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ABSTRACT:  

Thermophysical and wall slip effects arise in many areas of nuclear technology. 

Motivated by such applications, in this article the collective influence of variable 

viscosity, thermal conductivity, velocity and thermal slips effects on a steady two-

dimensional magnetohydrodynamic microplar fluid over a stretching sheet are analyzed 

numerically. The governing nonlinear partial differential equations have been converted 

into a system of non-linear ordinary differential equations using suitable coordinate 

transformations. The numerical solutions of the problem are expressed in the form of 

non-dimensional velocity and temperature profiles and discussed from their graphical 

representations. Nachtsheim-Swigert shooting iteration technique together with the sixth 

order Runge-Kutta integration scheme has been applied for the numerical solution. A 

comparison with the existing results has been done and an excellent agreement is found. 

Further validation with adomian decomposition method is included for the general model. 

Interesting features in the heat and momentum characteristics are explored. It is found 

that greater thermal slip and thermal conductivity elevate thermal boundary layer 

thickness. Increasing Prandtl number enhances Nusselt number at the wall but reduces 

wall couple stress (micro-rotation gradient). Temperatures are enhanced with both 

magnetic field and viscosity parameter. Increasing momentum (hydrodynamic) slip is 

found to accelerate the flow and elevate temperatures. 
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NOMENCLATURE  
a  Stretching rate based on surface velocity, [s-1] 

B   Magnetic induction, [Wb.m-2]    

0
B  Uniform magnetic field strength, [Wb.m-2] 

1
C  

Constant [-] 

xCf  
 

Local skin-friction coefficient [-] 

p
c   

specific heat of the fluid at constant pressure, [J.kg-1.K-1] 

d
 

Thermal slip parameter [-] 

1
E  

 
Thermal slip factor, [m] 

f
 

Dimensionless stream function [-] 

g
 Dimensionless micro-rotation [-] 

)(xh   Local heat transfer coefficient  [W/(m2•K)] 

j  Micro-inertia density, [m2] 

k   

k  

Temperature dependent thermal conductivity of the fluid, [W.m-1.K-1] 

Constant undisturbed thermal conductivity [W.m-1.K-1] 

 

l   
Velocity slip parameter   [-] 

M        
 

Magnetic field parameter [-] 

wM    Wall couple stress [N/m2] 

n  Micro-rotation parameter [-] 

1
N  Velocity slip factor , [s.m-1] 

xNu
 

Local Nusselt number [-] 

Pr  
 

Constant Prandtl number [-] 

x
Re  Local Reynolds number [-] 

T  Temperature, [K]  

w
T

 
Temperature at the surface, [K] 


T   

Temperature of the ambient fluid,  [K] 

u  Velocity along x -axis, [m.s-1]   

( )xu
w  

Velocity of the sheet, [m.s-1] 

x  Axis in direction along the sheet, [m] 

y  Axis in direction normal to the sheet, [m] 

 

Greek Symbols 

s
  

 

Spin-gradient viscosity, [m2.s-1]  


  

 
Kinematic viscosity at constant property, [m2.s-1] 

   

 

Coefficient of dynamic viscosity, [Pa.s] 

w


 
Surface shear stress, [Pa] 

  
Coefficient of dynamic viscosity with constant property [Pa.s] 


   

 
Mass density of the fluid, [kg.m-3] 

  
 Micro-rotation component normal to the xy -plane 

0    Electrical conductivity, [m  m-1]  

0
  

Magnetic permeability, [N.A-2]  
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  Dimensionless temperature [-] 

r  Variable viscosity parameter  [-] 

  Vortex viscosity parameter  [-] 

  
Spin-gradient viscosity parameter 

  Stream function, [m-2.s-1]  
  Similarity variable  [-] 

  Step size  

Super Scripts 
( )

 

Ordinary differentiation with respect to   

Sub Scripts  
w

 Conditions at the surface 
+

 
Free stream conditions 

 

1. INTRODUCTION 

Heat transfer is a fundamental aspect of many nuclear engineering transport processes. It 

may arise in any three of the familiar modes (conduction, convection and radiation) and 

indeed these modes often arise simultaneously. Interesting applications include phase 

change saturated nucleation ( see Uesawa et al., 2017), transient electrically-conducting 

convection flows of liquid sodium (Mukhopadhyay, 2011), nuclear propulsion systems 

cooling (Akyuzlu, 2015), conjugate thermal transport (Corradini, 2003), super-critical 

thermal convection in rod bundles (Gradecka et al., 2016), heat emission in turbulent 

flows of mercury, sodium, lead-bismuth and sodium-potassium liquid metals (Kirillov,  

2016) and hybrid electrolysis systems exploiting nuclear energy (Harvego et al., 2010). 

 Electromagnetic flows also arise in nuclear power systems wherein magnetic fields are 

deployed to control high temperature electrically conducting plasmas from damaging for 

example channel walls. Magnetohydrodynamic concerns the interaction between 

electrically conducting liquids and applied magnetic fields. It has extensive applications 

in emergency heat removal in fast reactors (Bogdanova et al., 2017), molten metal pumps 

for rapid removal of heat from cores (Doležel et al., 2009) and feeder wall thinning 

mechanisms in flow-assisted corrosion of alloys in nuclear reactor channels (Kim et al., 

2005). Although often working fluids in nuclear reactor systems are air and water, many 

non-Newtonian liquids are increasingly being deployed. Such fluids cannot be simulated 

with the classical Navier-Stokes viscous fluid model based on the Newtonian viscosity 

law. Important characteristics exhibited by non-Newtonian fluids (Schowalter, 1978) 

include variable shear stress-strain characteristics, yield stress, stress relaxation, 
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elongation, memory and micro-structural behaviour associated with particle-laden 

suspensions. Many elegant formulations have been deployed to simulate non-Newtonian 

flows in chemical, nuclear and mechanical engineering, with and without heat transfer 

including Reiner-Rivlin differential fluids (Hayat et al., 2012), Maxwell upper convected 

viscoelastic fluids (Bhatti et al., 2017), Walters-B fluids (Bég et al., 2010), Casson 

viscoplastic fluids (Akbar et al., 2016) etc. These models however do not offer a robust 

framework for simulating micro-structural features of suspensions e.g. particle-doped 

coolants in nuclear reactors. Eringen (1966) introduced the theory of micropolar fluids as 

an extension of the Navier-Stokes model to describe suspensions containing particles. 

Micropolar fluids are a simplification of Eringen’s more general micro-morphic fluid 

theory (Eringen, 1964) in which isotropic, polar properties are assumed and deformation 

of suspended molecules (micro-elements) is neglected. Physically, they represent fluids 

with molecules which are able to rotate independently of the fluid stream flow and local vortices. 

These fluids provide a good approximation for capturing many sophisticated features 

exhibited by real fluids in nuclear, mechanical, chemical and even medical engineering. 

Micropolar fluids contain micro-constituents that can undergo rotation i.e. can sustain 

gyratory motions, which influence the global hydrodynamics of the flow and manifests in 

distinctly non-Newtonian characteristics. Micropolar flow models are formulated in terms 

of the linear velocity vector and the angular velocity vector (micro-rotation) associated 

with each particle in the fluid medium. The micro-rotation vector simulates the gyratory 

motion (rotation) in an average sense of the particles centered in a small volume element 

about the centroid of the element. Micropolar fluids have found applications in liquid 

crystals, lubricants, coolants, propellants, physiological suspensions (synovial liquid, 

blood, plasma, bile), colloidal solutions, polymeric fluids, plasmas, additives, adhesives, 

coating liquids etc. A good perspective of micropolar fluid dynamics with applications is 

given in Ariman et al. (1974) and also more recently in Eringen (2001). The elegance of 

micropolar fluid mechanics has allowed its deployment in boundary layer, fully 

developed and many other flows. Micropolar heat transfer has also emerged as a 

significant area of investigation. Jena et al. (1981) presented similarity solutions for 

natural convection boundary layer flow of micropolar fluid. Rees and Bassom (1996) 

investigated the Blasius flow of a micropolar fluid with finite difference methods. Gupta 
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et al. (2015) used a finite element method to study stagnation micropolar heat transfer 

from a stretching sheet with transpiration. Ishak et al. (2006) studied the Schneider 

problem for micropolar fluids. Other studies of micropolar transport phenomena include 

Khedr et al. (2009) who considered magnetohydrodynamics, Ashraf and Batool (2013) 

on stretchable disk magnetic convection, Reddy et al. (2014) on reactive, dissipative 

hydromagnetic flow from an extending sheet. Further investigations have addressed 

squeeze film magnetic lubrication (Bég et al., 2012), magneto-micropolar flow from a 

curved stretching sheet (Naveed et al., 2016), geological plume dynamics (Bég et al., 

2016), gravity-driven thin film magnetic flows (Bég et al., 2010) and entropy generation 

in annular micropolar flows (Jangili et al., 2016). 

 

In many systems (including nuclear power generation) slip effects may arise at 

boundaries. These are generally ignored in the Navier-Stokes viscous Newtonian model. 

However, they cannot be neglected when non-adherence arises related to molecular 

properties of the gas/liquid in contact with a solid surface. Slip flows may be of the 

hydrodynamic or thermal type. They are present also in micro-scale electro-osmotic 

devices (Satapathy et al., 2010), rotating magnetofluid dynamic disk generators, 

optically-thick hydromagnetic flow (Bég et al., 2011), bio-nano-polymer flows (Latiff et 

al., 2015), additive fluoropolymer reinforced plastic fabrication (Stewart et al., 1993) and 

sliding lubrication (Ismail and Sarangi, 2013). Rahman et al. (2016) investigated the 

nanofluid flow with higher order slip from a flat plate. Mukhopadhyay (2011) derived 

analytical solutions for time-dependent mixed thermal convection boundary layer slip 

flow from a permeable extending sheet. Prasad et al. (2012) utilized a finite difference 

method to compute the heat and momentum transfer in enrobing boundary layer slip flow 

from a cylinder with a viscoplastic model. Vocale et al. (2015) computed the first order 

velocity and thermal slip effects on hydrodynamically and thermally fully developed gas 

flow through elliptical micro-channels, noting the inverse relationship between wall heat 

transfer rate (Nusselt number) and slip Knudsen number. Lahjomri and Oubarra (2013) 

used a local non-similarity method to simulate the laminar incompressible thermal 

convection slip flow from an isothermal surface, also observing a decrease in Nusselt 

number with slip effect. Uddin et al. (2016) employed a Maple boundary value solver to 
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analyse anisotropic momentum, thermal, solutal and micro-organism slip effects on 

nanofluid bioconvection stagnation flows. Khader and Megahed (2014) used Zhou’s 

DTM approach to compute higher order slip effects on dissipative thermal convection 

boundary layer flow from a porous extending sheet in porous media.  Heat transfer 

behavior is significantly influenced also by thermo-physical properties. Dynamic 

viscosity and thermal conductivity in most mathematical models are assumed to be linear 

or inverse functions of temperature. Viscosity variation has been studied by Lai and 

Kulacki (1990) for thermo-solutal transport in porous media. Huda et al. (2017) 

investigated peristaltic pumping of nanofluids with viscosity variation in a cylindrical 

conduit. Modather et al. (2012) presented computational solutions for micropolar 

convection flow from a moving plate with viscosity variation and heat source. Thakur 

and Hazarika (2015) studied the collective effects of viscosity and thermal conductivity 

variation in hydromagnetic transient natural convective flow in porous media. Khan et al. 

(2016) illustrated non-aligned MHD stagnation point flow of variable viscosity 

nanofluids past a stretching sheet. Makinde et al. (2017) examined stagnation point flow 

of MHD chemically reacting nanofluid over a stretching convective surface. Kumar et al. 

(2018) studied magneto-convective heat transfer in mcropolar nanofluid over a stretching 

sheet with non-uniform heat source/sink. Sarojamma et al. (2018) presented flow of a 

micropolar nanofluid through a vertical channel with porous collapsible walls. 

Mahanthesh et al. (2018) presents numerical study of magnetohydrodynamic three-

dimensional flow of nanofluids with slip and radiation effects. These studies however did 

not consider the combined effects of momentum slip, thermal slip, variable viscosity, 

magnetic field and thermal conductivity on magnetohydrodynamic convection of a 

micropolar fluid from a vertically translating plate. This is the focus of the present 

article. The normalized conservation equations for mass, linear momentum, angular 

momentum and energy are solved with appropriate boundary conditions using higher 

order numerical quadrature (Uddin et al., 2016). Computations are validated with an 

Adomian decomposition method (ADM) (Adomian, 1994). Additional validation of 

special cases of the general model is conducted based on published results. The study is 

relevant to near-wall thermo-fluid dynamics of magnetically controlled convection in 

nuclear reactor flows.  
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2. MATHEMATICAL FORMULATION  

Steady two-dimensional magnetohydrodynamic (MHD) forced convection laminar 

boundary layer flow of a viscous incompressible and electrically conducting micropolar 

fluid from a horizontal plate is considered. First order hydrodynamic slip and thermal slip 

are present at the wall. Viscous dissipation and thermal dispersion and stratification 

effects are ignored. Magnetic Reynolds number is sufficiently small to negate induced 

magnetic field produced by the motion of the conducting fluid. Ohmic heating (Joule 

dissipation) and Hall current effects are also ignored. The flow model with associated 

coordinate system are depicted in Fig.1. 

 

 

 

 

 
 

Figure 1: Flow configuration and co-ordinate system 

In figure 1, u   T   
represents respectively the velocity, micro-polar and thermal 

boundary layer thickness. In the y-direction a constant magnetic field  B0 is applied. The 

viscosity ( )T  and thermal conductivity ( )k T  are respectively assumed to be 

temperature dependent. Under the above assumptions the governing boundary layer 

equations are assumed as follows: 

 

T  
u    

0,u T = =  

slip slip,w wu u u T T T= + = +   

,x u  

,y v  

 

Stationary free stream  
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0=



+





y

v

x

u ,                                                                                                                        (1)  

( )
2

0 0σ1
((

B
) )

u

ρ

u u u S
u v T S

x y y y y




   

    
+ = + + −

    
,                                                 (2) 

2

2
2s

S u
u v

x y j y j y

   


 
 

    
+ = − + 

    
,                                                                   (3) 

1
( )

p

T T T
u v k T

x y c y y

    
+ =  

    
,                                                                                    (4) 

The corresponding boundary conditions are: 

1 1

   

T
y 0: , 0, , E ,  

 0, 0, ,    

w

u u
u ax N v n T T

y y y

y u T T



+



   
= = + = = − = + 

   
→  → → → 

                                  (5) 

In eqn. (5) the surface parameter n  assumes values between and with 0 and 1 that 

quantifies the relationship between the micro-gyration vector to the shear stress. When 

0=n , this corresponds to the case where the micro-element (particle) density is 

sufficiently large so that microelements close to the wall are not able to rotate i.e. strong 

concentration of micro-elements. When 50.n =  this indicates weak concentration of 

micro-elements and the disappearance of the anti-symmetric part of stress tensor, as 

elaborated by Ahmadi (1976). When 01.n =  represents turbulent boundary layer flows as 

described by Peddieson (1972) and Stokes (1984). Note that in the micro-polar theory 

vectors are considered to be rigid directors as the micro-elements are non-deformable. 

The following similarity transformations are used to turn the governing non-linear partial 

differential equations into non-linear ordinary differential equations: 

a
y




= , ( )a xf  


= , ( )
3a

xg 




= ,




−

−
=

TT

TT

w

 , ,r

r


 

 


 
=  

− 
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( )1 ck k k = +  , where 
1
( )

c w
k C T T


= −                                                             (6) 

The non-dimensional linear momentum, angular momentum (micro-rotation) and heat 

conservation governing equations then become: 

 

2

2
0

( )

r r

r r

f ff f f g Mf
 


   

 
      +  + − + +  − = 

− − 
                                         (7) 

( ) ( )
1

2 0
2

r

r

g g f f g fg


 
 

 
   +  − + − − = 

− 
                                                        (8) 

( ) 21 Pr 0c ck k f   
  + + + =                                                                              (9) 

Here 
r

  is the variable viscosity parameter (negative for liquids and positive for gases), 

  = 


S
 is the micropolar parameter, 

a

B
M



=


 2

00  is the magnetic field parameter, 



=



ja

 is the micro-inertia density parameter, ck = thermal conductivity parameter (for 

air 0 6ck  , for water 0 0.12ck   and for lubrication oils 0.1 0ck−   ), 





 =
k

c p
Pr is the Prandtl number. 

 

The appropriate transformed boundary conditions are: 

( ) ( ) ( ) ( )0 1 0 , (0) 0,   0 1  0 , (0) (0),f l f f d g nf    = + = = + = −                             (10a) 

+→ : 0, 0, 0,f g  = = =                                                                                     (10b) 

where l denotes velocity slip parameter and d  designates thermal slip parameter. 
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The equation defining the surface shear stress at the plate is: 

00 )())(( == +



+= yyw S

y

u
S                                                                                (11) 

The dimensionless local skin-friction coefficient is defined as: 

 
( )

( ) ( )01
Re

22

2

1 2
2

fn
axu

Cf
r

r

x

w

w

w
x









−+

−
===















                                           (12) 

 

The equation defining the local wall couple stress (micro-rotation gradient) is: 

   
0

0

( )
2

w s y

y

S
M j

y y

 
 

=

=

   
= = +       

                                                                  (13)  

 

 

The dimensionless couple stress is defined by: 

( )

2

2
(0)

( )

r

rw

x

r

r

M
M g

S ax




 



 

 
+  

−  = =
+

+ 
−

                                                                      (14) 

The local surface heat flux is expressed as: 

( ) ( )
0

w

y

T
q x k T

y
=

 
= −   

( )1 (0)
c

a
k k  






= − +                                              (15)  

The heat transfer coefficient is: 

( )
( )

( ) ( )1 0w

c

w

q x a
h x k k

T T
 




 

= = − +
−

                  (16) 

The local Nusselt number is: 

 
( )
( )

( )0Re  −== xx
Tk

xxh
Nu                                                    (17) 

3. NUMERICAL COMPUTATION AND VALIDATION 

An initial value solver shooting method termed the Nachtsheim-Swigert (1965) iteration 

technique together with the sixth order Runge-Kutta-Butcher iteration scheme has been 
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used to solve the coupled nonlinear differential Eqns. (7)-(9) subject to the boundary 

conditions (10a)-(10b). A step size  = 0.001 has been chosen to satisfy the 

convergence criterion of 610− in all cases. The maximum value of   
 
= +  is 

ascribed to each group of parameters 
r

 ,  , M ,  , ck , Pr


 and n  when the value of 

the unknown boundary conditions at   = 0 change, to a successful loop with error less 

than 610− . To verify the shooting computations, we have compared the numerical 

solutions for local skin-friction coefficient ( )0f   with those of Hamad et al. (2012) by 

considering 0M =  and 
r

 →  (i.e. non-magnetic constant thermal conductivity 

scenario) for different values of slip parameter l . From Table 1 it is evident that very 

good correlation is obtained and confidence in the shooting code is therefore high.  

 

 

Table 1: Comparison of ( )0f  for various values of l . 

Slip parameter l  Hamad et al. (2012) Shooting Quadrature ADM 

0.0 1.0000 1.0000 1.0000 

0.1 0.9554 0.9533 0.9549 

0.2 0.7763 0.7602 0.7738 

  

 

4. VALIDATION WITH ADOMIAN DECOMPOSITION METHOD (ADM) 

To justify the correctness of the present model with all parameters invoked, an alternative 

numerical method is required. We used the efficient Adomian decomposition method 

(ADM) which is a semi-numerical technique utilizing special Adomian polynomials to 

achieve very accurate solutions which may be evaluated using symbolic packages such as 

Mathematica. An advantage of this method is that it can provide analytical approximation 

or an approximated solution to a wide class of nonlinear equations without linearization, 

perturbation closure approximation or discretization methods. ADM has gained 

popularity in modern engineering sciences and has been used for simulation of 

Newtonian flows (Liu, 2016), Sisko non-Newtonian thin film flows (Siddiqui et al., 
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2013), bio-magnetic orthopaedic lubrication flows (Bég et al., 2015), micropolar channel 

hydrodynamics in channels (Aski et al., 2014), entropy minimization in micropolar flow 

(Jangili et al., 2017), pulsatile micropolar flow  (Adanhounmè et al., 2012) and 

stagnation-point rotating nanofluid flows (Bég et al., 2015). ADM (Adomian, 1994) 

deploys an infinite series solution for the unknown functions and utilizes recursive 

relations. For example for the 7th order nonlinear ordinary differential Eqns. (7)-(9), we 

assume infinite series solution for the unknown linear velocity, micro-rotation, and 

temperature functions )(f , )(h ,  )( ,  defined as follows: 

           


=

=
0

)()(
n

nff                                                   (18)  

           


=

=
0

)()(
n

nhh                                                   (19)  

           


=

=
0

)()(
n

n                                                   (20)  

The components .....,, 210 fff , .....,, 210 hhh , and .....,, 210   are usually obtained 

recursively by an appropriate relation, as elaborated further by Bég et al. (2015). The 

resulting decomposition series converges very quickly and relatively few terms are 

needed to achieve high accuracy. Comparison between shooting and ADM solutions for 

selected values of certain parameters are shown in Figs 3b (temperature), 4a (velocity) 

and 6b (couple stress). For all cases very close correlation is found. Furthermore, we have 

verified the ADM solution against the results of Hamad et al. (2012) in Table 1. 

Confidence in the shooting solutions is therefore again justifiably high. 

 

 

5. RESULTS AND DISCUSSION 

Selected shooting method solutions for linear velocity, temperature, local skin-friction 

coefficient, local wall couple stress and local Nusselt number have been visualized in 

Figs 2-6. 
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Figs. 2 (a), (b) respectively, illustrate the velocity and temperature profiles for various magnetic 

field parameter values (M) for both cases of strong (n=0) and weak (n=0.5) micro-element 

concentration. It can be seen from Fig. 2 (a) that velocity profiles decrease with the increase of 

magnetic field parameter M. Increasing M implies a stronger applied magnetic field. This 

enhances the Lorentz magnetohydrodynamic drag force which inhibits the micropolar 

flow.  
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Fig. 2: Magnetic field parameter (M) effects on (a) velocity and (b) temperature profiles. 

 

 

 

(a) (b) 



14 

 

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

r = 1.2, 1.4, 1.6



f '

n = 0

............. n = 0.5

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

r = 1.2, 1.4, 1.6





n = 0

............ n = 0.5

Fig. 3: Variable viscosity parameter (
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 ) effects on (a) velocity and (b) temperature 

profiles.[Blue dots are ADM solution]  
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In consistency with numerous other studies, notably Sutton and Sherman (1965), Rossow 

(1958), Sarpkaya (1961) and Greenspan and Carrier (1959), with greater M values the 

Lorentz magnetic drag force is elevated. This retards the momentum development and 

decelerates the boundary layer flow. Hydrodynamic boundary layer thickness is therefore 

increased. Greater concentration (n=0) of micro-elements at the plate surface results in 

marginally greater velocity than for the case of weak concentration (n=0.5). This may be 

attributable to the surface enhancement in linear momentum caused by reduced angular 

momentum of the rotating micro-elements via coupling in the momenta eqns. (7) and (8). 

The de-intensification in gyratory motions with stronger concentrations (micro-elements 

are stifled in gyratory motions) acts as a source boosting the linear momentum, via 

momentum re-distribution. A similar observation has been noted by Gorla et al. (1990). 

The case of M=0 correspond to vanishing magnetic field i.e. the micropolar fluid loses 

electrical conductivity properties. The Lorentz drag force is therefore eliminated and the 

velocity is a maximum in this case i.e. hydrodynamic boundary layer thickness is a 

minimum. From Fig. 2 (b) we observe that temperature profiles increase with the increase 

of magnetic field parameter M and this increasing effect is amplified for the case of weak 

concentration of micro-elements (n=0.5) relative to that of strong concentration (n=0). 

The supplementary work expended by the magnetized micropolar fluid in dragging 

against the action of the magnetic field is dissipated as thermal energy i.e. heat. This 

elevates temperatures and increases thermal boundary layer thickness. In consistency 

with this the minimum temperature generated corresponds to M = 0 (electrically non-

conducting case). It is noteworthy that based on the definition of magnetic body force 

parameter,
a

B
M



=


 2

00 , for M =1 there is an equivalence in magnetic drag and inertial 

forces in the regime. For M<1 the inertial force dominates the magnetic force.  

Figs. 3 (a) and (b) show the variation of velocity and temperature profiles respectively 

with variable viscosity parameter,
r

 . Fig. 3 (a) shows that the velocity increases 

significantly further from the plate surface as the variable viscosity parameter 
r

 is 
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increased. 
r


 

 


 
=  

− 
 and clearly increasing values imply that the zero shear rate 

viscosity is decreased. The viscous drag force at the plate is therefore reduced and this 

accelerates the flow which simultaneously reduces momentum boundary layer thickness. 

The temperature profiles as well as thermal boundary layer increase as the variable 

viscosity parameter 
r

 increases. At lower values of viscosity parameter (i.e. 1.2) the 

temperature does not descend smoothly to zero; it intersects the abscissa much earlier 

than at higher values of 
r

 . This behavior is not associated with the infinity boundary 

condition i.e. it is not a numerical anomaly. The trend is eliminated with higher values of 

r
  where smooth decay is achieved in the free stream. The temperature distribution is 

therefore very sensitive to viscosity variation. This has also been confirmed by Nield and 

Kuznetsov (2003). 

 

Figs. 4 (a) and (b) illustrate the evolution in velocity and temperature profiles with an 

alteration in hydrodynamic slip parameter (l). There is a distinct accentuation in velocity 

profiles increase further from the plate; the flow is therefore accelerated with increasing 

hydrodynamic slippage at the plate and this effect is carried quite deeply into the 

boundary layer, transverse to the plate. Physically this may correspond to molecular non-

adherence of the micropolar fluid to the wall, which encourages boundary layer growth. 

This pushes the interfacial region in the growth direction and feeds momentum leading to 

a reduced momentum boundary layer thickness. The no-slip model (l=0) inevitably  

under-predicts the wall skin friction effect. Similar observations have been made by 

Stewart et al. (1993). The macroscopic weak slip can be modelled with a first order 

isotropic slip factor (as in the current model) which is strongly connected to flow-induced 

chain detachment/desorption at the polymer/wall interface. Micropolar fluids may 

therefore offer a good approximation for interfacial wall dynamics of polymers in 

addition to complex non-Newtonian suspensions. However the first slip isotropic model 

employed is still inadequate to capture the stronger slip effect which is associated with 

chain disentanglement of for example polymer chains in the bulk from a monolayer of 

polymer chains adsorbed at the interface. This more complex slip (which may also be 
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anisotropic) is currently under investigation and has infact been considered by the 

authors in an earlier non-magnetic study (Uddin et al. 2016). Temperature profile 

increases strongly with stronger velocity slip parameter l. The temperature magnitudes 

are also greater for the case of weak micro-element concentration compared with strong 

concentration. Thermal boundary layer thickness is clearly enhanced with greater 

momentum wall slip effect. It is likely that the greater momentum diffusion (linear) via 

coupling with the convective term in the energy equation (9) i.e. Prf/ influences the 

temperature distribution also. There is also strong coupling via the fourth term on the left 

hand side of the momentum eqn. (7). Thermal diffusion in the boundary layer regime is 

probably assisted quite markedly with wall slip which also encourages heat transfer away 

from the plate surface into the micropolar fluid. This energizes the boundary layer. 

Figs. 5 (a) and (b) respectively show the effects of thermal slip parameter d and thermal 

conductivity parameter 
c

k  on temperature profiles. Temperature values and consequently 

thermal boundary layer thickness are boosted with higher thermal slip and also thermal 

conductivity parameter 
c

k . Thermal jump at the wall introduces heat into the boundary 

layer. It assists thermal conduction as well as thermal convection currents. The heat is 

dispersed strongly into the boundary layer. This will cool the wall progressively and 

encourage thermal diffusion in the micropolar fluid. Similarly an increase in thermal 

conductivity decreases the thermal resistance of the regime (they are inversely related). 

This allows thermal energy to move more efficiently and quickly through the micropolar 

fluid and enhances the conveyance of heat throughout the boundary layer. Faster cooling 

of the wall is therefore achieved with greater thermal conductivity of the micropolar 

fluid. Similar findings have been documented by Zueco et al (2011). It is also evident 

from the figures that temperature profiles overshoot for higher values of d and 
c

k  and 

larger magnitudes are achieved with weak micro-element concentration at the wall (n 

=0.5).   

 

Figs. 6(a)-(c), respectively, show the response in the local skin-friction factor, local wall 

couple stress and local Nusselt number for different values of micro-rotation surface 

parameter ( n ) and Prandtl number (Pr). There is a considerable growth in the skin-
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friction, and wall couple stress (micro-rotation i.e. angular velocity gradient) with an 

increase in micro-rotation parameter n . Conversely there is a reduction in Nusselt 

number. The gyratory motions of the micro-elements at the wall influence both velocity 

and angular velocity significantly. When less micro-elements are present (weak 

concentration i.e. higher n value), they are able to rotate freely and enhanced the angular 

momentum. This is not possible at strong concentration (n=0). This via coupling in the 

conservation similarity eqns. (7, 8) leads to greater linear momentum also in the regime. 

The micropolar fluid therefore shears faster against the plate and achieves higher couple 

stress in this vicinity. The figures also indicate that skin-friction coefficient and wall 

(plate) couple stress are reduced whereas the Nusselt number (heat transfer gradient at the 

plate) is increased with a rise in Prandtl number, Pr. An increase in Pr from 0.73 (air, 

gas) through 1 to 7 (water-based suspensions, low-density polymeric aqueous solutions) 

substantially decelerates the flow i.e. reduces hydrodynamic boundary layer thickness. 

This results in a decrease in skin friction. The temperature also decays quickly for large 

values of Prandtl number. The thermal boundary layer thickness is similarly the distance 

from the body at which the temperature is 99% of the temperature found from an inviscid 

solution. The ratio of the two thicknesses is dictated by the Prandtl number. For Prandtl 

number of unity, both boundary layers are of the same thickness i.e. order of magnitude. 

However when Prandtl number exceeds unity, the thermal boundary layer is thinner than 

the velocity boundary layer. Generally, higher Pr fluids will have relatively low thermal 

conductivities which will suppress thermal conduction heat transfer from the wall and 

reduce thermal boundary layer thickness, resulting in lower micropolar fluid temperatures 

in the boundary layer regime. Thermal energy will be transported to the plate (wall) and 

this results in the computed elevation in Nusselt number. Smaller values of Pr are 

equivalent to increasing thermal conductivities, and therefore heat is able to diffuse away 

from the heated plate more rapidly than for higher values of Pr . Hence in the case of 

smaller Pr  the boundary layer is thicker and the rate of heat transfer to the wall i.e. 

Nusset number is reduced. This has important implications in materials processing since 

by changing the Prandtl number (related to thermo-physical properties of the micropolar 

liquid) the heat transfer characteristics can be dramatically modified. Faster cooling is 

achieved with denser micropolar liquids compared with lighter ones.  
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6. CONCLUSIONS 

Computational solutions have been presented for variable viscosity and variable thermal 

conductivity magnetized steady-state incompressible micropolar heat transfer from a 

plate. Both momentum and thermal slip effects have been included. Runge-Kutta 

numerical quadrature has been employed to solve the transformed ordinary differential 

boundary value problem. Verification of solutions with earlier non-magnetic non slip 

studies has also been conducted. General validation of the model developed has also been 

included using an Adomian decomposition method (ADM). In the present work 

significant attention has also been addressed to the surface micro-rotation effect which is 

simulated by a boundary condition. The current study has shown that: 

• Magnetic field parameter can be used to control the flow characteristics and 

temperature fields in micropolar fluids. Stronger transverse magnetic field 

decelerates the flow and elevates the temperature. 

• Increasing viscosity parameter and hydrodynamic (momentum) slip accelerate the 

flow further from the plate surface.  

• The thermal boundary layer thickness is noticeably enhanced with greater 

viscosity parameter. 

• Temperature and thermal boundary layer thickness are both elevated markedly 

with an increase in velocity slip, thermal slip parameter and thermal conductivity 

parameter. These effects are more pronounced for the case of weak concentration 

of micro-elements at the plate surface. 

• Skin-friction coefficient and wall couple stress are both increased whereas Nusselt 

number is reduced with an elevation in micro-rotation surface parameter. 

• Skin-friction coefficient and wall couple stress are reduced whereas Nusselt 

number is boosted strongly (i.e. temperature and thermal boundary layer thickness 

are decreased) with an increase in Prandtl number. 

 

The current study has considered a flat pate geometrical configuration and has ignored 

curvature effects. These will be addressed in future studies. Additionally, anisotropic 

slips will also be considered.  
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