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Abstract. In the present paper, a numerical investigation of  transport phenomena is considered in electrically-
conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-

Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with 

magnetic field impact, dissipation effect, and slip conditions at the surface are also included. The numerical 
results show the existence of  two branches of  the solution for a selected range of  the governing parameters. 
The physical significance of  both branches of  solutions is ensured by performing a stability analysis in which 
a linearized eigenvalue problem is solved. The multiple regression analysis with the help of  MATLAB 
LinearModel.fit package has also been conducted to estimate the dependence of  the parameters on Nusselt 

number.  

Keywords: MHD, Nanofluid, Shrinking sheet, Dual solutions, Porous medium, Eigenvalues. 

1. Introduction 

Motivated by many industrial applications such as in materials and polymer processing, in the manufacturing of  glass 
sheets and paper, in textile industries and many others, stretching and shrinking surfaces have gained so much interest 
among researchers. An early analysis of  boundary layer flow over a stretching surface was presented by Crane [1]. In 
recent years, much attention has been paid to investigate fluid flow over a shrinking surface [2]. Fang [3] has studied the 

boundary layer flow over a nonlinear shrinking sheet. Fang and Zhang [4] derived exact solutions for magneto-
hydrodynamic flow over a shrinking sheet and investigated the range of  magnetic field and suction parameters for the 
existence of  the solutions whereas nonlinear study has been reported by Javed et al. [5]. The work has been extended to 

nanofluid after 2006 when the Buongiorno [6] formulated a new mathematical model for study transport phenomena in 
nanofluids. The extension has been reported by Rohni et al. [7], Zaimi et al. [8], Naramgari and Sulochana [9] on 

nanoparticle effects on shrinking sheet problem.   
The no-slip boundary conditions are sometimes unrealistic and the above sources utilized the no-slip condition. 

However, partial slip between the fluid and moving surface (stretching/shrinking) sheet should not be neglected in case 
of  nanoparticles. Uddin et al. [10] have investigated slip flow induced by a nanofluid sheet along with the impact of  

thermal radiation. Singh and Chamkha [11] analyzed vertical shrinking sheet with consideration of  second-order slip. 
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Many researchers have extended this work to nanofluid for various configurations utilizing the magnetic field (Hsiao [12-
15], Waqas et al. [16-17], Dhanai [18]), non-Newtonian base fluid (Rao et al.[19], Siavashi et al. [20], Dhanai et al.[21]), 

porous media (Izadi et al.[22], Bég et al.[23]), Entropy generation minimization (Rashid et al. [24], Khan et al. [25], 

Shukla et al. [26], Rana et al. [27], Rana et al. [28]) and the other possible extensions i.e. in Cattaneo-Christov (CC) heat 

flux with variable boundary layer thickness, heat source/sink and chemical reaction [29-33].  
A new branch of  the solution is reported in different boundary layer flow problem especially in shrinking surfaces 

with suction and non-unique solutions have been documented to specific ranges of  governing parameters. Considering 
the slip effects, Ghosh et al. [34] and Rana et al. [35] reported the two branches of  the solution with suction parameter 

without and with nanoparticles respectively. In porous, Merkin [36] studied the mixed convection and revealed the 
existence of  multiple branches which later extended with slip conditions and Brinkman model assumption by Harris et al. 

[37]. The critical points (turning points) along with multiple solutions and stability analysis is investigated in different 
problems numerically using MATLAB building bvp4c solver (Awaludin et al. [38], Yasin et al. [39]) RKF-shooting 

method (Rana et al. [40-41]), homotopy analysis method (Rana et al. [42-43]) etc. The stability of  results by constructing 

the eigenvalue problem predicts the physical realizable upper branch and non-realizable lower branch.  

To the author’s best of  knowledge, the present study which predicts the multiple solutions in transport phenomena of  
electrically-conducting nanofluid over a permeable shrinking sheet in a porous medium with partial slip has not been 
reported so far. The stability analysis for physical realizable branch and regression analysis (stable branch) is also 
performed. Multiple Regression Analysis (MRE) with the goodness of  fit, is also shown for the upper branch for 
different sets of  parameters. 

 

Fig. 1. Physical model and coordinate system 

2. Nanofluid Modeling 

Buongiorno’s nanofluid 2D flow model for uniform porous bed is considered with flow induced by a permeable 

stretching/shrinking sheet taken along the x-axis (Fig. 1). The sheet shrinks with linear velocity wu Uχ=%  and 

U ax= %where a is positive constant and 1χ =±  (stretching/shrinking). The wall mass transfer velocity is wv such that 

only suction ( 0wv <  ) is considered here. A uniform magnetic field B is assumed to be imposed transverse to the plane 

of  the hot sheet having a temperature of  2

wT T Ax∞= + %  and 2T Dx∞ = %  is the temperature at the free stream where A 

and D are constant. Nanoparticle concentration at the sheet is controlled by a new revised boundary condition [18]. 

Darcy’s law with viscous dissipative heat is employed for the porous medium. Under these assumptions, the boundary 
layer equations may be written following [19]-[21] as: 
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The imposed boundary conditions at the wall (sheet) and freestream are: 

w slu u u=− +% % % , wv v=% % , 
w slT T T= +% % % , 0T

B

DC T
D

y T y∞

∂ ∂
+ =

∂ ∂

% %

% %
 

at 0y =%  (5a) 

0u =% , 0v =% , T T∞=% % , C C∞=% %
 
as y →∞%  (5b) 

where u%  and v%  are the velocity components in the x%  and y% -directions respectively, subscript nf  is for nanofluids, 

the rest parameters have their usual meanings. 
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Equation (1) is thereby satisfied automatically and the governing Eqs. (2)-(4) transform to the following system of  

coupled, nonlinear, ordinary differential equations: 
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The transformed boundary conditions assume the form: 
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Here prime denotes the differentiation with respect to η  only and the emerging dimensionless thermo-physical 

parameters are defined as follows: 

2 /nf nfM B aσ ρ= (magnetic field parameter), /e e nf eP a kμ ρ= (permeability parameter), Pr /nf nfν α= (Prandtl number), 

/nf BSc Dν= (Schmidt number), 2 /Ec a cA= (Eckert number), ( ) ( )/B nfp nf
Nb c D C cρ ρ α∞= (Brownian motion 

parameter), ( ) ( ) ( )/T w nfp nf
Nt c D T T c Tρ ρ α∞ ∞= −% % % (thermophoresis parameter), /

w nf
v aβ ν=− (wall mass transfer 

parameter), 1 /
nf

L aλ ν= (velocity slip parameter), 2 /
nf

L aδ ν=  (thermal slip parameter).  

The important physical quantities are skin friction fC  and local Nusselt number xNu  which are defined as follows: 
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where Re /x w nfu x ν= %  is local Reynolds number. 

The closed-form analytical solution of  Eq. (7) (shrinking sheet) can be assumed to be a form of  ( ) exp( )f A B Cη η= + −  

using the first three boundary conditions of  Eq. (10). After substituting this relation in Eq. (7), we get 
2, 1/ ( )A B B C Cβ λ= − = +  where the value of  C can be obtained from the positive roots of  the following cubic 

equation, 

3 2 2 2(1 ) ( ( )) 1 0e eC C M P C M Pλ βλ β λ+ − − + + + − − =  (12) 

Without slip conditions ( 0)λ = , the above equation takes quadratic form and the solution is given by: 

2 24(1 )

2

eM P
C

β β± − − −
=  which 2 24(1 )eM Pβ > − −  for multiple solutions  
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If  2 24(1 )eM Pβ < − − then there will be no solution and unique solution for 2 24(1 )eM Pβ = − − . Hence, the exact 

solution takes the following form: 
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3. Flow Stability Analysis  

To investigate the stability of  the both (upper and lower) branches, we consider the unsteady version of  Eqns. (2)-(4): 
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where t denotes the time. Introducing new similarity variables as follows: 
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It follows that Eqns. (15)-(17) can be written as: 
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The associated transformed boundary conditions are: 
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To test the stability of  the steady flow solution satisfying the bvp (7)-(9), we write, following [18], [21]: 

0( , ) ( ) ( , )X X e Yατη τ η η τ−= +  (23) 

where Y= ,P Q and R  are small disturbances relative to 0 0 0,X f θ= and 0 , respectively and α  is eigenvalue. 

Substituting Eqn. (23) into Eqns. (19)-(22), we obtain the following linearized eigenvalue problem: 
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The corresponding boundary conditions: 

( )0 0 0P = ,  ( ) ( )0 00 0P Pλ′ ′′= , 0 0(0) (0)Q Qδ ′= ,  ( ) ( )0 00 0 0Nb R NtQ′ ′+ =  

as  η→∞ , ( )0 0P η′ = , ( )0 0Q η = , ( )0 0R η = ,                                                        
(27) 

4. Numerical Results and Discussion 

The influence of  governing parameters on skin friction ( )0f ′′  and the rate of  heat transfer at the surface ( ){ }0θ ′−  

are investigated and numerical results [24] are tabulated and presented graphically. The default values of  involving 

parameters are taken as 1χ =−  (shrinking case), M = 0.1 (for low magnetic field, <<1 Tesla), Ec = 0.01 (this value is 

generally very low for boundary layer flow), β  = 3.0 (high value of  suction parameter), Pr = 6.8 (water-based 

nanofluid), Sc = 10 (generally >>1 for nanofluid), Nb = Nt = 0.1 (value is very less for different nanofluid), 0.1λ =  

(boundary layer slip), 0.1δ = (thermal slip) and 0.01eP = (the permeability parameter value is very low). Since dual 

solutions are considered, therefore solid and dashed lines represent the first and second solution respectively. The 
numerical results of  flow equation for shrinking sheet have been compared with the exact analytical results of  Fang and 
Zhang [4] in Table 1 and the result follows a certain relation (First solution +Second solution=value of  suction). In order 

to verify the results of  the thermal equation ( ){ }0θ ′− , the limiting case is compared with the refs. [44, 45] in Table 2 and 

a good agreement is reported. We have determined the smallest eigenvalues  for eigenvalue (EV) problem (Eqs. 24-27) 

for some values of  the thermophysical parameters and results are documented in Table 3 predicts the stable behavior for 
the upper branch. The numerical results of  the local Nusselt number are calculated and presented in Table 4. The 
different range of  numerical values in Table 5, has been explored for both the branches of  solution for different sets of  
slip parameters which also reveals the considerable dependence of  Nusselt number (Heat Transfer) on Eckert number. 

The simple linear multiple regression estimations ENur  of  the Nusselt number is obtained using LinearModel.fit package 

in MATLAB considering the impact of  velocity slip λ , thermal slip δ , Brownian motion parameter Nb and 

thermophoresis parameter Nt. Using a total of  576 observations ( λ =δ =0.05(0.05)0.2, Nb=Nt=0.05(0.05)0.3), the linear 

regression estimations can be as E L D B TNur Nur C C C Nb C Ntλ δ= + + + +  keeping default values of  other parameters. 

The coefficients of  ENur  are shown in Table 6 which shows the dominant behavior of  thermal slip. Thus, the suitable 

values of  controlling parameters play a key role to understand the transport phenomena in current porous media model. 
Heat transfer (Nusselt number) is independent of  the Nb and a decreasing function of  all the other controlling 

parameters. 

Table 1. Comparison of  f″(0) for shrinking ( 1χ =− ) sheet flow equation (without slip and nanoparticles) 

  Exact Solution (Fang and Zhang [4]) Present result 

β  M First Second First Second 

 0.1 2.622497 0.377503 2.622497 0.377503 
3.0 0.5 2.724744 0.275255 2.724744 0.275256 

 1 3.000000 0 3.000000 0 

 0.1 3.189618 0.310382 3.189618 0.310382 

3.5 0.5 3.270691 0.229309 3.270691 0.229309 
 1 3.500000 0 3.500000 0 

Table 2. Values of  ( ){ }0θ ′−  for various values of  Pr with 0,eP Ec Sc Mλ δ β= = = = = = = 1χ = , 
610Nb Nt −= = . 

Pr Chen [44] Khader and Megahed [45] Present Result 

0.72 1.08853 1.088487 1.088524 

1.0 1.33334 1.333189 1.333333 

3.0 2.50972 2.509201 2.509725 
10.0 4.79686 4.794399 4.796863 

Table 3. Smallest eigenvalues for the upper and lower branch for other default parameters 

 

0.1λ =
 

β  Upper branch Lower branch 

3.0000 0.9565 -0.8348 
2.0500 0.5202 -0.4114 
1.9486 0.3000 -0.2630 

1.8893 0.0236 -0.0233 

0.2λ =
 

3.0000 0.9365 -0.8421 
2.0500 0.4968 -0.4768 

1.8232 0.1187 -0.1125 

1.8129 0.0139 -0.0138 



Multiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis   
 

Journal of  Applied and Computational Mechanics, Vol. 6, No. 4, (2020), 956-967 

961 

Table 4. Numerical results of  ({ '(0)}θ− ) for the upper and lower branch with default values 

Nt eP  
{ '(0)}θ−  

Upper branch Lower branch 

0.10 

0.001 6.585995 6.525016 

0.01 6.585998 6.514861 

0.05 6.586001 6.349962 

0.05 

0.01 

6.597811 6.526901 

0.10 6.585998 6.514861 

0.30 6.537769 6.465680 

Table 5. Numerical results for heat transfer ({ '(0)}θ− ) for different values of  slip parameters. 

λ  δ  
Ec=0.0001 Ec=0.01 

Upper Branch Lower Branch Upper Branch Lower Branch 

0 0 18.867346 18.743265 18.771104 18.577777 

0 0.1 6.582183 6.567448 6.548162 6.507984 

0 0.2 3.972842 3.967470 3.952321 3.931482 

0.1 0 18.781777 18.781777 18.622525 18.622525 

0.1 0.1 6.606917 6.572011 6.585997 6.514860 

0.1 0.2 3.981773 3.969121 3.969174 3.934543 

0.2 0 19.216928 18.815031 19.176971 18.660808 

0.2 0.1 6.622846 6.575940 6.608899 6.520655 

0.2 0.2 3.987502 3.970543 3.979111 3.937101 

Table 6. Coefficients in ENur for default set of  other parameters  

Pr Nur LC  DC  BC  TC  RMSE (ε ) Adjusted
2R  

1 2.2959 0.6406 -3.2907 -0.0000 -0.5832 0.022 0.987 

5 9.1229 -0.1085 -28.4184 -0.0036 -0.3822 0.357 0.952 

6.8 11.0802 0.2684 -37.9973 -0.0000 -0.2973 0.564 0.934 

10 13.2495 -0.0331 -48.3577 -0.0180 -0.1517 0.806 0.918 

4.1. Effect of  velocity slip and suction parameter 

The partial slip in the nanofluid flow regime has its own importance due to nanoparticle fluid interaction. The 
suction parameter sometimes plays a significant role in controlling the heat transfer, thus the impact of  these parameters 

has been explored. Figure 2 illustrates the influence of  the velocity slip parameter ( 1 / nfL aλ ν=  ), on the branches of  

the solution for stream function. Increasing velocity slip evidently enhances the upper branch solution whereas it 
diminishes the lower branch solution. Therefore in the absence of  velocity (hydrodynamic wall) slip, the upper branch 
solution is minimized whereas the lower branch solution is maximized for this case. Generally, the upper branch solution 
exhibits a much steeper gradient near the sheet surface which is smoothed into a plateau as we progress into the 

boundary layer. The lower branch solution profiles at all velocity slip values are generally monotonic growths from a 
minimum at the wall (sheet surface) to a maximum in the free stream. Figure 3 depicts the collective effect of  velocity 

slip parameter () and mass transfer parameter ( β ) i.e. suction parameter on skin friction profiles. It is evident that the 

mass transfer parameter exerts a substantial influence on the existence of  dual solutions. With an increase in the velocity 

slip parameter, both upper and lower branch solutions are decreased. These trends confirm that the wall skin friction is 

reduced with increasing hydrodynamic slip at the wall. The values of  cβ , critical points (turning points) are also 

decreased from 1.9794 to 1.8182 with the variation of  the velocity slip parameter from 0 to 0.2. Beyond the critical points, 
no solution exists. Even the velocity slip parameter has some impact on heat transfer, which slightly suppresses its value 

from 5.2319 to 5.1355 (Nearly 1% reduction) shown in Fig. 4. 

4.2. Effect of  Eckert number and nanofluid parameter (Nt) 

The dissipation due to the flow model does play a significant role which can’t be neglected in the case of  
nanoparticles. From the regression analysis, we can interpret the insignificance of  Brownian motion towards heat 
transfer management. So, we have studied the collective influence of  Eckert number (Ec) and thermophoresis parameter 

(Nt) on the temperature evolution in the boundary layer (shown in Fig. 5). Both parameters generally enhance 

temperature values. Eckert number embodies the quantity of  mechanical energy converted to heat via viscous dissipation. 
The supplementary thermal energy generated clearly heats the boundary layer and enhances temperatures and will also 
elevate thermal boundary layer thickness. The thermophoresis parameter quantifies the intensity of  the thermophoretic 

migration of  nanoparticles. With increasing values of  this parameter, thermal diffusion is encouraged in the regime and 

energizes the flow. In all cases, the temperature profiles exhibit monotonic decay from the wall to the free stream and the 

variation in values at the wall (=0) is associated with the non-isothermal conditions prescribed there. 
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Fig. 2. Upper and lower branches of  stream function profiles with different velocity slip. 
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Fig. 3. Variation of  skin friction ( )0f ′′ with mass transfer parameter β and velocity slip parameter λ . 
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Fig. 4. The effects of  velocity slip parameter λ and mass transfer parameter β on the rate of  heat transfer at the surface ( ){ }0θ ′− . 
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Fig. 5. Temperature distribution for different values of  Ec and Nt for the upper branch. 
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Fig. 6. The effects of  thermal slip parameterδ and mass transfer parameter s on the rate of  heat transfer at the surface ( ){ }0θ ′− . 

4.3. Effect of  thermal slip and suction parameters 

The thermal slip parameter is required to properly analyze the realistic situation for heat transfer as the nanoparticles 
can be used as a controlling agent for many industrial applications. Figure 6 depicts the collective effect of  thermal slip 

parameter, δ  and mass transfer parameter, β  on the rate of  heat transfer at the surface ( ){ }0θ ′− . With greater 

thermal slip (thermal jump at the wall) the surface heat transfer rate is consistently decreased. The upper branch solution 

always exceeds the lower branch solution. With increasing suction ( β >0) both upper and lower branch solutions for heat 

transfer rate are generally elevated. The deceleration in the flow with suction effectively boosts heat transfer to the wall 

i.e. cools the boundary layer. The wall (sheet surface) is therefore cooled significantly as thermal slip increases (with 
associated heating of  the nanofluid and greater thermal boundary layer thickness). Obviously, thermal slip consideration 
along with backflow arises due to shrinking sheet, can significantly change the heat transfer. 
 
4.4. Effect of  permeability and magnetic parameter 

There are many applications related to the nanoparticle flow in porous media that require a detailed analysis of  
convective heat transfer. The porous media slows down the flow thus have high impact on heat transfer along with 
Lorentz force due to electrical conducting behavior of  nanofluid (ions are the carriers). Even the permeability parameter 

plays a crucial role while dealing with nanoparticles. Thus, Fig. 7 depicts the variation in heat transfer with permeability 

parameter, eP , Magnetic parameter (M) which respect to mass transfer parameter. The correct response is therefore 

associated with the lower branch since greater permeability parameter (inversely proportional to regime permeability) 
leads to an increase in Darcian body force (porous media impedance) in the regime and this decelerates the flow 
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manifesting with lower heat transfer. With increasing magnetic parameter (retarding force), there is an increment in 
Nusselt number for the upper branch solution whereas there is a decrement in the lower branch solution for Nusselt 
number. Generally, both solutions are quite sensitive to modification in the permeability parameter and Magnetic 

parameter. The streamline patterns are shown for different cases of  stretching ( 0β = ) and shrinking ( 3β = )  

parameters for default set of  parameter in Fig. 8. The lower branch (unstable) shows the abrupt behavior due to higher 
value of  suction which changes the flow motion. The impact is more pronounced with the utilization of  nanoparticles. 
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Fig. 7. Variation of  heat ( ){ }0θ ′−  with permeability parameter eP  and Magnetic field parameter (M). 
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Fig. 8. Streamlines for the default set of  parameter otherwise stated on the caption 
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5. Concluding Remarks 

The effects of  velocity slip, thermal slip and permeability of  porous medium on time-dependent magneto-
hydrodynamic over a permeable shrinking sheet have been studied numerically utilizing nanoparticles. A stability 
analysis is performed on the unsteady version of  the transformed equations, and eigenvalues are determined to 

correspond to stable and unstable solutions. The main findings are listed below: 
1. An adequate suction is required at the surface for the existence of  both solutions. In the case of  a shrinking sheet, the 

solution may not exist without the suction parameter.   
2. The range of  solution is increased by applying slip (velocity) condition but the imposition of  thermal slip does not 

improve the range. Thus, the assumption of  partial slip entirely changes the transport phenomena in nanofluids.  

3. The stability analysis has demonstrated that the first solution is stable and thus physically reliable, while the second 
solution is not.  

4. Skin friction is lower for the velocity slip condition and the wall rate of  heat transfer is higher for larger values of  the 
suction parameter in the absence of  the thermal slip condition. The application of  suction leads to enhancement of  
wall friction as well as heat transfer for the stable branch.  

5. Magnetic field (Lorentz force) and permeability parameter both enhances the heat transfer in nanofluids for stable 
(realizable branch).  

6. Multiple regression estimation (MRE) predicts the impact of  important parameters on Nusselt number which shows 
the insignificance of  Brownian motion. 
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