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Abstract

In this paper, we proposed a new and robust biometric-based approach to iden-
tify head of cattle. This approach used the Weber Local Descriptor (WLD) to
extract robust features from cattle muzzle print images (images from 31 head of
cattle were used). It also employed the AdaBoost classifier to identify head of
cattle from their WLD features. To validate the results obtained by this clas-
sifier, other two classifiers (k-Nearest Neighbor (k-NN) and Fuzzy-k-Nearest
Neighbor (Fk-NN)) were used. The experimental results showed that the pro-
posed approach achieved a promising accuracy result (approximately 99.5%)
which is better than existed proposed solutions. Moreover, to evaluate the re-
sults of the proposed approach, four different assessment methods (Area Under
Curve (AUC), Sensitivity and Specificity, accuracy rate, and Equal Error Rate
(EER)) were used. The results of all these methods showed that the WLD along
with AdaBoost algorithm gave very promising results compared to both of the
k-NN and Fk-NN algorithms.
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1. Introduction

Cattle identification and traceability are very crucial to control safety policies
of animals and management of food production. Many international organiza-
tions, e.g. food safety and world animal health, have formally recognized the
significant values of the development of the animal identification and traceabil-
ity systems and they further actively promoted for these systems (Schroeder and
Tonsor, 2012). Such values include (a) controlling the widespread of the animal
diseases by identifying and detecting infected animals, (b) reducing losses of live-
stock producers by controlling the diseases, (c) decreasing the government cost
by the control, intervention, and eradication of the outbreak diseases (Bowling
et al., 2008). Therefore, especially after the discovery of the Bovine Spongiform
Encephalopathy (BSE), advanced animal identification and traceability systems
were evolved and deployed by big beef exporters and have been increasingly used
by ranked beef importing countries (Schroeder and Tonsor, 2012).

Marchant (2002) reported that animal identification can be achieved using
many different methods which could be classified as mechanical, electronic, and
biometric. The mechanical class includes methods such as ear notching, ear tags,
branding, and tattoos. Nonetheless, as reported in (Shadduck and Golden, 2002;
Allen et al., 2008), the mechanical-based identification suffers from a number of
limitations. The ear notching method is not suitable for large-scale identification
systems. The ear tag methods (metal clips and plastic tags) are not so expensive,
but they may cause animal infections (Allen et al., 2008). The branding and
tattoo methods are not achieving a relatively good accuracy as in one herd, all
head of cattle are identically branded. Thus, they are not useful to uniquely
differentiate between various head of cattle in the same herd. In addition, these
methods take more time than other modern techniques (Shadduck and Golden,
2002).

Animal identification systems based on electronic methods (Marchant, 2002;
Shanahan et al., 2009) used Radio Frequency Identification (RFID) to identify

animals. These methods are mainly based on attaching two devices with the
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animals. One device contains a unique identification number and the other is the
reading device which reads and interprets animals code (the unique identification
number). When a code is scanned, the reading device sends it to a database for
future actions. The main limitation of this method is that the attached devices
may get lost, removed, or damaged (Marchant, 2002).

The third method is the biometric-based animal identification (Shadduck
and Golden, 2002; Jiménez-Gamero et al., 2006; Rusk et al., 2006; Corkery
et al., 2007; Allen et al., 2008; Barry et al., 2008; Gonzales Barron et al., 2008;
Rojas-Olivares et al., 2011; Adell et al., 2012). Similar to biometric-based hu-
man identification, a number of biometric animal have proposed to uniquely
identify animals. Retina-based identification systems (Rusk et al., 2006; Allen
et al., 2008; Barry et al., 2008; Gonzales Barron et al., 2008; Adell et al., 2012)
depend on the retinal image recognition (RIR) which utilizes the fact that the
retina vessels of each head of cattle is a unique identifier. DNA-based methods
(Jiménez-Gamero et al., 2006) were also proposed to identify meat products
that were produced from a given specific animal. Although this method, in case
of head of cattle, gives a higher identification rate than the other methods, it
is intrusive, and not cost-effective and it could last days or weeks to obtain the
identification result (Rusk et al., 2006). Other biometric-based methods include
animal facial recognition (Shadduck and Golden, 2002; Corkery et al., 2007) and
muzzle-based identification (Minagawa et al., 2002; Noviyanto and Arymurthy,
2012; Awad et al., 2013; Noviyanto and Arymurthy, 2013).

The muzzle-based animal identification is based on the fact that the muzzle
pattern or nose print of different animals of the same species are mostly unique
(Baranov et al., 1993; Gonzales Barron et al., 2008). Thus, it is concluded that
muzzle print is similar to a human’s fingerprint. The muzzle-based approach is
a very promising way for cattle identification as it can achieve a high accuracy
(e.g. 90.6% in (Noviyanto and Arymurthy, 2012)). Using this approach, there
is no need to attach or insert external parts within the animals. Moreover, it
complies with most countries legal rules.

In the muzzle-based identification system, extracting discriminative features
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from the muzzle images is a very important step. Local invariant features are
good ones as they are robust against many challenges such as noise, illumina-
tion, transformation, rotation, and occlusion. There are two methods to extract
the local invariant features: sparse descriptor (Lowe, 1999) and dense descriptor
(Chen et al., 2010). In the former method, the interest points (keypoints), are
first detected, then a local patch, around these keypoints, is constructed, and
finally invariant features are extracted. Scale Invariant Feature Transforma-
tion (SIFT) is considered one of the most well-known algorithms in the sparse
descriptor type (Lowe, 1999). In the dense descriptor-based methods, local
features are extracted from every pixel (pixel by pixel) over the input image.
Examples of this method include Local Binary Pattern (LBP) and Weber Local
Descriptor (WLD) (Ojala et al., 2002; Chen et al., 2010).

In this paper, a muzzle-based cattle identification approach was proposed.
This approach consists of three phases: feature extraction, feature reduction,
and classification. In the first phase, the WLD algorithm was used to extract
local features. In the second phase, the Linear Discriminant Analysis (LDA)
technique was used to reduce the features and further to discriminate between
different images of various head of cattle. In the classification phase, three
classifiers (AdaBoost, k-Nearest Neighbor (k-NN), and Fuzzy k-NN (Fk-NN))
were used to match between unknown cattle images and trained or labeled
images and then based on the highest accuracy results, the best classifier was
recommended for the cattle identification system.

The rest of the paper is organized as follows. Section 2 summarizes the re-
lated work of the cattle identification system based on information technology.
Section 3 gives overviews of the techniques and methods used for the proposed
approach while Section 4 describes our proposed approach in detail. Experimen-
tal results and discussion are introduced in Section 5 and Section 6, respectively.

Finally, conclusions are summarized in Section 7.
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2. Related Work

There are a number of the muzzle-based cattle identification approaches
(Minagawa et al., 2002; Noviyanto and Arymurthy, 2012; Awad et al., 2013;
Noviyanto and Arymurthy, 2013; Tharwat et al., 2014). These approaches used
different techniques to extract biometric features from muzzle images. Mina-
gawa et al. (2002) proposed the first cattle identification approach in which
the joint pixels of the grooves were extracted by applying the image processing
techniques, i.e. filtering, binary transforming, and thinning. The identification
was then achieved by matching the joint pixels of a cattle image to the others
or to itself. The experiments of their proposed approach were conducted on a
database of 43 head of cattle and achieved minimum matching scores at 12%
and maximum scores at 60%. The results also showed that the identification
accuracy was around 30%.

The Speed Up Robust Features (SURF) and its variant (U-SURF) feature ex-
traction techniques were used in (Noviyanto and Arymurthy, 2012). Noviyanto
et al. used 15 muzzle print images in their experimental scenarios (10 images
were used in the training phase, and five images were used in the testing phase).
The SURF-based method was found superior to U-SURF-based one as the for-
mer achieved 90% identification accuracy against rotation conditions.

Awad et al. (2013) used SIFT technique to detect the interesting points of
muzzle images for the purpose of cattle identification. To improve the robust-
ness of their proposed approach, they applied the RANdom SAmple Consensus
(RANSAQ) algorithm along with the output of SIFT technique. In their exper-
iment, they used six images for each head of cattle and in total their database
includes 90 images (6 x 15 = 90). They achieved 93.3% accuracy of cattle
identification.

Also, Noviyanto and Arymurthy (2013) applied the SIFT technique to muz-
zle patterns lifted on paper in order to achieve cattle identification. To improve
the identification performance of their system, they also proposed a new match-

ing refinement technique based on the keypoint of the orientation information.
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They tested the proposed system using a database composed of 160 muzzle im-
ages left on papers and taken from 20 head of cattle. The achieved accuracy
results using SIFT only were equal to 0.0167 Equal Error Rate (EER) whereas
using SIFT along with the proposed new matching refinement technique mini-
mized the EER to be 0.0028.

Tharwat et al. (2014) used the LBP technique for the feature extraction
phase of a muzzle-based cattle identification approach. The LBP was used as
it extracts robust texture features which are invariant to rotation and occlusion
of the images. They also used LDA to (a) address LBP high dimensionality
problem, and (b) discriminate between different classes, thus improving the
accuracy of their proposed system. For the identification phase, they tested
four different classifiers (Nearest Neighbor, k-Nearest Neighbor (k-NN), Naive
Bayes, and Support Vector Machine (SVM)). The results showed that their

proposed approach achieved 99.5% identification accuracy.

3. Preliminaries

This section gives overviews of the techniques, algorithms, and methods used

in the design of the proposed approach.

3.1. Weber Local Descriptor (WLD)

The WLD technique is an image descriptor technique which describes an
image as a histogram of gradient orientations and differential excitations (Chen
et al., 2010). It is originally inspired by Weber’s Law where Ernst Weber, in the
19*" century, observed that the ratio between an increment threshold and the

background intensity is constant and this can be formally expressed as follows:

AT
i 1
; M
where AT represents the increment threshold, I refers to the initial intensity or
an image background, and k denotes the constant value even if I is changing.

The fraction % is known as Weber law or Weber fraction (Chen et al., 2010).
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In WLD algorithm, features are extracted from each pixel in an image. In
general, WLD algorithm consists of three steps, finding differential excitations,
gradient orientations, and building the histogram. For each pixel in the input
image, the differential excitation is first computed and the gradient orientation
is then calculated to extract local features. Finally, a WLD histogram is built by
combining differential excitation and gradient orientation for each pixel (Chen

et al., 2010). These steps are further explained below.

3.1.1. Differential Excitation (€):

A differential excitation (§) of a pixel is calculated as follows:

1. Calculating the difference between the pixel . (the center pixel) and its

neighbors using Equation (2) (Chen et al., 2010).

p—1 p—1
V0= (A = (i — ) (2)
i=0 i=0
where z;(i = 0,1,...,p — 1) represents the intensity of the i'" neighbors

of x. and p refers to the number of neighbors. An illustrative example,
inspired by the one in (Chen et al., 2010), is given in Figure 1 to show
how the differential excitation is calculated. As shown in the figure, there
are eight neighbors to x., where p = 8. To calculate the differential

excitation and the orientation, four filters, foo, fo1, fi0, and f11 are used

to calculate 199, 91 110 and vl respectively, where, 190 represents the

s 278 178 )

VOl

difference between . and its neighbors as shown in Equation (2), v

= T,

10

Vg

= x5 — 1, and v} = 27 — 23,
2. Computing the ratio between the differences, °, and the intensity of the

current pixel, v9* = z.. This can be achieved using Equation (3).
Gratio(mc) = Vgo/ygl (3)

3. Applying the arc-tangent function on Gy qti0(.) to get the differential ex-

citation of (z.), as shown in Equation (4).



p—1
&(xe) = Garctan|Gratio(c)] = arctan [I/go/ljgl} = arctan [ <$l$C xc)]

1=0
(4)
Input Image
(%o) | (x1)] (x2)
(x7) | (%) | (¥s)
(%) | (x5)| (%)
20 | 30| 50
70 [ 50 | 45
86 | 66 | 92
Filtering
fOO f01 f10 f11
|+ o[o0fo 0|-1]0 olofo
+1 | -8 +1 0]|+1]0 0]0]0 +1| 0]
|+ |+ 0]0]0 0]+1]0 010710
J | i !
Vo2 30-20+0-5+42+16+36+20=59 Vs~ '=x.=50 V110=66-30=36 vs''=70-45=25
[Excitation (§)=arctan (vs°°/vs°1)j E)rientation (@y)=arctan (vs”/vs“g

! !

[ Calculate WLD Histogram j

Figure 1: Tllustration of the computation of the WLD algorithm.

1.2 3.1.2. Orientation (¢¢):

183 The orientation of a pixel (z.) is computed as follows:

1. Computing the gradient orientation of the current pixel, x., by calculating
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the changes in the horizontal and vertical directions as follows:

v x7 — T3
0(z.) = arctan <u10> = arctan <> (5)

s 5 — T1

2. Quantizing the gradient orientation by transforming it into 7' dominant

orientation. This is achieved by first mapping 6 to 6 as follows:

0 = arctan2(v', v1%) + 7 (6)
where
0, vl >0and vl >0
7—0, vl >0andv!®<0
arctan2(vit, v10) = 3 ° (7)
0—m, v <0andv!® <0
-0, vt <0and vl >0

where 0 € [-7/2,7/2] and 6 € [0, 2x].
3. Finally, the quantization function is calculated as in Equation (8) (Chen

et al., 2010).

b0 = 1,(6) = %w _and ¢ = mod QQWH/T + 0.5J ,T> (8)

3.1.3. WLD Histogram:

The WLD histogram is computed, as shown in Figure (1), using the values
of both the Differential Excitation (§;) and Orientation (¢;) at each pixel. In
other words, this histogram consists of (§;, ¢¢), j = 0,1,...,N —1 and t =
0,1,...,T—1, where N represents the dimensionality of an image and T" denotes
the number of the dominant orientation. The steps of WLD algorithm are

summarized in Algorithm 1.

3.2. Linear Discriminant Analysis (LDA)

LDA is a well-known dimensionality reduction technique in machine learning
applications. LDA aims to find a linear combination of features which linearly

separates two or more classes. Formally, LDA attempts to find a transformation
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Algorithm 1 : WLD Algorithm

1: Initialize the size of the patch or sub-region, (e.g. 3 x 3,5 x5, 7 X 7, etc.).
2: Divide the images into patches or sub-regions.

3: Compute the Differential Excitation () as follows:

4: for all pixels in an image do

5:  Compute the difference between the center or current pixel (z.) and all

its surrounding pixels as follows, 1% = P74 (Az;) = S0 (2 — 2.).
00

6: Compute the ratio between 1% and z. as follows, Gratio(zc) = Zm =
S (32)

7. The final function will be as follows, &(x.) = arctan(Gratio) =
arctan [Zf;ol (Ax—f)} = arctan [Zf;ol (%)}

8: end for

9: Compute Gradient Orientation (6).

10: for all pixels in an image do
11: ~ Compute the changes in horizontal and vertical directions of the current

11
pixel (z.) as follows, 6(z.) = arctan |:ZTO:| = arctan [ﬁ}

12: Now 6 € [fg,g}, to get more texture information, # mapped to

0 € [0,2n], so 6 will be as follows, § = arctan2(v!', %) + 7, where

arctan2 (v, v19) is calculated as in Equation (7).
13:  Compute the quantization function as follows, ¢y = (2t/T).
14: end for
15: Compute WLD histogram (WLD(;,¢:)), where j = 0,1,...,N — 1,t =

0,1,...,T — 1.

matrix, W, that maximizes the Fisher’s formula, J(W) = Vvﬁ%

, where
Sy = 25:1 Zi\f:;l (2 — ;) (@) — 11;)T represents the within-class scatter matrix,
where ;7 is the i*" sample of class 7, 5 is the mean of class j, c is the number of
classes, and N; is the number of samples in class j, S, = Z;:l(,uj —p)(pj— )™
is the between-classes scatter matrix, where u refers to the mean of all classes,
and W is the transformation matrix of LDA (Roth and Steinhage, 1999). The

solution of Fisher’s formula is a set of eigenvectors (V') and eigenvalues (A) of W

10
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and the LDA space consists of the eigenvectors which have higher eigenvalues.
In our proposed approach, LDA was used to discriminate between different
classes, where a class represents a head of cattle and each class consists of seven

images (samples).

3.3. Classifiers

In the proposed approach, described in Section 4, a number of classifiers
were used to achieve the identification of cattle. A brief summary about these

classifiers is given below.

3.3.1. AdaBoost

AdaBoost (Adaptive Boosting) is a classifier ensemble algorithm consisting
of a number of weak learners. A weak learner (classifier) is a simple, fast, and
easy to implement classifier such as single level decision tree or simple neural
networks (Kuncheva, 2014). The main idea of an ensemble classifier is to in-
dividually train its weak learners and then combine their decisions/predictions
to determine a final decision. In other words, in an ensemble classifier, e.g.
AdaBoost, a large margin classification is produced by iteratively combining a

small number of the weighted-weak learners to construct a strong classifier.

A brief description of the AdaBoost classifier is as follows. As shown in Al-
gorithm 2, the parameters of AdaBoost classifier are first initialized. As shown
in the algorithm, the weights of all samples (w) are equal and they will be ad-
justed for each iteration. For each iteration (t), the training samples are selected
based on these weights (w), and these samples are used to build the weak learner
(Cy). The resubstitution error rate? of the current weak learner (e;), produced
from the training data, is then calculated. If the error rate is more than 0.5,

the weights (w) are reinitialized and the error rate is recalculated again. The

2Tn other words, it is the estimation of error based on the difference between the predicted

values and the true labels of the training set.

11



Algorithm 2 : AdaBoost (Adaptive Boosting) Classifier

1: Given a training set X = (z1,41),...,(ZN,yn), where y; represents the
label of sample x; € X and N denotes the total number of samples in the
training set.

2: Initialize the parameters of AdaBoost classifier, the total number of itera-
tions (T'), type of weak learners, learning rate (\), the weights w§ of each
training sample, where w’ represents the weights of the i*" iteration, and

i

w' = [wi, ..., wy],w} € [0,1], Zévzl w® = 1. Usually the weights are initial-

J

ized to be equal as follows, wjl =L 4j=1,...,N.

N
3: fort=1to T do
4:  Take a sample D; from X using distribution w?®.

5. Use the distribution D; to train the weak learner (C;) with a minimum er-

ror (€;), where ¢, = Zjvzl whl%, and I = 1if Oy misclassifies z;; otherwise,
t_
It =0,

6: while ¢, >= 0.5 do

7: Reinitialize the weights to w} = +.i=1,...,N.

8: Recalculate ¢;.

9: end while

€t

10:  Compute the weight of each weak learner («;) as follow, a; = =

11:  Update the weights of the training samples to be used in the next iteration

(t+ 1) as follows:

¢ (=13)

w;o
’UJ§+1: NJ tt (1—1t) > j:172a"'7N (9)
Dimwiag

12: end for

13: Final AdaBoost classifier: Hfina = Zthl aCy().

12
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weight of current weak learner, (o € (0,1)), is then calculated. As shown in
the algorithm (step number nine), increasing the error rate increases the weight
of the weak learner (a;). The weights of the training samples are then updated
at the end of each iteration to be used in the next iteration (this can be seen at
the 10" step of the algorithm). As shown in Equation (9), if the j** sample is
misclassified then % = 1; otherwise I} = 0. Since, the weight of the weal learner
(;) is less than one, thus the new weights (w§+1) of the correctly classified
samples will be decreased; otherwise the weights will be increased. In each iter-
ation, the AdaBoost will focus on the misclassified patterns and the procedure
is repeated for many iterations until the performance is satisfied (Kuncheva,
2014).

To classify an unknown sample (25 ), all weak learners of the AdaBoost clas-

sifier are used as shown in Equation (10). The score of each class is calculated

and then assigns the class that has a maximum score to the unknown sample.

pe= Y In(—),Vt=12..T (10)

Ct(Trest)=ws

where T represents the maximum number (a positive integer) of the iterations
and it ranges from a few dozen to a few thousand, Cy(xies:) denotes the weak
learner, p; represents the score of a class wy, and oy refers to the weight of the
t*" weak learner.

The performance of the AdaBoost algorithm is controlled by a parameter
called Learning rate, ()\), or step size which is a numeric value ranged from 0 to
1. This parameter determines how fast or slow the algorithm will move towards
the optimal solution. If ) is large, the algorithm accuracy may oscillate around
the optimal solution without reaching to it. If A is too small, there is a need

for many iterations to converge to the optimal solution. More discussions about

AdaBoost parameters are given in Section 5.

13
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Figure 2: A block diagram of the proposed cattle identification system using muzzle print

images.

3.3.2. Other Classifiers

k-Nearest Neighbor (Fix and Hodges Jr, 1951) and Fuzzy-k-NN (Keller et al.,
1985) were also used to test the performance of the AdaBoost algorithm. The
k-Nearest Neighbor (k-NN) is one of the oldest and simplest methods for pat-
tern classification algorithms. It was first introduced by Fix and Hodges Jr
(1951). The performance of the k-NN algorithm crucially depends on the dis-
tance metric to identify the nearest neighbors. Thus, the distance metric must
be carefully chosen according to the problem being solved. The fuzzy k-NN (Fk-
NN) classifier (Keller et al., 1985) is based on assigning a membership value to
an unlabeled pattern. This value provides the system with information to de-
termine a more accurate decision. Thus, the FE-NN assigns a class membership

to a test pattern rather than assigning the vector to a particular class.

4. Proposed Cattle Identification System

This section describes the proposed approach in detail. Generally speaking,

the approach depends on using the WLD algorithm to extract robust features

14
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and then using the AdaBoost classifier to recognize the input muzzle print image
of a given cattle. The approach, as illustrated in Figure 2, generally consists
of three phases: feature extraction, feature reduction, and classification. These

phases are explained below.

4.1. Feature Extraction Phase

The WLD algorithm, given in Algorithm 1 was adapted to achieve the feature
extraction phase of the proposed approach. As shown in Figure 2, WLD was
used to extract the features from all the training images in the training phase
to construct a feature matrix. In the testing phase, the WLD also applied to
extract the features from each an unknown or a test image. The extracted

features are represented as a vector.

4.2. Feature Reduction Phase

The output of the feature extraction phase is usually a high dimension
features vector (see Table 1). To use these features vectors in the classifica-
tion/identification phase, there will be a high computational cost and time-
consuming process, thus affecting the performance of the proposed approach.
To address these issues, LDA algorithm, described in Section (3.2), was applied
on the output of the feature extraction phase. In other words, the LDA was
applied to the feature matrix which computed in the training phase to find the
LDA space that reduces the dimension of the training data and separate differ-
ent classes (head of cattle in this case). The feature vector of an unknown image
was then projected on the LDA space to reduce its dimension before starting

the classification phase.

4.3. Classification Phase

Finally, in the classification phase, the proposed system gives a decision
about whether an input (i.e. unknown) muzzle image is for cattle previously
stored in the database of the system or not. Generally, machine learning-based

classifiers use a set of features in order to differentiate each object within a

15
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database. In this paper, a supervised learning classifier (AdaBoost) was used.
As shown in the algorithm, the feature matrix, after projection onto the LDA
space, and the labels of the training samples represent the input to the AdaBoost
classifier. The AdaBoost classifier was then built by training one weak learner
in each iteration and calculating the weight of that weak learner.

To automatically identify head of cattle from its muzzle image (i.e. an
unknown cattle), all weak learners were used to classify the unknown image.
The weighted voting method was then used to calculate the score of each class,
and assign the class with the maximum score to the unknown image. Hence,
the image is said to be identified. Otherwise, if all scores were lower than a

threshold, then the image is said to be not identified.

5. Experimental Results

5.1. Dataset Description

Figure 3: A sample of cattle images with different orientation of the same cattle.

The proposed cattle identification approach was evaluated using 217 gray
level muzzle print images collected from 31 head of cattle (7 images for each
head of cattle). These images were collected under different transformations:
illumination, rotation, quality levels and image partiality. The size of all these
images is 300 x 400 pixels, Figure 3 shows examples of these images. Moreover,
these images were used without performing any preprocessing operation such as
gray scaling, cropping, histogram equalization, etc. This was done to evaluate
the robustness of the feature extraction algorithm. The dataset was randomly
divided into two sets: training and testing. During the training phase, for each

head of cattle, the number of training images was increased from 1, 2, 3, 4, 5,
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and 6 muzzle images whereas in the testing phase the remaining images (one

muzzle image) of this head of cattle was used.

5.2. Ezperiment Setup

The experiments in this paper were conducted using a PC with Intel(R)
Core(TM) i5-2400 CPU @ 3.10 GHz, and 4.00 GB RAM. The Matlab platform
was used and it was run under windows 32-bit operating system. Prior to
evaluating the proposed approach, we run a number of pre-experiments to tune
up the parameters of all algorithms that are used in the proposed approach.
The following subsections explain the tuning process of these parameters and

their impact on the results presented in Section 5.

5.2.1. Parameters Tuning

In our approach, there are different parameters affecting the overall results.
In this section, an overview of the parameters configured during the different
phases of our approach is given. This includes WLD parameters used in the
feature extraction phase, and AdaBoost, k-NN, and Fk-NN classifiers used in

the classification phase.

5.2.1.1. WLD Parameters. The patch size is a very important parameter
affecting the accuracy and CPU time of the WLD algorithm. A number of ex-
periments, using different patch sizes for WLD, were conducted to investigate
the impact of the WLD patch size on the cattle identification rate. Figure 4
shows WLD features extract using different patch size. The features extracted
from each experiment were then used for the classification using the AdaBoost,
k-NN, and FE-NN classifiers to evaluate the identification rate. Table 1 sum-
marizes the identification rate and the CPU time obtained when different patch

sizes were used.

5.2.1.2. AdaBoost Parameters. The tuning of AdaBoost parameters (weak
learners type, number of weak learners (iterations), and learning rate (\)) used

in our proposed approach are explaining in this section.
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Figure 4: WLD features using different patch sizes, (a) 3 x 3, (b) 5 x5, {(¢) 7x 7, {(d) 9 x 9,
() 11 x 11, (f) 13 x 13.

Table 1: Length of feature vector, CPU time, and identification rates (in %) of head of cattle

using WLD features using different training images and different sizes’ of sub-images.

No. of Training Images Length of CPU
Patch size
6 5 4 3 2 1 Feature Vector | Time (Secs)
3x3 96.8 | 96.8 | 94.6 | 92.7 | 929 | 80.1 119301 0.54934
5x5 100 | 96.8 | 98.9 | 92.7 | 93.6 | 85.5 118604 0.5437
77 100 | 98.4 | 97.9 | 92.7 | 89.7 | T4.7 117909 0.524767
9%x9 93.6 | 93.6 | 92.7 | 92.7 | 81.3 | 84.4 117216 0.5245
11 x 11 96.7 | 96.8 | 93.6 | 90.3 | 88.4 71 116525 0.521
13 x 13 93.6 | 96.8 | 89.3 | 90.3 | 86.5 | 83.3 115836 0.5153

Bold fonts indicate best identification rate within each number of training images.

e Type of Weak Learners: To evaluate the effect of this parameter on the
results of our approach, a number of experiments were conducted using two
types of weak learners: Tree, and Discriminant. As shown in Figure 5, the
results of these experiments showed that the error rate of the Discriminant

learner is less than that of the Tree learner. These results were obtained
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357 when A = 0.1 (default value), and the number of weak learners was 200.
358 Also, the results presented in Table 2 shows that the Discriminant learner
350 reached to the minimum error more faster than the Tree learner did.

Table 2: A comparison between the CPU time of the AdaBoost classifier when using Discrim-

inant and Tree learner where (A)=0.1, and the number of weak learners =200.

Type of Weak Learner | CPU Time (Secs)
Discriminant 0.20605
Tree 0.86898

0.8 ‘

Tree
Discriminant

0.7

0.6 q

0.5 7

0.4t 1

0.3 q

Resubstitution Error

0.2 q

0.1 \‘ ]

0
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Figure 5: Resubstitution error curves of AdaBoost classifier using two types of weak learners,

Tree and Discriminant, where the learning rate=0.1.

360 e Number of Weak Learners: To tune this parameter, a number of ex-

361 periments were run to investigate its effect on the resubstitution error®.

3The resubstitution error is the error rate obtained from running an algorithm on the
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Figure 6: Resubstitution error curves of AdaBoost classifier using different numbers of weak

learners (iterations), at learning rate=0.1, and the type of learner is Decision Tree.

362 The results of these experiments are shown in Figure 6 from which it can
363 be seen that, when choosing 50, 100, 200 and 300 weak learners, the re-
362 substitution error is approximately 0.19, 0.16, 0.13, and 0.12, respectively.
365 These results were obtained when the learning rate=0.1 and the type of
366 the weak learner was the Tree learner. It can also be noticed that, when
367 the number of the weak learners was increased, the accuracy was also in-
368 creased until it reached an extent at which increasing the number of the
360 learners did not affect the accuracy. On the contrary, the CPU usage time
370 was increased without achieving noticeable progress in the accuracy (this
371 is summarized in Table 3).

372 From Figure 6 and Table 3, it can be concluded that: (1) when using 200

training data
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373 and 300 weak learners for the AdaBoost classifier, the difference of the

374 error rate is small, (2) the error rate is approximately stable starting from
375 200 Tree learners to 300 Tree learners, and (3) the running time, using
376 300 iterations, is higher than that of using 200 iterations.

Table 3: The CPU time of the AdaBoost classifier when using a different number of iterations,

when the weak learner is Tree and (\)=0.1.

Number of Weak Learners | Time (Secs)

50 Weak Learners 0.2364

100 Weak Learners 0.44583

200 Weak Learners 0.9245

300 Weak Learners 1.36194
377 e Learning Rate (\): To tune this parameter, some experiments were
378 conducted at different values of A while the other parameters were Tree
379 learner, and the number of the iterations = 200. The results of these
380 experiments are illustrated in Figure 7. This figure shows that the Ad-
381 aBoost classifier with low learning rates (0.05 and 0.01) resulted in high
382 error values. The reason behind this is that the classifier with a low learn-
383 ing rate takes more iterations to reach the optimal solution. Moreover, it
384 can be remarked that increasing the learning rate (0.5 and 0.8) made the
385 error rate fluctuated up and down more than other learning rates until it
386 reached to the minimum error rate and the classifier, in this case, maybe
387 not stable and will not reach to the minimum error. Moreover, Table 4
388 shows that the CPU time, taken by the AdaBoost classifier with differ-
380 ent learning rates, was approximately the same when the same number of
390 iterations was used.

o1 5.2.1.8. k-NN and Fk-NN Parameters. Both of k-NN and Fk-NN classi-
302 fiers may have different values of k. This value is always odd value to enable the
303 voting to be smaller than the number of training images in each class (head of

39a cattle). For example, if the number of the training images of each class is three,
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Figure 7: Resubstitution error curves of AdaBoost classifier when using different learning

rates, Decision Tree learner, and the number of iterations are 200.

Table 4: The CPU time of AdaBoost classifier when using different learning rates, while Tree

learner and 200 iterations were used.

Learning Rate (\) | Time (Secs)
A=10.8 0.8933
A=0.5 0.8984
A=0.2 0.8772
A=0.1 0.8328
A=0.05 0.88179
A=0.01 0.856

thus it does not make sense to set £ =7. If this happens, the k-NN classifier will
select the nearest seven objects and make a vote on it to determine the class
label of an unknown pattern, but this is not true as there are four objects out

of seven are wrong. To investigate this, some experiments were run to check the
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accuracy and the CPU time under different values of k. Table 5 summarizes the
results of these experiments. It can be noticed that the accuracy of k-NN and
FE-NN classifiers were the same and it decreased when the value of k decreased.
In addition, when increasing k, the CPU time were slightly increased in both

classifiers.

Table 5: Recognition rate and CPU time of k-NN and Fk-NN classifiers using different &

values and using six training images.

Recognition CPU Time
Classifier Rate (in %) (Secs)

k=1 | k=3 | k=5 | k=1 k=3 | k=5
E-NN 96.77 | 100 | 100 | 0.0749 | 0.0779 | 0.0814
Fk-NN | 96.77 | 100 | 100 | 0.07818 | 0.0818 | 0.085

5.8. Ezperimental Scenarios and Their Results

Three experimental scenarios were designed to evaluate our proposed ap-
proach. The aim of the first scenario was to investigate the accuracy of our
approach when changing the number of the training images. The second and
the third scenarios were designed to test the robustness of the approach against
rotation and occlusion, respectively. The second and third scenarios were con-
sidered because of the following reason. Firstly, as reported in (Dahlborn et al.,
2013), the animals need to be restrained when mechanical or electrical methods
are used, while using biometric-based identification no need to restrain animals.
Secondly, unlike the human case, the animals are not fully controlled, thus the
captured images may be rotated in different angles or partially occluded. Con-
sidering these issues, the proposed approach investigated their potential effective
on the accuracy of the cattle identification. In all experiments, three classifiers,
AdaBoost, k-NN, and Fk-NN, have been applied to the features extracted us-
ing the WLD algorithm. The AdaBoost was used with parameters: learning
rate=0.1, Discriminant learners = 200, and both k-NN and Fk-NN were used

with the parameter k=5.
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In the first scenario, AdaBoost, k-NN, and Fk-NN, were used to (1) under-
stand the effect of changing the number of training data on the identification
accuracy and (2) evaluate the performance stability over the standardized data.
The number of training images was ranged from one to six images. Table 6 and
Figure 8 summarize the identification rate and CPU time obtained from this
scenario.

Table 6: Identification rates (in %) and CPU time of the proposed approach using AdaBoost,

k-NN, Fk-NN classifiers. The rate was calculated for different number of training images while

the CPU time was computed when four training images were used.

No. of Training Images CPU Time (Secs) using
Classifiers
6 5 4 3 2 1 (four Training Images)
AdaBoost | 100 | 96.8 | 98.9 | 92.7 | 93.6 | 85.5 0.27
Fk-NN 100 | 96.8 | 97.9 | 92.7 | 92.4 | 85.5 0.04781
k-NN 100 | 95.2 | 96.8 | 92.7 | 91.2 | 84.3 0.27

In the second scenario, testing against image rotation, the training and test-
ings images consist of four and three images, respectively. The testing images
were rotated in the following angles: (0°, 15°, 30°, 45°, —15°, —30°, —45°) as
shown in Figure 9. The rotated testing images were matched with the training
images for the identification. Table 7 summarizes the results obtained from this
scenario.

In the third experiment scenario, testing against the image occlusion, the
used images were four and three for the training and the testing, respectively.
As depicted in Figure 10, the testing images were first occluded, vertically and
horizontally with different percentages, and used for the identification. Table 7

summarizes the results obtained from this scenario.

6. Discussion

This section introduces a reasoning and discussion about the results pre-

sented in Section 5.
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Figure 8: ROC curves for cattle identification based on AdaBoost, Fk-NN, and k-NN classifiers

using four training images.

Table 7: Accuracy (in %) of cattle identification when muzzle print images were rotated in

different angles and occluded in different percentages.

. Percentage
Angles of Rotation (°)
of Occlusion (%)
Classifier
Vertical Horizontal
0 15 30 45 | -15 | -30 | -45
10 20 10 20
AdaBoost | 98.9 | 95.7 | 93.6 | 89.2 | 97.6 | 94.6 | 92.5 | 96.8 | 94.69 | 95.7 | 93.6
kE-NN 96.8 | 94.6 | 92.5 | 8 | 96.8 | 94.6 | 88.2 | 94.6 | 91.4 | 94.6 | 92.5
FE-NN 979 | 94.6 | 93.6 | 88.2 | 95.7 | 94.6 | 89.3 | 94.6 | 92.5 | 95.7 | 92.5
a1 6.1. Parameter Tuning
482 As described in Section 5.2, a number of experiments were run to determine

a3 the best parameters’ values for all the techniques used in our approach. For the
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Figure 10: A sample of occluded muzzle print images, the top row (a and b) represents the

vertical occlusion, while the bottom row (¢ and d) represents the horizontal occlusion.

WLD technique, based on the results described in Table 1, it was found that
the most suitable size for the patch parameter was 7 x 7. This is because it
allowed our approach to achieve an accuracy rate significantly better than the
other sizes. Moreover, it can be noticed that increasing the patch size led to
decreasing the length of the feature vectors, consequently decreasing the CPU
time for classification. Thus, the 7 x 7 patch size did not take more CPU time

comparing with the other patch sizes (e.g. 3 x 3 and 5 x 5).

Also, the patch size was affecting the length of produced features vectors.
When it was changed from 3 x 3 to 13 x 13, as can be seen in Table 1, the length
of the vectors ranged from 119301 to 115836 and this caused a high-dimension

problem. Hence, the LDA was used to reduce such high dimensionality and
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further extracts more discriminative features.

For the AdaBoost classifier, the experiments, conducted to determine its
best parameters for the accuracy and the CUP time (see Section 5.2.1), showed
the following remarks. Firstly, the Discriminant weak learner was better than
Tree weak learner as the former was faster than the latter in reaching the min-
imum resubstitution error. Secondly, the best accuracy rate and the least CPU
time taken were achieved when the number of weak learners was 200 learners.
Thirdly, when the learning rate was decreased, more CPU time was taken to
reach the optimal solution. Also, when the learning rate was increased, the error
was ranged from up to down and the best learning rate was =0.1. For the k-NN
and FE-NN classifiers, as can be seen from the results described in Section 5.2.1,
when the k£ parameter was changed from value to another, it did not affect the

CPU time and the best accuracy was achieved when k= 3 and k= 5.

6.2. Ezperiment Scenarios Discussion

From the results of the first scenario, summarized in Table 6 and depicted in
Figure 8, the following remarks can be drawn. Firstly, the features extracted by
the WLD algorithm enabled our approach to achieve a very good identification
rate using the three used classifiers. Secondly, using more training images led to
a high recognition rate. This is very important to avoid the problem of a high
variance®. As reported in (Brain et al., 1999), using more training images will
decrease the variance, hence decreases the overfitting. Thirdly, the AdaBoost
classifier achieved the best accuracy rate comparing with the k-NN and Fk-
NN classifiers. Nonetheless, the AdaBoost took the highest CPU time which
is not a problem nowadays due to the advance in the high-speed computers.
The AdaBoost classifier achieved the highest accuracy because of two main
reasons. (1) as mentioned in Section 3.3.1, the AdaBoost is an ensemble classifier
consisting of other weak learners. Combining the outputs of all these classifiers

may help to increase the accuracy while £-NN and FE-NN are single classifiers.

4The variance is the error from sensitivity to small variations in training samples
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(2) the AdaBoost classifier assigns high weights to the samples which are critical
or misclassified during the iterations of AdaBoost classifier.

From the results of the second scenario, see Table 7, it can be claimed that
our proposed approach is robust against image rotation. This is because when
the images were rotated in different angles, the identification rate, achieved by
the three classifiers, did not go below 86% and the AdaBoost classifier achieved
the best recognition rate in all angles comparing with the other two classifiers.

Also, from the experimental results obtained from the third scenario and
summarized in Table 7, it is proven that our approach is robust against image
occlusion (10% and 20 % of the original image). Although this occlusion, the
recognition rate of all the used classifiers was above 91%. Under 20% occlusion
of the test images, horizontally or vertically, the best accuracy was achieved by
the AdaBoost classifier. On the other hand, the k-NN classifier has given the

lowest accuracy rate.

6.5. Assessment of the Results

To assess the results obtained by our proposed approach, four benchmark as-
sessment methods (sensitivity and specificity, accuracy rate, Area Under Curve
(AUC), and Equal Error Rate (EER)) were used. The results of these assess-
ments are summarized in Table 8. From this table, the following remarks can
be drawn. Firstly, as the sensitivity (i.e. True Positive Rate (TPR)) of the
AdaBoost was better than both of the k-NN and Fk-NN classifiers, hence, the
AdaBoost classifier could be used to correctly identify head of cattle. Secondly,
both of the AdaBoost and Fk-NN classifiers achieved specificity (True Nega-
tive Rate (TNR)) better than that of the k-NN classifier. This means that
the AdaBoost and Fk-NN are robust against unauthorized cattle identification.
Thirdly, based on the value of the sensitivity and specificity of the three clas-
sifiers, see Table 8, and the AUC shown in Figure 8, the AdaBoost classifier
along with the WLD is better to be used for cattle identification. Last but not
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least, based on the EER® results given in Table 8, it can be concluded that the
AdaBoost is a good classifier for cattle identification as it achieved the minimum

EER compared with k-NN and F£-NN classifiers.

Table 8: A comparison between AdaBoost, Fk-NN, and k-NN classifiers based on different

assessment methods (four training images were used).

Assessment Methods AdaBoost | FE-NN | k-INN

Accuracy (AC) (in %) 98.9 97.9 96.8
Sensitivity (TPR) 0.9841 0.9683 | 0.9683
Specificity (TNR) 0.9836 0.9836 | 0.9672

Area Under Curve (AUC) 0.983 0.976 0.969

Equal Error Rate (EER) 0.0035 0.0046 | 0.0073

6.4. Performance Analysis

The performance of the proposed approach was evaluated using two ways:
the CPU time to get the results and a comparison with the most related work.

For the CPU time, from Table 6, it can be noticed that the AdaBoost took
the highest CPU time. This is due to the fact that this algorithm needs to run
200 weak learners on each cattle image and then combines the results of these
weak learners to get the final result. However, as discussed above, the best
results were obtained when the AdaBoost was used. In addition, thanks to the
advance in the parallel computing and the super-computing, this issue could be
addressed in the real-time implementation.

To further prove that our approach is better than other related work, as
illustrated in Table 9, a comparison with the most related work (Minagawa
et al., 2002; Noviyanto and Arymurthy, 2012; Awad et al., 2013) was conducted.
From this table, it can be remarked that although our approach used the largest

dataset (217 images), at the same time it achieved the best accuracy results.

5The EER represents the failure rate when FPR and TNR are approximately the same
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This is because of two reasons: the use of the WLD algorithm which extracts
discriminative features (WLD algorithm is discussed in more detail in Section

3.1) and the strong AdaBoost classifier.

Table 9: A comparison between our proposed cattle identification method and some of state-
of-the-art methods in terms of, identification accuracy, size of database images, and feature

extraction methods.

Feature Extraction
Authors Database Images Results
Method
(Minagawa et al., 2002) Joint Pixels 43 images 30%
(Noviyanto and Arymurthy, 2012) SURF 15 images for each animal 90%
(Awad et al., 2013) SIFT 15 animals (6 images each) | 93.3%
Our Proposed Approach WLD 31 animals (7 images each) 99%

6.4.1. WLD vs LBP vs SIFT

As mentioned in Section 1, there are two main methods to extract local
invariant features: dense and sparse methods. To justify why WLD was chosen
as a feature extraction technique in this work, a comparison between two dense
methods: LBP and WLD, is presented. Another comparison between WLD
and SIFT is conducted to show the difference between the dense and sparse
methods.

WLD vs LBP: The WLD is different from the LBP in three ways. Firstly,
the WLD is more robust than LBP against image rotation. This is because
the LBP algorithm firstly builds statistics on the local patterns while the WLD
firstly computes the salient patterns and then builds statistics on these salient
patterns with the gradient orientation of the current pixel. In other words,
the WLD algorithm not only concentrates on the position or statistics of the
patterns (differential excitation), but also computes the orientation gradient of
each pixel and then combines the differential excitation and the orientation into
a WLD histogram. On the other hand, the LBP calculates only statistics about
the local patterns without taking orientation into its consideration. Hence, the

WLD is more robust against rotation than LBP. Secondly, WLD is more efficient
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than LBP against noisy pixels and illumination changes. This occurs because
the LBP codes are calculated by comparing the pixels with their surrounding
pixels, while, in the WLD, the ratio of the intensity differences to the current
pixel is calculated as in Equation (4). For this reason, WLD reduces the influ-
ence of noisy pixels as well as the effects of illumination change as reported in
(Chen et al., 2010). Thirdly, the time complexity of LBP is simpler than WLD.
As reported in (Chen et al., 2010), the time complexity for WLD is O(Cymn)
while the time complexity for LBP is O(Comn), where m and n are the di-
mensions of the image, C; is a constant and it represents the computation of
each pixel in WLD, and Cs is a constant and it represents the computation of
each pixel in LBP. The computation of C; in WLD consists of several additions,
divisions, and filtering with arctangent function, while Cs in LBP consists of
only several additions. Hence, LBP is a little faster than WLD. However, using
the supercomputer and the parallel computing, the time complexity is not a
problem as long as WLD could give a high accuracy.

WLD vs SIFT: The WLD is better than the SIFT in three ways. Firstly,
WLD is robust than SIFT to capture local features. This is because SIFT al-
gorithm extracts the features around the selected keypoints while, in the WLD
algorithm, the features are extracted from each pixel. This means that WLD
is able to capture more local salient features and identify small objects and
patterns (i.e. more efficient). Secondly, WLD has only the patch size parame-
ter that needs to be tuned to improve the robustness of WLD. While in SIFT
algorithm, there are many parameters (peak threshold, the number of angles,
and the number of bins, levels of scale space) which need to be tuned (Lowe,
1999; Noviyanto and Arymurthy, 2013). Thirdly, the time complexity of WLD
is more efficient than SIFT. As reported in (Chen et al., 2010), the time com-
plexity for SIFT is computed using, O(Cy(af)mn + Cak; + Cskast + Cykast),
where C7, Cy, C3, and Cy represent four constants, k; is the number of keypoint

candidates, ko is the number of keypoints, s and ¢ refer to the size of the support
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regions for each keypoint, and o and 3 are the levels of octave & and scales of
each octave, respectively. Comparing the time complexity of SIFT and WLD,
descried earlier, it can be seen that WLD is more efficient than SIFT.

6.5. Further Discussion

When using a large cattle database images, it is expected that our approach
would be suitable to highly identify head of cattle. This is due to the fact that
the cattle muzzle pattern is much similar to the human fingerprint pattern men-
tioned (Baranov et al., 1993). Also, the WLD was used in (Gragnaniello et al.,
2013) to detect the human liveness using a large dataset of human fingerprint
images. Therefore, it is expected that our proposed approach, using the WLD,
would also be able to identify head of cattle in case of using a large data set of
cattle muzzle images.

Head of cattle could also be identified using dynamic frames (video) to sup-
port real-life scenarios in a farm. The dynamic frames have been used to identify
human though capturing different biometrics, such as face and gait biometrics,
which were then fused using independent biometric methods to improve the ac-
curacy (Zhou and Bhanu, 2006; Liu and Sarkar, 2007). Similarly, video frames
could be utilized to identify head of cattle to improve the accuracy. This could
be achieved by applying fusion approach on different types of biometric, such as
face, muzzle print, and retina. It is expected that integrating the video frame
and the fusion approach could support the nature (uncontrollability) of the ani-
mals during the identification process real-time scenarios. This further could be
also used for tracing animals activities such as eating, drinking, and movement,

or any behavior change.

60ctave is a scale space. For example, the first octave starts with the original dimension
of the image, and the scale of the image will be one-half in the next octave and so on (Lowe,

1999).

32



e0s 7. Conclusion and Future Work

605 In this paper, a new approach for cattle identification using muzzle print
e0s images was proposed. This approach used the Weber Local Descriptor (WLD)
eo7 10 extract texture features which are robust against rotation, noise, and illumi-
sos nation. It also utilized the LDA algorithm to reduce the dimensions of feature
s0o vectors and to increase the discrimination between different classes (head of
e10 cattle). Three classifiers (AdaBoost, k-NN, and Fk-NN) were used to achieve
e1n the cattle identification. The parameters of used techniques were first tuned
e12  to determine the ones achieving the best results in terms of accuracy and per-
e13 formance. The experimental results obtained when the WLD has patch size
e1a — 7 x 7, the AdaBoost has Discriminant weak learner, 200 weak learners, and
e1s learning rate = 0.1, and £ = 5 for both of the k-NN and the FE-NN classi-
s16 fiers. Using these parameters and four training images, the best classifier was
ez the AdaBoost achieved ~99% accuracy whereas the k-NN gave the minimum
e1s accuracy. The results were assessed using different methods (sensitivity, speci-
e10 ficity, AUC, and EER). Moreover, the sensitivity, specificity, and AUC of the
e20 proposed approach were approximately 0.9841, 0.9836, and 0.983, respectively,
621 which reflects the robustness of the proposed approach. In addition, the pro-
e22 posed approach achieved a low error rate (= 0.0035). Furthermore, the results
e23  Of the proposed approach were proven to be superior to the most related work.
o2« In the future work, our approach will be evaluated against a larger database of
e2s cattle images. Also, we will investigate the idea of fusing two cattle biometrics:

e26 muzzle and face.
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