walking condition while 

no effect of session was revealed.  The results of this study suggest gait fractality adapts to various 

fractal stimuli and that fractality can be consistently prescribed in a desired direction within a 

group of healthy young individuals.  
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1. Introduction 

Independent walking requires appropriate control to remain stable and flexible while 

navigating complex and unpredictable environments (Shumway-Cook A, Woollacott, 2007).  The 

motor control system regulates gait to continue progression, maintain equilibrium and remain 

adaptable.  The gait pattern of healthy individuals characteristically reveals fractal-like fluctuations 

(Hausdorff et al., 1995).  Fractal-like fluctuations in the gait pattern are due to the complexities of 

a highly composite nonlinear motor control system composed of mechanical, neural, and cognitive 

components, which cohesively operate nonlinearly over a range of temporal scales.  Complexity 

is now understood to be a critical feature of healthy gait (Hausdorff, 2007). 

 Measures such as the fractal scaling index provide an indication of the temporal structure 

of a gait time series.   By definition, the fractal scaling index provides an estimation of scale 

invariance.  Previous reports have suggested that gait time series captured from healthy individuals 

approximate a scale-invariant process (Hausdorff, 2007; Terrier & Deriaz, 2011).  More 

specifically, healthy stride behaviour is correlated across long and short temporal scales (i.e., long 

range correlations).  Additionally, evidence from elderly and fall-risk individuals demonstrates 

that gait time series show a shift in the underlying fractal-like fluctuations behaviour towards 

randomness (Hausdorff et al., 1997).  Hypotheses such as Loss of Complexity and Dynamical 

Disease propose that such changes from healthy levels of complexity (i.e., towards randomness), 

are related to decreased adaptive function of the movement system (Manor & Lipsitz, 2013; Rhea 

& Kiefer, 2014).   

Utilizing fixed interval timing imperatives (i.e., a metronome with a fixed frequency) with 

healthy individuals, to cue stride timing, causes a shift towards randomness in scale-invariant gait 

behaviour as observed naturally with elderly and fall-risk individuals (Hausdorff, 2007).  Terrier 



and Deriaz (2012) reported that gait fractality shifts towards anti-persistence (i.e., a < 0.5) during 

tasks combining treadmill walking with a fixed-interval timing imperative.  A fixed interval timing 

imperative is a highly predictable stimulus and does not contain complexity in the sequential 

timing of beeps.  Hence, cueing steps to such stimuli, constrains the gait pattern to follow a fixed 

frequency.  A fluctuating timing imperative (i.e., a metronome with a fluctuating frequency) when 

characterized in the frequency domain, are associated with different levels of fractality.  For 

example, a white noise signal demonstrates equal power across the discrete range of frequencies 

which is associated with an a = 0.5.  The terms pink noise and red noise represent a > 0.5 – 1.5 

and a > 1.5, respectively.  More recent research has applied fluctuating timing imperatives, as a 

gait timing task, to assess whether gait complexity can be prescribed in a desired direction (Hunt 

et al., 2014; Marmelat et al., 2014; Rhea et al., 2014).  Marmelat (2014) showed that young healthy 

participants can flexibly entrain their gait complexity to several different fluctuating auditory 

timing imperatives (i.e., various fractal levels).  This finding has been mirrored with the use of 

visual cues (Rhea et al., 2014).  More importantly, these studies highlight that gait complexity is 

flexible and can entrain with an external timing cue.  The effect of entrainment observed in the 

previously mentioned studies can be viewed as method for ‘prescribing’ the gait patterns 

complexity.  An established method for prescribing gait complexity would lend itself as a 

promising tool for assessing gait control.  However, before such applications can be explored, an 

assessment of the ‘prescription’ reliability, is necessary. 

We evaluated the efficacy of utilizing several distinct fluctuating timing imperatives as a 

paradigm to ‘prescribe’ gait complexity in a desired direction.  The goals of the current study were 

two-fold: (1) to evaluate whether three different auditory stimuli characterized in the frequency 

domain as white, pink and red noise, can ‘prescribe’ gait complexity in a desired direction and; (2) 



to assess the consistency of delivering three distinct fluctuating timing imperatives on ‘prescribing’ 

gait complexity.  In this context, prescription is defined as the administration of an auditory 

stimulus, to induce a targeted shift in gait fractality.  We hypothesized that gait fractality would 

shift towards the fractality of each timing imperative consistently across three sessions.  

 

2. Methods and Protocol 

2.1. Participants 

Fourteen young, healthy, adult volunteers (10 males/4 females, mean; age: 26 ± 3 years, 

height: 1.73 ± 0.10m) were recruited to participate in the study.  Participants were provided with 

the details of the study, and signed an informed consent form prior to engaging in the experiment.  

Approval to conduct the study was granted by the local university research ethics review board.  

Exclusion criteria included: younger than 18 and older than 35 years, a self-reported history of 

neurological injury or disorder, musculoskeletal injury or disorder, auditory impairment, and pain 

or discomfort in the past six months that might affect walking and listening to an audible sound 

simultaneously. 

2.2. Equipment 

A motorized, fixed-pace treadmill (Bodyguard Fitness, Quebec, Canada) was used to 

establish steady-state gait.  Gait timing signals were acquired with a digital footswitch cell (FS-1, 

Bortex, Canada), placed directly underneath of the self-reported dominant heel of the participant.  

Two speakers (MLi 699, MidiLand, Germany) were used to elicit the auditory fluctuating timing 

imperatives.  Simultaneous recording of the auditory stimulus and footswitch signals was 

completed with a custom-built cable.  Both gait and auditory signals were synchronized in time at 

the initiation of each trial. 



 

2.3. Protocol 

2.3.1.   Preferred walking speed determination 

The determination of preferred walking speed (PWS) was a two-part protocol.  The first 

part began with participants walking at a slow belt speed (~0.50 m/s); the speed of the treadmill 

belt was then systematically incremented (0.10 m/s steps) until the participant verbally 

communicated their “comfortable walking speed”.  The corresponding speed was noted as 

“preferred walking speed – lower” (PWSL) and the number of increments was noted. 

The second part of the protocol began at a speed above the participants previously noted 

as PWSL, with approximately the same number of increments observed during the determination 

of PWSL (PWSL + (PWSL - 0.5)).  The speed of the belt was systematically decreased (0.10 m/s) 

until the participant verbally communicated their “comfortable walking speed”.  The 

corresponding speed was noted as “preferred walking speed – upper” (PWSU).  Each change in 

belt speed was performed by the participants for a total of 15 seconds.  PWS was calculated as the 

average between PWSU and PWSL (Dingwell et al 2006).  The range of tested treadmill speeds and 

the magnitude of each increment was partly guided by previous reports in the literature, which 

suggest that average treadmill PWS is 1.3m/s ± 0.13 m/s during treadmill gait (Terrier & Deriaz, 

2011). 

2.3.2.   Fluctuating timing imperative creation 

Each session included a baseline walking trial, which involved six minutes of walking on 

the treadmill at PWS.  The initial baseline was trial was used to capture gait data in order to 

determine the average and standard deviation of the inter-stride interval for each participant.  This 

trial was separate from experimental trials and not included in any statistical analysis.  The average 



and standard deviation values obtained from the baseline trial were then used to create participant-

specific timing imperatives used in the experimental trials.   

White noise, pink noise, and red noise fluctuating timing imperatives were created in 

Matlab R2015b (The Mathworks, Natick, USA).  First, a Guassian white noise vector of 256 data 

points (Marmelat et al., 2014; Delignieres et al., 2006) was created.  The average and standard 

deviation of the white noise vector matched the individual participant’s baseline walking. 

Next, to generate the pink noise and red noise signals, the white noise signal was 

transformed into the frequency domain using the fast Fourier transform (FFT) algorithm.  For the 

pink noise signal, the components of the power spectrum were multiplied by 1/Öf.  For the red 

noise vector, the components of the power spectrum were multiplied by 1/f (Kasdin et al., 1995) 

(Figure 1).  The subsequent pink noise and red noise signals were transformed back into the time 

domain using the inverse fast Fourier transform algorithm (Figure 2).  The respective white noise, 

pink noise, and red noise vectors were used to define the inter-beat interval sound files for each 

fluctuating timing imperative.  The beat duration was 10 ms. 

2.3.3.   Experimental trials 

Participants were asked to attend three sessions, each separated by a minimum of 72 hours.  

During each session, participants completed two trials each of the four walking conditions (a total 

of eight trials) in a randomized order: uncued, white noise, pink noise, and red noise timing 

imperatives.  For each participant, attempts were made to replicate the previous sessions 

metronome scaling exponents by running the noise generating process to achieve consistent 

scaling exponents for metronomes across session. The average and standard deviation of fractality 

of each timing imperative used in the study is presented in Table 1.   



Each trial consisted of continuous walking for a total of 255 cued strides, which required 

approximately five to six minutes to complete.  Limb dominance was self-reported; participants 

were asked to indicate which foot they would use to kick a ball.  The heel switch was placed in the 

shoe of the dominant limb.  Trial initiation began with the participant in steady-state walking.  

Initiation of the beat sequence began with a three-count countdown whereby the last count 

corresponded with the initiation of the first beat.  Practice was provided prior to conducting 

experimental trials, in order for the participant to become familiar with the task of cueing their 

heel contact with the beat onset.  Rest was provided following the completion of each trial to avoid 

fatigue.  Participants verbally indicated to the research assistant when they felt comfortable to 

proceed to the next walking trial, which typically ranged between two to three minutes. 

 

2.4. Data Processing and Analysis 

The difference between successive heel contact across the entire trial defined the inter-

stride interval time series (Hausdorff et al., 1995; Costa et al., 2003).  Analog signals (i.e., the 

footswitch and timing imperative) were sampled at 1000 Hz.  Heel contact and beat onsets were 

determined as the first instant at which the timing signals deviated from zero (i.e., baseline).  

Specifically, the footswitch produced a signal that was a step function, where the x-axis is “zero” 

when the switch is inactivated, but is “one” when it is activated (e.g., at heel contact).  

2.4.1.   Fractal Scaling Index 

The fractality (i.e., fractal scaling index (a)) of inter-beat interval and inter-stride interval 

time series was calculated using a detrended fluctuation analysis (DFA) algorithm.  Details of the 

algorithm have been outlined in several papers (Hausdorff et al., 1995; Rhea et al., 2014; Peng et 

al., 1992).  The fractal scaling index (FSI) ranges between 0 ≲  a ≲ 2.  An a » 0.5 - 0.59 



characterizes a white noise time series; a = 1.0 is characteristically a purely scale invariant process 

(i.e., pink noise) time series; a > 1.5 characterizes Brownian motion (i.e., red noise).  The DFA 

algorithm is designed to have minimal sensitivity to non-stationary data (Terrier & Deriaz, 2012).  

The mean, standard deviation, and FSI of the inter-stride interval time series were estimated for 

each walking condition and session, across all participants. Entrainment error for each trial was 

quantified to assess the ability of participants to match their gait fractality to the elicited stimulus.  

Specifically, for each trial, entrainment error was calculated as the absolute difference between the 

fractal scaling index of the timing imperative and the fractal scaling index of the stride interval. 

 

2.5. Statistical design and analysis 

All statistical analysis was performed in JMP (v.9 product of SAS).  A two-way repeated 

measures design [timing imperative (uncued/white noise/pink noise/red noise) x session (session 

1 /session 2/session 3)] with mixed-effects was used to assess the differences of gait parameters 

and fractality across timing imperatives and sessions. A participants factor was included into the 

model as a random effect while timing imperative and session were fixed effects.  Post-hoc 

comparisons were made with a Tukey-Kramer HSD test (p < 0.05).  

 

3. Results 

3.1. Inter-stride Interval gross parameters 

All gait parameter data across timing imperative and session are presented in Table 2.  A 

significant interaction effect of timing imperative and SES [F (6,72) = 2.73, p = 0.02] was found 

for mean inter-stride interval.  Post-hoc analysis revealed that the mean inter-stride interval for 

white noise and pink noise were significantly greater than mean inter-stride interval for uncued, 



specifically at session 2.  A main effect of timing imperative was found for mean inter-stride 

interval [F(3, 37) = 36.93, p = 0.007].  Post-hoc analysis revealed that the mean inter-stride interval 

for uncued was significantly less than white noise and pink noise; however, these differences were 

1.1% and 1.3%, respectively.  No main effect of session [F(2,23) = 0.09, p = 0.914] was detected. 

No significant interaction effect of timing imperative and session [F (6, 71) = 1.20, p = 

0.315] was found for SD inter-stride interval.  A main effect of timing imperative was found for 

SD inter-stride interval [F(3, 38) = 12.49, p < 0.0001].  Post-hoc analysis revealed that the SD 

inter-stride interval for uncued was significantly lower than pink noise and red noise.  Additionally, 

the SD inter-stride interval for pink noise was significantly lower than red noise.  No other 

significant differences were revealed.  No main effect of session was found [F(2, 24) = 1.50, p = 

0.244].  

3.2. Group entrainment effect and consistency 

The results of FSI entrainment are presented in Figure 3.  No significant interaction effect 

of timing imperative and session [F(6, 74) = 0.88, p = 0.515] was found for FSI.  A main effect of 

timing imperative was found [F(3, 39) = 34.33, p < 0.0001] for FSI.  Post-hoc analysis revealed 

that the mean FSI obtained for uncued and red noise were significantly greater than white noise 

and pink noise (uncued = 0.77 ±0.17; white noise = 0.50 ±0.13; pink noise PN = 0.58 ±0.14; red 

noise = 0.82 ±0.22).  No other significant differences were found.  No main effect of session [F(2, 

25) = 0.58, p = 0.565] was revealed.  

3.3. Entrainment Error 

Table 2 displays the means and standard deviations across timing imperative and session.  

No significant interaction effect of timing imperative and session was found [F(4,42) = 1.87, p = 

0.13] on the entrainment error feature.  A main effect of timing imperative [F(2,25) = 59.02, p < 



0.0001] was observed.  Post-hoc comparisons revealed that entrainment error was different 

between all conditions white noise, pink noise, and red noise (Figure 3) No main effect of session 

[F(2,25) = 2.33, p = 0.118] was revealed. 

 

4. Discussion 

Complexity features are becoming accepted as an important indicator of the “healthy” 

walking pattern (Rhea and Kiefer, 2014).  Approaches to restoring healthy gait are being explored 

by using methods such as auditory fluctuating timing imperatives that entrain “healthy” 

complexities (Hunt et al., 2014; Marmelat et al., 2014).  However, the efficacy of such methods 

remains unclear.  Furthermore, the meaning and function of complexity within the walking pattern 

is unknown, but it may have relation to adaptability and can potentially be revealed using 

fluctuating timing imperatives (Harbourne & Stergiou, 2009; van Emmerick et al., 2017).  

Therefore, the objective of this study was to assess whether the use of fluctuating timing 

imperatives could be used to consistently entrain the gait pattern.  The results of the study suggest 

that stride interval fractality can be prescribed in a specified direction, with consistency across 

three sessions, in a group of healthy young individuals, suggesting that the method demonstrates 

repeatability.  Furthermore, the results have revealed that the accuracy of the entrained fractality, 

or how closely the individual is able to match the fractality of the timing imperative, is dependent 

on the fractal characteristics of the timing imperative.  

4.1.  Group prescription and ceiling effect 

The primary objective of this study was to examine the effect of entraining stride interval 

fractality to several different fluctuating timing imperatives.  The results demonstrated a significant 

change in stride interval complexity with the use of a fluctuating timing imperative.  Uncued 



walking complexity was consistent with previous literature, which demonstrated a fractality of ~ 

a = 0.75 (Hausdorff, 2007).  The fluctuating timing imperatives (white noise, pink noise, red noise) 

elicited a deviation from observed uncued fractality.  This finding was consistent with previous 

literature, which has reported a prescription effect with the use of fluctuating timing imperatives 

(Hunt et al., 2014; Marmelat et al., 2014; Rhea et al., 2014; Rhea et al., 2014). 

On average, participants were unable to achieve a ³ 1.0 when entraining to the red noise 

imperative, though the FSI of the red noise timing imperative was on average a = 1.32.  Perhaps 

this result indicates a “ceiling” in the complexity observed in the healthy gait system.  This ceiling 

is similar to findings presented in the literature, which have shown that participants have difficulty 

achieving a FSI above 1.0, despite entraining to a stimulus with an a ³ 1.0 (Hunt et al., 2014).  The 

underlying mechanism behind this effect is unknown but may indicate that the gait system is not 

a true scale invariant process (a = 1.0), and is instead optimally composed of a mix of deterministic 

and random components in order to remain adaptable (Rhea & Kiefer, 2014; van Emmerick et al., 

2017). 

4.2. Prescription consistency and entrainment error 

A second objective of the study was to assess the consistency of the entrainment effect.  

This study was the first to assess whether complexity can be consistently entrained across multiple 

sessions.  No main effect of session was found, which suggests that white noise, pink noise and 

red noise demonstrated entrainment consistency across all three sessions, despite different fractal 

characteristics of each metronome.  This finding is important for future investigations that aim to 

test gait control with the use of auditory fluctuating timing imperatives.  Overall, it appears that 

the prescription effect of the auditory stimuli can consistently entrain gait complexity. 



The absolute difference between the inter-stride interval fractality and inter-beat interval 

fractality was quantified to assess the error of entrainment.  This was done to interpret how closely 

the participants’ naturally matched gait complexity relative to the auditory stimulus.  Interestingly, 

entrainment error scaled with the level of fractality of the metronome.  More specifically, the 

entrainment error increased with greater fractality.  The authors hypothesized that the pink noise 

would demonstrate the smallest error due to the similarity between pink noise fractality and the 

fractality observed in normal gait (Hausdorff, 2007).  That hypothesis was based on the idea that 

information exchange between two complex systems is maximal when the two systems have a 

similar complexity (West et al., 2008).   

Previous literature has demonstrated that the closer one can approximate the fractality of a 

timing stimulus is best observed with a stimulus that is approximating a pink noise signal (Hunt et 

al., 2014).  Additionally, several studies have demonstrated that a pink noise signal with an a @ 

1.0, will elicit an increase in the FSI away from typical baseline of a @ 0.75 towards a fractality 

closer to the stimuli (Rhea et al., 2014; Rhea et al., 2014).  However, this was not observed in our 

study with the pink noise timing imperative.  However, the methodology in our study was not 

entirely consistent with that of previous reports. Hunt (2014), implemented metronomes infused 

with a fractal stimulus approximating white noise, pink noise, and red noise into music, which was 

then used to entrain gait complexity.  Whereas Rhea (2014), utilized a visual stimulus with an a @ 

1.0.  Differences in the methodology of entrainment between previous studies and the current study 

limit comparison and warrant further studies into the use of pink noise signals over a variety of 

fractalities. Additionally, further exploration into difference between stimulus modalities can 

reveal intriguing insights into how the gait responses entrain to fractal stimuli. A study of note by 

Marmelat and colleagues (Marmelat et al., 2014) had a similar mode of stimulus delivery (i.e., a 



simple beat not infused into music or visual) and showed results that were consistent with the 

current study’s findings, in that participants were able to closely match their gait complexity with 

that of a timing imperative approximating white noise.  

Perhaps the entrainment error observed with pink noise and red noise were due to the 

inability of participants to accurately time initial heel contact to the beat onset.  However, the link 

between the local performance (i.e., lag time between heel contact to beat onset) and the 

entrainment error (i.e., the difference between metronome and gait fractalities) was out of the scope 

of the study.   Rhea et al. (2014) did demonstrate that participants revealed a variety of strategies 

(e.g., reactive or proactive) when cueing a visual stimulus with FSI = 1.0, and participants were 

able to successfully match their gait complexity to the stimulus.  Future investigations should 

assess the local performance (i.e., asynchrony between heel contact and beat onset) to discern 

whether the strategy adopted while cueing to the timing stimulus relates to entrainment.   

 

5. Conclusions 

The findings from the current study are the first to assess the use of auditory fluctuating 

timing imperatives in prescribing gait complexity over several sessions.  Generally, the findings 

demonstrate the flexibility of the healthy gait system, albeit with an upper limit.  This study 

specifically demonstrated that eliciting an auditory fluctuating stimulus can alter inter-stride 

interval complexity in a desired direction and consistently across three sessions.  However, 

entrainment error appears to be a function of the fractal characteristics of the timing imperative.   

A limitation in the study can be found in the duration between the sessions.  As 

participation was voluntary, participants were asked to attend with a minimum time lapse of 72 

hours between sessions.  However, to truly test the consistency of the prescription effect, it would 



be important for all participants to strictly adhere to a fixed time between each session, to rule out 

any potential carry-over effects of timing gait to a stimulus.  In addition, the ecological validity of 

the experiment is limited due to the use of treadmill in the current study, which imposed a fixed 

gait speed and constrained gait variability typically observed overground.  Future studies 

replicating the current studies paradigm on overground will enhance the ecological validity of the 

results.  Future studies should also assess the local performance (i.e., the lag between beat onset 

and heel contact) during entrainment to assess whether the coordination between gait complexity 

and stepping are linked.  The results of this study are an initial step towards developing a paradigm 

aimed at prescribing complexity to assess gait control and potentially as a tool for gait 

rehabilitation.  Additionally, future work will focus on the effects of complexity retention 

following entrainment. 
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List of Tables 

Table 1. Summary of fluctuating timing imperative fractality (mean ±SD) across timing 

imperative and session collapsed across all participants. 

 
 Session 1 Session 2 Session 3 

White noise 0.50 ±0.04 0.53 ±0.04 0.52 ±0.03 

Pink noise 0.85 ±0.07 0.84 ±0.08 0.83 ±0.07 

Red noise 1.30 ±0.09 1.33 ±0.11 1.33 ±0.15 

 

 

Table 2. Summary of gait parameters (mean ±SD) across timing imperative and session.   

Timing 
imperati
ve  

Uncued  White noise Pink noise  Red noise  

Session  Sessi
on 1 

Sessi
on 2 

Sessi
on 3 

Sessi
on 1 

Sessi
on 2 

Sessi
on 3 

Sessi
on 1 

Sessi
on 2 

Sessi
on 3 

Sessi
on 1 

Sessi
on 2 

Sessi
on 3 

Mean 
inter-
stride 
interval 
(s) 

1.169 
±0.063 

1.143 
±0.072 

1.152 
±0.068 

1.168 
±0.060 

1.169 
±0.075 

1.174 
±0.072 

1.166 
±0.061 

1.162 
±0.075 

1.176 
±0.071 

1.163 
±0.059 

1.158 
±0.074 

1.175 
±0.076 

SD inter-
stride 
interval 
(s)  
 

0.017 
±0.005 

0.017 
±0.006 

0.016 
±0.005 

0.018 
±0.003 

0.017 
±0.005 

0.019 
±0.005 

0.019 
±0.006 

0.018 
±0.005 

0.022 
±0.006 

0.024 
±0.008 

0.022 
±0.007 

0.024 
±0.005 

Fractal 
Scaling 
Index 
(FSI) 
 

0.76 
±0.14 

0.81 
±0.17 

0.75 
±0.19 

0.52 
±0.13 

0.48 
±0.13 

0.51 
±0.14 

0.56 
±0.15 

0.58 
±0.12 

0.61 
±0.15 

0.89 
±0.11 

0.84 
±0.18 

0.96 
±0.13 

Fractal 
Scaling 
Index 
(FSI) 
Error 

   0.10 
±0.06 

0.11 
±0.10 

0.12 
±0.08 

0.30 
±0.14 

0.27 
±0.11 

0.22 
±0.11 

0.50 
±0.27 

0.56 
±0.25 

0.45 
±0.17 

 

 



Figure Legends 

Figure 1: A representative plot of the frequency spectrum for three timing imperatives.  Top: white 
noise shows approximately equal power in representative frequencies. Middle: pink noise 
demonstrates decay following multiplication by 1/√𝐟. Bottom: red noise demonstrates sharper 
decay following multiplication by 1/f.   
 

Figure 2: A representative plot of three fluctuating timing imperatives in the time domain, for a 
participant with a mean stride interval of 1.25 s and a standard deviation of 0.02s. CV = 
coefficient of variation and a = fractal scaling index.  Top: white noise inter-beat intervals.  
Middle: pink noise inter-beat interval.  Bottom: red noise inter-beat interval. 
 

Figure 3: The mean ±SD of fractal scaling index (FSI) of each timing imperative condition 
separated across all sessions.  Data is averaged across repeated trials and participants.  Shade of 
bars represent different sessions: light grey bars represent means for session 1; dark grey bars 
represent means for session 2 and; black bars represent means for session 3.  No differences were 
found across the main effect of session.  Timing imperative demonstrated significant differences: 
uncued was different from white noiseand pink noise; red noise was different from white noise 
and pink noise; uncued and red noise were not different and; white noise and pink noise were not 
different.  Error bars represent standard deviations.  Asterisks represents significance at 0.05 level. 
 

Figure 4: The mean ±SD entrainment error for each timing imperative condition.  Each level of 
timing imperative was significantly different from each other; white noise different from pink 
noise and red noise and; pink noise different from red noise.  Error bars represent standard 
deviations, Asterisks represent significance at 0.05 level.  


